[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7496664B2 - Method for determining material dimensions for UO bending - Google Patents

Method for determining material dimensions for UO bending Download PDF

Info

Publication number
JP7496664B2
JP7496664B2 JP2020134771A JP2020134771A JP7496664B2 JP 7496664 B2 JP7496664 B2 JP 7496664B2 JP 2020134771 A JP2020134771 A JP 2020134771A JP 2020134771 A JP2020134771 A JP 2020134771A JP 7496664 B2 JP7496664 B2 JP 7496664B2
Authority
JP
Japan
Prior art keywords
tubular part
bending
flat plate
target value
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020134771A
Other languages
Japanese (ja)
Other versions
JP2022030639A (en
Inventor
正彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2020134771A priority Critical patent/JP7496664B2/en
Publication of JP2022030639A publication Critical patent/JP2022030639A/en
Application granted granted Critical
Publication of JP7496664B2 publication Critical patent/JP7496664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、シミュレーションによるUO曲げ成形の素材寸法決定方法に関する。 The present invention relates to a method for determining material dimensions for UO bending through simulation.

自動車の車体を構成する部品は、金属板をプレス成形することにより製造されることが多い。具体的には、平坦な金属板を打ち抜いて所定形状のブランク材を形成し、このブランク材にプレス成形を施した後、成形品の不要部分を切断除去する。このとき、プレス成形前のブランク材を、プレス成形後の成形品に必要最小限の大きさ(形状)とすれば、材料歩留まりが高められる。 The parts that make up an automobile body are often manufactured by press-molding metal sheets. Specifically, a blank of a given shape is punched out of a flat metal sheet, and after press-molding this blank, unnecessary parts of the molded product are cut away and removed. In this process, if the blank before press-molding is made to have the minimum size (shape) required for the molded product after press-molding, material yield can be increased.

例えば、下記の特許文献1には、コンピュータシミュレーションによる繰り返し計算で、ブランク材の形状を最適化する方法が示されている。 For example, the following Patent Document 1 shows a method for optimizing the shape of a blank material through repeated calculations using computer simulation.

特開2009-45627号公報JP 2009-45627 A 特開2014-4626号公報JP 2014-4626 A

コンピュータシミュレーションによるブランク材形状の最適化は、例えば以下のような手順で行われる。まず、シミュレーションにより、図12(A)に示す平板状のブランク材101にプレス成形を施し、図12(B)に示す成形品102を形成する。この成形品102の輪郭(端部の位置)と、図12(C)に示す完成部品103の輪郭(端部の位置)とを比較し、ブランク材101の寸法の過不足ΔL’を計算する。こうして計算した過不足ΔL’に基づいてブランク材101の形状を修正し、再びプレス成形を行う。以上の工程を、成形品102が要求品質を満たすまで(すなわち、成形品102の輪郭と完成部品103の輪郭との差が所定範囲内となるまで)繰り返す。 Optimization of the blank shape using computer simulation is performed, for example, in the following procedure. First, a flat blank 101 shown in FIG. 12(A) is press-formed using simulation to form a molded product 102 shown in FIG. 12(B). The contour (position of the end) of this molded product 102 is compared with the contour (position of the end) of a finished part 103 shown in FIG. 12(C) to calculate the surplus or deficiency ΔL' of the dimensions of the blank 101. The shape of the blank 101 is modified based on the surplus or deficiency ΔL' thus calculated, and press forming is performed again. The above steps are repeated until the molded product 102 meets the required quality (i.e., until the difference between the contour of the molded product 102 and the contour of the finished part 103 falls within a predetermined range).

ところで、プレス成形の一種として、平板状のブランク材を管状に成形する、いわゆるUO曲げ成形が知られている(例えば、上記の特許文献2参照)。一般的なUO曲げ成形では、まず、平板状のブランク材をU曲げ金型でプレスすることでU字形の成形品を形成する(U曲げ工程)。次いで、図13に示すように、U字形の成形品201をO曲げ金型202,203でプレスすることで成形品201の端部同士を突き合わせる{図13(B)参照}。その後、さらにプレスすることで、成形品201が外周側に張り出し{図13(C)参照}、金型201に押し付けられることで管状部品204が形成される{図13(D)参照}。管状部品204には、端部同士の突き合わせ部205が設けられる。 As a type of press forming, a so-called UO bending process is known in which a flat blank material is formed into a tubular shape (see, for example, the above-mentioned Patent Document 2). In a typical UO bending process, a flat blank material is first pressed with a U-bending die to form a U-shaped formed product (U-bending process). Next, as shown in FIG. 13, a U-shaped formed product 201 is pressed with O-bending dies 202 and 203 to butt the ends of the formed product 201 together (see FIG. 13(B)). After that, by further pressing, the formed product 201 protrudes to the outer periphery (see FIG. 13(C)), and is pressed against the die 201 to form a tubular part 204 (see FIG. 13(D)). The tubular part 204 is provided with an butt joint 205 between the ends.

このようなUO曲げ成形の素材(ブランク材)の形状を、図12と同様の方法により最適化しようとすると、シミュレーションでのUO曲げ成形により得られた管状部品206の輪郭(端部の位置)と、設計図面上の管状部品の輪郭(端部の位置)とを比較する必要がある。しかし、管状部品204は端部同士が突き合わされているため、端部の位置で素材寸法の過不足を計算することが難しい。例えば、シミュレーションで成形した管状部品204に図14(A)(B)の上図に示すような成形不良が生じていた場合でも、この管状部品204の突き合わせ部205と、同下図に示す設計図面上の管状部品204’の突き合わせ部205’の位置(水平方向位置)は変わらないため、突き合わせ部の位置から素材寸法の過不足を計算することができない。 When trying to optimize the shape of such a material (blank material) for UO bending using a method similar to that shown in FIG. 12, it is necessary to compare the outline (position of the end) of the tubular part 206 obtained by UO bending in simulation with the outline (position of the end) of the tubular part on the design drawing. However, since the ends of the tubular part 204 are butted together, it is difficult to calculate the excess or deficiency of the material dimensions at the end positions. For example, even if a molding defect occurs in the tubular part 204 formed by simulation as shown in the upper diagram of FIG. 14 (A) (B), the position (horizontal position) of the butt joint 205 of this tubular part 204 and the butt joint 205' of the tubular part 204' on the design drawing shown in the lower diagram of the same work does not change, so it is not possible to calculate the excess or deficiency of the material dimensions from the position of the butt joint.

そこで、本発明は、シミュレーションによりUO曲げ成形の素材形状を最適化する方法を提供することを目的とする。 Therefore, the present invention aims to provide a method for optimizing the material shape of UO bending through simulation.

前記課題を解決するために、本発明は、シミュレーションにより平板素材にUO曲げ成形を施して管状部品を形成する第1のステップと、前記管状部品の長手方向複数箇所の断面における周方向長さとその目標値とを比較する第2のステップと、前記周方向長さとその目標値との比較結果に基づいて、前記平板素材の寸法を修正する第3のステップとを有するUO曲げ成形の素材寸法決定方法を提供する。 To solve the above problem, the present invention provides a material dimension determination method for UO bending, which includes a first step of forming a tubular part by performing UO bending on a flat plate material through simulation, a second step of comparing the circumferential length at multiple longitudinal cross sections of the tubular part with a target value, and a third step of correcting the dimensions of the flat plate material based on the comparison result between the circumferential length and the target value.

このように、本発明では、管状部品の端部(突き合わせ部)の位置ではなく、管状部品の断面における周方向長さとその目標値とを比較する。例えば、図14(A)上図のような成形不良が生じた場合は周方向長さが目標値(同下図の周方向長さ)よりも長くなり、図14(B)上図のような成形不良が生じた場合は周方向長さが目標値(同下図の周方向長さ)よりも短くなるため、これらの成形不良を検知することができる。そして、この周方向長さとその目標値との比較結果に基づいて、平板素材の寸法を修正することで、平板素材の形状を最適化することができる。 In this way, in the present invention, the circumferential length in the cross section of the tubular part is compared with its target value, rather than the position of the end (butt) of the tubular part. For example, when a molding defect such as that shown in the upper diagram of FIG. 14(A) occurs, the circumferential length will be longer than the target value (the circumferential length in the lower diagram), and when a molding defect such as that shown in the upper diagram of FIG. 14(B) occurs, the circumferential length will be shorter than the target value (the circumferential length in the lower diagram), so these molding defects can be detected. Then, by correcting the dimensions of the flat plate material based on the result of comparing this circumferential length with its target value, the shape of the flat plate material can be optimized.

管状部品の素材の端部同士が突き合わされている場合(すなわち、周方向長さが目標値と一致している場合)であっても、O曲げ工程(図13参照)で素材に加わる周方向の圧縮応力が不足していると、素材が金型に十分な力で押し付けられず、成形不良を招くことがある。このような成形不良は、管状部品の周方向長さを目標値と比較するだけでは検知することができない。 Even when the ends of the tubular part material are butted together (i.e., when the circumferential length matches the target value), if the circumferential compressive stress applied to the material during the O-bending process (see Figure 13) is insufficient, the material may not be pressed against the die with sufficient force, resulting in molding defects. Such molding defects cannot be detected by simply comparing the circumferential length of the tubular part with the target value.

そこで、前記第2のステップで、前記管状部品の長手方向複数箇所の断面における周方向の圧縮歪とその目標値とを比較し、前記第3のステップで、前記周方向の圧縮歪とその目標値との比較結果に基づいて、前記平板素材の寸法を修正することが好ましい。このように、管状部品の周方向長さだけでなく、周方向の圧縮歪とその目標値とを比較することで、素材に加わる圧縮応力の過不足を検知できる。この周方向の圧縮歪とその目標値との比較結果に基づいて、平板素材の寸法を修正することで、平板素材の寸法をより適正な値に設定することができる。 Therefore, it is preferable that in the second step, the circumferential compressive strain at multiple longitudinal cross sections of the tubular part is compared with its target value, and in the third step, the dimensions of the flat plate material are corrected based on the comparison result of the circumferential compressive strain with its target value. In this way, by comparing not only the circumferential length of the tubular part but also the circumferential compressive strain with its target value, it is possible to detect whether the compressive stress applied to the material is excessive or insufficient. By correcting the dimensions of the flat plate material based on the comparison result of this circumferential compressive strain with its target value, the dimensions of the flat plate material can be set to more appropriate values.

以上のように、本発明によれば、シミュレーションによりUO曲げ成形の素材形状を最適化することができる。 As described above, according to the present invention, it is possible to optimize the material shape for UO bending through simulation.

本発明の一実施形態に係るUO曲げ成形の素材寸法決定方法のフロー図である。FIG. 2 is a flow diagram of a method for determining blank dimensions for UO bending according to one embodiment of the present invention. (A)~(D)は、UO曲げ成形の各工程の断面図である。1A to 1D are cross-sectional views showing each step of UO bending forming. (A)(B)は、U曲げ工程の断面図である。13A and 13B are cross-sectional views of a U-bending process. (A)~(C)は、第一O曲げ工程の断面図である。11A to 11C are cross-sectional views showing a first O-bending process. (A)~(C)は、第二O曲げ工程の断面図である。11A to 11C are cross-sectional views of the second O-bending process. 管状部品の斜視図である。FIG. 管状部品の平面図である。FIG. 2 is a plan view of the tubular part. 管状部品の断面図である。FIG. 2 is a cross-sectional view of a tubular part. 管状部品を展開した平板素材の平面図である。FIG. 2 is a plan view of a flat plate material with a tubular part unfolded. 他の実施形態に係るUO曲げ成形の素材寸法決定方法のフロー図である。FIG. 11 is a flow chart of a method for determining blank dimensions for UO bending according to another embodiment. さらに他の実施形態に係るUO曲げ成形の素材寸法決定方法のフロー図である。FIG. 11 is a flow chart of a method for determining material dimensions for UO bending according to yet another embodiment. プレス成形品の素材寸法決定方法の比較例を示し、(A)は平板素材の断面図、(B)はシミュレーションによるプレス成形品の断面図、(C)は設計図面上のプレス成形品の断面図である。1A shows a comparative example of a method for determining the material dimensions of a press-molded product, in which (A) is a cross-sectional view of a flat plate material, (B) is a cross-sectional view of a press-molded product obtained by simulation, and (C) is a cross-sectional view of a press-molded product on a design drawing. (A)~(D)は、従来のUO曲げ成形におけるO曲げ工程の断面図である。1A to 1D are cross-sectional views of the O-bending process in conventional UO bending. (A)(B)の上図は、成形不良が生じた管状部品の断面図であり、下図は、設計時図面上の管状部品の断面図である。The upper figures in (A) and (B) are cross-sectional views of a tubular part in which a molding defect has occurred, and the lower figures are cross-sectional views of the tubular part on the design drawings.

以下、本発明の実施の形態を図面に基づいて説明する。 The following describes an embodiment of the present invention with reference to the drawings.

本実施形態に係るUO曲げ成形の素材寸法決定方法は、図1に示すステップS1~S4を経て行われる。各ステップS1~S4は、キーボード等の入力部、入力部で入力された情報を基に演算を行う演算部、及び、演算部の結果を表示するモニター等の表示部を備えたコンピュータを用いて行われる。以下、各ステップS1~S4を詳しく説明する。 The method for determining material dimensions for UO bending according to this embodiment is carried out through steps S1 to S4 shown in FIG. 1. Each of steps S1 to S4 is carried out using a computer equipped with an input unit such as a keyboard, a calculation unit that performs calculations based on information entered through the input unit, and a display unit such as a monitor that displays the results of the calculation unit. Each of steps S1 to S4 is explained in detail below.

(1)第1のステップS1(UO曲げ成形)
第1のステップS1では、上記コンピュータによるシミュレーション(例えば、有限要素法によるシミュレーション)により、平板素材に対してUO曲げ成形を施す。本実施形態では、まず、図2(A)に示す平板素材2に、U曲げ工程、第一O曲げ工程、及び第二O曲げ工程を施して、図2(D)に示す管状部品1を成形する。以下、各工程を説明する。
(1) First step S1 (UO bending)
In the first step S1, a flat plate material is subjected to UO bending by the above-mentioned computer simulation (for example, a simulation using the finite element method). In this embodiment, first, a flat plate material 2 shown in Fig. 2(A) is subjected to a U-bending process, a first O-bending process, and a second O-bending process to form a tubular part 1 shown in Fig. 2(D). Each process will be described below.

U曲げ工程では、平板素材2にU曲げ加工を施して、図2(B)に示すU曲げ成形品3を形成する。具体的には、図3に示すように、平板素材2をU曲げ金型21、22でプレスしてU曲げ成形品3を形成する。U曲げ成形品3は、底部11と、底部11の両端から立ち上がった一対の縦壁部12とを有する断面U字形を成している。平板素材2及びこれから成形されるU曲げ成形品3はソリッド要素としてモデル化され、U曲げ金型21、22は剛体としてモデル化される。尚、平板素材2及びU曲げ成形品3を、シェル要素としてモデル化してもよい。 In the U-bending process, the flat plate material 2 is subjected to U-bending processing to form the U-bent product 3 shown in FIG. 2(B). Specifically, as shown in FIG. 3, the flat plate material 2 is pressed with U-bending dies 21, 22 to form the U-bent product 3. The U-bent product 3 has a U-shaped cross section with a bottom 11 and a pair of vertical wall portions 12 rising from both ends of the bottom 11. The flat plate material 2 and the U-bent product 3 formed from it are modeled as solid elements, and the U-bending dies 21, 22 are modeled as rigid bodies. The flat plate material 2 and the U-bent product 3 may also be modeled as shell elements.

第一O曲げ工程では、U曲げ成形品3に第一O曲げ加工を施して、図2(C)に示す第一O曲げ成形品4を形成する。具体的には、図4に示すように、U曲げ成形品3を第一O曲げ金型23、24でプレスして、U曲げ成形品3の縦壁部12に肩曲げ部13を形成する。U曲げ成形品3及びこれから成形される第一O曲げ成形品4はソリッド要素としてモデル化され、第一O曲げ金型23、24は剛体としてモデル化される。尚、U曲げ成形品3及び第一O曲げ成形品4を、シェル要素としてモデル化してもよい。 In the first O-bending process, the U-bend product 3 is subjected to a first O-bending process to form the first O-bend product 4 shown in FIG. 2(C). Specifically, as shown in FIG. 4, the U-bend product 3 is pressed with first O-bending dies 23, 24 to form a shoulder bend 13 on the vertical wall portion 12 of the U-bend product 3. The U-bend product 3 and the first O-bend product 4 formed from it are modeled as solid elements, and the first O-bending dies 23, 24 are modeled as rigid bodies. The U-bend product 3 and the first O-bend product 4 may also be modeled as shell elements.

第二O曲げ工程では、第一O曲げ成形品4に第二O曲げ加工を施して、図2(D)に示す管状部品1を形成する。具体的には、図5(A)に示すように、第一O曲げ成形品4を、剛体モデルからなる第二O曲げ金型25、26でプレスして、素材の端部同士を突き合わせる{図5(B)参照}。その後、さらにプレスすることで、第二O曲げ成形品4の縦壁部12(特に、型曲げ部13よりも上方の領域)を外周側に張り出させて、上型25の成形面に押し付ける。これにより、金型25、26の成形面に倣った管状部品1が成形される{図5(C)参照}。第一O曲げ成形品4及びこれから成形される管状部品1はソリッド要素としてモデル化され、第二O曲げ金型25、26は剛体としてモデル化される。尚、第一曲げ成形品4及び管状部品1を、シェル要素としてモデル化してもよい。 In the second O-bending process, the first O-bending product 4 is subjected to a second O-bending process to form the tubular part 1 shown in FIG. 2(D). Specifically, as shown in FIG. 5(A), the first O-bending product 4 is pressed by the second O-bending dies 25 and 26, which are made of a rigid body model, to butt the ends of the material together (see FIG. 5(B)). After that, by further pressing, the vertical wall portion 12 (particularly the area above the die bending portion 13) of the second O-bending product 4 is pushed outward and pressed against the molding surface of the upper die 25. As a result, the tubular part 1 is formed according to the molding surfaces of the dies 25 and 26 (see FIG. 5(C)). The first O-bending product 4 and the tubular part 1 to be formed from it are modeled as solid elements, and the second O-bending dies 25 and 26 are modeled as rigid bodies. The first bent product 4 and the tubular part 1 may also be modeled as shell elements.

本実施形態の管状部品1は、例えば、自動車のリアサスペンションの左右のトレーリングアームとして用いられ、図6に示すように湾曲した中空管状を成している。図示例の管状部品1は、図7に示す平面視で湾曲している。管状部品1は、さらに他の方向に湾曲していてもよく、例えば、管状部品1の一方の端部を図中上向きあるいは下向きに湾曲させてもよい。管状部品1は、異形(非円形)断面を有する。管状部品1は、長手方向で断面形状が異なっている。管状部品1の上面には、素材の端部同士の突き合わせ部14が長手方向に沿って設けられる。 The tubular part 1 of this embodiment is used, for example, as the left and right trailing arms of an automobile rear suspension, and has a curved hollow tube shape as shown in FIG. 6. The tubular part 1 in the illustrated example is curved in a plan view as shown in FIG. 7. The tubular part 1 may be curved in other directions as well, for example, one end of the tubular part 1 may be curved upward or downward in the figure. The tubular part 1 has a non-circular cross section. The tubular part 1 has a cross-sectional shape that differs in the longitudinal direction. A butt joint 14 between the ends of the material is provided along the longitudinal direction on the upper surface of the tubular part 1.

尚、UO曲げ成形は上記に限らず、例えば、第一O曲げ工程を省略して、U曲げ成形品にO曲げ工程を施して管状部品を形成してもよい。また、管状部品の形状は上記に限らず、例えば、長手方向が直線状のものや、円形断面のもの、あるいは断面形状が長手方向で不変のものであってもよい。 Note that UO bending is not limited to the above, and for example, the first O-bending process may be omitted and the U-bending product may be subjected to the O-bending process to form a tubular part. Also, the shape of the tubular part is not limited to the above, and may be, for example, a straight line in the longitudinal direction, a circular cross section, or a cross-sectional shape that does not change in the longitudinal direction.

(2)第2のステップS2(周方向長さ・圧縮歪のチェック)
第2のステップS2では、管状部品1の周方向長さ及び周方向の圧縮歪をチェックする(図1参照)。具体的には、まず、図7に示すように、管状部品1の長手方向の複数箇所における断面P~Pを設定する。各断面P~Pは、長手方向と略直交する平面上に設定され、例えば、突き合わせ部14と直交する平面上に設定される。断面P~Pのピッチは、有限要素法のメッシュの大きさに応じて設定され、例えば1~2mm程度に設定される(図7では、図の簡略化のためにピッチを大きめに示している)。
(2) Second step S2 (checking circumferential length and compressive strain)
In the second step S2, the circumferential length and circumferential compressive strain of the tubular part 1 are checked (see FIG. 1). Specifically, first, as shown in FIG. 7, cross sections P 1 to P n are set at multiple locations in the longitudinal direction of the tubular part 1. Each of the cross sections P 1 to P n is set on a plane that is approximately perpendicular to the longitudinal direction, for example, on a plane that is perpendicular to the butted portion 14. The pitch of the cross sections P 1 to P n is set according to the size of the mesh in the finite element method, and is set to, for example, about 1 to 2 mm (the pitch is shown larger in FIG. 7 for the sake of simplicity).

そして、管状部品1の各断面P~Pの板厚中心における周方向長さL~Lを計算する(図8参照)。そして、管状部品1の断面P~Pにおける周方向長さL~Lと、それぞれの目標値L0~L0とを比較する。周方向長さの目標値L0~L0は、設計図面上の管状部品の各断面P~Pの板厚中心における周方向長さである。そして、シミュレーションによる管状部品1の周方向長さL~Lと、それぞれの目標値L0~L0との差ΔL~ΔLを算出する。そして、この差ΔL~ΔLが所定範囲内である断面では、素材の端末同士が設計図面通りに突き当たっている(すなわち、突き合わせ部14が所望の位置に配されている)と判定される。一方、上記の差ΔL~ΔLが所定範囲外である断面では、素材の端末同士の突き合わせ状態が不良と判定され、第3のステップS3に進む。 Then, the circumferential lengths L 1 to L n at the plate thickness center of each cross section P 1 to P n of the tubular part 1 are calculated (see FIG. 8). Then, the circumferential lengths L 1 to L n at the cross sections P 1 to P n of the tubular part 1 are compared with the respective target values L0 1 to L0 n . The target values L0 1 to L0 n of the circumferential lengths are the circumferential lengths at the plate thickness center of each cross section P 1 to P n of the tubular part on the design drawing. Then, the differences ΔL 1 to ΔL n between the circumferential lengths L 1 to L n of the tubular part 1 by simulation and the respective target values L0 1 to L0 n are calculated. Then, in cross sections where the differences ΔL 1 to ΔL n are within a predetermined range, it is determined that the ends of the materials butt against each other as shown in the design drawing (i.e., the butted portion 14 is disposed at the desired position). On the other hand, in the cross section where the above differences ΔL 1 to ΔL n are outside the predetermined range, the butted state of the ends of the blanks is judged to be defective, and the process proceeds to the third step S3.

また、管状部品1の各断面P~Pにおける周方向の圧縮歪を計算する。具体的には、各断面P~Pにおける周方向の圧縮歪ε~εの分布(平板素材2の各要素の周方向寸法と管状部品1の各要素の周方向寸法との比)を計算する。一方、管状部品1の各断面P~Pにおける周方向の圧縮歪の目標値を設定する。この目標値は、例えば、理想的な成形状態における圧縮歪分布をシミュレーションで計算したり、過去の実際のプレス成形のデータに基づいて設定したりすることができる。そして、各断面P~Pにおける周方向の圧縮歪ε~εとその目標値とを比較する。本実施形態では、シミュレーションによる各断面P~Pにおける周方向の圧縮歪ε~εの分布と、それぞれの目標値ε0~ε0との差Δε~Δεを算出する。そして、この差Δε~Δεが所定範囲内である断面では、素材に適正な圧縮応力が加わっていると判定される。一方、上記の差Δε~Δεが所定範囲外である断面では、素材に加わる圧縮応力が過剰である、あるいは不足していると判定され、第3のステップS3に進む。 In addition, the circumferential compressive strain in each cross section P 1 to P n of the tubular part 1 is calculated. Specifically, the distribution of the circumferential compressive strains ε 1 to ε n in each cross section P 1 to P n (the ratio of the circumferential dimension of each element of the flat plate material 2 to the circumferential dimension of each element of the tubular part 1) is calculated. Meanwhile, a target value of the circumferential compressive strain in each cross section P 1 to P n of the tubular part 1 is set. This target value can be calculated by simulating the compressive strain distribution in an ideal forming state, or set based on data of actual press forming in the past. Then, the circumferential compressive strains ε 1 to ε n in each cross section P 1 to P n are compared with the target value. In this embodiment, the differences Δε 1 to Δε n between the distribution of the circumferential compressive strains ε 1 to ε n in each cross section P 1 to P n obtained by simulation and the respective target values ε0 1 to ε0 n are calculated. In the cross section where the differences Δε 1 to Δε n are within a predetermined range, it is determined that the material is subjected to an appropriate compressive stress, whereas in the cross section where the differences Δε 1 to Δε n are outside the predetermined range, it is determined that the material is subjected to an excessive or insufficient compressive stress, and the process proceeds to the third step S3.

(3)第3のステップS3(素材寸法修正)
第3のステップS3では、まず、管状部品1にUO曲げの逆演算を施すことにより、管状部品1を平板状に展開した平板素材2’を取得する(図9参照)。この平板素材2’には、管状部品1の各断面P~Pに相当する断面線P’~P’が設けられる。各断面線P’~P’の端部で、突き合わせ部を構成する平板素材2’の端部2a’、2b’が設定される。そして、第2のステップS2において、素材の周方向長さとその目標値との比較結果(ΔL~ΔL)又は周方向の圧縮歪とその目標値との比較結果(Δε~Δε)、あるいはこれらの双方に基づいて、平板素材2’の断面線P’~P’の長さを修正し、平板素材2’の端部2a、2bの位置を調整する。このとき、断面線P’~P’の長さの修正量や、断面線P’~P’の何れの端部を動かして長さを修正するか等は、過去のデータ等に基づいて設定される。
(3) Third step S3 (material size correction)
In the third step S3, first, an inverse operation of UO bending is performed on the tubular part 1 to obtain a flat plate material 2' by developing the tubular part 1 into a flat plate (see FIG. 9). Section lines P 1 '-P n ' corresponding to each section P 1 -P n of the tubular part 1 are provided on this flat plate material 2'. Ends 2a', 2b' of the flat plate material 2' constituting the butted portion are set at the ends of each section line P 1 '-P n '. Then, in the second step S2, the length of the section lines P 1 ' -P n ' of the flat plate material 2' is corrected and the positions of the ends 2a, 2b of the flat plate material 2' are adjusted based on the result of comparing the circumferential length of the material with its target value (ΔL 1 -ΔL n ) or the result of comparing the circumferential compressive strain with its target value (Δε 1 -Δε n ), or both. At this time, the amount of correction of the lengths of the cross-sectional lines P 1 ' to P n ' and which end of the cross-sectional lines P 1 ' to P n ' to move to correct the lengths are set based on past data and the like.

その後、第3のステップS3で寸法を修正した平板素材2’を用いて、再びUO曲げ成形(第1のステップS1)及び周方向長さ及び歪チェック(第2のステップS2)を行う。そして、管状部品1の各断面P~Pにおける周方向長さとその目標値との差ΔL~ΔL、及び、管状部品1の各断面P~Pにおける周方向の圧縮歪とその目標値との差Δε~Δεが全て所定範囲内となるまで、上記のステップS1~S3が繰り返される。ΔL~ΔL及びΔε~Δεが全て所定範囲内となったら、第4のステップS4に進む。 Thereafter, using the flat plate material 2' whose dimensions have been corrected in the third step S3, UO bending (first step S1) and checking the circumferential length and strain (second step S2) are performed again. Then, the above steps S1 to S3 are repeated until the differences ΔL 1 to ΔL n between the circumferential length at each cross section P 1 to P n of the tubular part 1 and its target value, and the differences Δε 1 to Δε n between the circumferential compressive strain at each cross section P 1 to P n of the tubular part 1 and its target value, are all within predetermined ranges. When ΔL 1 to ΔL n and Δε 1 to Δε n are all within the predetermined ranges, the process proceeds to the fourth step S4.

(4)第4のステップS4(素材寸法確定)
第4のステップS4では、管状部品1にUO曲げの逆演算を施すことにより、管状部品1を平板状に展開する。これにより、所望の突き合わせ状態が得られるように寸法(形状)が最適化された平板素材を取得できる。
(4) Fourth step S4 (determining material dimensions)
In a fourth step S4, the tubular part 1 is developed into a flat plate by performing an inverse operation of the UO bending on the tubular part 1. This makes it possible to obtain a flat plate material whose dimensions (shape) are optimized so as to obtain the desired butt joint state.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の点については重複説明を省略する。 The present invention is not limited to the above embodiment. Other embodiments of the present invention will be described below, but duplicate explanations of points similar to the above embodiment will be omitted.

図10に示す実施形態では、第2のステップS2を、管状部品1の周方向長さをチェックするステップS2aと、管状部品1の周方向の圧縮歪をチェックするステップS2bとに分けて行っている。具体的には、第1のステップS1の後、管状部品1の周方向長さをその目標値と比較し(ステップS2a)、これらの差が所定範囲外であれば、平板素材2’の寸法を修正して(第3のステップS3)、再びUO曲げ成形を施す(第1のステップS1)。これらの工程を繰り返して、周方向長さと目標値との差が所定範囲内となったら、管状部品1の周方向の圧縮歪を目標値と比較し(ステップS2b)、これらの差が所定範囲外であれば、平板素材2’の寸法を修正して(第3のステップS3)、再びUO曲げ成形を施す(第1のステップS1)。これらの工程を繰り返して、周方向の圧縮歪と目標値との差が所定範囲内となったら、第4のステップS4に進む。 In the embodiment shown in FIG. 10, the second step S2 is divided into a step S2a for checking the circumferential length of the tubular part 1 and a step S2b for checking the circumferential compressive strain of the tubular part 1. Specifically, after the first step S1, the circumferential length of the tubular part 1 is compared with its target value (step S2a), and if the difference between them is outside a predetermined range, the dimensions of the flat plate material 2' are corrected (third step S3), and UO bending is performed again (first step S1). These steps are repeated, and when the difference between the circumferential length and the target value is within a predetermined range, the circumferential compressive strain of the tubular part 1 is compared with the target value (step S2b), and if the difference between them is outside the predetermined range, the dimensions of the flat plate material 2' are corrected (third step S3), and UO bending is performed again (first step S1). These steps are repeated, and when the difference between the circumferential compressive strain and the target value is within a predetermined range, proceed to the fourth step S4.

図11に示す実施形態では、管状部品1の周方向の圧縮歪のチェックを省略している。具体的には、管状部品1の周方向長さとその目標値のみを比較し(第2のステップS2)、これらの差が所定範囲外であれば、平板素材2’の寸法を修正して(第3のステップS3)、再びUO曲げ成形を施す(第1のステップS1)。これらの工程を繰り返して、周方向の圧縮歪と目標値との差が所定範囲内となったら、第4のステップS4に進む。このように、圧縮歪をチェックするステップを省略することで、上記の実施形態と比べて計算負荷が軽減されるため、計算時間が短縮される。 In the embodiment shown in FIG. 11, the check of the circumferential compressive strain of the tubular part 1 is omitted. Specifically, only the circumferential length of the tubular part 1 is compared with its target value (second step S2), and if the difference between them is outside a predetermined range, the dimensions of the flat plate material 2' are corrected (third step S3), and UO bending is performed again (first step S1). These steps are repeated, and when the difference between the circumferential compressive strain and the target value falls within the predetermined range, the process proceeds to the fourth step S4. In this way, by omitting the step of checking the compressive strain, the calculation load is reduced compared to the above embodiment, and the calculation time is shortened.

1 管状部品
2 平板素材
3 U曲げ成形品
4 第一O曲げ成形品
14 突き合わせ部
-P 断面
’-P’ 断面線
~L 周方向長さ
ε 周方向の圧縮歪
Reference Signs List 1 Tubular part 2 Flat plate material 3 U-bent product 4 First O-bent product 14 Butt joint P 1 -P n cross section P 1 '-P n ' Cross section lines L 1 to L n Circumferential length ε 1n Compressive strain in circumferential direction

Claims (2)

シミュレーションにより平板素材にUO曲げ成形を施して管状部品を形成する第1のステップと、
前記管状部品の長手方向複数箇所の断面における全周の周方向長さとその目標値とを比較する第2のステップと、
前記周方向長さとその目標値との比較結果に基づいて、前記平板素材の寸法を修正する第3のステップとを有するUO曲げ成形の素材寸法決定方法。
A first step of forming a tubular part by performing UO bending on a flat plate material through simulation;
a second step of comparing a circumferential length of an entire circumference at a plurality of cross sections in a longitudinal direction of the tubular part with a target value;
and a third step of correcting the dimensions of the flat plate material based on a comparison result between the circumferential length and its target value.
前記第2のステップで、前記管状部品の長手方向複数箇所の断面における周方向の圧縮歪とその目標値とを比較し、
前記第3のステップで、前記周方向の圧縮歪とその目標値との比較結果に基づいて、前記平板素材の寸法を修正する請求項1に記載のUO曲げ成形の素材寸法決定方法。
In the second step, a circumferential compressive strain at a plurality of cross sections in a longitudinal direction of the tubular part is compared with a target value;
2. The method for determining material dimensions for UO bending according to claim 1, wherein in the third step, the dimensions of the flat plate material are corrected based on a comparison result between the circumferential compressive strain and its target value.
JP2020134771A 2020-08-07 2020-08-07 Method for determining material dimensions for UO bending Active JP7496664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020134771A JP7496664B2 (en) 2020-08-07 2020-08-07 Method for determining material dimensions for UO bending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020134771A JP7496664B2 (en) 2020-08-07 2020-08-07 Method for determining material dimensions for UO bending

Publications (2)

Publication Number Publication Date
JP2022030639A JP2022030639A (en) 2022-02-18
JP7496664B2 true JP7496664B2 (en) 2024-06-07

Family

ID=80324754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134771A Active JP7496664B2 (en) 2020-08-07 2020-08-07 Method for determining material dimensions for UO bending

Country Status (1)

Country Link
JP (1) JP7496664B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115921B2 (en) 2007-02-28 2013-01-09 株式会社ペルセウスプロテオミクス Diagnostic and therapeutic agents for renal cancer
JP2018027554A (en) 2016-08-17 2018-02-22 三菱日立パワーシステムズ株式会社 Cylindrical member manufacturing method and manufacturing assistance device
JP2018161684A (en) 2017-03-27 2018-10-18 株式会社ワイテック Method of manufacturing metal pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115921B2 (en) 2007-02-28 2013-01-09 株式会社ペルセウスプロテオミクス Diagnostic and therapeutic agents for renal cancer
JP2018027554A (en) 2016-08-17 2018-02-22 三菱日立パワーシステムズ株式会社 Cylindrical member manufacturing method and manufacturing assistance device
JP2018161684A (en) 2017-03-27 2018-10-18 株式会社ワイテック Method of manufacturing metal pipe

Also Published As

Publication number Publication date
JP2022030639A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
Oudjene et al. On the parametrical study of clinch joining of metallic sheets using the Taguchi method
JP4000941B2 (en) Die shape optimization support system and optimization support program in plastic working
KR101893312B1 (en) Model configuration method, forming simulation method, manufacturing method for forming tool, program, computer readable recording medium with program stored therein, and finite element model
KR20030077456A (en) A method for determining a die profile for forming a metal part having a desired shape and associated methods
EP3663012B1 (en) Method for manufacturing a press formed product
CN108941321B (en) Method for manufacturing stamping die of beam parts
JPH07265964A (en) Method of designing binder ring for sheet metal
JP6568380B2 (en) Mold determining method for curved plate molding and curved plate manufacturing method
WO2022009576A1 (en) Steel pipe roundness prediction method, steel pipe roundness control method, steel pipe production method, method for generating steel pipe roundness prediction model, and steel pipe roundness prediction device
KR20230022224A (en) Steel pipe roundness prediction model generation method, steel pipe roundness prediction method, steel pipe roundness control method, steel pipe manufacturing method, and steel pipe roundness prediction device
JP7496664B2 (en) Method for determining material dimensions for UO bending
CN112872118A (en) Precision bending forming process of large-caliber straight welded pipe
JP2005266892A (en) Mold designing support system and method, and program for supporting mold designing
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP7015524B2 (en) Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body
JP6694366B2 (en) Press processing condition determination method
JP2012131316A (en) Manufacturing method for torsion beam
JP2011183417A (en) Method of evaluating stability of spring back
JP5028831B2 (en) Surface shape quantification method
JP4496707B2 (en) U-press tool and UOE steel pipe manufacturing method
RU2660464C1 (en) Method for production of welded longitudinal pipes of large diameter for main pipelines
CN117015446A (en) Method for manufacturing steel pipe, method for predicting roundness of steel pipe, control method, prediction model generation method, and prediction device
EP3747566A1 (en) Press molding method, rigidity-improved-position specifying method, press-molding system, and press-molded product
WO2024166495A1 (en) Press-molding simulation analysis method, device and program, and press-molded product manufacturing method
KR102694562B1 (en) Welding neck flange preform forming method and computer program for executing the same, stored on a readable recording medium, and a computer with the computer program installed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527

R150 Certificate of patent or registration of utility model

Ref document number: 7496664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150