[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7015524B2 - Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body - Google Patents

Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body Download PDF

Info

Publication number
JP7015524B2
JP7015524B2 JP2017240078A JP2017240078A JP7015524B2 JP 7015524 B2 JP7015524 B2 JP 7015524B2 JP 2017240078 A JP2017240078 A JP 2017240078A JP 2017240078 A JP2017240078 A JP 2017240078A JP 7015524 B2 JP7015524 B2 JP 7015524B2
Authority
JP
Japan
Prior art keywords
press
molding
limit line
molded body
principal strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017240078A
Other languages
Japanese (ja)
Other versions
JP2019104051A (en
Inventor
孝行 上原
将志 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keylex Corp
Original Assignee
Keylex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keylex Corp filed Critical Keylex Corp
Priority to JP2017240078A priority Critical patent/JP7015524B2/en
Publication of JP2019104051A publication Critical patent/JP2019104051A/en
Application granted granted Critical
Publication of JP7015524B2 publication Critical patent/JP7015524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、被プレス板をプレス成形してプレス成形体を得る前段階において、プレス成形シミュレーションによってプレス成形体に割れが発生するか否かを事前に予測する方法に関する。 The present invention relates to a method for predicting in advance whether or not cracks will occur in a press-molded body by a press-molding simulation in a stage before the press-molded plate is press-molded to obtain a press-molded body.

従来より、自動車や家電製品等に用いるプレス成形体を設計する際において、当該プレス成形体を成形するプレス金型の設計及び製作時における手戻りを出来るだけ少なくするために、コンピュータを用いたプレス成形シミュレーションによってプレス成形体の成形時において割れが発生するか否かを事前に予測する作業が行われる。 Conventionally, when designing a press-molded body used for automobiles, home appliances, etc., a press using a computer is used in order to minimize rework during the design and manufacture of the press die for forming the press-molded body. The work of predicting in advance whether or not cracks will occur during the molding of the press-molded body is performed by the molding simulation.

例えば、特許文献1では、被プレス板をモデル化した複数の有限要素からなるモデルデータを作成するとともに、当該モデルデータを用いてプレス成形シミュレーションによる数値解析をコンピュータ上にて行った後、各有限要素の最大主ひずみ及び最小主ひずみが成形限界線図における成形限界線より上側に位置するか否かをコンピュータが判定し、成形限界線より上側に位置する各有限要素に対応するプレス成形体の位置に割れが発生すると事前予測するようになっている。 For example, in Patent Document 1, model data consisting of a plurality of finite elements modeling a plate to be pressed is created, and numerical analysis by press molding simulation is performed using the model data on a computer, and then each finite element is obtained. The computer determines whether the maximum and minimum principal strains of the elements are located above the molding limit line in the molding limit line diagram, and the press-formed body corresponding to each finite element located above the molding limit line. It is designed to predict in advance that a crack will occur at the position.

特開2006-167766号公報Japanese Unexamined Patent Publication No. 2006-167766

ところで、プレス成形体に成形される前の被プレス板は、鋼帯を巻き取ってなるコイルを巻き出すとともに巻出方向に所定の長さで切断したものが一般的に用いられ、プレス金型に対する被プレス板のプレス前のセット状態(コイルの巻取方向)は、材料歩留まりの向上を目的とした材料取りによって自ずと決められる。そして、プレス成形体において、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部を曲げてプレス成形体を成形するよりも、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部を曲げてプレス成形体を成形する方がプレス成形時に割れが発生し易いということが一般的に知られている。 By the way, as a plate to be pressed before being formed into a press-molded body, a coil formed by winding a steel strip is generally used and cut to a predetermined length in the winding direction, and a press die is generally used. The set state (winding direction of the coil) of the plate to be pressed before pressing is naturally determined by material removal for the purpose of improving the material yield. Then, in the press-molded body, rather than bending the bend-molded portion so that the bend ridge line intersects the coil winding direction to form the press-molded body, the bend-molded portion so that the bend ridge line follows the coil winding direction. It is generally known that cracking is more likely to occur during press molding when the press-molded body is formed by bending.

しかし、特許文献1の如き従来のプレス成形シミュレーションによる事前評価では、プレス金型に対する被プレス板のプレス前のセット状態(コイルの巻取方向)を考慮したものにはなっておらず、被プレス板のプレス前の姿勢(コイルの巻取方向)の違いにより割れ発生の評価にばらつきが発生して本来行う必要の無かった設計変更をしなければならなくなるといった開発の手戻りが発生するおそれがあった。したがって、事前予測を行う際に、プレス金型に対する被プレス板のプレス前のセット状態(コイルの巻取方向)の違いをも反映させて開発のリードタイム短縮に大きく貢献させたいという要望があった。 However, in the preliminary evaluation by the conventional press forming simulation as in Patent Document 1, the set state (coil winding direction) of the pressed plate with respect to the press die before pressing is not taken into consideration, and the pressed plate is pressed. There is a risk of development rework, such as variations in the evaluation of crack occurrence due to differences in the posture of the plate before pressing (coil winding direction), and the need to make design changes that were not originally necessary. there were. Therefore, when making a preliminary prediction, there is a request to greatly contribute to shortening the lead time of development by reflecting the difference in the set state (coil winding direction) of the pressed plate with respect to the press die before pressing. rice field.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、被プレス板のコイルの巻取方向を考慮した割れ発生の予測を行うことによって、開発のリードタイム短縮に大きく貢献することにある。 The present invention has been made in view of these points, and an object thereof is to shorten the lead time of development by predicting the occurrence of cracks in consideration of the winding direction of the coil of the pressed plate. It is to make a big contribution.

上記の目的を達成するために、本発明は、成形が難しいとされているプレス金型に対する被プレス板のプレス前のセット状態を考慮して事前評価が行えるよう工夫を凝らしたことを特徴とする。 In order to achieve the above object, the present invention is characterized in that the present invention is devised so that the pre-evaluation can be performed in consideration of the set state of the press plate to be pressed with respect to the press die, which is considered to be difficult to form. do.

具体的には、被プレス板をプレス成形してプレス成形体を得る前段階において、上記被プレス板をモデル化した多数の有限要素からなるモデルデータを作成するとともに当該モデルデータを用いたプレス成形シミュレーションによる数値解析をコンピュータ上にて行って上記モデルデータにおける各有限要素の最大主ひずみε及び最小主ひずみεをそれぞれ導き出し、その後、上記各有限要素の最大主ひずみε及び最小主ひずみεが成形限界線より上側に位置するか否かを上記コンピュータが判定し、上記成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測するプレス成形体の成形時における割れ発生有無の事前予測方法を対象とし、次のような解決手段を講じた。 Specifically, in the pre-stage of press-molding the plate to be pressed to obtain a press-molded body, model data consisting of a large number of finite elements modeling the plate to be pressed is created and press-molding using the model data. Numerical analysis by simulation is performed on a computer to derive the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element in the model data, and then the maximum principal strain ε 1 and the minimum principal strain ε 1 of each finite element. The computer determines whether or not ε 2 is located above the molding limit line, and predicts that cracks will occur at the position of the press-molded body corresponding to each finite element located above the molding limit line. The following solutions were taken for the method of predicting the presence or absence of cracks during molding of the molded body.

すなわち、第1の発明では、鋼帯を巻き取ってなるコイルから巻き出して得た試験板の単純曲げ試験において、曲げ稜線がコイルの巻取方向と交差するように曲げて成形した場合に対して曲げ稜線がコイルの巻取方向に沿うように曲げて成形した場合の限界ひずみの差分だけ上記コンピュータが上記成形限界線の全体を下方にシフトさせた修正成形限界線を算出するとともに上記各有限要素の最大主ひずみε及び最小主ひずみεが上記修正成形限界線より上側に位置するか否かを判定し、上記修正成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測することを特徴とする。 That is, in the first invention, in a simple bending test of a test plate obtained by unwinding a steel strip from a coil, the bending ridge line is bent so as to intersect the winding direction of the coil. The computer calculates the modified forming limit line by shifting the entire forming limit line downward by the difference in the limit strain when the bending ridge line is bent along the winding direction of the coil. It is determined whether the maximum principal strain ε 1 and the minimum principal strain ε 2 of the finite element are located above the modified forming limit line, and the press corresponding to each finite element located above the modified forming limit line. It is characterized by predicting that cracks will occur at the position of the molded product.

また、第2の発明では、第1の発明において、上記被プレス板が980MPa級で且つ板厚が1mmのときに、実験によって導き出された上記限界ひずみの差分である-0.011だけ上記コンピュータが上記成形限界線の全体を下方にシフトさせた上記修正成形限界線を算出することを特徴とする。Further, in the second invention, in the first invention, when the pressed plate is 980 MPa class and the plate thickness is 1 mm, the difference of the limit strain derived by the experiment is -0.011 only for the computer. Is characterized in that the modified molding limit line is calculated by shifting the entire molding limit line downward.

本発明では、曲げ稜線がコイルの巻取方向に沿うように各曲げ成形部を曲げてプレス成形体を得るといった最も成形の難しい場合を予め想定した成形限界線の下限値をコンピュータが算出してプレス成形体に割れが発生するか否かの事前予測を行うので、もし仮に、割れが発生すると予測された場合には、金型等の設計変更が必ず必要であることが分かる一方、割れが発生しないと予測された場合には、歩留まりの向上等を目的としてコイルの巻取方向に関係なく自由に材料取りの検討を行うことができるようになる。したがって、金型の設計変更や材料取りの検討などに費やす時間が少なくなって手戻りの回数が少なくなるので、開発のリードタイム短縮に大きく貢献することができる。 In the present invention, the computer calculates the lower limit of the molding limit line assuming the most difficult case of molding, such as bending each bending and forming portion so that the bending ridge line follows the winding direction of the coil to obtain a press-molded body. Since it is predicted in advance whether or not cracks will occur in the press-molded body, if it is predicted that cracks will occur, it will be understood that it is absolutely necessary to change the design of the mold, etc., but cracks will occur. If it is predicted that it will not occur, it will be possible to freely study material removal regardless of the coil winding direction for the purpose of improving the yield. Therefore, the time spent on changing the design of the mold and examining the material removal is reduced, and the number of rework is reduced, which can greatly contribute to shortening the lead time of development.

本発明の実施形態に係る予測方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the prediction method which concerns on embodiment of this invention. 本発明の予測方法を用いて成形時に割れが発生するか否かの事前予測を行うプレス成形体と該プレス成形体に成形する前の被プレス板とをそれぞれ示す概略斜視図である。It is a schematic perspective view which shows the press-molded body which predicts in advance whether or not cracks occur at the time of molding using the prediction method of this invention, and the pressed plate before molding into the press-molded body, respectively. コンピュータに表示された状態を示す図2における被プレス板のモデルデータとプレス成形シミュレーションによる変形後のモデルデータとをそれぞれ示す概略斜視図である。It is a schematic perspective view which shows the model data of the pressed plate in FIG. 2 which shows the state displayed on a computer, and the model data after deformation by a press forming simulation, respectively. 図2のプレス成形体の成形時における割れ発生の有無を事前予測する時に使用する成形限界線図であり、図3のプレス成形シミュレーションによる変形後のモデルデータにおける各有限要素の最大主ひずみ及び最小主ひずみをそれぞれプロットした図である。It is a molding limit diagram used when predicting the presence or absence of cracking at the time of molding of the press-molded article of FIG. 2, and the maximum principal strain and the minimum of each finite element in the model data after deformation by the press-molding simulation of FIG. It is the figure which plotted each main strain. 図4のE2部に位置する点群に対応する各有限要素の位置を示したプレス成形シミュレーションによる変形後のモデルデータの斜視図である。It is a perspective view of the model data after deformation by the press forming simulation which showed the position of each finite element corresponding to the point cloud located in the E2 part of FIG. 単純曲げ変形時における限界表面ひずみの一般的なデータである。It is general data of the limit surface strain at the time of simple bending deformation.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is essentially merely an example.

図1は、本発明の実施形態に係る予測方法の作業手順を示すフローチャート1である。本発明の予測方法は、図2及び図3に示すように、被プレス板2をプレス成形して目標形状である断面ハット形状のプレス成形体3にする前段階において、上記被プレス板2をモデル化した多数の有限要素A(nは自然数)からなるモデルデータD1を作成するとともに当該モデルデータD1を用いたプレス成形シミュレーションによる数値解析をコンピュータ上にて行うことによって成形時に上記プレス成形体3に割れが発生するか否かを事前に予測するものであり、6つのステップS1~S6(図1参照)を順に経ることによってプレス成形体3の成形時において割れが発生するか否かが事前に分かるようになっている。 FIG. 1 is a flowchart 1 showing a work procedure of a prediction method according to an embodiment of the present invention. As shown in FIGS. 2 and 3, the prediction method of the present invention press-molds the pressed plate 2 into a press-molded body 3 having a cross-section hat shape, which is a target shape. By creating model data D1 consisting of a large number of modeled finite elements An ( n is a natural number) and performing numerical analysis by press molding simulation using the model data D1 on a computer, the press-molded body is formed at the time of molding. It predicts in advance whether or not cracks will occur in 3, and whether or not cracks will occur during molding of the press-molded body 3 by going through the six steps S1 to S6 (see FIG. 1) in order. It is designed to be known in advance.

プレス成形体3は、図2に示すように、その長手方向に沿って延び、且つ、断面が約90°に折れ曲がった形状をなす曲げ成形部3aを4つ有している。 As shown in FIG. 2, the press-molded body 3 has four bending-molded portions 3a extending along the longitudinal direction thereof and having a cross section bent at about 90 °.

被プレス板2は、板厚tの鋼帯を巻き取ってなるコイルから巻き出して所定の間隔に切り取ることで得られたものである。プレス成形体3の如き各曲げ成形部3aが同方向に延びる断面ハット形状の部品は、各曲げ成形部3aを曲げ稜線がコイルの巻取方向と交差するように折り曲げてプレス成形体3を得るか(コイルの巻取方向が図2のX1方向となるように被プレス板2を金型にセットした状態で成形する)、或いは、各曲げ成形部3aを曲げ稜線がコイルの巻取方向に沿うように折り曲げてプレス成形体3を得る(コイルの巻取方向が図2のX2方向となるように被プレス板2を金型にセットした状態で成形する)のが一般的である。 The plate 2 to be pressed is obtained by winding a steel strip having a plate thickness t from a coil and cutting it at a predetermined interval. For a part having a cross-section hat shape in which each bending die 3a extends in the same direction, such as a press die 3, each bending die 3a is bent so that the bending ridge line intersects the winding direction of the coil to obtain the press molding 3. (Mold with the pressed plate 2 set in the die so that the coil winding direction is the X1 direction in FIG. 2), or each bending and forming portion 3a is bent so that the ridge line is in the coil winding direction. It is common to obtain a press-molded body 3 by bending along the same direction (molding with the pressed plate 2 set in a die so that the winding direction of the coil is the X2 direction of FIG. 2).

すなわち、図2の如きプレス成形体3の場合、当該プレス成形体3の長手方向に対してコイルの巻取方向が交差するように(X1方向となるように)被プレス板2を金型にセットした状態で成形するか、或いは、プレス成形体3の長手方向に対してコイルの巻取方向が沿うように(X2方向となるように)被プレス板2を金型にセットした状態で成形するようになっている。 That is, in the case of the press-molded body 3 as shown in FIG. 2, the pressed plate 2 is used as a die so that the winding direction of the coil intersects the longitudinal direction of the press-molded body 3 (so as to be in the X1 direction). Molding is performed in the set state, or the pressed plate 2 is set in the die so that the winding direction of the coil is along the longitudinal direction of the press-molded body 3 (so as to be in the X2 direction). It is designed to do.

プレス成形体3の成形時に割れが発生するか否かの事前予測には、図4に示すような成形限界線図Gを用いる。この成形限界線図Gには、略V形状をなす成形限界線L1と、該成形限界線L1の下側に位置し、且つ、当該成形限界線L1と同形状の修正成形限界線L2とがそれぞれ表示されている。 A molding limit diagram G as shown in FIG. 4 is used for predicting in advance whether or not cracks will occur during molding of the press-molded body 3. In this molding limit line diagram G, a molding limit line L1 having a substantially V shape and a modified molding limit line L2 located below the molding limit line L1 and having the same shape as the molding limit line L1 are provided. Each is displayed.

成形限界線L1は、例えば、被プレス板2の板厚がtのときに、実験によって、或いは、理論的に導き出されたものであり、プレス成形時に割れが発生するか否かをコンピュータ上にて予測するときの一般的な閾値として用いられるものである。 The forming limit line L1 is, for example, derived experimentally or theoretically when the plate thickness of the plate 2 to be pressed is t, and it is determined on a computer whether or not cracks occur during press forming. It is used as a general threshold value when making predictions.

例えば、プレス成形体3を得る場合において、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεをコンピュータ上にてそれぞれ導き出した後、各有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線L1より上側に位置するか否かをコンピュータが判定し、成形限界線L1より上側に位置する各有限要素Aに対応するプレス成形体3の位置に割れが発生すると予測する。 For example, in the case of obtaining the press-formed body 3, the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element An in the model data D1 of FIG. 3 are derived on a computer, and then each finite element An is derived. The computer determines whether or not the maximum principal strain ε 1 and the minimum principal strain ε 2 of are located above the molding limit line L1, and press molding corresponding to each finite element Ann located above the molding limit line L1. It is predicted that a crack will occur at the position of the body 3.

また、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線L1とを比較し、全ての有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線L1より下側に位置する場合、プレス成形体3に割れが発生しないと予測する。 Further, the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element An in the model data D1 of FIG. 3 are compared with the forming limit line L1, and the maximum principal strain ε 1 and the minimum of all the finite elements An are compared. When the main strain ε 2 is located below the molding limit line L1, it is predicted that the press molded body 3 will not be cracked.

一方、修正成形限界線L2は、本発明の予測方法では、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を得る場合を想定して成形時に割れが発生するか否かを予測するときの閾値として用いられ、成形限界線L1をy=f(x)(y:最大主ひずみ、x:最小主ひずみ)と定義すると、コンピュータによってy=f(x)-α×t(α:所定の係数)と算出されたものである。 On the other hand, in the prediction method of the present invention, the modified molding limit line L2 is cracked at the time of molding assuming that the bending ridge line is bent along the winding direction of the coil to obtain the press-molded body 3. It is used as a threshold when predicting whether or not it occurs, and if the molding limit line L1 is defined as y = f (x) (y: maximum principal strain, x: minimum principal strain), y = f (x) by a computer. ) -Α × t (α: predetermined coefficient).

修正成形限界線L2におけるα×tは、板厚tの鋼帯を巻き取ってなるコイルから巻き出して得た試験板の単純曲げ試験において、曲げ稜線がコイルの巻取方向と交差するように曲げて成形した場合に対して曲げ稜線がコイルの巻取方向に沿うように曲げて成形した場合の限界ひずみの差である。 The α × t at the modified forming limit line L2 is such that the bending ridge line intersects the winding direction of the coil in the simple bending test of the test plate obtained by unwinding the steel strip having the plate thickness t from the coil. This is the difference in the limit strain when the bending ridge line is bent along the winding direction of the coil as compared with the case of bending and molding.

例えば、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を得る場合において、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεをコンピュータがそれぞれ導き出した後、各有限要素Aの最大主ひずみε及び最小主ひずみεが修正成形限界線L2より上側に位置するか否かを判定し、修正成形限界線L2より上側に位置する各有限要素Aに対応するプレス成形体3の位置に割れが発生すると予測する。 For example, when the bend forming portion 3a is bent so that the bending ridge line follows the winding direction of the coil to obtain the press-formed body 3, the maximum principal strain ε 1 and the minimum of each finite element An in the model data D1 of FIG. 3 are obtained. After the main strain ε 2 is derived by the computer, it is determined whether the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann are located above the modified forming limit line L2, and the modified forming limit is determined. It is predicted that cracks will occur at the position of the press-formed body 3 corresponding to each finite element An located above the line L2.

また、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεと修正成形限界線L2とを比較し、全ての有限要素Aの最大主ひずみε及び最小主ひずみεが修正成形限界線L2より下側に位置する場合、プレス成形体3に割れが発生しないと予測する。 Further, the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element An in the model data D1 of FIG. 3 are compared with the modified molding limit line L2, and the maximum principal strain ε 1 and the maximum principal strain ε 1 of all the finite elements An are compared. When the minimum principal strain ε 2 is located below the modified forming limit line L2, it is predicted that the press-formed body 3 will not be cracked.

このように、本発明の予測方法では、想定される成形限界線の下限値をコンピュータ上にて算出することによって、プレス成形体3を成形する際、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部3aを曲げてプレス成形体3を成形する場合だけでなく、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を得る場合をも考慮した評価が行えるようになっている。 As described above, in the prediction method of the present invention, the bent ridge line intersects the winding direction of the coil when the press-molded body 3 is formed by calculating the lower limit value of the assumed forming limit line on the computer. Consider not only the case where the bend-molded portion 3a is bent to form the press-molded body 3 but also the case where the bend-molded portion 3a is bent so that the bending ridge line is along the winding direction of the coil to obtain the press-molded body 3. It is possible to make an evaluation.

尚、修正成形限界線L2は、以下のように導き出した。 The modified molding limit line L2 was derived as follows.

単純曲げ試験において、所定の試験板(980MPa級)を単純曲げした際の曲げ半径をR、板厚をtとすると、R/tと外側表面のひずみ量との関係が図6の曲線C1のようになることが一般的に知られている。そして、単純曲げ試験の際、曲げ稜線がコイルの巻取方向と交差するように曲げる場合に対し、曲げ稜線がコイルの巻取方向に沿うように曲げる場合には、曲線C1がR/tの軸方向に約-1だけずれて曲線C2の値になることも知られている。 In the simple bending test, assuming that the bending radius when a predetermined test plate (980 MPa class) is simply bent is R and the plate thickness is t, the relationship between R / t and the amount of strain on the outer surface is shown in the curve C1 in FIG. It is generally known that Then, in the simple bending test, when the bending ridge line is bent so as to intersect the coil winding direction, when the bending ridge line is bent along the coil winding direction, the curve C1 is R / t. It is also known that the value of the curve C2 is deviated by about -1 in the axial direction.

板厚が1mmの試験板を用いた単純曲げ試験を行った際、曲げ半径R=3のときのひずみ量と曲げ半径R=4のときのひずみ量との差が0.011であった。つまり、曲げ半径Rの差が1の時、ひずみ量の差が0.011になることが分かった。したがって、成形限界線図Gで見たときに、最小主ひずみεが0のときの限界ひずみの値が-0.011×tだけ下方になるように成形限界線L1の位置をシフトさせて下限値にすれば最も厳しい割れ発生の有無の評価が可能になると考え、プレス成形体3の割れ発生有無の評価に成形限界線L1:y=f(x)を用いる場合、まず初めに、修正成形限界線L2:y=f(x)-0.011×tを用いて割れ発生の有無の評価を行うことにした。尚、ひずみ量0.011は、被プレス板2の材質によって変化する値である。 When a simple bending test using a test plate having a plate thickness of 1 mm was performed, the difference between the strain amount when the bending radius R = 3 and the strain amount when the bending radius R = 4 was 0.011. That is, it was found that when the difference in bending radius R was 1, the difference in strain amount was 0.011. Therefore, when viewed in the forming limit diagram G, the position of the forming limit line L1 is shifted so that the value of the limit strain when the minimum principal strain ε 2 is 0 is -0.011 × t downward. Considering that it is possible to evaluate the presence or absence of the most severe cracks if the lower limit is set, when the molding limit line L1: y = f (x) is used for the evaluation of the presence or absence of cracks in the press molded body 3, first of all, correction is made. It was decided to evaluate the presence or absence of cracking using the molding limit line L2: y = f (x) −0.011 × t. The strain amount 0.011 is a value that changes depending on the material of the pressed plate 2.

次に、本発明の方法を用いて割れ発生の有無を評価した結果について詳述する。 Next, the results of evaluating the presence or absence of cracks using the method of the present invention will be described in detail.

まず、図2及び図3に示すように、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部3aを曲げてプレス成形体3を得る際には割れが発生しないが、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げて成形する際には割れが発生するプレス成形体3のモデルデータD1を用意した。尚、図2のE1部が割れ発生部位である。 First, as shown in FIGS. 2 and 3, cracks do not occur when the bent ridge line is bent so that the bending ridge line intersects the winding direction of the coil to obtain the press-molded body 3, but the bent ridge line is formed. Model data D1 of the press-molded body 3 in which cracks occur when the bending-molded portion 3a is bent and molded along the winding direction of the coil is prepared. The E1 portion in FIG. 2 is the crack occurrence site.

次に、モデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεをコンピュータ上にてプレス成形シミュレーションによる数値解析によって求め、成形限界線図Gにそれぞれプロットした。すると、図4に示すように、成形限界線L1より上側にはプロットが無かったが、成形限界線L1と修正成形限界線L2との間の領域E2には、多数のプロットが抽出された。 Next, the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann in the model data D1 were obtained by numerical analysis by press molding simulation on a computer and plotted on the molding limit diagram G, respectively. Then, as shown in FIG. 4, there were no plots above the forming limit line L1, but a large number of plots were extracted in the region E2 between the forming limit line L1 and the modified forming limit line L2.

領域E2に位置する多数のプロットに対応する各有限要素Aを成形後のモデルデータD1に表示すると(E3部)、図5に示すように、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を実際に得た際の割れの発生部位(E1部)と一致していた。 When each finite element An corresponding to a large number of plots located in the region E2 is displayed in the model data D1 after molding (part E3), as shown in FIG. 5, the bending ridge line is along the winding direction of the coil. It coincided with the crack generation site (E1 part) when the press-molded body 3 was actually obtained by bending the bend-molded part 3a.

つまり、図4及び図5に示すように、プレス成形体3の成形時において、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げる場合、割れが発生すると予測される限界ひずみは、成形限界線図Gにおいて、成形限界線L1と修正成形限界線L2との間の領域に集中していることが分かった。 That is, as shown in FIGS. 4 and 5, when the bent ridge line is bent along the winding direction of the coil when the press-molded body 3 is formed, the critical strain predicted to cause cracking. Was found to be concentrated in the region between the molding limit line L1 and the modified molding limit line L2 in the molding limit diagram G.

次に、本発明の予測方法を用いたプレス成形体3の成形時における割れ発生有無の事前予測の手順について詳述する。 Next, the procedure for predicting the presence or absence of cracks during molding of the press-molded body 3 using the prediction method of the present invention will be described in detail.

まず、図1に示すように、ステップS1において、コンピュータ上にて被プレス板2をモデル化した複数の有限要素AからなるモデルデータD1を作成する。 First, as shown in FIG. 1, in step S1, model data D1 composed of a plurality of finite elements An that model the pressed plate 2 is created on a computer.

次に、ステップS2において、被プレス板2の板厚がtのときにおける成形限界線図Gを得る(図4参照)。 Next, in step S2, a forming limit diagram G when the plate thickness of the pressed plate 2 is t is obtained (see FIG. 4).

次いで、ステップS3において、モデルデータD1を用いてプレス成形シミュレーションをコンピュータ上にて実施する。そして、プレス成形シミュレーションによる数値解析によって目標形状になったモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεを得る。 Next, in step S3, a press forming simulation is carried out on a computer using the model data D1. Then, the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann in the model data D1 which has become the target shape by the numerical analysis by the press forming simulation are obtained.

しかる後、ステップS4において、各有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線図Gの修正成形限界線L2より上側に位置するか否かをコンピュータが判定する。 Then, in step S4, the computer determines whether or not the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann are located above the modified molding limit line L2 in the molding limit diagram G.

このステップS4の判定がYESのとき、すなわち、修正成形限界線L2の上側に位置する有限要素Aがある場合には、ステップS5に進み、各有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線図Gの成形限界線L1より上側に位置するか否かを判定する。 If the determination in step S4 is YES, that is, if there is a finite element An located above the modified forming limit line L2, the process proceeds to step S5, and the maximum principal strain ε 1 and the minimum of each finite element An are reached. It is determined whether or not the main strain ε 2 is located above the molding limit line L1 in the molding limit diagram G.

一方、ステップS4の判定がNOのとき、すなわち、修正成形限界線L2の上側に位置する有限要素Aがない場合には、コイルの巻取方向に関係なく成形時に割れが発生しないと判断して、プレス成形体3の成形時における割れ発生有無の事前予測を終了する。 On the other hand, when the determination in step S4 is NO, that is, when there is no finite element An located above the modified molding limit line L2, it is determined that cracking does not occur during molding regardless of the coil winding direction. Then, the preliminary prediction of the presence or absence of cracks during molding of the press molded body 3 is completed.

そして、ステップS5の判定がYESのとき、すなわち、成形限界線L1の上側に位置する有限要素Aがある場合には、ステップS6に進んでプレス成形体3及び金型の形状を再検討する。 Then, when the determination in step S5 is YES, that is, when there is a finite element An located above the molding limit line L1, the process proceeds to step S6 to reexamine the shapes of the press-molded body 3 and the die. ..

一方、ステップS5の判定がNOのとき、すなわち、成形限界線L1の上側に位置する有限要素Aがない場合には、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部3aを曲げてプレス成形体3を得るようにすれば成形時に割れが発生しないと判断して、プレス成形体3の成形時における割れ発生有無の事前予測を終了する。 On the other hand, when the determination in step S5 is NO, that is, when there is no finite element Ann located above the forming limit line L1, the bending forming portion 3a is formed so that the bending ridge line intersects the winding direction of the coil. It is determined that cracks do not occur during molding if the press-molded body 3 is bent to obtain the press-molded body 3, and the preliminary prediction of the presence or absence of cracks during molding of the press-molded body 3 ends.

以上より、本発明の実施形態によると、曲げ稜線がコイルの巻取方向に沿うように各曲げ成形部3aを曲げてプレス成形体3を得るといった最も成形の難しい場合を予め想定した成形限界線の下限値である修正成形限界線L2をコンピュータが算出してプレス成形体3に割れが発生するか否かの事前予測を行うので、もし仮に、割れが発生すると予測された場合には、金型等の設計変更が必ず必要であることが分かる一方、割れが発生しないと予測された場合には、歩留まりの向上等を目的としてコイルの巻取方向に関係なく自由に材料取りの検討を行うことができるようになる。したがって、金型の設計変更や材料取りの検討などに費やす時間が少なくなって手戻りの回数が少なくなるので、開発のリードタイム短縮に大きく貢献することができる。 From the above, according to the embodiment of the present invention, the molding limit line assuming the most difficult case of molding, such as bending each bending die 3a so that the bending ridge line follows the winding direction of the coil to obtain the press-molded body 3. Since the computer calculates the modified molding limit line L2, which is the lower limit of the above, to predict in advance whether or not cracks will occur in the press-molded body 3, if cracks are predicted to occur, gold While it is clear that it is absolutely necessary to change the design of the mold, etc., if it is predicted that cracks will not occur, the material can be freely examined regardless of the coil winding direction for the purpose of improving the yield. You will be able to do it. Therefore, the time spent on changing the design of the mold and examining the material removal is reduced, and the number of rework is reduced, which can greatly contribute to shortening the lead time of development.

尚、本発明の実施形態では、まず、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの修正成形限界線L2とを比較し、その後、修正成形限界線L2より上側に有限要素Aが位置する場合に各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの成形限界線L1とを比較するようにしているが、これに限らず、例えば、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの成形限界線L1とを比較した後、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの修正成形限界線L2とを比較してもよいし、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの修正成形限界線L2とを比較した後、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの成形限界線L1とを比較せずに割れ発生有無の事前予測を終了してもよい。 In the embodiment of the present invention, first, the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann are compared with the modified forming limit line L2 of the forming limit diagram G, and then the modified forming limit. When the finite element Ann is located above the line L2, the maximum principal strain ε1 and the minimum principal strain ε2 of each finite element Ann are compared with the molding limit line L1 in the molding limit diagram G. However, the present invention is not limited to this, for example, after comparing the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element An with the molding limit line L1 of the molding limit diagram G, the maximum of each finite element An . The principal strain ε 1 and the minimum principal strain ε 2 may be compared with the modified molding limit line L2 in the molding limit diagram G, or the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann may be compared with the molding. After comparing with the modified molding limit line L2 of the limit diagram G, without comparing the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element Ann with the molding limit line L1 of the molding limit diagram G. The preliminary prediction of the presence or absence of cracks may be terminated.

また、本発明の実施形態では、本発明の事前予測の方法を用いて断面ハット形状のプレス成形体3における割れ発生の有無を予測しているが、その他の形状のプレス成形体における割れ発生の有無も予測可能である。例えば、本発明の実施形態では、プレス成形体3の各曲げ成形部3aの曲げ稜線が全て同方向に延びているが、各曲げ成形部3aの曲げ稜線が全て同方向に延びる形状のプレス成形体でなくても予測可能である。 Further, in the embodiment of the present invention, the presence or absence of cracks in the press-molded body 3 having a cross-sectional hat shape is predicted by using the method of prior prediction of the present invention, but cracks occur in the press-molded bodies having other shapes. The presence or absence is also predictable. For example, in the embodiment of the present invention, all the bending ridges of each bending ridge 3a of the press-molded body 3 extend in the same direction, but all the bending ridges of each bending ridge 3a extend in the same direction. It is predictable even if it is not the body.

本発明は、被プレス板をプレス成形してプレス成形体を得る前段階において、プレス成形シミュレーションによってプレス成形体に割れが発生するか否かを事前に予測する方法に適している。 The present invention is suitable for a method of predicting in advance whether or not cracks will occur in a press-molded body by a press-molding simulation in a stage before the press-molded plate is press-molded to obtain a press-molded body.

1 フローチャート
2 被プレス板
3 プレス成形体
G 成形限界線図
L1 成形限界線
L2 修正成形限界線
1 Flow chart 2 Pressed plate 3 Press-molded body G Molding limit line diagram L1 Molding limit line L2 Modified molding limit line

Claims (2)

被プレス板をプレス成形してプレス成形体を得る前段階において、上記被プレス板をモデル化した多数の有限要素からなるモデルデータを作成するとともに当該モデルデータを用いたプレス成形シミュレーションによる数値解析をコンピュータ上にて行って上記モデルデータにおける各有限要素の最大主ひずみε及び最小主ひずみεをそれぞれ導き出し、その後、上記各有限要素の最大主ひずみε及び最小主ひずみεが成形限界線より上側に位置するか否かを上記コンピュータが判定し、上記成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測するプレス成形体の成形時における割れ発生有無の事前予測方法であって
帯を巻き取ってなるコイルから巻き出して得た試験板の単純曲げ試験において、曲げ稜線がコイルの巻取方向と交差するように曲げて成形した場合に対して曲げ稜線がコイルの巻取方向に沿うように曲げて成形した場合の限界ひずみの差分だけ上記コンピュータが上記成形限界線の全体を下方にシフトさせた修正成形限界線を算出するとともに上記各有限要素の最大主ひずみε及び最小主ひずみεが上記修正成形限界線より上側に位置するか否かを判定し、上記修正成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測することを特徴とするプレス成形体の成形時における割れ発生有無の事前予測方法。
In the pre-stage of press-molding the plate to be pressed to obtain a press-formed body, model data consisting of a large number of finite elements modeling the plate to be pressed is created, and numerical analysis is performed by press-forming simulation using the model data. The maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element in the above model data are derived on a computer, respectively, and then the maximum principal strain ε 1 and the minimum principal strain ε 2 of each of the above finite elements are the forming limits. At the time of molding the press-molded body, the computer determines whether or not it is located above the line, and it is predicted that cracks will occur at the position of the press-molded body corresponding to each finite element located above the molding limit line. It is a method of predicting the presence or absence of cracks in
In a simple bending test of a test plate obtained by unwinding a steel strip from a coil, the bending ridge is the coil winding when the bending ridge is bent so as to intersect the coil winding direction. The computer calculates the modified forming limit line by shifting the entire forming limit line downward by the difference in the limit strain when bending along the direction, and the maximum principal strain ε 1 of each finite element. And whether or not the minimum principal strain ε 2 is located above the modified molding limit line is determined, and cracks occur at the positions of the press-molded article corresponding to each finite element located above the modified molding limit line. A method for predicting the presence or absence of cracks during molding of a press-molded article, which comprises predicting that.
請求項1に記載のプレス成形体の成形時における割れ発生有無の事前予測方法において、In the method for predicting the presence or absence of cracks during molding of a press-molded product according to claim 1,
上記被プレス板が980MPa級で且つ板厚が1mmのときに、実験によって導き出された上記限界ひずみの差分である-0.011だけ上記コンピュータが上記成形限界線の全体を下方にシフトさせた上記修正成形限界線を算出することを特徴とするプレス成形体の成形時における割れ発生有無の事前予測方法。When the plate to be pressed is 980 MPa class and the plate thickness is 1 mm, the difference of the limit strain derived by the experiment is -0.011 and the computer shifts the entire forming limit line downward. A method for predicting the presence or absence of cracks during molding of a press-molded product, which comprises calculating a modified molding limit line.
JP2017240078A 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body Active JP7015524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240078A JP7015524B2 (en) 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240078A JP7015524B2 (en) 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body

Publications (2)

Publication Number Publication Date
JP2019104051A JP2019104051A (en) 2019-06-27
JP7015524B2 true JP7015524B2 (en) 2022-02-03

Family

ID=67061651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240078A Active JP7015524B2 (en) 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body

Country Status (1)

Country Link
JP (1) JP7015524B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464176B1 (en) 2022-09-22 2024-04-09 Jfeスチール株式会社 Method, device and program for determining press-molded cracks, and method for manufacturing press-molded products
WO2024062822A1 (en) * 2022-09-22 2024-03-28 Jfeスチール株式会社 Press forming fracture determination method, device and program, and method for manufacturing press formed part
JP7556084B1 (en) 2023-03-23 2024-09-25 Jfeスチール株式会社 Fracture determination method, device, and program in press molding analysis, and method for manufacturing press molded products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141237A (en) 2010-01-08 2011-07-21 Nippon Steel Corp Method and for system predicting breakage, program and recording medium
US20130231770A1 (en) 2012-03-01 2013-09-05 Trevor M. Cole System and method for determining press parameter inputs in a draw die process
JP2014026490A (en) 2012-07-27 2014-02-06 Jfe Steel Corp Method for obtaining optimal component from anisotropic metal plate
JP2015205309A (en) 2014-04-21 2015-11-19 新日鐵住金株式会社 Evaluation method, device and program of press forming characteristic, and computer-readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141237A (en) 2010-01-08 2011-07-21 Nippon Steel Corp Method and for system predicting breakage, program and recording medium
US20130231770A1 (en) 2012-03-01 2013-09-05 Trevor M. Cole System and method for determining press parameter inputs in a draw die process
JP2014026490A (en) 2012-07-27 2014-02-06 Jfe Steel Corp Method for obtaining optimal component from anisotropic metal plate
JP2015205309A (en) 2014-04-21 2015-11-19 新日鐵住金株式会社 Evaluation method, device and program of press forming characteristic, and computer-readable storage medium

Also Published As

Publication number Publication date
JP2019104051A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6380536B2 (en) Model setting method, molding simulation method, program, and computer-readable recording medium recording the program
JP7015524B2 (en) Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body
JP4894294B2 (en) Press forming analysis method
JP5630311B2 (en) Method for predicting cracks in press molding and method for manufacturing pressed parts
JP4935713B2 (en) Method for determining whether molding is possible at the shear edge of a pressed product
KR102334109B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
CN102737147B (en) Optimized design method for determining geometric parameters of intermediate construction for forming panel veneer in multiple steps
JP6547920B2 (en) Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
JP6870670B2 (en) Deformation limit evaluation method, crack prediction method and press die design method
JP4631335B2 (en) Method for determining the shape of a press mold
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP2016087640A (en) Shape correction analysis method and device for press molding, and shape correction method for press molding
JP6694366B2 (en) Press processing condition determination method
JP6886178B2 (en) Preliminary prediction method for the presence or absence of cracks during molding of a press-molded product
JP5381606B2 (en) Flange crack analysis method
JP6919690B2 (en) Manufacturing method of pressed parts and design method of lower die
KR100804962B1 (en) Equipment for measuring of twisting spring-back
JP7496664B2 (en) Method for determining material dimensions for UO bending
JP5225019B2 (en) Sipe blade manufacturing method and mold for manufacturing
JP7556373B2 (en) Method for determining coefficient of friction for forming simulation, forming simulation method, method for designing press parts, method for manufacturing die, method for manufacturing press-molded parts, program for determining coefficient of friction, and program for forming simulation
JP7422040B2 (en) Forging simulation method
CN111344078B (en) Method for press forming sheet material
WO2023068268A1 (en) Method for measuring deformation amount of deformation part of additively fabricated test object and method for determining proper conditions for additive fabrication
JP6741514B2 (en) Method and apparatus for optimizing press molding
JP2012011458A (en) Crack determination method in press forming simulation, and method of manufacturing press formed component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117