JP7479064B2 - 動的障害物を有する環境における動作計画を容易にする装置、方法及び物品 - Google Patents
動的障害物を有する環境における動作計画を容易にする装置、方法及び物品 Download PDFInfo
- Publication number
- JP7479064B2 JP7479064B2 JP2021571340A JP2021571340A JP7479064B2 JP 7479064 B2 JP7479064 B2 JP 7479064B2 JP 2021571340 A JP2021571340 A JP 2021571340A JP 2021571340 A JP2021571340 A JP 2021571340A JP 7479064 B2 JP7479064 B2 JP 7479064B2
- Authority
- JP
- Japan
- Prior art keywords
- processor
- collision
- primary
- cost
- obstacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033001 locomotion Effects 0.000 title claims description 336
- 238000013439 planning Methods 0.000 title claims description 286
- 238000000034 method Methods 0.000 title claims description 186
- 230000006870 function Effects 0.000 claims description 215
- 238000001514 detection method Methods 0.000 claims description 180
- 230000007704 transition Effects 0.000 claims description 49
- 238000007728 cost analysis Methods 0.000 claims description 33
- 239000003795 chemical substances by application Substances 0.000 description 227
- 230000003068 static effect Effects 0.000 description 50
- 230000006378 damage Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 17
- 230000006399 behavior Effects 0.000 description 13
- 230000015654 memory Effects 0.000 description 13
- 238000005457 optimization Methods 0.000 description 13
- 230000003044 adaptive effect Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 230000001953 sensory effect Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 238000012890 quintic function Methods 0.000 description 8
- 241000282412 Homo Species 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 230000008447 perception Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 5
- 230000005055 memory storage Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 240000001436 Antirrhinum majus Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000879777 Lynx rufus Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
- B60W30/12—Lane keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0011—Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
- B60W60/0017—Planning or execution of driving tasks specially adapted for safety of other traffic participants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00274—Planning or execution of driving tasks using trajectory prediction for other traffic participants considering possible movement changes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00276—Planning or execution of driving tasks using trajectory prediction for other traffic participants for two or more other traffic participants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/30—Road curve radius
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/50—Barriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/53—Road markings, e.g. lane marker or crosswalk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4045—Intention, e.g. lane change or imminent movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/805—Azimuth angle
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Description
態様1
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を表し、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法が開示される。前記方法は、
前記プロセッサベースのシステムによって、前記一次車両をそれぞれの有向境界ボックスとして表すステップと、
前記計画ラティスの複数の前記エッジのうちの少なくとも1つに対する、
前記プロセッサベースのシステムによって、有向境界ボックス衝突検出を実行して、前記有向境界ボックスによって表される前記一次車両が状態のペアの間で遷移する際に、他の車両又は他の障害物の表現と衝突するかどうかを判定するステップであって、前記ペアの状態は前記計画ラティスのそれぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される、該ステップと、
前記プロセッサベースのシステムによって、検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップと、を含む方法と要約され得る。
さらに、前記プロセッサベースのシステムによって、前記他の車両の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを含み、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の車両のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、態様1の動作計画方法。
さらに、前記プロセッサベースのシステムによって、前記他の障害物の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを含み、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、態様1の動作計画方法。
さらに、前記プロセッサベースのシステムによって、少なくとも1つの他の障害物を曲線の表現として表すステップを含み、
有向境界ボックス衝突検出を実行して、それぞれの有向境界ボックスによって表される前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するステップは、有向境界ボックス曲線衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の障害物のうちの前記少なくとも1つを表す前記曲線と衝突するかどうかを判定するステップを含む、態様1の動作計画方法。
少なくとも1つの他の障害物を曲線の表現として表すステップは、道路の少なくとも1つの中央線、道路の端、又は道路の少なくとも1つの車道標示をスプライン表現として表すステップを含む、態様4の動作計画方法。
有向境界ボックス衝突検出を実行するステップは、前記計画ラティスの前記それぞれのエッジに対応する前記一次車両のそれぞれの軌道を表すために適合関数のセットを使用して前記一次車両のそれぞれの軌道に沿った少なくとも1つの点のそれぞれで有向境界ボックス衝突検出を実行するステップを含む、態様1~5のいずれかの動作計画方法。
有向境界ボックス衝突検出を実行するステップは、複数の別個のハードウェア回路を介して有向境界ボックス衝突検出を実行するステップを含む、態様1~5のいずれかの動作計画方法。
前記検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップは、衝突の検出を反映し、前記検出された衝突の重大度を表す少なくとも1つのパラメータを反映するように、パラメータ化されたコスト関数に従って計画ラティスの前記それぞれのエッジのうちの1つ又は複数のコストを設定するステップを含む、態様1~5のいずれかの動作計画方法。
さらに、
前記プロセッサベースのシステムによって、前記計画ラティスの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる前記一次車両による動作計画を実施するステップ、
を含む、態様1~5のいずれかの動作計画方法。
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を表し、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するプロセッサベースのシステムが開示される。
前記プロセッサベースのシステムは、
少なくとも1つのプロセッサ、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両をそれぞれの有向境界ボックスとして表すステップと、
前記計画ラティスの複数の前記エッジのうちの少なくとも1つに対する、
有向境界ボックス衝突検出を実行して、前記有向境界ボックスによって表される前記一次車両が状態のペアの間で遷移する際に、他の車両又は他の障害物の表現と衝突するかどうかを判定するステップであって、前記ペアの状態は前記計画ラティスのそれぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される、該ステップ、及び、
検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップ、
を実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体を含むプロセッサベースのシステムと要約され得る。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記他の車両の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを実行させ、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の車両のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、態様10のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記他の障害物の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを実行させ、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、態様10のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
少なくとも1つの他の障害物を曲線の表現として表すステップと、
前記有向境界ボックス衝突検出を、有向境界ボックス-曲線衝突検出として実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物の前記少なくとも1つを表す前記曲線と衝突するかどうかを判定するステップ、
を実行させる、態様10のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、道路の少なくとも1つの中央線、道路の端、又は道路の少なくとも1つの車道標示をスプライン表現として表すステップを含む、少なくとも1つの他の障害物を曲線の表現として表すステップを実行させる、態様13のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記計画ラティスのそれぞれのエッジに対応する前記一次車両のそれぞれの軌道を表すために、適合関数のセットを使用して、前記一次車両のそれぞれの軌道に沿った少なくとも1つの点のそれぞれで、有向境界ボックス衝突検出を実行させる、態様10~14のいずれかのプロセッサベースのシステム。
有向境界ボックス衝突検出を実行するステップは、複数の別個のハードウェア回路を介して有向境界ボックス衝突検出を実行するステップを含む、態様10~態様14のいずれかのプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、衝突の検出を反映し、前記検出された衝突の重大度を反映するように、パラメータ化されたコスト関数に基づいて計画ラティスの前記それぞれのエッジのコストを設定させる、態様10~14のいずれかのプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記計画ラティスの最小コスト分析を実行するステップと、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを実行させる、態様10~14のいずれかのプロセッサベースのシステム。
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアによって表される状態間の前記一次車両の軌道を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法が開示される。前記方法は、
実行時中に、計画ラティスの複数の前記エッジのそれぞれに対し、
前記プロセッサベースのシステムによって、前記それぞれのエッジに対応する軌道を適合関数のセットとして表すステップと、
前記プロセッサベースのシステムによって、前記一次車両の表現が他の車両又は他の障害物の1つ又は複数の表現と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップと、
前記プロセッサベースのシステムによって、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される状態のペアの間で遷移する際に、前記判定された衝突又はその不存在のうちの少なくとも1つを反映するように、前記計画ラティスの前記それぞれのエッジのコストを設定するステップと、
を含む方法と要約され得る。
さらに、前記プロセッサベースのシステムによって、前記一次車両から離れて配置された構成システムから、前記一次車両の前記プロセッサベースのシステムにおける適合関数の前記セットを受信するステップを含み、
適合関数の前記セットは前記実行時の前に前記構成システムによって適合される、態様19の動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、適合多項式関数のペアを用いて衝突検出を実行するステップを含み、前記ペアの一方の適合多項式関数は時間に関して第1の次元の位置を表し、前記ペアの他方の適合多項式関数は時間に関して第2の次元の位置を表し、前記第2の次元は前記第1の次元とは異なる、態様19の動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合タイムパラメトリック関数のペアを使用して衝突検出を実行するステップを含む、態様19の動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合タイムパラメトリック5次関数のペアを用いて衝突検出を実行するステップを含む、態様19の動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供される適合関数のペアを用いて衝突検出を実行するステップを含む、態様19の動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供されるパラメータを有する適合多項式関数のペアを用いて衝突検出を実行するステップを含む、態様19の動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合多項式関数のセットを使用して衝突検出を実行するステップは、前記一次車両のそれぞれの軌道に沿った1つ又は複数の点で前記衝突検出を実行するステップを含み、前記それぞれの軌道は前記計画ラティスの前記それぞれのエッジに対応する前記一次車両の前記それぞれの軌道を表すように前記適合関数のセットを介して指定される、態様19~25のいずれかの動作計画方法。
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、複数の別個のハードウェア回路を介して前記衝突検出を実行するステップを含む、態様19~25のいずれかの動作計画方法。
検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップは、衝突の検出を反映し、前記検出された衝突の重大度を反映するように、パラメータ化されたコスト関数に従って、計画ラティスの前記それぞれのエッジのうちの1つ又は複数のコストを設定するステップを含む、態様19~25のいずれかの動作計画方法。
さらに、前記プロセッサベースのシステムによって、前記計画ラティスの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを含む、態様19~25のいずれかの動作計画方法。
さらに、前記実行時の前に発生するオフライン構成時中に、複数の前記エッジのそれぞれについて、それぞれの多項式関数のセットを、前記エッジが表す軌道によって表される動きに適合するステップを含む、態様19~25のいずれかの動作計画方法。
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアによって表される状態間の前記一次車両の軌道を表す、計画ラティスを介して動作計画を実行するためのプロセッサベースのシステムが開示される。前記プロセッサベースのシステムは、
少なくとも1つのプロセッサ、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに
実行時中に、計画ラティスの複数の前記エッジのそれぞれに対し、
前記それぞれのエッジに対応する軌道を適合関数のセットとして表し、
適合関数の前記セットを用いて衝突検出を実行し、前記一次車両の表現が他の車両又は他の障害物の1つ又は複数の表現と衝突するかどうかを判定し、
前記計画ラティスのそれぞれのエッジによって接続されるそれぞれのノードによって表される状態のペアの間で遷移する際に、判定された衝突又はその不存在のうちの少なくとも1つを反映するように前記計画ラティスの前記それぞれのエッジのコストを設定することを実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体を含むプロセッサベースのシステムと要約され得る。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記一次車両から離れて配置された構成システムから、前記一次車両の前記プロセッサベースのシステムにおける適合関数の前記セットを受信させ、
適合関数の前記セットは実行時の前に前記構成システムによって適合される、態様31のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
適合多項式関数のペアを用いて前記衝突検出を実行させ、前記ペアの一方の適合多項式関数は時間に関して第1の次元における位置を表し、前記ペアの他方の適合多項式関数は時間に関して第2の次元における位置を表し、前記第2の次元は前記第1の次元とは異なる、態様31のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合タイムパラメトリック関数のペアを用いて前記衝突検出を実行させる、態様31のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両が他の車両又は他の障害物と衝突するか否かを判定するように、適合タイムパラメトリック5次関数のペアを用いて前記衝突検出を実行させる、態様31のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供される適合関数のペアを用いて前記衝突検出を実行させる、態様31のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供されるパラメータを有する適合多項式関数のペアを用いて前記衝突検出を実行させる、態様31のプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両のそれぞれの軌道に沿った1つ又は複数の点で前記衝突検出を実行させ、前記それぞれの軌道は、前記計画ラティスの前記それぞれのエッジに対応する前記一次車両の前記それぞれの軌道を表すように、前記適合関数のセットを介して指定させる、態様31~37のいずれかのプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、複数の別個のハードウェア回路を介して前記衝突検出を実行させる、態様31~37のいずれかのプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記衝突の検出を反映し、前記検出された衝突の重大度を反映するように、前記検出された衝突又はその不存在のうちの少なくとも1つを反映するように、パラメータ化されたコスト関数を介して、計画ラティスのそれぞれのエッジのコストを設定させる、態様31~37のいずれかのプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記計画ラティスの最小コスト分析を実行し、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施させる、態様31~37のいずれかのプロセッサベースのシステム。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
実行時の前に発生するオフライン構成時中に、複数の前記エッジのそれぞれについて、それぞれの関数のセットを、前記エッジが表す軌道によって表される動きに適合させる、態様31~37のいずれかのプロセッサベースのシステム。
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジがノードのそれぞれのペアによって表される状態間の前記一次車両の軌道を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法が開示される。前記方法は、
実行時の前に発生するオフライン構成時中に、
計画ラティスの複数の前記エッジのそれぞれに対し、
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップと、
一次車両のプロセッサベースのシステムによる動作計画に使用するための適合関数の前記セットを提供するステップ、
を含む方法。
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、適合関数の前記セットを前記軌道によって表される動きに適合させるステップを含む、態様43の動作計画方法と要約され得る。
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、適合多項式関数のペアを決定するステップを含み、前記ペアの一方の適合多項式関数は、時間に関して第1の次元における前記軌道に沿った位置を表し、前記ペアの他方の適合多項式関数は、時間に関して第2の次元における前記軌道に沿った位置を表し、前記第2の次元は前記第1の次元とは異なる、態様43の動作計画方法。
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記軌道を表す適合タイムパラメトリック関数のペアを決定するステップを含む、態様43の動作計画方法。
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記軌道を表す適合タイムパラメトリック5次関数のペアを決定するステップを含む、態様43の動作計画方法。
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記一次車両の相手先商標製造業者によって指定される前記一次車両のメーク及びモデルに特有の適合関数のペアを決定するステップを含む、態様43の動作計画方法。
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記一次車両の相手先商標製造業者により前記一次車両のメーク及びモデルに特有のパラメータを有する適合多項式関数のペアを決定するステップと、前記一次車両のメーク及びモデルに特有のパラメータを有する前記決定された適合多項式関数のペアを、前記一次車両のプロセッサベースの制御システムに提供するステップとを含み、前記一次車両は自律車両である、態様43の動作計画方法。
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法が開示される。前記方法は、
前記計画ラティスの複数の前記エッジの少なくとも1つのそれぞれに対し、
前記プロセッサベースのシステムによって、前記計画ラティスの前記それぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される状態のペアの間で遷移する際に、前記一次車両の表現が前記障害物の表現と衝突するかどうかを判定するように、衝突検出を実行するステップと、
前記プロセッサベースのシステムによって、
i)前記衝突検出と、
ii)障害物タイプ、衝突タイプ、車両速さ、又は少なくとも衝突中に消散することになる消散エネルギーの推定量の少なくとも2つ以上を表すパラメータ化されたコスト関数と、
に少なくとも部分的に基づいて、前記計画ラティスの前記それぞれのエッジに関連するコストを設定するステップと、
を含み、
前記障害物タイプは衝突が発生し得る障害物のタイプを表し、
前記衝突タイプは発生し得る衝突のタイプを表し、
前記車両速さは予測された衝突の直前の少なくとも前記一次車両の速さを表す、
方法と要約され得る。
前記障害物タイプは、前記障害物が生命をもつ障害物であるか、又は生命をもたない障害物であるかを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記障害物が生命を持つ障害物であるか、又は生命をもたない障害物であるかに少なくとも部分的に基づいて前記コストを設定するステップを含む、態様50の動作計画方法。
前記衝突タイプは、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記一次車両に直接損傷をもたらさない間隔要件又は道路標示との衝突であるかを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記衝突が前記道路標示に損傷をもたらさない道路標示との衝突であるかに少なくとも部分的に基づいて、前記コストを設定するステップを含む、態様50の動作計画方法。
前記車両速さは、現実世界の基準フレーム内の前記一次車両の速さを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記現実世界の基準フレーム内の前記一次車両の前記速さに少なくとも部分的に基づいて前記コストを設定するステップを含む、態様50の動作計画方法。
前記車両速さは、前記障害物の速さに対する前記一次車両の速さを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記障害物の速さに対する前記一次車両の前記速さに少なくとも部分的に基づいて前記コストを設定するステップを含む、態様50の動作計画方法。
前記車両速さは、前記一次車両の速さと前記障害物の速さの両方を表し、前記それぞれのエッジに関連するコストを設定するステップは、前記一次車両の速さと前記障害物の速さの両方に少なくとも部分的に基づいて前記コストを設定するステップを含む、態様50の動作計画方法。
前記パラメータ化されたコスト関数はまた、車両速さに基づく衝突の重大度のレベルを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記一次車両及び前記障害物の少なくとも一方又は両方の車両速さに基づく重大度のレベルに少なくとも部分的に基づいて前記コストを設定するステップを含む、態様50の動作計画方法。
衝突検出を実行するステップは、複数の別個のハードウェア回路を介して前記衝突検出を実行するステップを含む、態様50~56のいずれかの動作計画方法。
さらに、
前記プロセッサベースのシステムによって、前記計画ラティスの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを含む、態様50~56のいずれかの動作計画方法。
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するためのプロセッサベースのシステムが開示される。前記プロセッサベースのシステムは、
少なくとも1つのプロセッサ、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記計画ラティスの複数の前記エッジのそれぞれに対し、
前記計画ラティスの前記それぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される状態のペアの間で遷移する際に、前記一次車両の表現が前記障害物の表現と衝突するかどうかを判定するように、衝突検出を実行することと、
i)前記衝突検出と、
ii)障害物タイプ、衝突タイプ、車両速さ、又は少なくとも衝突中に消散することになる消散エネルギーの推定量の少なくとも2つ以上を表すパラメータ化されたコスト関数と、
に少なくとも部分的に基づいて、前記計画ラティスの前記それぞれのエッジに関連するコストを設定すること、
を実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体、を含むプロセッサベースのシステムであって、
前記障害物タイプは衝突が発生し得る障害物のタイプを表し、
前記衝突タイプは発生し得る衝突のタイプを表し、
前記車両速さは予測された衝突の直前の少なくとも前記一次車両の速さ及び少なくとも前記衝突の間に消散したであろう消散されたエネルギーの推定量を表す、
前記プロセッサベースのシステムと要約され得る。
前記障害物のタイプは、前記障害物が生命をもつ障害物であるか、又は生命をもたない障害物であるかを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記障害物が生命をもつ障害物であるか、又は生命をもたない障害物であるかに少なくとも部分的に基づいて前記コストを設定させる、態様59の動作計画方法。
前記衝突タイプは、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記一次車両に直接損傷をもたらさない間隔要件又は道路標示との衝突であるかを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記衝突が前記道路標示に損傷をもたらさない道路標示との衝突であるかに少なくとも部分的に基づいて、前記コストを設定させる、態様59の動作計画方法。
前記車両速さは、現実世界の基準フレーム内の前記一次車両の速さを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記現実世界の基準フレーム内の前記一次車両の速さに少なくとも部分的に基づいて前記コストを設定させる、態様59の動作計画方法。
前記車両速さは、前記障害物の速さに対する前記一次車両の速さを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、それぞれのエッジに関連するコストを設定させることは、前記障害物の速さに対する前記一次車両の速さに少なくとも部分的に基づいて前記コストを設定させることを含む、態様59の動作計画方法。
前記車両速さは、前記一次車両の速さと前記障害物の速さの両方を表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記それぞれのエッジに関連するコストを設定させることは、前記一次車両の速さと前記障害物の速さの両方に少なくとも部分的に基づいて前記コストを設定させることを含む、態様59の動作計画方法。
前記パラメータ化されたコスト関数はまた、車両速さに基づく衝突の重大度のレベルを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記一次車両及び前記障害物の少なくとも一方又は両方の車両速さに基づく重大度のレベルに少なくとも部分的に基づいて前記それぞれのエッジに関連するコストを設定させる、態様59の動作計画方法。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、複数の別個のハードウェア回路を介して前記衝突検出を実行させる、態様59~65のいずれかの動作計画方法。
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、さらに、
前記計画ラティスの最小コスト分析を実行し、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施させる、態様59~65のいずれかの動作計画方法。
そのような動作計画の運用は、
計画ラティス(又は、計画格子/プラニングラティス/planning lattice)又は計画グラフ又はロードマップのエッジ上で衝突評価を実行すること、
衝突の確率を決定すること、
各遷移又はエッジと関連づけられたコストを、前記衝突評価及び、任意選択で衝突の重大度又は衝突の相対的優先順位を表すパラメータ化されたコスト関数に基づいて設定又は調整すること、
前記計画ラティス、計画グラフ又はロードマップ内の経路を、たとえば、計画ラティス、計画グラフ又はロードマップ内の状態間の最小コスト経路を見つけることによって、及び、任意選択で、一次エージェント(たとえば、一次自律車両)によって実行可能な動作計画の一部などを使用することによって、静的及び動的障害物との衝突を回避しながら、環境内の静的及び動的障害物との衝突の確率を最小限に抑えながら、又は衝突のコストを最小限に抑えながらの状態間の遷移を識別するために最適化を実行すること、
を含むことができる。
下記は、本願の出願当初に記載の発明である。
<請求項1>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を表し、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法であって、前記方法は、
前記プロセッサベースのシステムによって、前記一次車両をそれぞれの有向境界ボックスとして表すステップと、
前記計画ラティスの複数の前記エッジのうちの少なくとも1つに対する、
前記プロセッサベースのシステムによって、有向境界ボックス衝突検出を実行して、前記有向境界ボックスによって表される前記一次車両が状態のペアの間で遷移する際に、他の車両又は他の障害物の表現と衝突するかどうかを判定するステップであって、前記ペアの状態は前記計画ラティスのそれぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される、該ステップと、
前記プロセッサベースのシステムによって、検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップと、を含む方法。
<請求項2>
さらに、前記プロセッサベースのシステムによって、前記他の車両の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを含み、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の車両のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、請求項1に記載の動作計画方法。
<請求項3>
さらに、前記プロセッサベースのシステムによって、前記他の障害物の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを含み、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、請求項1に記載の動作計画方法。
<請求項4>
さらに、前記プロセッサベースのシステムによって、少なくとも1つの他の障害物を曲線の表現として表すステップを含み、
有向境界ボックス衝突検出を実行して、それぞれの有向境界ボックスによって表される前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するステップは、有向境界ボックス曲線衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の障害物のうちの前記少なくとも1つを表す前記曲線と衝突するかどうかを判定するステップを含む、請求項1に記載の動作計画方法。
<請求項5>
少なくとも1つの他の障害物を曲線の表現として表すステップは、道路の少なくとも1つの中央線、道路の端、又は道路の少なくとも1つの車道標示をスプライン表現として表すステップを含む、請求項4に記載の動作計画方法。
<請求項6>
有向境界ボックス衝突検出を実行するステップは、前記計画ラティスの前記それぞれのエッジに対応する前記一次車両のそれぞれの軌道を表すために適合関数のセットを使用して前記一次車両のそれぞれの軌道に沿った少なくとも1つの点のそれぞれで有向境界ボックス衝突検出を実行するステップを含む、請求項1~5のいずれかに記載の動作計画方法。
<請求項7>
有向境界ボックス衝突検出を実行するステップは、複数の別個のハードウェア回路を介して有向境界ボックス衝突検出を実行するステップを含む、請求項1~5のいずれかに記載の動作計画方法。
<請求項8>
前記検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップは、衝突の検出を反映し、前記検出された衝突の重大度を表す少なくとも1つのパラメータを反映するように、パラメータ化されたコスト関数に従って計画ラティスの前記それぞれのエッジのうちの1つ又は複数のコストを設定するステップを含む、請求項1~5のいずれかに記載の動作計画方法。
<請求項9>
さらに、
前記プロセッサベースのシステムによって、前記計画ラティスの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる前記一次車両による動作計画を実施するステップ、
を含む、請求項1~5のいずれかに記載の動作計画方法。
<請求項10>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を表し、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するプロセッサベースのシステムであって、
前記プロセッサベースのシステムは、
少なくとも1つのプロセッサ、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両をそれぞれの有向境界ボックスとして表すステップと、
前記計画ラティスの複数の前記エッジのうちの少なくとも1つに対する、
有向境界ボックス衝突検出を実行して、前記有向境界ボックスによって表される前記一次車両が状態のペアの間で遷移する際に、他の車両又は他の障害物の表現と衝突するかどうかを判定するステップであって、前記ペアの状態は前記計画ラティスのそれぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される、該ステップ、及び、
検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップ、
を実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体を含むプロセッサベースのシステム。
<請求項11>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記他の車両の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを実行させ、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の車両のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、請求項10に記載のプロセッサベースのシステム。
<請求項12>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記他の障害物の少なくとも1つをそれぞれの有向境界ボックスとして表すステップを実行させ、
有向境界ボックス衝突検出を実行するステップは、有向境界ボックス-有向境界ボックス衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物のうちの少なくとも1つを表す前記それぞれの有向境界ボックスと衝突するかどうかを判定するステップを含む、請求項10に記載のプロセッサベースのシステム。
<請求項13>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
少なくとも1つの他の障害物を曲線の表現として表すステップと、
前記有向境界ボックス衝突検出を、有向境界ボックス-曲線衝突検出として実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物の前記少なくとも1つを表す前記曲線と衝突するかどうかを判定するステップ、
を実行させる、請求項10に記載のプロセッサベースのシステム。
<請求項14>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、道路の少なくとも1つの中央線、道路の端、又は道路の少なくとも1つの車道標示をスプライン表現として表すステップを含む、少なくとも1つの他の障害物を曲線の表現として表すステップを実行させる、請求項13に記載のプロセッサベースのシステム。
<請求項15>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記計画ラティスのそれぞれのエッジに対応する前記一次車両のそれぞれの軌道を表すために、適合関数のセットを使用して、前記一次車両のそれぞれの軌道に沿った少なくとも1つの点のそれぞれで、有向境界ボックス衝突検出を実行させる、請求項10~14のいずれかに記載のプロセッサベースのシステム。
<請求項16>
有向境界ボックス衝突検出を実行するステップは、複数の別個のハードウェア回路を介して有向境界ボックス衝突検出を実行するステップを含む、請求項10~請求項14のいずれかに記載のプロセッサベースのシステム。
<請求項17>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、衝突の検出を反映し、前記検出された衝突の重大度を反映するように、パラメータ化されたコスト関数に基づいて計画ラティスの前記それぞれのエッジのコストを設定させる、請求項10~14のいずれかに記載のプロセッサベースのシステム。
<請求項18>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記計画ラティスの最小コスト分析を実行するステップと、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを実行させる、請求項10~14のいずれかに記載のプロセッサベースのシステム。
<請求項19>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアによって表される状態間の前記一次車両の軌道を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法であって、前記方法は、
実行時中に、計画ラティスの複数の前記エッジのそれぞれに対し、
前記プロセッサベースのシステムによって、前記それぞれのエッジに対応する軌道を適合関数のセットとして表すステップと、
前記プロセッサベースのシステムによって、前記一次車両の表現が他の車両又は他の障害物の1つ又は複数の表現と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップと、
前記プロセッサベースのシステムによって、前記計画ラティスの前記それぞれのエッジによって接続されるそれぞれのノードによって表される状態のペアの間で遷移する際に、前記判定された衝突又はその不存在のうちの少なくとも1つを反映するように、前記計画ラティスの前記それぞれのエッジのコストを設定するステップと、
を含む方法。
<請求項20>
さらに、前記プロセッサベースのシステムによって、前記一次車両から離れて配置された構成システムから、前記一次車両の前記プロセッサベースのシステムにおける適合関数の前記セットを受信するステップを含み、
適合関数の前記セットは前記実行時の前に前記構成システムによって適合される、請求項19に記載の動作計画方法。
<請求項21>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、適合多項式関数のペアを用いて衝突検出を実行するステップを含み、前記ペアの一方の適合多項式関数は時間に関して第1の次元の位置を表し、前記ペアの他方の適合多項式関数は時間に関して第2の次元の位置を表し、前記第2の次元は前記第1の次元とは異なる、請求項19に記載の動作計画方法。
<請求項22>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合タイムパラメトリック関数のペアを使用して衝突検出を実行するステップを含む、請求項19に記載の動作計画方法。
<請求項23>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合タイムパラメトリック5次関数のペアを用いて衝突検出を実行するステップを含む、請求項19に記載の動作計画方法。
<請求項24>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供される適合関数のペアを用いて衝突検出を実行するステップを含む、請求項19に記載の動作計画方法。
<請求項25>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供されるパラメータを有する適合多項式関数のペアを用いて衝突検出を実行するステップを含む、請求項19に記載の動作計画方法。
<請求項26>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合多項式関数のセットを使用して衝突検出を実行するステップは、前記一次車両のそれぞれの軌道に沿った1つ又は複数の点で前記衝突検出を実行するステップを含み、前記それぞれの軌道は前記計画ラティスの前記それぞれのエッジに対応する前記一次車両の前記それぞれの軌道を表すように前記適合関数のセットを介して指定される、請求項19~25のいずれかに記載の動作計画方法。
<請求項27>
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合関数のセットを用いて衝突検出を実行するステップは、複数の別個のハードウェア回路を介して前記衝突検出を実行するステップを含む、請求項19~25のいずれかに記載の動作計画方法。
<請求項28>
検出された衝突又はその不存在のうちの少なくとも1つを反映するように、計画ラティスの前記それぞれのエッジのコストを設定するステップは、衝突の検出を反映し、前記検出された衝突の重大度を反映するように、パラメータ化されたコスト関数に従って、計画ラティスの前記それぞれのエッジのうちの1つ又は複数のコストを設定するステップを含む、請求項19~25のいずれかに記載の動作計画方法。
<請求項29>
さらに、前記プロセッサベースのシステムによって、前記計画ラティスの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを含む、請求項19~25のいずれかに記載の動作計画方法。
<請求項30>
さらに、前記実行時の前に発生するオフライン構成時中に、複数の前記エッジのそれぞれについて、それぞれの多項式関数のセットを、前記エッジが表す軌道によって表される動きに適合するステップを含む、請求項19~25のいずれかに記載の動作計画方法。
<請求項31>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアによって表される状態間の前記一次車両の軌道を表す、計画ラティスを介して動作計画を実行するためのプロセッサベースのシステムであって、前記プロセッサベースのシステムは、
少なくとも1つのプロセッサ、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに
実行時中に、計画ラティスの複数の前記エッジのそれぞれに対し、
前記それぞれのエッジに対応する軌道を適合関数のセットとして表し、
適合関数の前記セットを用いて衝突検出を実行し、前記一次車両の表現が他の車両又は他の障害物の1つ又は複数の表現と衝突するかどうかを判定し、
前記計画ラティスのそれぞれのエッジによって接続されるそれぞれのノードによって表される状態のペアの間で遷移する際に、判定された衝突又はその不存在のうちの少なくとも1つを反映するように前記計画ラティスの前記それぞれのエッジのコストを設定することを実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体を含むプロセッサベースのシステム。
<請求項32>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記一次車両から離れて配置された構成システムから、前記一次車両の前記プロセッサベースのシステムにおける適合関数の前記セットを受信させ、
適合関数の前記セットは実行時の前に前記構成システムによって適合される、請求項31に記載のプロセッサベースのシステム。
<請求項33>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
適合多項式関数のペアを用いて前記衝突検出を実行させ、前記ペアの一方の適合多項式関数は時間に関して第1の次元における位置を表し、前記ペアの他方の適合多項式関数は時間に関して第2の次元における位置を表し、前記第2の次元は前記第1の次元とは異なる、請求項31に記載のプロセッサベースのシステム。
<請求項34>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するように、適合タイムパラメトリック関数のペアを用いて前記衝突検出を実行させる、請求項31に記載のプロセッサベースのシステム。
<請求項35>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両が他の車両又は他の障害物と衝突するか否かを判定するように、適合タイムパラメトリック5次関数のペアを用いて前記衝突検出を実行させる、請求項31に記載のプロセッサベースのシステム。
<請求項36>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供される適合関数のペアを用いて前記衝突検出を実行させる、請求項31に記載のプロセッサベースのシステム。
<請求項37>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両のメーク及びモデルに特有であり、前記一次車両の相手先商標製造業者によって提供されるパラメータを有する適合多項式関数のペアを用いて前記衝突検出を実行させる、請求項31に記載のプロセッサベースのシステム。
<請求項38>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両のそれぞれの軌道に沿った1つ又は複数の点で前記衝突検出を実行させ、前記それぞれの軌道は、前記計画ラティスの前記それぞれのエッジに対応する前記一次車両の前記それぞれの軌道を表すように、前記適合関数のセットを介して指定させる、請求項31~37のいずれかに記載のプロセッサベースのシステム。
<請求項39>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、複数の別個のハードウェア回路を介して前記衝突検出を実行させる、請求項31~37のいずれかに記載のプロセッサベースのシステム。
<請求項40>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記衝突の検出を反映し、前記検出された衝突の重大度を反映するように、前記検出された衝突又はその不存在のうちの少なくとも1つを反映するように、パラメータ化されたコスト関数を介して、計画ラティスのそれぞれのエッジのコストを設定させる、請求項31~37のいずれかに記載のプロセッサベースのシステム。
<請求項41>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記計画ラティスの最小コスト分析を実行し、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施させる、請求項31~37のいずれかに記載のプロセッサベースのシステム。
<請求項42>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
実行時の前に発生するオフライン構成時中に、複数の前記エッジのそれぞれについて、それぞれの関数のセットを、前記エッジが表す軌道によって表される動きに適合させる、請求項31~37のいずれかに記載のプロセッサベースのシステム。
<請求項43>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジがノードのそれぞれのペアによって表される状態間の前記一次車両の軌道を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法であって、前記方法は、
実行時の前に発生するオフライン構成時中に、
計画ラティスの複数の前記エッジのそれぞれに対し、
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップと、
一次車両のプロセッサベースのシステムによる動作計画に使用するための適合関数の前記セットを提供するステップ、
を含む方法。
<請求項44>
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、適合関数の前記セットを前記軌道によって表される動きに適合させるステップを含む、請求項43に記載の動作計画方法。
<請求項45>
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、適合多項式関数のペアを決定するステップを含み、前記ペアの一方の適合多項式関数は、時間に関して第1の次元における前記軌道に沿った位置を表し、前記ペアの他方の適合多項式関数は、時間に関して第2の次元における前記軌道に沿った位置を表し、前記第2の次元は前記第1の次元とは異なる、請求項43に記載の動作計画方法。
<請求項46>
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記軌道を表す適合タイムパラメトリック関数のペアを決定するステップを含む、請求項43に記載の動作計画方法。
<請求項47>
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記軌道を表す適合タイムパラメトリック5次関数のペアを決定するステップを含む、請求項43に記載の動作計画方法。
<請求項48>
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記一次車両の相手先商標製造業者によって指定される前記一次車両のメーク及びモデルに特有の適合関数のペアを決定するステップを含む、請求項43に記載の動作計画方法。
<請求項49>
前記エッジが表す前記軌道によって表される動きに適合される適合関数のセットを決定するステップは、前記一次車両の相手先商標製造業者により前記一次車両のメーク及びモデルに特有のパラメータを有する適合多項式関数のペアを決定するステップと、前記一次車両のメーク及びモデルに特有のパラメータを有する前記決定された適合多項式関数のペアを、前記一次車両のプロセッサベースの制御システムに提供するステップとを含み、前記一次車両は自律車両である、請求項43に記載の動作計画方法。
<請求項50>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法であって、前記方法は、
前記計画ラティスの複数の前記エッジの少なくとも1つのそれぞれに対し、
前記プロセッサベースのシステムによって、前記計画ラティスの前記それぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される状態のペアの間で遷移する際に、前記一次車両の表現が前記障害物の表現と衝突するかどうかを判定するように、衝突検出を実行するステップと、
前記プロセッサベースのシステムによって、
i)前記衝突検出と、
ii)障害物タイプ、衝突タイプ、車両速さ、又は少なくとも衝突中に消散することになる消散エネルギーの推定量の少なくとも2つ以上を表すパラメータ化されたコスト関数と、
に少なくとも部分的に基づいて、前記計画ラティスの前記それぞれのエッジに関連するコストを設定するステップと、
を含み、
前記障害物タイプは衝突が発生し得る障害物のタイプを表し、
前記衝突タイプは発生し得る衝突のタイプを表し、
前記車両速さは予測された衝突の直前の少なくとも前記一次車両の速さを表す、
方法。
<請求項51>
前記障害物タイプは、前記障害物が生命をもつ障害物であるか、又は生命をもたない障害物であるかを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記障害物が生命を持つ障害物であるか、又は生命をもたない障害物であるかに少なくとも部分的に基づいて前記コストを設定するステップを含む、請求項50に記載の動作計画方法。
<請求項52>
前記衝突タイプは、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記一次車両に直接損傷をもたらさない間隔要件又は道路標示との衝突であるかを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記衝突が前記道路標示に損傷をもたらさない道路標示との衝突であるかに少なくとも部分的に基づいて、前記コストを設定するステップを含む、請求項50に記載の動作計画方法。
<請求項53>
前記車両速さは、現実世界の基準フレーム内の前記一次車両の速さを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記現実世界の基準フレーム内の前記一次車両の前記速さに少なくとも部分的に基づいて前記コストを設定するステップを含む、請求項50に記載の動作計画方法。
<請求項54>
前記車両速さは、前記障害物の速さに対する前記一次車両の速さを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記障害物の速さに対する前記一次車両の前記速さに少なくとも部分的に基づいて前記コストを設定するステップを含む、請求項50に記載の動作計画方法。
<請求項55>
前記車両速さは、前記一次車両の速さと前記障害物の速さの両方を表し、前記それぞれのエッジに関連するコストを設定するステップは、前記一次車両の速さと前記障害物の速さの両方に少なくとも部分的に基づいて前記コストを設定するステップを含む、請求項50に記載の動作計画方法。
<請求項56>
前記パラメータ化されたコスト関数はまた、車両速さに基づく衝突の重大度のレベルを表し、前記それぞれのエッジに関連するコストを設定するステップは、前記一次車両及び前記障害物の少なくとも一方又は両方の車両速さに基づく重大度のレベルに少なくとも部分的に基づいて前記コストを設定するステップを含む、請求項50に記載の動作計画方法。
<請求項57>
衝突検出を実行するステップは、複数の別個のハードウェア回路を介して前記衝突検出を実行するステップを含む、請求項50~56のいずれかに記載の動作計画方法。
<請求項58>
さらに、
前記プロセッサベースのシステムによって、前記計画ラティスの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを含む、請求項50~56のいずれかに記載の動作計画方法。
<請求項59>
各計画ラティスがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の障害物を含む環境で稼働する一次車両の状態を特徴付け、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画ラティスを介して動作計画を実行するためのプロセッサベースのシステムであって、前記プロセッサベースのシステムは、
少なくとも1つのプロセッサ、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記計画ラティスの複数の前記エッジのそれぞれに対し、
前記計画ラティスの前記それぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される状態のペアの間で遷移する際に、前記一次車両の表現が前記障害物の表現と衝突するかどうかを判定するように、衝突検出を実行することと、
i)前記衝突検出と、
ii)障害物タイプ、衝突タイプ、車両速さ、又は少なくとも衝突中に消散することになる消散エネルギーの推定量の少なくとも2つ以上を表すパラメータ化されたコスト関数と、
に少なくとも部分的に基づいて、前記計画ラティスの前記それぞれのエッジに関連するコストを設定すること、
を実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体、を含むプロセッサベースのシステムであって、
前記障害物タイプは衝突が発生し得る障害物のタイプを表し、
前記衝突タイプは発生し得る衝突のタイプを表し、
前記車両速さは予測された衝突の直前の少なくとも前記一次車両の速さ及び少なくとも前記衝突の間に消散したであろう消散されたエネルギーの推定量を表す、
前記プロセッサベースのシステム。
<請求項60>
前記障害物のタイプは、前記障害物が生命をもつ障害物であるか、又は生命をもたない障害物であるかを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記障害物が生命をもつ障害物であるか、又は生命をもたない障害物であるかに少なくとも部分的に基づいて前記コストを設定させる、請求項59に記載の動作計画方法。
<請求項61>
前記衝突タイプは、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記一次車両に直接損傷をもたらさない間隔要件又は道路標示との衝突であるかを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記衝突が物理的障害物又は前記一次車両のいずれかに損傷をもたらす前記物理的障害物との衝突であるか、又は前記衝突が前記道路標示に損傷をもたらさない道路標示との衝突であるかに少なくとも部分的に基づいて、前記コストを設定させる、請求項59に記載の動作計画方法。
<請求項62>
前記車両速さは、現実世界の基準フレーム内の前記一次車両の速さを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記現実世界の基準フレーム内の前記一次車両の速さに少なくとも部分的に基づいて前記コストを設定させる、請求項59に記載の動作計画方法。
<請求項63>
前記車両速さは、前記障害物の速さに対する前記一次車両の速さを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、それぞれのエッジに関連するコストを設定させることは、前記障害物の速さに対する前記一次車両の速さに少なくとも部分的に基づいて前記コストを設定させることを含む、請求項59に記載の動作計画方法。
<請求項64>
前記車両速さは、前記一次車両の速さと前記障害物の速さの両方を表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記それぞれのエッジに関連するコストを設定させることは、前記一次車両の速さと前記障害物の速さの両方に少なくとも部分的に基づいて前記コストを設定させることを含む、請求項59に記載の動作計画方法。
<請求項65>
前記パラメータ化されたコスト関数はまた、車両速さに基づく衝突の重大度のレベルを表し、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記一次車両及び前記障害物の少なくとも一方又は両方の車両速さに基づく重大度のレベルに少なくとも部分的に基づいて前記それぞれのエッジに関連するコストを設定させる、請求項59に記載の動作計画方法。
<請求項66>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、複数の別個のハードウェア回路を介して前記衝突検出を実行させる、請求項59~65のいずれかに記載の動作計画方法。
<請求項67>
前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、さらに、
前記計画ラティスの最小コスト分析を実行し、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施させる、請求項59~65のいずれかに記載の動作計画方法。
Claims (12)
- 各計画グラフがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を表し、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画グラフを介して動作計画を実行するための、プロセッサベースのシステムの運用における動作計画方法であって、前記方法は、
前記プロセッサベースのシステムによって、前記一次車両をそれぞれの有向境界ボックスとして表すステップと、
前記プロセッサベースのシステムによって、少なくとも1つの他の障害物を道路の端の形態として、スプライン、b-スプライン、又は、多項式の形態の曲線の表現として表すステップと、
前記計画グラフの複数の前記エッジのうちの少なくとも1つに対する、
前記プロセッサベースのシステムによって、有向境界ボックス衝突検出を実行して、前記有向境界ボックスによって表される前記一次車両が状態のペアの間で遷移する際に、他の車両又は他の障害物の表現と衝突するかどうかを判定するステップであって、前記ペアの状態は前記計画グラフのそれぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される、該ステップと、
前記プロセッサベースのシステムによって、検出された衝突又は衝突の非検出のうちの少なくとも1つを反映するように、計画グラフの前記それぞれのエッジのコストを設定するステップと、を含み、
有向境界ボックス衝突検出を実行して、それぞれの有向境界ボックスによって表される前記一次車両が他の車両又は他の障害物と衝突するかどうかを判定するステップは、有向境界ボックス曲線衝突検出を実行して、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画グラフの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間で遷移する際に、前記他の障害物のうちの前記少なくとも1つを表す前記曲線と衝突するかどうかを判定するステップを含む、方法。 - 少なくとも1つの他の障害物を曲線の表現として表すステップは、道路の少なくとも1つの中央線、道路の端、又は道路の少なくとも1つの車道標示をスプライン表現として表すステップを含む、請求項1に記載の動作計画方法。
- 有向境界ボックス衝突検出を実行するステップは、前記計画グラフの前記それぞれのエッジに対応する前記一次車両のそれぞれの軌道を表すために適合関数のセットを使用して前記一次車両のそれぞれの軌道に沿った少なくとも1つの点のそれぞれで有向境界ボックス衝突検出を実行するステップを含む、請求項1又は2に記載の動作計画方法。
- 有向境界ボックス衝突検出を実行するステップは、複数の別個のハードウェア回路を介して有向境界ボックス衝突検出を実行するステップを含む、請求項1又は2に記載の動作計画方法。
- 前記検出された衝突又は衝突の非検出のうちの少なくとも1つを反映するように、計画グラフの前記それぞれのエッジのコストを設定するステップは、衝突の検出を反映し、前記検出された衝突の重大度を表す少なくとも1つのパラメータを反映するように、パラメータ化されたコスト関数に従って計画グラフの前記それぞれのエッジのうちの1つ又は複数のコストを設定するステップを含む、請求項1又は2に記載の動作計画方法。
- さらに、
前記プロセッサベースのシステムによって、前記計画グラフの最小コスト分析を実行するステップと、
前記プロセッサベースのシステムによって、少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる前記一次車両による動作計画を実施するステップ、
を含む、請求項1又は2に記載の動作計画方法。 - 各計画グラフがそれぞれ複数のノード及びエッジを含み、各ノードが1つ又は複数の他の車両及び他の障害物を含む環境で稼働する一次車両の状態を表し、各エッジが前記ノードのそれぞれのペアの間の遷移を表す、計画グラフを介して動作計画を実行するプロセッサベースのシステムであって、
前記プロセッサベースのシステムは、
少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに通信可能に結合され、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、
前記一次車両をそれぞれの有向境界ボックスとして表すステップ、
少なくとも1つの他の障害物を道路の端の形態として、スプライン、b-スプライン、又は、多項式の形態の曲線の表現として表すステップ、
前記計画グラフの複数の前記エッジのうちの少なくとも1つに対する、
有向境界ボックス衝突検出を実行して、前記有向境界ボックスによって表される前記一次車両が状態のペアの間で遷移する際に、他の車両又は他の障害物の表現と衝突するかどうかを判定するステップであって、前記ペアの状態は前記計画グラフのそれぞれのエッジによって接続されるノードのペアのそれぞれのノードによって表される、該ステップ、及び、
検出された衝突又は衝突の非検出のうちの少なくとも1つを反映するように、計画グラフの前記それぞれのエッジのコストを設定するステップ、
を実行させるプロセッサ実行可能命令を記憶する、少なくとも1つの非一時的プロセッサ読み取り可能媒体を含み、
前記有向境界ボックス衝突検出を実行するために、前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサに、有向境界ボックス-曲線衝突検出を実行させ、前記一次車両を表す前記それぞれの有向境界ボックスが、前記計画グラフの前記それぞれのエッジによって接続されるそれぞれのノードによって表される前記状態のペアの間を遷移する際に、前記他の障害物の前記少なくとも1つを表す前記曲線と衝突するかどうかを判定させる、プロセッサベースのシステム。 - 前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、道路の少なくとも1つの中央線、道路の端、又は道路の少なくとも1つの車道標示をスプライン表現として表すステップを含む、少なくとも1つの他の障害物を曲線の表現として表すステップを実行させる、請求項7に記載のプロセッサベースのシステム。
- 前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、前記計画グラフのそれぞれのエッジに対応する前記一次車両のそれぞれの軌道を表すために、適合関数のセットを使用して、前記一次車両のそれぞれの軌道に沿った少なくとも1つの点のそれぞれで、有向境界ボックス衝突検出を実行させる、請求項7又は8に記載のプロセッサベースのシステム。
- 有向境界ボックス衝突検出を実行するステップは、複数の別個のハードウェア回路を介して有向境界ボックス衝突検出を実行するステップを含む、請求項7又は8に記載のプロセッサベースのシステム。
- 前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサに、衝突の検出を反映し、前記検出された衝突の重大度を反映するように、パラメータ化されたコスト関数に基づいて計画グラフの前記それぞれのエッジのコストを設定させる、請求項7又は8に記載のプロセッサベースのシステム。
- 前記プロセッサ実行可能命令は、前記少なくとも1つのプロセッサによって実行されるとき、前記少なくとも1つのプロセッサにさらに、
前記計画グラフの最小コスト分析を実行するステップと、
少なくとも部分的に前記最小コスト分析に基づいて、結果として生じる動作計画を前記一次車両によって実施するステップを実行させる、請求項7又は8に記載のプロセッサベースのシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962856548P | 2019-06-03 | 2019-06-03 | |
US62/856,548 | 2019-06-03 | ||
PCT/US2020/034551 WO2020247207A1 (en) | 2019-06-03 | 2020-05-26 | Apparatus, methods and articles to facilitate motion planning in environments having dynamic obstacles |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022536263A JP2022536263A (ja) | 2022-08-15 |
JPWO2020247207A5 JPWO2020247207A5 (ja) | 2023-02-03 |
JP7479064B2 true JP7479064B2 (ja) | 2024-05-08 |
Family
ID=73550120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021571340A Active JP7479064B2 (ja) | 2019-06-03 | 2020-05-26 | 動的障害物を有する環境における動作計画を容易にする装置、方法及び物品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11634126B2 (ja) |
EP (1) | EP3977226A4 (ja) |
JP (1) | JP7479064B2 (ja) |
CN (1) | CN114206698B (ja) |
TW (1) | TWI851731B (ja) |
WO (1) | WO2020247207A1 (ja) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11262756B2 (en) * | 2018-01-15 | 2022-03-01 | Uatc, Llc | Discrete decision architecture for motion planning system of an autonomous vehicle |
DK201970121A1 (en) * | 2018-10-30 | 2020-06-04 | Aptiv Technologies Limited | GENERATION OF OPTIMAL TRAJECTORIES FOR NAVIGATION OF VEHICLES |
US11803184B2 (en) | 2018-12-18 | 2023-10-31 | Motional Ad Llc | Methods for generating maps using hyper-graph data structures |
US11390300B2 (en) * | 2019-10-18 | 2022-07-19 | Uatc, Llc | Method for using lateral motion to optimize trajectories for autonomous vehicles |
EP3832420B1 (en) * | 2019-12-06 | 2024-02-07 | Elektrobit Automotive GmbH | Deep learning based motion control of a group of autonomous vehicles |
DE112021000216T5 (de) * | 2020-02-19 | 2022-11-03 | Nvidia Corporation | Verhaltensplanung für autonome Fahrzeuge |
RU2764479C2 (ru) * | 2020-04-23 | 2022-01-17 | Общество с ограниченной ответственностью «Яндекс Беспилотные Технологии» | Способ и система для управления работой самоуправляемого автомобиля |
EP4147007A4 (en) * | 2020-05-04 | 2024-06-05 | Magna Electronics Inc. | MATCHING METHOD AND SYSTEM |
US20210349450A1 (en) * | 2020-05-06 | 2021-11-11 | UiPath, Inc. | Hierarchical assessment of processes for implementing robotic process automation |
US11505211B2 (en) * | 2020-06-18 | 2022-11-22 | Baidu Usa Llc | Relative speed based speed planning for buffer area |
JP2022030664A (ja) * | 2020-08-07 | 2022-02-18 | 株式会社東芝 | 情報処理装置、情報処理方法、プログラム、情報処理システム、および、車両制御システム |
US12124261B2 (en) * | 2020-11-20 | 2024-10-22 | Rapyuta Robotics Co., Ltd. | Systems and methods for optimizing route plans in an operating environment |
WO2022133684A1 (zh) * | 2020-12-21 | 2022-06-30 | 华为技术有限公司 | 控制方法、相关设备及计算机可读存储介质 |
WO2022241550A1 (en) | 2021-05-17 | 2022-11-24 | Cobionix Corporation | Proximity sensing autonomous robotic systems and apparatus |
US20220388531A1 (en) * | 2021-06-08 | 2022-12-08 | Yandex Self Driving Group Llc | Method and device for operating a self-driving car |
CN113335276A (zh) * | 2021-07-20 | 2021-09-03 | 中国第一汽车股份有限公司 | 障碍物的轨迹预测方法、装置、电子设备及存储介质 |
US11932282B2 (en) * | 2021-08-04 | 2024-03-19 | Zoox, Inc. | Vehicle trajectory control using a tree search |
WO2023039261A1 (en) * | 2021-09-10 | 2023-03-16 | Cyngn, Inc. | System and method of adaptive, real-time vehicle system identification for autonomous driving |
US20230132179A1 (en) * | 2021-10-26 | 2023-04-27 | GM Global Technology Operations LLC | Tow management systems and methods for autonomous vehicles |
US12116017B1 (en) * | 2021-11-30 | 2024-10-15 | Zoox, Inc. | Machine-learned component hybrid training and assistance of vehicle trajectory generation |
CN114706400B (zh) * | 2022-04-12 | 2023-04-07 | 重庆文理学院 | 一种越野环境下基于改进的a*算法的路径规划方法 |
US20230331217A1 (en) * | 2022-04-14 | 2023-10-19 | Mitsubishi Electric Research Laboratories, Inc. | System and Method for Motion and Path Planning for Trailer-Based Vehicle |
CN114852058B (zh) * | 2022-05-11 | 2023-03-31 | 远峰科技股份有限公司 | 自动泊车路径规划方法、装置、系统及可读存储介质 |
US20240001959A1 (en) * | 2022-06-30 | 2024-01-04 | Zoox, Inc. | Vehicle motion planner |
US20240054008A1 (en) | 2022-08-12 | 2024-02-15 | Kabushiki Kaisha Toshiba | Apparatus and method for performing a task |
CN116036601B (zh) * | 2023-01-28 | 2023-06-09 | 腾讯科技(深圳)有限公司 | 游戏处理方法、装置及计算机设备、存储介质 |
CN117429448B (zh) * | 2023-10-24 | 2024-10-25 | 北京易航远智科技有限公司 | 障碍物未来占据空间的预测方法、装置、电子设备及介质 |
CN118096816B (zh) * | 2024-03-01 | 2024-09-03 | 山东财经大学 | 一种基于概率密度分布的预测重定向漫游优化方法及终端 |
CN118295402B (zh) * | 2024-03-15 | 2024-09-03 | 苏州纵苇科技有限公司 | 一种运动规划方法和系统、电子设备及存储介质 |
CN117962932B (zh) * | 2024-04-02 | 2024-06-11 | 福瑞泰克智能系统有限公司 | 障碍物的行驶轨迹生成方法、装置和存储介质及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008134165A (ja) | 2006-11-29 | 2008-06-12 | Renesas Technology Corp | ナビゲーションシステム |
US20080186312A1 (en) | 2007-02-02 | 2008-08-07 | Samsung Electronics Co., Ltd. | Method, medium and apparatus detecting model collisions |
US20160299507A1 (en) | 2015-04-08 | 2016-10-13 | University Of Maryland, College Park | Surface vehicle trajectory planning systems, devices, and methods |
WO2017214581A1 (en) | 2016-06-10 | 2017-12-14 | Duke University | Motion planning for autonomous vehicles and reconfigurable motion planning processors |
Family Cites Families (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4862373A (en) | 1987-05-13 | 1989-08-29 | Texas Instruments Incorporated | Method for providing a collision free path in a three-dimensional space |
US4949277A (en) | 1988-03-09 | 1990-08-14 | North American Philips Corporation | Differential budding: method and apparatus for path planning with moving obstacles and goals |
US6089742A (en) | 1989-11-01 | 2000-07-18 | Warmerdam; Thomas P. H. | Method and apparatus for controlling robots and the like using a bubble data hierarchy placed along a medial axis |
US5544282A (en) | 1991-04-05 | 1996-08-06 | Chen; Pang C. | Method and apparatus for planning motions of robot manipulators |
US5347459A (en) | 1993-03-17 | 1994-09-13 | National Research Council Of Canada | Real time collision detection |
US5835684A (en) | 1994-11-09 | 1998-11-10 | Amada Company, Ltd. | Method for planning/controlling robot motion |
US6004016A (en) | 1996-08-06 | 1999-12-21 | Trw Inc. | Motion planning and control for systems with multiple mobile objects |
US5795297A (en) | 1996-09-12 | 1998-08-18 | Atlantis Diagnostics International, L.L.C. | Ultrasonic diagnostic imaging system with personal computer architecture |
US6049756A (en) | 1997-11-12 | 2000-04-11 | Lockheed Martin Corporation | System and method for avoiding collision between vector and solid objects |
JPH11296229A (ja) | 1998-02-13 | 1999-10-29 | Komatsu Ltd | 車両の誘導装置 |
DE19831216A1 (de) | 1998-07-03 | 2000-01-05 | Amecon Gmbh | Verfahren und Vorrichtung zur Bestimmung der Abhängigkeit einer ersten Meßgröße von einer zweiten Meßgröße |
US6259988B1 (en) | 1998-07-20 | 2001-07-10 | Lockheed Martin Corporation | Real-time mission adaptable route planner |
US6526373B1 (en) | 1999-10-08 | 2003-02-25 | Dassault Systemes | Optimization tool for robot placement |
JP2002073130A (ja) | 2000-06-13 | 2002-03-12 | Yaskawa Electric Corp | ロボットの大域動作経路計画方法とその制御装置 |
DE10063722C2 (de) | 2000-12-20 | 2003-07-03 | Siemens Ag | Ruckbegrenzung mit Adaption der Bahndynamik |
JP2003127077A (ja) | 2001-10-19 | 2003-05-08 | Komatsu Ltd | 作業ロボットのロボットプログラム修正装置。 |
US10065317B2 (en) | 2016-06-30 | 2018-09-04 | General Electric Company | Control system for coordinating robotic machines to collaborate on tasks |
JP3834307B2 (ja) | 2003-09-29 | 2006-10-18 | ファナック株式会社 | ロボットシステム |
US7447593B2 (en) * | 2004-03-26 | 2008-11-04 | Raytheon Company | System and method for adaptive path planning |
CA2563909A1 (en) | 2004-04-22 | 2005-11-03 | Albert Den Haan | Open control system architecture for mobile autonomous systems |
JP2006224740A (ja) | 2005-02-16 | 2006-08-31 | Advics:Kk | 車両用走行支援装置 |
US20060235610A1 (en) | 2005-04-14 | 2006-10-19 | Honeywell International Inc. | Map-based trajectory generation |
US20060247852A1 (en) * | 2005-04-29 | 2006-11-02 | Kortge James M | System and method for providing safety-optimized navigation route planning |
JP5112666B2 (ja) | 2006-09-11 | 2013-01-09 | 株式会社日立製作所 | 移動装置 |
DE602006003435D1 (de) | 2006-09-14 | 2008-12-11 | Abb Research Ltd | Verfahren und Vorrichtung zur Vermeidung von Kollisionen zwischen einem Industrieroboter und einem Objekt |
US7974737B2 (en) | 2006-10-31 | 2011-07-05 | GM Global Technology Operations LLC | Apparatus and method of automated manufacturing |
EP1972415B1 (en) | 2007-03-23 | 2019-01-02 | Honda Research Institute Europe GmbH | Robots with collision avoidance functionality |
US7865277B1 (en) | 2007-05-07 | 2011-01-04 | The United States Of America As Represented By The Secretary Of The Navy | Obstacle avoidance system and method |
US8380424B2 (en) | 2007-09-28 | 2013-02-19 | The Boeing Company | Vehicle-based automatic traffic conflict and collision avoidance |
EP2085279B1 (en) | 2008-01-29 | 2011-05-25 | Ford Global Technologies, LLC | A system for collision course prediction |
ES2553722T3 (es) | 2008-02-20 | 2015-12-11 | Abb Research Ltd. | Método y sistema para optimizar la configuración de una célula de trabajo de robot |
US8571745B2 (en) | 2008-04-10 | 2013-10-29 | Robert Todd Pack | Advanced behavior engine |
US8315738B2 (en) | 2008-05-21 | 2012-11-20 | Fanuc Robotics America, Inc. | Multi-arm robot system interference check via three dimensional automatic zones |
US9144904B2 (en) | 2008-05-21 | 2015-09-29 | Fanuc Robotics America Corporation | Method and system for automatically preventing deadlock in multi-robot systems |
US8706452B2 (en) | 2008-06-26 | 2014-04-22 | Siemens Product Lifecycle Management Software Inc. | System and method for collision-free CAD design of pipe and tube paths |
JP5086942B2 (ja) | 2008-09-02 | 2012-11-28 | トヨタ自動車株式会社 | 経路探索装置、経路探索方法、及び経路探索プログラム |
KR101554515B1 (ko) | 2009-01-07 | 2015-09-21 | 삼성전자 주식회사 | 로봇의 경로계획장치 및 그 방법 |
KR101105325B1 (ko) | 2009-09-08 | 2012-01-16 | 부산대학교 산학협력단 | 실제 로봇의 다중 경로계획 방법 |
US8386080B2 (en) | 2009-09-15 | 2013-02-26 | Harris Corporation | Robotic apparatus implementing collision avoidance scheme and associated methods |
JP4975075B2 (ja) | 2009-09-30 | 2012-07-11 | クラリオン株式会社 | ナビゲーション装置および経路演算方法 |
WO2011056633A1 (en) | 2009-10-27 | 2011-05-12 | Battelle Memorial Institute | Semi-autonomous multi-use robot system and method of operation |
US20110153080A1 (en) | 2009-12-22 | 2011-06-23 | Siemens Product Lifecycle Management Software Inc. | Method and apparatus for industrial robotic pathscycle time optimization using fly by |
US20120061155A1 (en) | 2010-04-09 | 2012-03-15 | Willow Garage, Inc. | Humanoid robotics system and methods |
JP2011249711A (ja) | 2010-05-31 | 2011-12-08 | Kyocera Corp | 配線基板およびその実装構造体 |
US8855812B2 (en) | 2010-07-23 | 2014-10-07 | Chetan Kapoor | System and method for robot safety and collision avoidance |
JP2012056023A (ja) | 2010-09-09 | 2012-03-22 | Toyota Motor Corp | ロボットの動作生成システム及び動作生成方法 |
CA2812723C (en) | 2010-09-24 | 2017-02-14 | Evolution Robotics, Inc. | Systems and methods for vslam optimization |
US8509982B2 (en) | 2010-10-05 | 2013-08-13 | Google Inc. | Zone driving |
JP2012190405A (ja) | 2011-03-14 | 2012-10-04 | Toyota Motor Corp | 経路情報修正装置、軌道計画装置、及びロボット |
JP5774361B2 (ja) | 2011-04-28 | 2015-09-09 | 本田技研工業株式会社 | 軌道計画方法、軌道計画システム及び軌道計画・制御システム |
JP2012243029A (ja) | 2011-05-18 | 2012-12-10 | Toyota Central R&D Labs Inc | 経路探索機能付き移動体 |
CN103687702B (zh) | 2011-06-29 | 2016-08-24 | 三菱电机株式会社 | 部件供给装置 |
TW201318793A (zh) | 2011-11-08 | 2013-05-16 | Univ Minghsin Sci & Tech | 機器人光學定位系統及其定位方法 |
WO2013140401A2 (en) | 2012-03-22 | 2013-09-26 | Israel Aerospace Industries Ltd. | Planning and monitoring of autonomous-mission |
JP5724919B2 (ja) | 2012-03-22 | 2015-05-27 | トヨタ自動車株式会社 | 軌道生成装置、移動体、軌道生成方法及びプログラム |
KR20130112507A (ko) | 2012-04-04 | 2013-10-14 | 인하대학교 산학협력단 | S* 알고리즘을 이용한 이동로봇의 안전경로계획 수립방법 |
JP6128767B2 (ja) | 2012-07-05 | 2017-05-17 | キヤノン株式会社 | ロボット制御装置、及びロボット制御方法 |
KR101441187B1 (ko) | 2012-07-19 | 2014-09-18 | 고려대학교 산학협력단 | 자율 보행 로봇 경로 계획 방법 |
JP6069923B2 (ja) | 2012-07-20 | 2017-02-01 | セイコーエプソン株式会社 | ロボットシステム、ロボット、ロボット制御装置 |
JP2015526309A (ja) | 2012-08-31 | 2015-09-10 | リシンク ロボティクス インコーポレイテッド | 安全ロボット動作のためのシステムおよび方法 |
US20150266182A1 (en) | 2012-10-11 | 2015-09-24 | Abb Technology Ltd | Method And An Apparatus For Automatically Generating A Collision Free Return Program For Returning A Robot From A Stop Position To A Predefined Restart Position |
KR102009482B1 (ko) | 2012-10-30 | 2019-08-14 | 한화디펜스 주식회사 | 로봇의 경로계획 장치와 방법 및 상기 방법을 구현하는 프로그램이 기록된 기록 매체 |
US9405296B2 (en) | 2012-12-19 | 2016-08-02 | Elwah LLC | Collision targeting for hazard handling |
US8972057B1 (en) | 2013-01-09 | 2015-03-03 | The Boeing Company | Systems and methods for generating a robotic path plan in a confined configuration space |
US9227323B1 (en) | 2013-03-15 | 2016-01-05 | Google Inc. | Methods and systems for recognizing machine-readable information on three-dimensional objects |
JP5962560B2 (ja) | 2013-03-22 | 2016-08-03 | トヨタ自動車株式会社 | 経路探索装置、移動体、経路探索方法及びプログラム |
US9753441B2 (en) * | 2013-05-13 | 2017-09-05 | Massachusetts Institute Of Technology | Controlling dynamical systems with bounded probability of failure |
US9280899B2 (en) | 2013-08-06 | 2016-03-08 | GM Global Technology Operations LLC | Dynamic safety shields for situation assessment and decision making in collision avoidance tasks |
JP6057862B2 (ja) | 2013-08-29 | 2017-01-11 | 三菱電機株式会社 | 部品供給装置および部品供給装置のプログラム生成方法 |
US9352465B2 (en) | 2013-11-12 | 2016-05-31 | Canon Kabushiki Kaisha | Control method for robot apparatus and robot apparatus |
CN105980940B (zh) | 2014-01-28 | 2019-01-01 | Abb瑞士股份有限公司 | 用于优化机器人单元的性能的方法和装置 |
JP5897624B2 (ja) | 2014-03-12 | 2016-03-30 | ファナック株式会社 | ワークの取出工程をシミュレーションするロボットシミュレーション装置 |
JP5877867B2 (ja) | 2014-04-25 | 2016-03-08 | ファナック株式会社 | 複数台のロボットのシミュレーション装置 |
DE102014212898A1 (de) * | 2014-07-03 | 2016-01-07 | Robert Bosch Gmbh | Verfahren zum Ermitteln einer Notfall-Trajektorie und Verfahren zum teilautomatisierten oder automatisierten Führen eines Ego-Fahrzeugs |
US11576543B2 (en) | 2014-07-18 | 2023-02-14 | Ali Ebrahimi Afrouzi | Robotic vacuum with rotating cleaning apparatus |
WO2016050274A1 (en) * | 2014-09-30 | 2016-04-07 | Nec Europe Ltd. | Method and system for determining a path of an object for moving from a starting state to an end state set avoiding one or more obstacles |
US9403275B2 (en) | 2014-10-17 | 2016-08-02 | GM Global Technology Operations LLC | Dynamic obstacle avoidance in a robotic system |
JP5980873B2 (ja) | 2014-10-17 | 2016-08-31 | ファナック株式会社 | ロボットの干渉領域設定装置 |
US20160121487A1 (en) | 2014-11-03 | 2016-05-05 | Qualcomm Incorporated | Communicating Configurable Instruction Sets to Robots for Controlling Robot Behavior |
CN107206592B (zh) * | 2015-01-26 | 2021-03-26 | 杜克大学 | 专用机器人运动规划硬件及其制造和使用方法 |
JP6556245B2 (ja) | 2015-02-13 | 2019-08-07 | アーベーベー シュヴァイツ アクツィエンゲゼルシャフト | 2つのロボット間の衝突を回避するための方法 |
US9687982B1 (en) | 2015-05-27 | 2017-06-27 | X Development Llc | Adapting programming of a robot and/or control of the robot based on one or more parameters of an end effector of the robot |
US20160357187A1 (en) | 2015-06-05 | 2016-12-08 | Arafat M.A. ANSARI | Smart vehicle |
US20170004406A1 (en) | 2015-06-30 | 2017-01-05 | Qualcomm Incorporated | Parallel belief space motion planner |
US9707681B2 (en) | 2015-07-27 | 2017-07-18 | Siemens Industry Software Ltd. | Anti-collision management of overlapping robotic movements |
KR101724887B1 (ko) | 2015-08-10 | 2017-04-07 | 현대자동차주식회사 | 전방 도로 형상과 연결을 분석해 차선 변경과 타이밍을 결정하는 자율주행 제어 장치 및 방법 |
US10464559B2 (en) | 2015-09-29 | 2019-11-05 | Sony Corporation | Damage reduction device, damage reduction method, and program |
KR101748632B1 (ko) | 2015-10-29 | 2017-06-20 | 한국과학기술연구원 | 로봇의 구동 경로를 계획하기 위한 로봇 제어 시스템 및 로봇 구동 경로 계획방법 |
US9632502B1 (en) | 2015-11-04 | 2017-04-25 | Zoox, Inc. | Machine-learning systems and techniques to optimize teleoperation and/or planner decisions |
US10496766B2 (en) | 2015-11-05 | 2019-12-03 | Zoox, Inc. | Simulation system and methods for autonomous vehicles |
EP3171133B1 (en) | 2015-11-19 | 2020-03-11 | Sikorsky Aircraft Corporation | Kinematic motion planning with regional planning constraints |
US10093021B2 (en) | 2015-12-02 | 2018-10-09 | Qualcomm Incorporated | Simultaneous mapping and planning by a robot |
US10012984B2 (en) | 2015-12-14 | 2018-07-03 | Mitsubishi Electric Research Laboratories, Inc. | System and method for controlling autonomous vehicles |
US10705528B2 (en) | 2015-12-15 | 2020-07-07 | Qualcomm Incorporated | Autonomous visual navigation |
US10665115B2 (en) | 2016-01-05 | 2020-05-26 | California Institute Of Technology | Controlling unmanned aerial vehicles to avoid obstacle collision |
US10035266B1 (en) | 2016-01-18 | 2018-07-31 | X Development Llc | Generating robot trajectories using a real time trajectory generator and a path optimizer |
JP6576255B2 (ja) | 2016-01-25 | 2019-09-18 | キヤノン株式会社 | ロボット軌道生成方法、ロボット軌道生成装置、および製造方法 |
US9645577B1 (en) | 2016-03-23 | 2017-05-09 | nuTonomy Inc. | Facilitating vehicle driving and self-driving |
WO2017168187A1 (en) | 2016-03-31 | 2017-10-05 | Siemens Industry Software Ltd. | Method and system for determining optimal positioning of a plurality of robots in a simulated production environment |
KR102499421B1 (ko) | 2016-05-05 | 2023-02-14 | 하만인터내셔날인더스트리스인코포레이티드 | 운전자 지원을 위한 시스템 및 방법 |
US9687983B1 (en) | 2016-05-11 | 2017-06-27 | X Development Llc | Generating a grasp pose for grasping of an object by a grasping end effector of a robot |
US9880561B2 (en) | 2016-06-09 | 2018-01-30 | X Development Llc | Sensor trajectory planning for a vehicle |
US9981383B1 (en) | 2016-08-02 | 2018-05-29 | X Development Llc | Real-time trajectory generation for actuators of a robot to reduce chance of collision with obstacle(s) |
US10131053B1 (en) | 2016-09-14 | 2018-11-20 | X Development Llc | Real time robot collision avoidance |
US10345815B2 (en) | 2016-09-14 | 2019-07-09 | Qualcomm Incorporated | Motion planning and intention prediction for autonomous driving in highway scenarios via graphical model-based factorization |
DE102016120763B4 (de) | 2016-10-31 | 2019-03-14 | Pilz Gmbh & Co. Kg | Verfahren zur kollisionsfreien Bewegungsplanung |
WO2018087551A1 (en) | 2016-11-09 | 2018-05-17 | Inventive Cogs (Campbell) Limited | Vehicle route guidance |
KR102518532B1 (ko) | 2016-11-11 | 2023-04-07 | 현대자동차주식회사 | 자율주행차량의 경로 결정장치 및 그 방법 |
US10012988B2 (en) * | 2016-11-29 | 2018-07-03 | Mitsubishi Electric Research Laboratories, Inc. | Methods and systems for path planning using a network of safe-sets |
US10480947B2 (en) * | 2016-12-21 | 2019-11-19 | X Development Llc | Boolean satisfiability (SAT) reduction for geometry and kinematics agnostic multi-agent planning |
US10296012B2 (en) | 2016-12-21 | 2019-05-21 | X Development Llc | Pre-computation of kinematically feasible roadmaps |
US10099372B2 (en) | 2017-02-07 | 2018-10-16 | Veo Robotics, Inc. | Detecting and classifying workspace regions for safety monitoring |
US11541543B2 (en) | 2017-02-07 | 2023-01-03 | Veo Robotics, Inc. | Dynamic, interactive signaling of safety-related conditions in a monitored environment |
DE102017102749A1 (de) | 2017-02-13 | 2018-08-16 | Festo Ag | Automatische Trajektorienerzeugung zur Ansteuerung eines Antriebssystems |
US10430641B2 (en) | 2017-03-08 | 2019-10-01 | GM Global Technology Operations LLC | Methods and systems for object tracking using bounding boxes |
KR101937269B1 (ko) | 2017-05-15 | 2019-01-14 | 한국생산기술연구원 | 로봇 모션 경로 계획방법 |
US11014240B2 (en) | 2017-09-05 | 2021-05-25 | Abb Schweiz Ag | Robot having dynamic safety zones |
US10782694B2 (en) | 2017-09-07 | 2020-09-22 | Tusimple, Inc. | Prediction-based system and method for trajectory planning of autonomous vehicles |
US10571921B2 (en) * | 2017-09-18 | 2020-02-25 | Baidu Usa Llc | Path optimization based on constrained smoothing spline for autonomous driving vehicles |
US10928832B2 (en) * | 2017-09-29 | 2021-02-23 | Huawei Technologies Co., Ltd. | Impedance-based motion control for autonomous vehicles |
US10466707B2 (en) | 2017-12-22 | 2019-11-05 | X Development Llc | Planning robot stopping points to avoid collisions |
PL3769174T3 (pl) | 2018-03-21 | 2022-10-24 | Realtime Robotics, Inc. | Planowanie przemieszczania robota do różnych środowisk i zadań oraz jego ulepszone działanie |
US11216009B2 (en) | 2018-06-25 | 2022-01-04 | Intrinsic Innovation Llc | Robot coordination in a shared workspace |
JP7141665B2 (ja) | 2018-08-23 | 2022-09-26 | リアルタイム ロボティクス, インコーポレーテッド | ロボットの動作計画に役立つ衝突検出 |
US10809732B2 (en) * | 2018-09-25 | 2020-10-20 | Mitsubishi Electric Research Laboratories, Inc. | Deterministic path planning for controlling vehicle movement |
JP7394853B2 (ja) | 2018-12-04 | 2023-12-08 | デューク・ユニバーシティ | 動的物体を有する環境における運動計画を促進する装置、方法及び物品 |
CN109782763B (zh) * | 2019-01-18 | 2021-11-23 | 中国电子科技集团公司信息科学研究院 | 一种动态环境下的移动机器人路径规划方法 |
EP3725472A1 (de) | 2019-04-16 | 2020-10-21 | Siemens Aktiengesellschaft | Verfahren zum ermitteln einer trajektorie eines roboters |
US11179850B2 (en) | 2019-04-24 | 2021-11-23 | Intrinsic Innovation Llc | Robot motion planning |
JP7222803B2 (ja) | 2019-04-25 | 2023-02-15 | 株式会社日立製作所 | 軌道計画装置、軌道計画方法及びプログラム |
GB202215836D0 (en) * | 2019-05-07 | 2022-12-07 | Motional Ad Llc | Systems and methods for planning and updating a vehicle's trajectory |
TWI699636B (zh) | 2019-05-21 | 2020-07-21 | 華邦電子股份有限公司 | 協同型機器人控制系統和方法 |
-
2020
- 2020-05-26 JP JP2021571340A patent/JP7479064B2/ja active Active
- 2020-05-26 WO PCT/US2020/034551 patent/WO2020247207A1/en unknown
- 2020-05-26 CN CN202080055382.1A patent/CN114206698B/zh active Active
- 2020-05-26 US US16/883,376 patent/US11634126B2/en active Active
- 2020-05-26 EP EP20818760.9A patent/EP3977226A4/en active Pending
- 2020-06-03 TW TW109118558A patent/TWI851731B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008134165A (ja) | 2006-11-29 | 2008-06-12 | Renesas Technology Corp | ナビゲーションシステム |
US20080186312A1 (en) | 2007-02-02 | 2008-08-07 | Samsung Electronics Co., Ltd. | Method, medium and apparatus detecting model collisions |
US20160299507A1 (en) | 2015-04-08 | 2016-10-13 | University Of Maryland, College Park | Surface vehicle trajectory planning systems, devices, and methods |
WO2017214581A1 (en) | 2016-06-10 | 2017-12-14 | Duke University | Motion planning for autonomous vehicles and reconfigurable motion planning processors |
JP2019517702A (ja) | 2016-06-10 | 2019-06-24 | デューク・ユニバーシティDuke University | 自律型車両用動作計画及び再構成可能な動作計画プロセッサ |
Non-Patent Citations (1)
Title |
---|
SCHWESINGER ULRICH,MOTION PLANNING IN DYNAMIC ENVIRONMENTS WITH APPLICATION TO SELF-DRIVING VEHICLES,2017年,要約,第14,32-37,44,47,65-78,91,98頁,https://www.research-collection.ethz.ch/handle/20.500.11850/210330 |
Also Published As
Publication number | Publication date |
---|---|
EP3977226A1 (en) | 2022-04-06 |
CN114206698A (zh) | 2022-03-18 |
JP2022536263A (ja) | 2022-08-15 |
WO2020247207A1 (en) | 2020-12-10 |
TW202113524A (zh) | 2021-04-01 |
US20200377085A1 (en) | 2020-12-03 |
TWI851731B (zh) | 2024-08-11 |
US11634126B2 (en) | 2023-04-25 |
WO2020247207A8 (en) | 2021-03-18 |
CN114206698B (zh) | 2024-07-02 |
EP3977226A4 (en) | 2023-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7479064B2 (ja) | 動的障害物を有する環境における動作計画を容易にする装置、方法及び物品 | |
JP7394853B2 (ja) | 動的物体を有する環境における運動計画を促進する装置、方法及び物品 | |
JP7532615B2 (ja) | 自律型車両の計画 | |
US11970161B2 (en) | Apparatus, method and article to facilitate motion planning of an autonomous vehicle in an environment having dynamic objects | |
JP6837558B2 (ja) | 自車両の制御方法及び自車両の制御システム | |
US11851081B2 (en) | Predictability-based autonomous vehicle trajectory assessments | |
US11702105B2 (en) | Technology to generalize safe driving experiences for automated vehicle behavior prediction | |
JP6875330B2 (ja) | ビークルの自律動作能力の構成 | |
US9568915B1 (en) | System and method for controlling autonomous or semi-autonomous vehicle | |
JP2023527373A (ja) | 摂動オブジェクト軌道に基づいた車両衝突回避 | |
JP2022513808A (ja) | 軌道検証を用いた衝突回避システム | |
JP2023548272A (ja) | 交差する確率に基づく安全システム資源の割り当て | |
CN114270360A (zh) | 让步行为建模和预测 | |
CN115551758A (zh) | 非结构化车辆路径规划器 | |
US11814072B2 (en) | Method and system for conditional operation of an autonomous agent | |
CN117794803A (zh) | 使用具有响应型代理预测的树搜索和/或代理滤波进行车辆轨迹控制 | |
JP2024528425A (ja) | オブジェクト軌道に基づくアクティブ予測 | |
JP2023547988A (ja) | 衝突回避計画システム | |
TW202123031A (zh) | 用以便利具有動態物件環境中之運動規劃的裝置、方法及物品 | |
JP7584385B2 (ja) | 移動体制御装置、移動体、移動体制御方法、プログラム、および学習装置 | |
Mondal | DEVELOPMENT OF AUTONOMOUS VEHICLE MOTION PLANNING AND CONTROL ALGORITHM WITH D* PLANNER AND MODEL PREDICTIVE CONTROL IN A DYNAMIC ENVIRONMENT | |
Jia et al. | Learning Occlusion-aware Decision-making from Agent Interaction via Active Perception | |
JP2024510058A (ja) | オブジェクト輪郭を使用した衝突回避 | |
Tahir | Design and Implementation of an Autonomous Car for Navigation in Unknown Enviornments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7479064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |