[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7105972B2 - 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法 - Google Patents

電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法 Download PDF

Info

Publication number
JP7105972B2
JP7105972B2 JP2021110491A JP2021110491A JP7105972B2 JP 7105972 B2 JP7105972 B2 JP 7105972B2 JP 2021110491 A JP2021110491 A JP 2021110491A JP 2021110491 A JP2021110491 A JP 2021110491A JP 7105972 B2 JP7105972 B2 JP 7105972B2
Authority
JP
Japan
Prior art keywords
electrode layer
mass
electrochemical
electrochemical device
metal support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021110491A
Other languages
English (en)
Other versions
JP2021166192A (ja
Inventor
満秋 越後
久男 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2021110491A priority Critical patent/JP7105972B2/ja
Publication of JP2021166192A publication Critical patent/JP2021166192A/ja
Application granted granted Critical
Publication of JP7105972B2 publication Critical patent/JP7105972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)

Description

本発明は、金属支持体と電極層とを有する電気化学素子などに関する。
従来の金属支持型の固体酸化物形燃料電池(SOFC)では、その金属支持基板として、SOFCの電極材料や電解質材料等と熱膨張係数が近いCrofer22APUのようなFe-Cr系合金が用いられている。
I. Antepara, et al., "Electrochemical Behavior of Metal-Supported SOFCs Under High Fuel Utilization and Their Durability", Journal of Fuel Cell Science and Technology, APRIL 2012, Vol.9 / 021009-1~8
しかしながら、先行技術に示されるように、従来のCrofer22APUのような金属基板を用いた金属支持型SOFCでは、高性能を得る条件(電流密度を高めた条件、燃料利用率を高めた条件)では耐久性を確保する事が困難であるという課題があった。
なお上述のSOFCと、水を電気分解により水素を生成する固体酸化物形電解セル(以下「SOEC」と記す。)と、固体酸化物を利用した酸素センサー等とは、基本構造が共通する。すなわち、金属基板と電極層および電解質層を有する電気化学素子が、SOFCとSOECと酸素センサーに用いられる。そして上述の課題は、上述の電気化学素子、SOFC、SOECおよび酸素センサーに共通して存在する。
本発明は上述の課題に鑑みてなされたものであり、その目的は、耐久性と高性能とを両立し、かつ信頼性に優れた電気化学素子などを提供することにある。
上記目的を達成するための電気化学素子の特徴構成は、気体透過性を持つ金属支持体と、前記金属支持体の表側に形成された電極層と、前記電極層の上に配置された電解質層と、前記電解質層の上に配置された対極電極層とを有し、前記金属支持体の裏側を通流する酸素を含むガスが前記電極層と接触し、水素を含むガスが前記対極電極層と接触するように構成され、前記金属支持体が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかである点にある
TiとZrは鋼材中で炭素と反応して安定な炭化物を形成しやすい。上記の特徴構成によれば、金属支持体が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかであるから、Fe-Cr系合金の耐酸化性と高温強度を向上する効果が得られるため、高温で長時間使用した際でも金属支持体からのCrの揮発を抑制でき、耐久性に優れた電気化学素子を実現できる。
なおTiの含有量は、0.20質量%以上であると好ましく、0.25質量%以上であると更に好ましい。これは、TiやZrを添加することによるFe-Cr系合金の耐酸化性と高温強度の向上効果をより大きくすることができるためである。またTiの含有量は、0.90質量%以下であると好ましく、0.80質量%以下であると更に好ましい。TiやZrを添加することによるFe-Cr系合金のコストアップをより小さくすることができるからである。
なおZrの含有量は、0.20質量%以上であると好ましく、0.25質量%以上であると更に好ましい。これは、TiやZrを添加することによるFe-Cr系合金の耐酸化性と高温強度の向上効果をより大きくすることができるためである。またZrの含有量は、0.90質量%以下であると好ましく、0.80質量%以下であると更に好ましい。TiやZrを添加することによるFe-Cr系合金のコストアップをより小さくすることができるからである。
なおTiとZrとの合計の含有量は、0.20質量%以上であると好ましく、0.25質量%以上であると更に好ましい。これは、TiやZrを添加することによるFe-Cr系合金の耐酸化性と高温強度の向上効果をより大きくすることができるためである。またTiとZrとの合計の含有量は、0.90質量%以下であると好ましく、0.80質量%以下であると更に好ましい。TiやZrを添加することによるFe-Cr系合金のコストアップをより小さくすることができるからである。
本発明に係る電気化学素子の別の特徴構成は、前記金属支持体がCuを0.10質量%以上1.0質量%以下含有する点にある。
Cuは接触抵抗(電気抵抗)を低減する効果がある。上記の特徴構成によれば、金属支持体がCuを0.10質量%以上1.0質量%以下含有するから、電気化学素子としての電気的な抵抗値を低く抑制し、高性能な電気化学素子を実現できる。
なおCuの含有量は、0.20質量%以上であるとより好ましく、0.30質量%以上であると更に好ましい。これは、Fe-Cr系合金にCuを添加することによる接触抵抗低減効果をより大きくすることができるためである。またCuの含有量は、0.90質量%以下であるとより好ましく、0.70質量%以下であると更に好ましい。これは、Fe-Cr系合金にCuを添加することによるコストアップをより小さくすることができるためである。
本発明に係る電気化学素子の別の特徴構成は、前記金属支持体がCrを18質量%以上25質量%以下含有する点にある。
上記の特徴構成によれば、例えばSOFCの電極層の材料や電解質層の材料に含まれるジルコニア系材料やセリア系材料の熱膨張係数とFe-Cr系合金の熱膨張係数を近くすることができるため、電気化学素子を高温で使用する場合やヒートサイクルを施す場合でも、電極層や電解質層が割れたり剥がれたりすることを抑制でき、信頼性の高い電気化学素子を実現できる。
なお、Crの含有量は、20質量%以上であるとより好ましい。これは、Fe-Cr系合金の熱膨張係数をジルコニア系材料やセリア系材料の熱膨張係数とより近くすることができるためである。また、Crの含有量の上限値は、23質量%以下であるとより好ましい。これは、Fe-Cr系合金のコストアップをより小さくすることができるためである。
本発明に係る電気化学素子の別の特徴構成は、前記金属支持体の一方の面に前記電極層が形成され、前記金属支持体が一方の面から他方の面へ貫通する貫通孔を有している点にある。
上記の特徴構成によれば、電極層で反応するガス等を金属支持体の他方の面からスムーズに供給できるようにできるため、高性能な電気化学素子を実現できる。
本発明に係る電気化学素子の別の特徴構成は、前記金属支持体が磁性体である点にある。
上記の特徴構成によれば、金属支持体の上に電極層を積層する際に、金属支持体を磁石を用いて固定できるため、金属支持体が貫通孔を有している場合でも、スクリーン印刷などの低コストな手法を用いて電解質層を積層できるため、低コストな電気化学素子を実現できる。
本発明に係る電気化学素子の別の特徴構成は、前記金属支持体の表面の一部または全部が金属酸化物膜により被覆されている点にある。
上記の特徴構成によれば、金属酸化物被膜により金属支持体からCr等の成分が電極層へ拡散することを抑制できるので、電極層の性能低下を抑制し、電気化学素子の性能を高めることができる。
本発明に係る電気化学モジュールの特徴構成は、上述の電気化学素子が複数集合した状態で配置される点にある。
上記の特徴構成によれば、上述の電気化学素子が複数集合した状態で配置されるので、材料コストと加工コストを抑制しつつ、コンパクトで高性能な、強度と信頼性に優れた電気化学モジュールを得ることができる。
本発明に係る電気化学装置の特徴構成は、上述の電気化学モジュールと改質器とを少なくとも有し、前記電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する点にある。
上記の特徴構成によれば、電気化学モジュールと改質器を有し電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部を有するので、都市ガス等の既存の原燃料供給インフラを用い、耐久性・信頼性および性能に優れた電気化学モジュールを備えた電気化学装置を実現することができる。また、電気化学モジュールから排出される未利用の燃料ガスをリサイクルするシステムを構築し易くなるため、高効率な電気化学装置を実現することができる。
本発明に係る電気化学装置の特徴構成は、上述の電気化学モジュールと、前記電気化学モジュールから電力を取り出すインバータとを少なくとも有する点にある。
上記の特徴構成によれば、耐久性・信頼性および性能に優れた電気化学モジュールから得られる電気出力を、インバータによって昇圧したり、直流を交流に変換したりすることができるため、電気化学モジュールで得られる電気出力を利用しやすくなるので好ましい。
本発明に係るエネルギーシステムの特徴構成は、上述の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部を有する点にある。
上記の特徴構成によれば、電気化学装置と、電気化学装置から排出される熱を再利用する排熱利用部を有するので、耐久性・信頼性および性能に優れ、かつエネルギー効率にも優れたエネルギーシステムを実現することができる。なお、電気化学装置から排出される未利用の燃料ガスの燃焼熱を利用して発電する発電システムと組み合わせてエネルギー効率に優れたハイブリットシステムを実現することもできる。
本発明に係る固体酸化物形燃料電池の特徴構成は、上述の電気化学素子を備え、発電反応を生じさせる点にある。
上記の特徴構成によれば、高い発電性能を発揮しつつ、金属支持型電気化学素子の劣化を抑制して燃料電池の性能を長期間維持することが可能となる。なお、定格運転時に650℃以上の温度域で運転可能な固体酸化物形燃料電池であると、都市ガス等の炭化水素系ガスを原燃料とする燃料電池システムにおいて、原燃料を水素に変換する際に必要となる熱を燃料電池の排熱で賄うことが可能なシステムを構築できるため、燃料電池システムの発電効率を高めることができるので、より好ましい。また、定格運転時に900℃以下の温度域で運転される固体酸化物形燃料電池であると、金属支持型電気化学素子からのCr揮発の抑制効果が高められるのでより好ましく、定格運転時に850℃以下の温度域で運転される固体酸化物形燃料電池であると、Cr揮発の抑制効果を更に高められるので更に好ましい。
本発明に係る電気化学素子の製造方法の特徴構成は、気体透過性を持つ金属支持体と電極層とを有する電気化学素子の製造方法であって、
前記金属支持体が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかであり、
前記金属支持体の表側に気体透過性を有する前記電極層を形成する電極層形成ステップと、
前記電極層の上に電解質層を形成する電解質層形成ステップと、
前記電解質層の上に対極電極層を形成する対極電極層形成ステップとを有し、
前記金属支持体の裏側を通流する酸素を含むガスが前記電極層と接触し、水素を含むガスが前記対極電極層と接触するように構成されている点にある
上記の特徴構成によれば、金属支持体から電極層への元素拡散を抑制した、性能・耐久性に優れた電気化学素子を、簡便な製造方法にて製造することができる。また、金属支持体は、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかであるから、高温で長時間使用した際でも合金からのCrの揮発を抑制でき、耐久性に優れた電気化学素子を実現できる。
電気化学素子の構成を示す概略図 電気化学素子および電気化学モジュールの構成を示す概略図 電気化学装置およびエネルギーシステムの構成を示す概略図 電気化学モジュールの構成を示す概略図
<第1実施形態>
以下、図1を参照しながら、本実施形態に係る電気化学素子Eおよび固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)について説明する。電気化学素子Eは、例えば、水素を含む燃料ガスと空気の供給を受けて発電する固体酸化物形燃料電池の構成要素として用いられる。なお以下、層の位置関係などを表す際、例えば電解質層4から見て対極電極層6の側を「上」または「上側」、電極層2の側を「下」または「下側」という場合がある。また、金属基板1における電極層2が形成されている側の面を「表側」、反対側の面を「裏側」という場合がある。
(電気化学素子)
電気化学素子Eは、図1に示される通り、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された中間層3と、中間層3の上に形成された電解質層4とを有する。そして電気化学素子Eは、更に、電解質層4の上に形成された反応防止層5と、反応防止層5の上に形成された対極電極層6とを有する。つまり対極電極層6は電解質層4の上に形成され、反応防止層5は電解質層4と対極電極層6との間に形成されている。電極層2は多孔質であり、電解質層4は緻密である。
(金属基板)
金属基板1は、電極層2、中間層3および電解質層4等を支持して電気化学素子Eの強度を保つ、支持体としての役割を担う。金属基板1の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。なお本実施形態では、金属支持体として板状の金属基板1が用いられるが、金属支持体としては他の形状、例えば箱状、円筒状などの形状も可能である。
なお、金属基板1は、支持体として電気化学素子を形成するのに充分な強度を有すれば良く、例えば、0.1mm~2mm程度、好ましくは0.1mm~1mm程度、より好ましくは0.1mm~0.5mm程度の厚みのものを用いることができる。
本実施形態では、金属基板1は、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかである。加えて金属基板1は、Cuを0.10質量%以上1.0質量%以下含有してもよいし、Crを18質量%以上25質量%以下含有してもよい。
金属基板1は、表側の面と裏側の面とを貫通して設けられる複数の貫通孔1aを有する。なお、例えば、貫通孔1aは、機械的、化学的あるいは光学的穿孔加工などにより、金属基板1に設けることができる。貫通孔1aは、金属基板1の裏側の面から表側の面へ気体を透過させる機能を有する。金属基板1に気体透過性を持たせるために、多孔質金属を用いることも可能である。例えば、金属基板1は、焼結金属や発泡金属等を用いることもできる。
金属基板1の表面に、拡散抑制層としての金属酸化物層1bが設けられる。すなわち、金属基板1と後述する電極層2との間に、拡散抑制層が形成されている。金属酸化物層1bは、金属基板1の外部に露出した面だけでなく、電極層2との接触面(界面)および貫通孔1aの内側の面にも設けられる。この金属酸化物層1bにより、金属基板1と電極層2との間の元素相互拡散を抑制することができる。例えば、金属基板1としてクロムを含有するフェライト系ステンレスを用いた場合は、金属酸化物層1bが主にクロム酸化物となる。そして、金属基板1のクロム原子等が電極層2や電解質層4へ拡散することを、クロム酸化物を主成分とする金属酸化物層1bが抑制する。金属酸化物層1bの厚さは、拡散防止性能の高さと電気抵抗の低さを両立させることのできる厚みであれば良い。例えば、サブミクロンオーダーから数ミクロンオーダーであることが好ましい。
金属酸化物層1bは種々の手法により形成されうるが、金属基板1の表面を酸化させて金属酸化物とする手法が好適に利用される。また、金属基板1の表面に、金属酸化物層1bをスパッタリング法やPLD法等のPVD法、CVD法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層1bは導電性の高いスピネル相などを含んでも良い。
金属基板1としてフェライト系ステンレス材を用いた場合、電極層2や電解質層4の材料として用いられるYSZ(イットリア安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近い。従って、低温と高温の温度サイクルが繰り返された場合も電気化学素子Eがダメージを受けにくい。よって、長期耐久性に優れた電気化学素子Eを実現できるので好ましい。
(電極層)
電極層2は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔1aが設けられた領域の全体が、電極層2に覆われている。つまり、貫通孔1aは金属基板1における電極層2が形成された領域の内側に形成されている。換言すれば、全ての貫通孔1aが電極層2に面して設けられている。
電極層2の材料としては、例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用いることができる。これらの例では、GDC、YSZ、CeO2を複合材の骨材と呼ぶことができる。なお、電極層2は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1100℃より高い高温域での焼成を用いずに、良好な電極層2が得られる。そのため、金属基板1を傷めることなく、また、金属基板1と電極層2との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子を実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
電極層2は、気体透過性を持たせるため、その内部および表面に複数の細孔を有する。
すなわち電極層2は、多孔質な層として形成される。電極層2は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1-空孔率)と表すことができ、また、相対密度と同等である。
(中間層)
中間層3は、図1に示すように、電極層2を覆った状態で、電極層2の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層3の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
中間層3は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃より高い高温域での焼成を用いずに中間層3が得られる。そのため、金属基板1を傷めることなく、金属基板1と電極層2との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Eを実現できる。
また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
中間層3としては、酸素イオン(酸化物イオン)伝導性を有することが好ましい。また、酸素イオン(酸化物イオン)と電子との混合伝導性を有すると更に好ましい。これらの性質を有する中間層3は、電気化学素子Eへの適用に適している。
(電解質層)
電解質層4は、図1に示すように、電極層2および中間層3を覆った状態で、中間層3の上に薄層の状態で形成される。詳しくは電解質層4は、図1に示すように、中間層3の上と金属基板1の上とにわたって(跨って)設けられる。このように構成し、電解質層4を金属基板1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
また電解質層4は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に設けられる。つまり、貫通孔1aは金属基板1における電解質層4が形成された領域の内側に形成されている。
また電解質層4の周囲においては、電極層2および中間層3からのガスのリークを抑制することができる。説明すると、電気化学素子EをSOFCの構成要素として用いる場合、SOFCの作動時には、金属基板1の裏側から貫通孔1aを通じて電極層2へガスが供給される。電解質層4が金属基板1に接している部位においては、ガスケット等の別部材を設けることなく、ガスのリークを抑制することができる。なお、本実施形態では電解質層4によって電極層2の周囲をすべて覆っているが、電極層2および中間層3の上部に電解質層4を設け、周囲にガスケット等を設ける構成としてもよい。
電解質層4の材料としては、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)、LSGM(ストロンチウム・マグネシウム添加ランタンガレート)等を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層4をジルコニア系セラミックスとすると、電気化学素子Eを用いたSOFCの稼働温度をセリア系セラミックスに比べて高くすることができる。例えば電気化学素子EをSOFCに用いる場合、電解質層4の材料としてYSZのような650℃程度以上の高温域でも高い電解質性能を発揮できる材料を用い、システムの原燃料に都市ガスやLPG等の炭化水素系の原燃料を用い、原燃料を水蒸気改質等によってSOFCのアノードガスとするシステム構成とすると、SOFCのセルスタックで生じる熱を原燃料ガスの改質に用いる高効率なSOFCシステムを構築することができる。
電解質層4は、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃を越える高温域での焼成を用いずに、緻密で気密性およびガスバリア性の高い電解質層4が得られる。そのため、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制することができ、性能・耐久性に優れた電気化学素子Eを実現できる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、スプレーコーティング法を用いると、緻密で気密性およびガスバリア性の高い電解質層が低温域で容易に得られやすいので更に好ましい。
電解質層4は、アノードガスやカソードガスのガスリークを遮蔽し、かつ、高いイオン伝導性を発現するために、緻密に構成される。電解質層4の緻密度は90%以上が好ましく、95%以上であるとより好ましく、98%以上であると更に好ましい。電解質層4は、均一な層である場合は、その緻密度が95%以上であると好ましく、98%以上であるとより好ましい。また、電解質層4が、複数の層状に構成されているような場合は、そのうちの少なくとも一部が、緻密度が98%以上である層(緻密電解質層)を含んでいると好ましく、99%以上である層(緻密電解質層)を含んでいるとより好ましい。このような緻密電解質層が電解質層の一部に含まれていると、電解質層が複数の層状に構成されている場合であっても、緻密で気密性およびガスバリア性の高い電解質層を形成しやすくできるからである。
(反応防止層)
反応防止層5は、電解質層4の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。反応防止層5の材料としては、電解質層4の成分と対極電極層6の成分との間の反応を防止できる材料であれば良い。例えばセリア系材料等が用いられる。反応防止層5を電解質層4と対極電極層6との間に導入することにより、対極電極層6の構成材料と電解質層4の構成材料との反応が効果的に抑制され、電気化学素子Eの性能の長期安定性を向上できる。反応防止層5の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(対極電極層)
対極電極層6は、電解質層4もしくは反応防止層5の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層6の材料としては、例えば、LSCF、LSM等の複合酸化物、セリア系酸化物およびこれらの混合物を用いることができる。特に対極電極層6が、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。以上の材料を用いて構成される対極電極層6は、カソードとして機能する。
なお、対極電極層6の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(固体酸化物形燃料電池)
以上のように電気化学素子Eを構成することで、電気化学素子Eを固体酸化物形燃料電池の発電セルとして用いることができる。例えば、金属基板1の裏側の面から貫通孔1aを通じて水素を含む燃料ガスを電極層2へ供給し、電極層2の対極となる対極電極層6へ空気を供給し、例えば、500℃以上900℃以下の温度で作動させる。そうすると、対極電極層6において空気に含まれる酸素O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層4を通って電極層2へ移動する。電極層2においては、供給された燃料ガスに含まれる水素H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層2と対極電極層6との間に起電力が発生する。この場合、電極層2はSOFCの燃料極(アノード)として機能し、対極電極層6は空気極(カソード)として機能する。
(電気化学素子の製造方法)
次に、電気化学素子Eの製造方法について説明する。
(電極層形成ステップ)
電極層形成ステップでは、金属基板1の表側の面の貫通孔1aが設けられた領域より広い領域に電極層2が薄膜の状態で形成される。金属基板1の貫通孔はレーザー加工等によって設けることができる。電極層2の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
電極層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。まず電極層2の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作成し、金属基板1の表側の面に塗布し、800℃~1100℃で焼成する。
(拡散抑制層形成ステップ)
上述した電極層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層)が形成される。なお、上記焼成工程に、焼成雰囲気を酸素分圧が低い雰囲気条件とする焼成工程が含まれていると元素の相互拡散抑制効果が高く、抵抗値の低い良質な金属酸化物層1b(拡散抑制層)が形成されるので好ましい。電極層形成ステップを、焼成を行わないコーティング方法とする場合を含め、別途の拡散抑制層形成ステップを含めても良い。いずれにおいても、金属基板1の損傷を抑制可能な1100℃以下の処理温度で実施することが望ましい。
(中間層形成ステップ)
中間層形成ステップでは、電極層2を覆う形態で、電極層2の上に中間層3が薄層の状態で形成される。中間層3の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
中間層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。まず中間層3の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作成し、電極層2の上に塗布し、800℃~1100℃で焼成する。
(電解質層形成ステップ)
電解質層形成ステップでは、電極層2および中間層3を覆った状態で、電解質層4が中間層3の上に薄層の状態で形成される。電解質層4の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
緻密で気密性およびガスバリア性能の高い、良質な電解質層4を1100℃以下の温度域で形成するためには、電解質層形成ステップをスプレーコーティング法で行うことが望ましい。その場合、電解質層4の材料を金属基板1上の中間層3に向けて噴射し、電解質層4を形成する。
(反応防止層形成ステップ)
反応防止層形成ステップでは、反応防止層5が電解質層4の上に薄層の状態で形成される。反応防止層5の形成は、上述したように、低温焼成法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。なお反応防止層5(中間層)の上側の面を平坦にするために、例えば反応防止層5の形成後にレベリング処理や表面を切削・研磨処理を施したり、湿式形成後焼成前に、プレス加工を施してもよい。
(対極電極層形成ステップ)
対極電極層形成ステップでは、対極電極層6が反応防止層5の上に薄層の状態で形成される。対極電極層6の形成は、上述したように、低温焼成法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
以上の様にして、電気化学素子Eを製造することができる。
なお電気化学素子Eにおいて、中間層3と反応防止層5とは、何れか一方、あるいは両方を備えない形態とすることも可能である。すなわち、電極層2と電解質層4とが接触して形成される形態、あるいは電解質層4と対極電極層6とが接触して形成される形態も可能である。この場合に上述の製造方法では、中間層形成ステップ、反応防止層形成ステップが省略される。なお、他の層を形成するステップを追加したり、同種の層を複数積層したりすることも可能であるが、いずれの場合であっても、1100℃以下の温度で行うことが望ましい。
<Cr揮発量の測定>
金属材料の組成によるCr揮発量の違いを確認するため、下掲の表1に示すそれぞれの金属材料について、Cr揮発量を測定した。なお表1に示す組成の値の単位は、質量%である。「-」の欄は、検出限界以下であることを示す。なお、幅25mm、長さ250~300mmのサイズの金属板サンプルを用い、0.5L/分の空気(露点20℃)中、750℃もしくは850℃の温度で、それぞれの金属材料を暴露して、所定時間におけるCrの揮発量(積算量)を測定した。測定結果を表2に示す。なお、表2に示すCr揮発量の単位はμg/600cmであり、600cm相当の金属表面積あたりのCrの揮発量に換算した値としている。なお、Cr揮発量測定試験の前に、全てのサンプルについて850℃と1000℃の2段階焼成前処理(上述の拡散抑制層形成ステップに相当する処理)を行った。
Figure 0007105972000001
Figure 0007105972000002
表2に示されるように、比較例2~4のサンプルは、750℃250時間と850℃100時間のいずれかの条件でCr揮発量が多くなった。比較例1のサンプルは、750℃250時間と850℃100時間の条件では実施例2のサンプルと同じCr揮発量であったが、850℃1000時間の条件では実施例2に比べてCr揮発量が大幅に多くなった。実施例1および実施例2のサンプルは、何れの条件でも良好な値を示した。以上の結果から、実施例1および実施例2では、高温・長時間の環境下でも金属支持体からのCrの揮発を抑制できることが確認された。
<電極層を形成した状態での電気抵抗>
電極層を形成した状態での金属材料の組成による電気抵抗値の違いを確認するため、上掲の表1に示すそれぞれの材料を直径25mmの円形(厚さ0.3mm)に加工した金属基板1のサンプルの表面と裏面に電極層2を形成して、電気抵抗値を測定した。なお、実験用のサンプルは次の様にして作製した。
60重量%のNiO粉末と40重量%のYSZ粉末を混合し、有機バインダーと有機溶媒(分散剤)を加えてペーストを作製した。そのペーストを用いて、金属基板1の表面と裏面の、中心から半径5mmの領域に電極層2を塗布した。なお、この時、電極層2の厚さが10~15μmになるように塗布した。
次に、電極層2を塗布した金属基板1に対して、850℃と1000℃の2段階焼成処理(上述の拡散抑制層形成ステップを兼ねる電極層形成ステップにおける焼成工程に相当する処理)を行って、実験用のサンプルを得た。
次に、サンプルの表面の電極層と、裏面の電極層との間の電気抵抗値を測定した。測定は、燃料電池の燃料極の雰囲気を模擬し、0.5L/分の水素(露点20℃)中、850℃の温度で、100時間暴露する前(初期抵抗値)と後(100時間後抵抗値)に行った。結果を表3に示す。表3に示す抵抗値の単位はΩである。
Figure 0007105972000003
表3に示されるように、実施例1および実施例2のサンプルは、比較例1~3のサンプルに比べて、850℃100時間水素暴露の前後での抵抗値増加量が少ない。以上の結果から、実施例1および実施例2では、電気抵抗値を低く抑制し、高性能な電気化学素子を実現できることが確認された。
<第2実施形態>
図2・図3を用いて、第2実施形態に係る電気化学素子E、電気化学モジュールM、電気化学装置YおよびエネルギーシステムZについて説明する。
第2実施形態に係る電気化学素子Eは、図2に示すように、金属基板1の裏面にU字部材7が取り付けられており、金属基板1とU字部材7とで筒状支持体を形成している。
そして集電部材26を間に挟んで電気化学素子Eが複数積層・集合されて、電気化学モジュールMが構成されている。集電部材26は、電気化学素子Eの対極電極層6と、U字部材7とに接合され、両者を電気的に接続している。
電気化学モジュールMは、ガスマニホールド17、集電部材26、終端部材および電流引出し部を有する。複数積層・集合された電気化学素子Eは、筒状支持体の一方の開口端部がガスマニホールド17に接続されて、ガスマニホールド17から気体の供給を受ける。供給された気体は、筒状支持体の内部を通流し、金属基板1の貫通孔1aを通って電極層2に供給される。
図3には、エネルギーシステムZおよび電気化学装置Yの概要が示されている。
エネルギーシステムZは、電気化学装置Yと、電気化学装置Yから排出される熱を再利用する排熱利用部としての熱交換器53とを有する。
電気化学装置Yは、電気化学モジュールMと、脱硫器31と改質器34とを有し電気化学モジュールMに対して還元性成分を含有する燃料ガスを供給する燃料供給部と、電気化学モジュールMから電力を取り出すインバータ38とを有する。
詳しくは電気化学装置Yは、脱硫器31、改質水タンク32、気化器33、改質器34、ブロア35、燃焼部36、インバータ38、制御部39、収納容器40および電気化学モジュールMを有する。
脱硫器31は、都市ガス等の炭化水素系の原燃料に含まれる硫黄化合物成分を除去(脱硫)する。原燃料中に硫黄化合物が含有される場合、脱硫器31を備えることにより、硫黄化合物による改質器34あるいは電気化学素子Eに対する影響を抑制することができる。気化器33は、改質水タンク32から供給される改質水から水蒸気を生成する。改質器34は、気化器33にて生成された水蒸気を用いて脱硫器31にて脱硫された原燃料を水蒸気改質して、水素を含む改質ガスを生成する。
電気化学モジュールMは、改質器34から供給された改質ガスと、ブロア35から供給された空気とを用いて、電気化学反応させて発電する。燃焼部36は、電気化学モジュールMから排出される反応排ガスと空気とを混合させて、反応排ガス中の可燃成分を燃焼させる。
電気化学モジュールMは、複数の電気化学素子Eとガスマニホールド17とを有する。複数の電気化学素子Eは互いに電気的に接続された状態で並列して配置され、電気化学素子Eの一方の端部(下端部)がガスマニホールド17に固定されている。電気化学素子Eは、ガスマニホールド17を通じて供給される改質ガスと、ブロア35から供給された空気とを電気化学反応させて発電する。
インバータ38は、電気化学モジュールMの出力電力を調整して、商用系統(図示省略)から受電する電力と同じ電圧および同じ周波数にする。制御部39は電気化学装置YおよびエネルギーシステムZの運転を制御する。
気化器33、改質器34、電気化学モジュールMおよび燃焼部36は、収納容器40内に収納される。そして改質器34は、燃焼部36での反応排ガスの燃焼により発生する燃焼熱を用いて原燃料の改質処理を行う。
原燃料は、昇圧ポンプ41の作動により原燃料供給路42を通して脱硫器31に供給される。改質水タンク32の改質水は、改質水ポンプ43の作動により改質水供給路44を通して気化器33に供給される。そして、原燃料供給路42は脱硫器31よりも下流側の部位で、改質水供給路44に合流されており、収納容器40外にて合流された改質水と原燃料とが収納容器40内に備えられた気化器33に供給される。
改質水は気化器33にて気化され水蒸気となる。気化器33にて生成された水蒸気を含む原燃料は、水蒸気含有原燃料供給路45を通して改質器34に供給される。改質器34にて原燃料が水蒸気改質され、水素ガスを主成分とする改質ガス(還元性成分を有する第1気体)が生成される。改質器34にて生成された改質ガスは、改質ガス供給路46を通して電気化学モジュールMのガスマニホールド17に供給される。
ガスマニホールド17に供給された改質ガスは、複数の電気化学素子Eに対して分配され、電気化学素子Eとガスマニホールド17との接続部である下端から電気化学素子Eに供給される。改質ガス中の主に水素(還元性成分)が、電気化学素子Eにて電気化学反応に使用される。反応に用いられなかった残余の水素ガスを含む反応排ガスが、電気化学素子Eの上端から燃焼部36に排出される。
反応排ガスは燃焼部36で燃焼され、燃焼排ガスとなって燃焼排ガス排出口50から収納容器40の外部に排出される。燃焼排ガス排出口50には燃焼触媒部51(例えば、白金系触媒)が配置され、燃焼排ガスに含有される一酸化炭素や水素等の還元性成分を燃焼除去する。燃焼排ガス排出口50から排出された燃焼排ガスは、燃焼排ガス排出路52により熱交換器53に送られる。
熱交換器53は、燃焼部36における燃焼で生じた燃焼排ガスと、供給される冷水とを熱交換させ、温水を生成する。すなわち熱交換器53は、電気化学装置Yから排出される熱を再利用する排熱利用部として動作する。
なお、排熱利用部の代わりに、電気化学モジュールMから(燃焼されずに)排出される反応排ガスを利用する反応排ガス利用部を設けてもよい。反応排ガスには、電気化学素子Eにて反応に用いられなかった残余の水素ガスが含まれる。反応排ガス利用部では、残余の水素ガスを利用して、燃焼による熱利用や、燃料電池等による発電が行われ、エネルギーの有効利用がなされる。
<第3実施形態>
図4に、電気化学モジュールMの他の実施形態を示す。第3実施形態に係る電気化学モジュールMは、上述の電気化学素子Eを、セル間接続部材71を間に挟んで積層することで、電気化学モジュールMを構成する。
セル間接続部材71は、導電性を有し、かつ気体透過性を有さない板状の部材であり、表面と裏面に、互いに直交する溝72が形成されている。セル間接続部材71はステンレス等の金属や、金属酸化物を用いることができる。
図4に示すように、このセル間接続部材71を間に挟んで電気化学素子Eを積層すると、溝72を通じて気体を電気化学素子Eに供給することができる。詳しくは一方の溝72が第1気体流路72aとなり、電気化学素子Eの表側、すなわち対極電極層6に気体を供給する。他方の溝72が第2気体流路72bとなり、電気化学素子Eの裏側、すなわち金属基板1の裏側の面から貫通孔1aを通じて電極層2へ気体を供給する。
この電気化学モジュールMを燃料電池として動作させる場合は、第1気体流路72aに酸素を供給し、第2気体流路72bに水素を供給する。そうすると電気化学素子Eにて燃料電池としての反応が進行し、起電力・電流が発生する。発生した電力は、積層された電気化学素子Eの両端のセル間接続部材71から、電気化学モジュールMの外部に取り出される。
なお、本第3実施形態では、セル間接続部材71の表面と裏面に、互いに直交する溝72を形成したが、セル間接続部材71の表面と裏面に、互いに並行する溝72を形成することもできる。
(他の実施形態)
(1)上記の実施形態では、電気化学素子Eを固体酸化物形燃料電池に用いたが、電気化学素子Eは、固体酸化物形電解セルや、固体酸化物を利用した酸素センサ等に利用することもできる。
(2)上記の実施形態では、金属基板1を支持体とする金属支持型の固体酸化物形燃料電池に用いたが、本願は、電極層2もしくは対極電極層6を支持体とする電極支持型の固体酸化物形燃料電池や電解質層4を支持体とする電解質支持型の固体酸化物形燃料電池に利用することもできる。それらの場合は、電極層2もしくは対極電極層6、または、電解質層4を必要な厚さとして、支持体としての機能が得られるようにすることができる。
(3)上記の実施形態では、電極層2の材料として例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用い、対極電極層6の材料として例えばLSCF、LSM等の複合酸化物を用いた。このように構成された電気化学素子Eは、電極層2に水素ガスを供給して燃料極(アノード)とし、対極電極層6に空気を供給して空気極(カソード)とし、固体酸化物形燃料電池セルとして用いることが可能である。この構成を変更して、電極層2を空気極とし、対極電極層6を燃料極とすることが可能なように、電気化学素子Eを構成することも可能である。すなわち、電極層2の材料として例えばLSCF、LSM等の複合酸化物を用い、対極電極層6の材料として例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用いる。このように構成した電気化学素子Eであれば、電極層2に空気を供給して空気極とし、対極電極層6に水素ガスを供給して燃料極とし、電気化学素子Eを固体酸化物形燃料電池セルとして用いることができる。
なお、上記の実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
電気化学素子および固体酸化物形燃料電池セルとして利用可能である。
1 :金属基板(金属支持体)
1a :貫通孔
2 :電極層
3 :中間層
4 :電解質層
4a :電解質層上側面
5 :反応防止層
6 :対極電極層
E :電気化学素子
M :電気化学モジュール
Y :電気化学装置
Z :エネルギーシステム

Claims (12)

  1. 気体透過性を持つ金属支持体と、前記金属支持体の表側に形成された電極層と、前記電極層の上に配置された電解質層と、前記電解質層の上に配置された対極電極層とを有し、前記金属支持体の裏側を通流する酸素を含むガスが前記電極層と接触し、水素を含むガスが前記対極電極層と接触するように構成され、前記金属支持体が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかである電気化学素子。
  2. 前記金属支持体がCuを0.10質量%以上1.0質量%以下含有する請求項1に記載の電気化学素子。
  3. 前記金属支持体がCrを18質量%以上25質量%以下含有する請求項1または2に記載の電気化学素子。
  4. 前記金属支持体の一方の面に前記電極層が形成され、前記金属支持体が一方の面から他方の面へ貫通する貫通孔を有している請求項1~3のいずれか一項に記載の電気化学素子。
  5. 前記金属支持体が磁性体である請求項1~4のいずれか1項に記載の電気化学素子。
  6. 前記金属支持体の表面の一部または全部が金属酸化物膜により被覆されている請求項1~5のいずれか1項に記載の電気化学素子。
  7. 請求項1~6のいずれか1項に記載の電気化学素子が複数集合した状態で配置される電気化学モジュール。
  8. 請求項7に記載の電気化学モジュールと改質器とを少なくとも有し、前記電気化学モジュールに対して水素を含有する燃料ガスを供給する燃料供給部を有する電気化学装置。
  9. 請求項7に記載の電気化学モジュールと、前記電気化学モジュールから電力を取り出すインバータとを少なくとも有する電気化学装置。
  10. 請求項8または9に記載の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部を有するエネルギーシステム。
  11. 請求項1~6のいずれか1項に記載の電気化学素子を備え、前記電気化学素子で発電反応を生じさせる固体酸化物形燃料電池。
  12. 気体透過性を持つ金属支持体と電極層とを有する電気化学素子の製造方法であって、
    前記金属支持体が、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、のいずれかであり、
    前記金属支持体の表側に気体透過性を有する前記電極層を形成する電極層形成ステップと、
    前記電極層の上に電解質層を形成する電解質層形成ステップと、
    前記電解質層の上に対極電極層を形成する対極電極層形成ステップとを有し、
    前記金属支持体の裏側を通流する酸素を含むガスが前記電極層と接触し、水素を含むガスが前記対極電極層と接触するように構成されている、電気化学素子の製造方法。
JP2021110491A 2017-03-31 2021-07-02 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法 Active JP7105972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021110491A JP7105972B2 (ja) 2017-03-31 2021-07-02 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073162A JP6910179B2 (ja) 2017-03-31 2017-03-31 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP2021110491A JP7105972B2 (ja) 2017-03-31 2021-07-02 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017073162A Division JP6910179B2 (ja) 2017-03-31 2017-03-31 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法

Publications (2)

Publication Number Publication Date
JP2021166192A JP2021166192A (ja) 2021-10-14
JP7105972B2 true JP7105972B2 (ja) 2022-07-25

Family

ID=63677591

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017073162A Active JP6910179B2 (ja) 2017-03-31 2017-03-31 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP2021110491A Active JP7105972B2 (ja) 2017-03-31 2021-07-02 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017073162A Active JP6910179B2 (ja) 2017-03-31 2017-03-31 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法

Country Status (8)

Country Link
US (1) US11233262B2 (ja)
EP (1) EP3605694A4 (ja)
JP (2) JP6910179B2 (ja)
KR (1) KR20190129842A (ja)
CN (1) CN110447136B (ja)
CA (1) CA3058581A1 (ja)
TW (1) TWI761479B (ja)
WO (1) WO2018181922A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752387B1 (ja) * 2019-03-07 2020-09-09 日本碍子株式会社 電気化学セル
JP6752386B1 (ja) * 2019-03-07 2020-09-09 日本碍子株式会社 電気化学セル
JP7345267B2 (ja) 2019-03-29 2023-09-15 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
JP7317547B2 (ja) * 2019-03-29 2023-07-31 大阪瓦斯株式会社 燃料電池構造体、それを備えた燃料電池モジュール及び燃料電池装置
KR102600903B1 (ko) * 2020-01-10 2023-11-13 한양대학교 산학협력단 광소결을 이용한 금속지지형 고체산화물 연료전지의 제조방법
KR102305771B1 (ko) * 2020-03-24 2021-09-30 한국과학기술원 알리코 자석을 이용한 금속지지체형 고체산화물연료전지의 제조 방법
JP7414632B2 (ja) * 2020-04-28 2024-01-16 京セラ株式会社 改質ユニットおよび燃料電池装置
TWI734657B (zh) 2021-01-15 2021-07-21 電聯運通股份有限公司 燃料電池能源循環利用系統
CN113067005A (zh) * 2021-03-19 2021-07-02 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
WO2023117085A1 (en) * 2021-12-22 2023-06-29 Ceres Intellectual Property Company Limited Method for manufacturing an electrochemical cell
CN114561656A (zh) * 2022-04-06 2022-05-31 北京理工大学 一种中低温金属支撑固体氧化物电解池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179063A (ja) 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
JP2016030854A (ja) 2014-07-29 2016-03-07 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼およびその製造方法
WO2016043328A1 (ja) 2014-09-19 2016-03-24 大阪瓦斯株式会社 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP2016098389A (ja) 2014-11-19 2016-05-30 日立金属株式会社 フェライト系ステンレス鋼の製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020721A4 (en) * 1997-01-20 2000-10-04 Osaka Gas Co Ltd METHOD FOR DETECTING STICHOXIDES, AND SENSOR ELEMENT FOR DETECTING VIN STICHOXIDES
AT4810U1 (de) * 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen
US7037617B2 (en) * 2002-08-21 2006-05-02 Delphi Technologies, Inc. Conductive coatings for PEM fuel cell electrodes
CA2414622A1 (en) * 2002-12-17 2004-06-17 Alberta Research Council Inc. Compact solid oxide fuel cell stack
JP2005285427A (ja) 2004-03-29 2005-10-13 Toshiba Home Technology Corp 燃料電池装置
JP2006107936A (ja) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd 平板形固体酸化物燃料電池用インターコネクタ
DE102005005116A1 (de) 2005-02-04 2006-08-10 Forschungszentrum Jülich GmbH Interkonnektor für Hochtemperaturbrennstoffzellen
US8580453B2 (en) * 2006-03-31 2013-11-12 General Electric Company Electrode-supported ceramic fuel cell containing laminar composite electrode including porous support electrode, patterned structure layer and electrolyte
US20100098994A1 (en) * 2006-07-26 2010-04-22 Sandvik Intellectual Property Ab Ferritic Chromium Steel
US8383293B2 (en) * 2006-11-22 2013-02-26 GM Global Technology Operations LLC Supports for fuel cell catalysts based on transition metal silicides
JP5035541B2 (ja) 2007-12-04 2012-09-26 Nok株式会社 磁気エンコーダ用パルサーリング
WO2010030300A1 (en) * 2008-09-11 2010-03-18 The Regents Of The University Of California Metal-supported, segmented-in-series high temperature electrochemical device
WO2010087298A1 (ja) * 2009-01-28 2010-08-05 京セラ株式会社 耐熱性合金、燃料電池用合金部材、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
KR20110047999A (ko) 2009-10-30 2011-05-09 포항공과대학교 산학협력단 고체 산화물 연료전지용 페라이트계 스테인리스강 및 이를 이용한 연결재
WO2011053041A2 (ko) 2009-10-30 2011-05-05 포항공과대학교 산학협력단 고체 산화물 연료전지용 페라이트계 스테인리스강 및 이를 이용한 연결재
JP5768641B2 (ja) 2010-10-08 2015-08-26 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼およびその製造方法、ならびに固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
US20160260991A1 (en) * 2011-03-31 2016-09-08 General Electric Company Power generation system utilizing a fuel cell integrated with a combustion engine
DE102011088566A1 (de) * 2011-07-13 2013-01-17 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
JP4962640B1 (ja) * 2011-07-22 2012-06-27 大日本印刷株式会社 固体酸化物形燃料電池
JP2013257989A (ja) 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
JP2013257953A (ja) 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池および固体酸化物形燃料電池の組み立て方法
CN103872366B (zh) * 2012-12-12 2016-12-07 中国科学院上海硅酸盐研究所 一种金属支撑固体氧化物燃料电池及其制备方法
CN104157893B (zh) * 2013-05-13 2016-12-28 中国科学院大连化学物理研究所 一种多孔金属支撑的低温固体氧化物燃料电池及其制备方法
JP6444320B2 (ja) 2014-01-14 2019-01-09 新日鐵住金ステンレス株式会社 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
US10544490B2 (en) 2014-07-29 2020-01-28 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel for fuel cell and method for producing the same
AT14455U3 (de) * 2015-07-14 2017-05-15 Plansee Se Elektrochemisches Modul
JP6581836B2 (ja) * 2015-08-03 2019-09-25 本田技研工業株式会社 メタルサポートセル
CN105304917A (zh) * 2015-10-29 2016-02-03 华中科技大学 一种中温平板式固体氧化物燃料电池金属连接体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179063A (ja) 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
JP2016030854A (ja) 2014-07-29 2016-03-07 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼およびその製造方法
WO2016043328A1 (ja) 2014-09-19 2016-03-24 大阪瓦斯株式会社 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP2016098389A (ja) 2014-11-19 2016-05-30 日立金属株式会社 フェライト系ステンレス鋼の製造方法

Also Published As

Publication number Publication date
TW201900898A (zh) 2019-01-01
CA3058581A1 (en) 2018-10-04
CN110447136B (zh) 2023-01-06
JP6910179B2 (ja) 2021-07-28
TWI761479B (zh) 2022-04-21
CN110447136A (zh) 2019-11-12
US20200028193A1 (en) 2020-01-23
JP2018174115A (ja) 2018-11-08
WO2018181922A1 (ja) 2018-10-04
US11233262B2 (en) 2022-01-25
EP3605694A4 (en) 2020-12-30
JP2021166192A (ja) 2021-10-14
KR20190129842A (ko) 2019-11-20
EP3605694A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP7105972B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
US12110598B2 (en) Manufacturing method for alloy material, alloy material, electrochemical element, electrochemical module, electrochemical device, energy system and solid oxide fuel cell
CN110402514B (zh) 金属支撑型电化学元件用的带电极层基板、电化学元件和制造方法
JP7261762B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法
JP7072558B2 (ja) 電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
JP7202060B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
JP7145844B2 (ja) 電気化学素子、電気化学モジュール、固体酸化物形燃料電池、および製造方法
JP2023148146A (ja) 金属支持型電気化学素子の製造方法、金属支持型電気化学素子、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学モジュール、電気化学装置及びエネルギーシステム
JP2020095983A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220712

R150 Certificate of patent or registration of utility model

Ref document number: 7105972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150