[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7173081B2 - Friction stir welding method for aluminum alloy plate and steel plate - Google Patents

Friction stir welding method for aluminum alloy plate and steel plate Download PDF

Info

Publication number
JP7173081B2
JP7173081B2 JP2020069636A JP2020069636A JP7173081B2 JP 7173081 B2 JP7173081 B2 JP 7173081B2 JP 2020069636 A JP2020069636 A JP 2020069636A JP 2020069636 A JP2020069636 A JP 2020069636A JP 7173081 B2 JP7173081 B2 JP 7173081B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
probe
alloy plate
shoulder
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020069636A
Other languages
Japanese (ja)
Other versions
JP2021164943A (en
Inventor
宗生 松下
靖 木谷
匠平 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020069636A priority Critical patent/JP7173081B2/en
Publication of JP2021164943A publication Critical patent/JP2021164943A/en
Application granted granted Critical
Publication of JP7173081B2 publication Critical patent/JP7173081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、アルミニウム合金板と鋼板の接合方法に関し、具体的には、アルミニウム合金板と鋼板を重ね合わせて接合する摩擦撹拌接合方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for joining an aluminum alloy plate and a steel plate, and more specifically to a friction stir welding method for overlapping and joining an aluminum alloy plate and a steel plate.

近年、軽量化が要求される自動車などの輸送機器の分野において、アルミニウム合金と鋼を組み合わせ、それぞれの材料が有する特性を十分に活用した構造体や部品(以降、「部材」と称する)が開発されている。このようなアルミニウム合金と鋼を組み合わせた部材では、異種金属材料を接合する必要があるが、工業的に広く使用されているアーク溶接などの溶融溶接法では、接合部にアルミニウム合金と鋼を構成する主要元素からなる脆弱な金属間化合物が形成されることが多く、十分な継手強度が得られないという問題があった。 In recent years, in the field of transportation equipment such as automobiles, where weight reduction is required, structures and parts (hereinafter referred to as "members") have been developed by combining aluminum alloys and steel and making full use of the characteristics of each material. It is In a member that combines aluminum alloy and steel, it is necessary to join dissimilar metal materials. There is a problem that a brittle intermetallic compound composed of the main elements that do not exist is often formed, and sufficient joint strength cannot be obtained.

そこで、アルミニウム合金と鋼を強固に接合する方法として、拡散接合法などの溶融層を形成しない固相接合法が開発されている。しかし、拡散接合法では、材料の会合面の表面を清浄に保つための準備工程が必要で、コストの増大に繋がるため、工業的に実施するのが難しいという問題があった。 Therefore, as a method for strongly joining an aluminum alloy and steel, a solid phase joining method such as a diffusion joining method, which does not form a molten layer, has been developed. However, the diffusion bonding method requires a preparatory step for keeping the surface of the mating surface of the materials clean, which leads to an increase in cost, and thus has the problem of being difficult to implement industrially.

その他の拡散接合法としては、摩擦接合法が挙げられ、例えば特許文献1には、一対の金属材料の両方または片方を回転させて金属材料に摩擦熱を生じさせ、軟化させながら、その軟化した部位を撹拌して塑性流動を起こさせることによって、金属材料を接合する技術が開示されている。しかしながら、この技術は、接合する金属材料を回転させる必要があるため、本方法を適用する金属材料の形状や寸法に制限がある。 As another diffusion bonding method, there is a friction bonding method. Techniques for joining metal materials by agitating parts to cause plastic flow have been disclosed. However, since this technique requires rotating the metal materials to be joined, there are limitations on the shape and size of the metal materials to which this method is applied.

ところで、近年、新たな固相接合方法として摩擦撹拌接合法が開発され、同種あるいは近似した金属材料間の突合せ接合を中心として普及が進んでいる。例えば、特許文献2には、金属板よりも硬い材質からなる回転ツールを金属板の未接合部に挿入し、この回転ツールを回転させながら接合方向に移動させ、回転ツールと金属板との間に熱と塑性流動を生じさせることによって、金属板を長手方向に連続的に接合する方法が提案されている。この方法では、金属板を固定した状態で、回転ツールを回転しながら移動させることによって金属板を接合する。そのため、無限に長い部材でも、接合方向に沿って連続的に固相接合できるという利点がある。また、回転ツールと金属板との摩擦熱による金属の塑性流動を利用した固相接合であるため、接合部を溶融することなく接合することができ、溶加材も必要としない。さらに、接合部が加熱される温度が低く、溶融しないため、接合部の変形が少なく、欠陥も少ない等、多くの利点がある。 By the way, in recent years, friction stir welding has been developed as a new solid phase welding method, and has been widely used mainly for butt welding of metal materials of the same kind or similar to each other. For example, in Patent Document 2, a rotating tool made of a material harder than the metal plate is inserted into an unbonded portion of the metal plate, and the rotating tool is moved in the joining direction while rotating to move between the rotating tool and the metal plate. A method has been proposed for continuously joining metal sheets in the longitudinal direction by generating heat and plastic flow in the joint. In this method, the metal plates are joined by rotating and moving the rotating tool while the metal plates are fixed. Therefore, there is an advantage that even an infinitely long member can be continuously solid-phase-bonded along the bonding direction. In addition, since this is a solid-state joining utilizing the plastic flow of metal due to frictional heat between the rotating tool and the metal plate, the joint can be joined without melting, and no filler material is required. Furthermore, since the temperature at which the joint is heated is low and it does not melt, there are many advantages such as less deformation of the joint and fewer defects.

摩擦撹拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属の接合法として、航空機、船舶、鉄道車輌および自動車等の分野での利用が広がってきている。その理由は、これらの低融点金属は、従来のアーク溶接法では満足な接合部の特性を得ることが難しいのに対して、摩擦撹拌接合法を適用した場合には、品質の高い接合部を得られるだけでなく、生産性を向上することができるためである。さらに、回転ツールにより接合界面を撹拌するので、清浄面を創出して清浄面同士を接触させることができ、拡散接合のような事前の準備工程は不要であるというメリットも期待できる。 Friction stir welding has been widely used in fields such as aircraft, ships, railway vehicles and automobiles as a method for joining low melting point metals such as aluminum alloys and magnesium alloys. The reason for this is that it is difficult to obtain satisfactory weld characteristics for these low-melting-point metals using the conventional arc welding method. This is because not only can it be obtained, but also productivity can be improved. Furthermore, since the joining interface is agitated by a rotating tool, clean surfaces can be created and the clean surfaces can be brought into contact with each other.

この摩擦撹拌接合法は、先に述べたように、同種あるいは近似した金属材料同士の接合においては極めて優れた接合方法であるが、アルミニウム合金と鋼のように特性が大きく異なる金属同士を接合する場合、接合界面において両金属が混合し、融点が低下して溶融相が生成し、粗大凝固組織が生じたり、凝固時に脆弱な金属間化合物が生成したりする等の問題があった。 As mentioned earlier, this friction stir welding method is an extremely excellent method for joining metal materials of the same kind or similar to each other. In this case, the two metals are mixed at the joint interface, the melting point is lowered, a molten phase is generated, a coarse solidification structure is generated, and brittle intermetallic compounds are generated during solidification.

この問題を解決する手段として、特許文献3には、アルミニウム合金板と鋼板をZn-5Al層またはZn溶融メッキ層を介して重ね合わせ、接合部の表面を回転工具で押圧してアルミニウム合金を摩擦によって撹拌し、塑性流動させてZn-5Al層やZn溶融メッキ層とアルミニウム合金とを相互拡散させることによって、Al、Al-Zn、Zn-Al、Fe-ZnおよびFeとからなる拡散層を形成し、さらに塑性流動させてAl-Zn-Fe合金層を形成させることで、脆弱な金属間化合物を生成することなく、アルミニウム合金板と鋼板を接合する方法が開示されている。 As a means of solving this problem, in Patent Document 3, an aluminum alloy plate and a steel plate are superimposed via a Zn-5Al layer or a Zn hot-dip layer, and the surface of the joint is pressed with a rotary tool to rub the aluminum alloy. A diffusion layer consisting of Al, Al-Zn, Zn-Al, Fe-Zn and Fe is formed by stirring and plastically flowing to cause mutual diffusion of the Zn-5Al layer or Zn hot-dip plated layer and the aluminum alloy. Then, a method of joining an aluminum alloy plate and a steel plate is disclosed by forming an Al--Zn--Fe alloy layer through plastic flow, without forming a brittle intermetallic compound.

また、特許文献4には、アルミニウム合金と鋼のような異種金属同士を重ね合わせた摩擦撹拌接合法において、接合に用いる鋼に、接合するアルミニウム合金の融点より低い低融点のメッキ層を有する低融点メッキ鋼板を用い、さらに、摩擦撹拌接合時に回転する接合ピンをアルミニウム合金の表面から押圧してアルミニウム合金と低融点メッキ鋼板が接合する接合界面の近傍まで挿入し、アルミニウム合金側に形成される塑性流動域での塑性流動によってメッキ層を拡散し、低融点メッキ鋼板の表面に新生面を露出してアルミニウム合金と低融点メッキ鋼板を固相接合する、高強度の接合継手を得る摩擦撹拌接合方法と摩擦撹拌接合部材が開示されている。 Further, Patent Document 4 describes a friction stir welding method in which dissimilar metals such as an aluminum alloy and steel are superimposed on each other. Using a melting point plated steel sheet, a joining pin that rotates during friction stir welding is pressed from the surface of the aluminum alloy and inserted to the vicinity of the joining interface where the aluminum alloy and the low melting point plated steel sheet are joined, and is formed on the aluminum alloy side. A friction stir welding method for obtaining a high-strength welded joint by solid-phase joining an aluminum alloy and a low-melting-point plated steel plate by diffusing the coating layer by plastic flow in the plastic flow region and exposing a new surface on the surface of the low-melting-point plated steel plate. and friction stir welding members are disclosed.

一方、回転工具としては、ピン部材と、当該ピン部材を内挿する中空を有する略円柱状のショルダー部材とからなる接合ツールを用いる複動式の摩擦撹拌接合法が知られている。このピン部材およびショルダー部材からなる接合ツールは、回転および進退の動作をそれぞれ別個に制御できるため、ピン部材の進退動作とショルダー部材の進退動作とのタイミングを調整することで、ピン部材の圧入により形成される凹部を埋め戻すことを可能としている。 On the other hand, as a rotating tool, a double-acting friction stir welding method using a welding tool including a pin member and a substantially cylindrical shoulder member having a hollow into which the pin member is inserted is known. Since the joining tool consisting of the pin member and the shoulder member can independently control the rotation and advance/retreat motions, by adjusting the timing of the advance/retreat motion of the pin member and the advance/retreat motion of the shoulder member, the pin member can be press-fitted. It makes it possible to backfill the formed concave portion.

上記複動式の摩擦撹拌接合法として、例えば特許文献5には、三重構造の摩擦接合工具でアルミニウム合金板より硬質な圧入ピンを、複数の重ね合わせたアルミニウム合金板に対して圧入、撹拌した後、生じた圧入穴から外方へ溢れ出たアルミニウム合金溢出部を、圧入ピンと外部リングとの間に封じ込め、圧入穴からの圧入ピンの除去工程の開始以後、摩擦接合工具の中間リングをアルミニウム合金板面まで押圧して、圧入穴にアルミニウム合金溢出部を流動、埋入するアルミニウム合金の点接合方法が開示されている。 As the double-acting friction stir welding method, for example, in Patent Document 5, a press-fitting pin harder than an aluminum alloy plate is press-fitted into a plurality of superimposed aluminum alloy plates with a friction welding tool with a triple structure and stirred. After that, the aluminum alloy spilled out from the press-fitting hole that was generated was confined between the press-fitting pin and the outer ring. A method for point joining an aluminum alloy is disclosed in which the surface of the alloy plate is pressed and the aluminum alloy overflow portion is flowed and embedded in the press-fitting hole.

さらに、複動式の摩擦撹拌接合法により異種金属部材を接合する他の方法として、例えば特許文献6には、鋼板に重ね合わせたアルミニウム板の側から、回転工具のプローブを鋼板の直上に達するように差し込み、それらのアルミニウム板と鋼板を摩擦撹拌接合する際、回転工具としてプローブとショルダー部材とが別個に軸方向に移動可能とした複動式回転工具を用い、プローブをアルミニウム板に差し込んで摩擦撹拌接合を行なった後、プローブを、アルミニウム板に形成された摩擦撹拌部から引き抜く一方、かかる引き抜きによって生じるプローブ穴を、摩擦撹拌部の他部位からの材料の流動によって、埋め込むようにする異種金属部材の接合方法が開示されている。 Furthermore, as another method for joining dissimilar metal members by a double-acting friction stir welding method, for example, in Patent Document 6, from the side of an aluminum plate superimposed on a steel plate, a probe of a rotary tool reaches directly above the steel plate. When inserting the aluminum plate and the steel plate by friction stir welding, a double-acting rotary tool in which the probe and the shoulder member can be moved separately in the axial direction is used as the rotary tool, and the probe is inserted into the aluminum plate. After performing friction stir welding, the probe is pulled out from the friction stir part formed in the aluminum plate, and the probe hole created by such pulling out is filled by material flow from other parts of the friction stir part. A method for joining metal members is disclosed.

特開昭62-183979号公報JP-A-62-183979 特表平07-505090号公報Japanese Patent Publication No. 07-505090 特開2002-66759号公報JP-A-2002-66759 特開2007-253172号公報JP 2007-253172 A 特開2001-259863号公報Japanese Patent Application Laid-Open No. 2001-259863 特開2010-260109号公報JP 2010-260109 A

ところで、上記特許文献3および4には、アルミニウム合金板と鋼板のような異種金属同士を摩擦撹拌接合で接合する際に問題となる接合界面での脆弱な金属間化合物の生成を解決する方法が開示されているが、上記複動式の摩擦撹拌接合法に関する特許文献5および6では、上記問題点について何ら検討されていない。例えば、特許文献5には、アルミニウム合金板を重ね合わせた部材、特許文献6には、アルミニウム合金板と鋼板を重ね合わせた部材の接合方法に関する技術が開示されているが、いずれもピン部材の圧入により形成された凹部を埋め戻すことによって継手特性を向上することを開示するのみで、接合界面に脆弱な金属間化合物が生成する問題に対する解決方法については何ら開示されていない。 By the way, in Patent Documents 3 and 4, there is a method for solving the generation of brittle intermetallic compounds at the joint interface, which is a problem when dissimilar metals such as an aluminum alloy plate and a steel plate are joined by friction stir welding. Although disclosed, Patent Documents 5 and 6 relating to the double-acting friction stir welding method do not consider the above problems at all. For example, Patent Document 5 discloses a technique related to a member in which aluminum alloy plates are superimposed, and Patent Document 6 discloses a technique related to a joining method of a member in which an aluminum alloy plate and a steel plate are superimposed. It only discloses that the joint characteristics are improved by backfilling the recess formed by press-fitting, and does not disclose any solution to the problem of formation of fragile intermetallic compounds at the joint interface.

本発明は、従来の複動式の摩擦撹拌接合法が有する上記問題点に鑑みて開発したものであり、その目的は、アルミニウム合金板と鋼板とを摩擦撹拌接合する際、両材料の新生面同士が接触する接合界面における金属間化合物の生成を抑制し、十分な接合強度を有する接合部を効率的に形成することが可能な複動式の摩擦撹拌接合方法を提案することにある。 The present invention was developed in view of the above-mentioned problems of the conventional double-acting friction stir welding method. The object of the present invention is to propose a double-acting friction stir welding method capable of suppressing the formation of an intermetallic compound at the joint interface where the two come into contact with each other and efficiently forming a joint having sufficient joint strength.

発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、以下の新規知見を得た。
a) アルミニウム合金板と鋼板とを重ね合わせた被接合体に対し、回転ツールをアルミニウム合金板の表面から回転させながら挿入するとともに、上記回転ツールを接合方向に移動させ、摩擦撹拌により接合材料を塑性流動させることによって、アルミニウム合金板と鋼板とを摩擦撹拌接合する際、プローブの先端をアルミニウム合金板と鋼板の合わせ面より鋼板側まで挿入することで、合わせ面に両材料の新生面同士が接触する接合界面を形成することができ、冶金的な接合状態を確保することができる。
b) 上記接合界面が形成され、冶金的な接合状態が達成される過程において、両材料の主成分である鉄とアルミニウムが拡散し、接合界面を跨いで両材料に分布する状態となるが、この拡散範囲内に鉄とアルミニウムからなる脆弱な金属間化合物が生成した場合には、接合強度が低下する原因となる。
c) 上記金属間化合物の生成を抑制するには、接合界面を跨いで両材料に分布する鉄とアルミニウムの拡散を抑制する必要があり、そのためには、新生面同士が接触する接合界面が形成された直後のピーク温度(最高到達温度)とその後の冷却速度を適正範囲に制御する必要がある。
d) 摩擦撹拌接合においては、回転ツールで接合材料を摩擦撹拌するときに発生する摩擦発熱と塑性発熱によって接合部が加熱されるが、上記回転ツールとして、先端に同軸的に配設されたプローブとショルダーが別体に構成され、それぞれが別個に回転速度を制御可能な複動式回転ツールを用いることで、プローブおよびショルダーにより発生する熱をそれぞれ別個に制御することができる。従って、上記複動式回転ツールを、アルミニウム合金板と鋼板との摩擦撹拌接合に適用することで、接合界面のピーク温度および冷却速度を適正範囲に制御することができる。
e) 具体的には、回転ツールのショルダーの回転速度をプローブの回転速度より高くすることで、プローブ先端によるアルミニウム合金板と鋼板との合わせ面の摩擦撹拌を最小限に留めるとともに、上記プローブの回転速度の低下による入熱不足を高速回転するショルダーによる摩擦撹拌で補完することで、接合界面のピーク温度を抑制することができる。
f) さらに、先端部の形状を適正化したプローブをアルミニウム合金板と鋼板の合わせ面もしくは合わせ面よりも鋼板側まで挿入し、合わせ面で接する両材料を摩擦撹拌することで、両材料の新生面同士が接触する接合界面を形成する際、均質な新生面を効率的に形成することができ、かつ、過度な温度上昇を回避して脆弱な金属間化合物の生成を抑制することができる。
本発明は、上記の新規知見に基づき、さらに改良を加えて開発したものである。
The inventors have made intensive studies to solve the above problems, and as a result, have obtained the following new findings.
a) A rotating tool is inserted into an object to be joined in which an aluminum alloy plate and a steel plate are superimposed from the surface of the aluminum alloy plate while being rotated, and the rotating tool is moved in the joining direction to disperse the joining material by friction stirring. When aluminum alloy plate and steel plate are friction stir welded by plastic flow, inserting the tip of the probe from the mating surface of the aluminum alloy plate and steel plate to the steel plate side causes the new surfaces of both materials to come into contact with each other. It is possible to form a bonding interface that is compatible with each other, and to ensure a metallurgical bonding state.
b) In the process of forming the joint interface and achieving a metallurgical joint state, iron and aluminum, which are the main components of both materials, diffuse and become distributed in both materials across the joint interface. If a brittle intermetallic compound composed of iron and aluminum is generated within this diffusion range, it causes a decrease in bonding strength.
c) In order to suppress the formation of the intermetallic compound, it is necessary to suppress the diffusion of iron and aluminum distributed in both materials across the bonding interface. It is necessary to control the peak temperature (maximum temperature reached) immediately after heating and the subsequent cooling rate within an appropriate range.
d) In friction stir welding, the joint is heated by frictional heat and plastic heat generated when the material to be welded is friction-stirred by a rotating tool. The heat generated by the probe and the shoulder can be independently controlled by using a double-acting rotary tool in which the shoulder and the shoulder are separately constructed and each can independently control the rotation speed. Therefore, by applying the above-described double-acting rotary tool to friction stir welding of an aluminum alloy plate and a steel plate, the peak temperature and cooling rate of the weld interface can be controlled within appropriate ranges.
e) Specifically, by setting the rotation speed of the shoulder of the rotating tool higher than the rotation speed of the probe, frictional stirring of the mating surface between the aluminum alloy plate and the steel plate by the tip of the probe is minimized, and the probe is The peak temperature at the joint interface can be suppressed by supplementing the insufficient heat input due to the decrease in rotation speed with friction stirring by the shoulder rotating at high speed.
f) Furthermore, a probe with an optimized tip shape is inserted to the mating surface of the aluminum alloy plate and steel plate or to the steel plate side of the mating surface, and the two materials that are in contact at the mating surface are friction-stirred to create a new surface of both materials. When forming a joining interface where the two come into contact with each other, a homogeneous new surface can be efficiently formed, and an excessive temperature rise can be avoided to suppress the formation of fragile intermetallic compounds.
The present invention has been developed based on the above-mentioned new findings with further improvements.

すなわち、本発明は、アルミニウム合金板と鋼板とを重ね合わせ、鋼板側に裏当て治具を当接して固定した被接合体を、回転ツールとして先端に同軸的に配設したプローブとショルダーが別体に構成され、回転数を別個に設定可能とした複動式回転ツールを用い、上記複動式回転ツールのプローブを回転させながらアルミニウム合金板側から被接合体内に挿入し、かつ、上記複動式回転ツールのショルダーを回転させながらアルミニウム合金板の表面に当接させ、その状態で上記回転ツールを接合方向に移動させて被接合体を摩擦撹拌し、塑性流動させて摩擦撹拌接合する方法において、上記プローブには、断面が円形で、先端部が平面もしくは曲率半径が10mm以上の凸型曲面に形成してなるものを用い、上記プローブの先端部を、アルミニウム合金板の表面からアルミニウム合金板と鋼板との合わせ面もしくは該合わせ面より鋼板側まで挿入し、上記ショルダーの回転数SS(回/分)をプローブの回転数PS(回/分)より高くすることを特徴とする摩擦撹拌接合方法。 That is, in the present invention, an aluminum alloy plate and a steel plate are superimposed, and a backing jig is abutted on the steel plate side to fix the body to be joined. Using a double-acting rotary tool configured as a body and capable of independently setting the number of revolutions, the probe of the double-acting rotary tool is rotated and inserted into the object to be joined from the aluminum alloy plate side, and the double-acting rotary tool is rotated. Friction stir welding method in which the shoulder of a dynamic rotary tool is brought into contact with the surface of an aluminum alloy plate while being rotated, and in this state, the rotary tool is moved in the welding direction to frictionally stir the object to be welded, causing plastic flow and friction stir welding. In the above, the probe has a circular cross section and the tip is formed into a plane or a convex curved surface with a radius of curvature of 10 mm or more, and the tip of the probe is moved from the surface of the aluminum alloy plate to the aluminum alloy Friction stirring characterized by inserting the mating surface of the plate and the steel plate or from the mating surface to the steel plate side, and setting the rotational speed SS (rotations/minute) of the shoulder higher than the rotational speed PS (rotations/minute) of the probe. Joining method.

本発明の上記摩擦撹拌接合方法に用いる上記複動式回転ツールは、プローブの先端部に、回転方向とは反対方向に形成された渦状凹部を有することを特徴とする。 The double-acting rotary tool used in the friction stir welding method of the present invention is characterized in that the tip of the probe has a spiral recess formed in a direction opposite to the direction of rotation.

また、本発明の上記摩擦撹拌接合方法に用いる上記複動式回転ツールは、ショルダーのアルミニウム合金板と接触する表面がリング状で、平面もしくは凸型曲面に形成してなり、かつ、回転方向とは反対方向に形成された渦状凹部を有することを特徴とする。 In the double-acting rotary tool used in the friction stir welding method of the present invention, the surface of the shoulder contacting the aluminum alloy plate is ring-shaped, flat or convexly curved, and the rotation direction are characterized by having spiral recesses formed in opposite directions.

また、本発明の上記摩擦撹拌接合方法は、ショルダーの回転数SS(回/分)、ショルダーの径SD(mm)、プローブの径PD(mm)および接合速度JS(mm/分)により表される単位接合長さ当たりのショルダーによる発熱量と相関するパラメータ:SS×(SD-PD)/JSが、アルミニウム合金板の厚さt(mm)に対して下記(1)式;
3000×t≦SS×(SD-PD)/JS≦34000×t ・・・(1)
を満たし、かつ、プローブの回転数PS(回/分)、プローブの径PD(mm)および接合速度JS(mm/分)により表される単位接合長さ当たりのプローブによる発熱量と相関するパラメータ:PS×PD/JSが、アルミニウム合金板の厚さt(mm)に対して下記(2)式;
100×t≦PS×PD/JS≦1100×t ・・・(2)
を満たすことを特徴とする。
The friction stir welding method of the present invention is represented by the number of rotations SS (rotations/minute) of the shoulder, the diameter SD (mm) of the shoulder, the diameter PD (mm) of the probe, and the welding speed JS (mm/minute). A parameter that correlates with the amount of heat generated by the shoulder per unit joint length: SS × (SD 3 - PD 3 ) / JS is the following formula (1) with respect to the thickness t 1 (mm) of the aluminum alloy plate;
3000×t 1 ≦SS×(SD 3 −PD 3 )/JS≦34000×t 1 (1)
and correlated with the amount of heat generated by the probe per unit bonding length represented by the number of rotations PS (rotations/minute) of the probe, the diameter PD (mm) of the probe, and the bonding speed JS (mm/minute) : PS×PD 3 /JS is the following formula (2) with respect to the thickness t 1 (mm) of the aluminum alloy plate;
100×t 1 ≦PS×PD 3 /JS≦1100×t 1 (2)
is characterized by satisfying

また、本発明の上記摩擦撹拌接合方法は、回転ツールのショルダーの径SD(mm)およびプローブの径PD(mm)がアルミニウム合金板の厚さt(mm)に対して、下記(3)および(4)式;
4×t≦SD≦15×t ・・・(3)
≦PD≦5×t ・・・(4)
を満たすことを特徴とする。
Further, in the friction stir welding method of the present invention, the diameter SD (mm) of the shoulder of the rotating tool and the diameter PD (mm) of the probe are the following (3) with respect to the thickness t 1 (mm) of the aluminum alloy plate. and (4) formula;
4×t 1 ≦SD≦15×t 1 (3)
t 1 ≤ PD ≤ 5 x t 1 (4)
is characterized by satisfying

また、本発明の上記摩擦撹拌接合方法は、アルミニウム合金板の表面から回転させながら挿入する回転ツールのプローブ先端の、アルミニウム合金板と鋼板の合わせ面から鋼板側への挿入量P(mm)を、0mm以上0.5mm以下の範囲内とすることを特徴とする。 Further, in the friction stir welding method of the present invention, the insertion amount P (mm) from the mating surface of the aluminum alloy plate and steel plate to the steel plate side of the probe tip of the rotating tool that is inserted while rotating from the surface of the aluminum alloy plate. , 0 mm or more and 0.5 mm or less.

また、本発明の上記摩擦撹拌接合方法は、アルミニウム合金板の表面から回転させながら挿入する回転ツールの回転軸を、アルミニウム合金板の表面に対して垂直とすることを特徴とする。 Further, the friction stir welding method of the present invention is characterized in that the rotation axis of the rotary tool that is rotated and inserted from the surface of the aluminum alloy plate is set perpendicular to the surface of the aluminum alloy plate.

本発明によれば、アルミニウム合金板と鋼板とを重ね合わせて接合する摩擦撹拌接合方法において、回転ツールとして、先端に同軸的に配設したプローブとショルダーが別体に構成され、別個に回転数を設定可能とした複動式回転ツールを用い、プローブ先端部の形状、プローブ先端の鋼板側への挿入量およびショルダーとプローブの回転数を適正化したので、接合界面に均質な新生面を効率的に形成し、さらに、接合界面の過度な温度上昇を防止し、金属間化合物の生成を抑制することができるので、高強度の重ね接合継ぎ手を得ることが可能となる。 According to the present invention, in the friction stir welding method for superimposing and joining an aluminum alloy plate and a steel plate, a probe coaxially arranged at the tip and a shoulder are configured separately as rotating tools, and the number of rotations is set separately. By using a double-acting rotary tool that allows setting of Furthermore, it is possible to prevent an excessive temperature rise at the joint interface and suppress the formation of an intermetallic compound, so that a high-strength lap joint can be obtained.

アルミニウム合金板と鋼板の接合に用いる本発明の複動式の摩擦撹拌接合方法を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the double-acting friction stir welding method of this invention used for joining an aluminum alloy plate and a steel plate. 図1のA-A断面図であり、アルミニウム合金板と鋼板を重ね合わせた被接合体を複動式の回転ツールで摩擦撹拌する領域を説明する図である。FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and is a diagram for explaining a region where a jointed body in which an aluminum alloy plate and a steel plate are superimposed is friction-stirred by a double-acting rotating tool. 本発明に用いることができる複動式回転ツールの形状の説明する図である。FIG. 4 is a diagram illustrating the shape of a double-acting rotary tool that can be used in the present invention; 本発明に用いることができる複動式回転ツールの形状の説明する図である。FIG. 4 is a diagram illustrating the shape of a double-acting rotary tool that can be used in the present invention; 本発明に用いることができる複動式回転ツールの形状の説明する図である。FIG. 4 is a diagram illustrating the shape of a double-acting rotary tool that can be used in the present invention; 本発明に用いることができる複動式回転ツールの形状の説明する図である。FIG. 4 is a diagram illustrating the shape of a double-acting rotary tool that can be used in the present invention; 比較例の複動式回転ツールの形状の説明する図である。It is a figure explaining the shape of the double acting rotary tool of a comparative example. せん断強度を測定する引張試験片を説明する図である。It is a figure explaining the tensile test piece which measures a shear strength.

本発明は、アルミニウム合金板1と鋼板2を重ね合わせた被接合体を摩擦撹拌接合法で接合する技術に関するものであり、図1に示すように、先端に同軸的に配設したプローブ4とショルダー5が別体に構成され、別個に回転速度を制御可能とした複動式の回転ツール3を、図2に示したように、回転ツール3のプローブ4の先端をアルミニウム合金板1の表面から回転させながら挿入し、かつ、上記回転ツール3のショルダー5を回転させながらアルミニウム合金板1の表面に当接させ、その状態で上記回転ツール3を接合方向に移動することで被接合体を摩擦撹拌し、塑性流動させて、両材料を接合する。その際、上記プローブ4の先端を両材料の合わせ面6よりも鋼板側まで挿入するとともに、回転ツール3のプローブ4の先端部の形状を適正化することによってアルミニウム合金板1と鋼板2の合わせ面6に両材料の新生面同士が接触する接合界面7を形成し、さらに、回転ツール3のプローブ4とショルダー5の回転速度を別個に設定してプローブ4およびショルダー5の回転により発生する摩擦熱や塑性変形熱を別々に制御することによって接合界面7のピーク温度(最高到達温度)およびその後の冷却速度を制御して接合界面7を跨いだ鉄とアルミニウム元素の拡散を抑制して脆弱な金属間化合物の生成を抑制し、接合強度に優れるアルミニウム合金板と鋼板との接合部8を得ようとする技術である。なお、図中に示した9は、アルミニウム合金板1と鋼板2を重ね合わせた被接合体の鋼板側に裏当てした治具を、また、10は回転ツール3のプローブ4とショルダー5によって接合材料が塑性流動する領域を示す。 The present invention relates to a technique for joining an object to be joined in which an aluminum alloy plate 1 and a steel plate 2 are superimposed on each other by friction stir welding, and as shown in FIG. As shown in FIG. The workpiece is inserted while being rotated from the rotary tool 3, and the shoulder 5 of the rotary tool 3 is brought into contact with the surface of the aluminum alloy plate 1 while being rotated. Both materials are joined by friction stirring and plastic flow. At that time, the tip of the probe 4 is inserted to the steel plate side from the mating surface 6 of both materials, and the shape of the tip of the probe 4 of the rotary tool 3 is optimized to align the aluminum alloy plate 1 and the steel plate 2. A joint interface 7 is formed on the surface 6 where the new surfaces of both materials are in contact with each other, and the rotational speeds of the probe 4 and the shoulder 5 of the rotating tool 3 are separately set to generate frictional heat generated by the rotation of the probe 4 and the shoulder 5. and plastic deformation heat are separately controlled to control the peak temperature (maximum temperature reached) of the joint interface 7 and the subsequent cooling rate to suppress the diffusion of the iron and aluminum elements across the joint interface 7, thereby reducing the brittle metal This is a technique for suppressing the formation of intercalants and for obtaining a joint 8 between an aluminum alloy plate and a steel plate having excellent joint strength. In addition, 9 shown in the figure is a jig backing the steel plate side of the object to be joined, in which the aluminum alloy plate 1 and the steel plate 2 are superimposed, and 10 is joined by the probe 4 and the shoulder 5 of the rotary tool 3. It shows the region where the material flows plastically.

まず、本発明の摩擦撹拌接合方法を適用する被接合体(部材)を構成するアルミニウム合金板1と鋼板2の板厚は、本発明の効果を最大限に享受する観点から、アルミニウム合金板は1~3mm、鋼板は1~3mmの範囲内であることが好ましい。ただし、上記範囲外の板厚であっても本発明の効果を得ることができる。 First, from the viewpoint of maximizing the effect of the present invention, the thickness of the aluminum alloy plate 1 and the steel plate 2 constituting the object (member) to be joined to which the friction stir welding method of the present invention is applied is It is preferably within the range of 1 to 3 mm, and the steel plate is within the range of 1 to 3 mm. However, the effect of the present invention can be obtained even if the plate thickness is outside the above range.

また、本発明の摩擦撹拌接合方法に用いる先端に同軸的に配置したプローブ4とショルダー5が別体に構成されてなる複動式の回転ツール3は、アルミニウム合金板と鋼板の合わせ面より鋼板側まで挿入されるため、鋼板と直接接触するプローブ先端は、少なくとも鋼板よりも硬い材質で形成されてなり、また、アルミニウム合金板と接触する先端以外のプローブおよびショルダーは、少なくともアルミニウム合金板よりも硬い材質で形成されてなることが重要である。 Further, the double-acting rotary tool 3, in which the probe 4 coaxially arranged at the tip and the shoulder 5 used in the friction stir welding method of the present invention are separately constructed, is used for the steel plate from the mating surface of the aluminum alloy plate and the steel plate. Since the probe is inserted up to the side, the probe tip that directly contacts the steel plate is made of a material that is at least harder than the steel plate, and the probe and shoulder other than the tip that contacts the aluminum alloy plate are at least harder than the aluminum alloy plate. It is important that it is made of a hard material.

なお、本発明に用いる複動式の回転ツール3を構成するプローブ4とショルダー5の回転方向は、同一方向であってもよいし、逆方向であってもよい。 The rotating directions of the probe 4 and the shoulder 5 constituting the double-acting rotating tool 3 used in the present invention may be the same or opposite.

さらに、本発明のアルミニウム合金板と鋼板を重ね合わせて接合する摩擦撹拌接合方法では、接合条件を以下の範囲に限定することで、接合界面における金属間化合物の生成抑制効果を高め、接合強度を向上することができる。 Furthermore, in the friction stir welding method of the present invention for overlapping and joining an aluminum alloy plate and a steel plate, the joining conditions are limited to the following ranges to increase the effect of suppressing the formation of intermetallic compounds at the joining interface and increase the joining strength. can be improved.

まず、複動式回転ツール3のプローブ4は、断面が円形で、先端部が平面もしくは曲率半径が10mm以上の凸型曲面を有するものであることが必要である。プローブの先端をアルミニウム合金板と鋼板の合わせ面もしくは合わせ面より鋼板側まで挿入し、合わせ面で接する両材料を摩擦撹拌して新生面同士が接触する接合界面を形成する際、プローブ先端部を、上記条件を満たす形状とすることで、合わせ面に対してプローブ先端を均等に当接することができ、均質な新生面を形成することができる。なお、プローブ先端を凸型曲面とする場合、好ましい曲率半径は40mm以上である。 First, the probe 4 of the double-acting rotary tool 3 must have a circular cross section and a flat tip or a convex curved surface with a radius of curvature of 10 mm or more. Insert the tip of the probe into the mating surface of the aluminum alloy plate and the steel plate or from the mating surface to the steel plate side, and frictionally stir the two materials that are in contact at the mating surfaces to form a joint interface where the new surfaces contact each other. By forming a shape that satisfies the above conditions, the tip of the probe can be evenly brought into contact with the mating surface, and a homogeneous new surface can be formed. When the tip of the probe has a convex curved surface, the radius of curvature is preferably 40 mm or more.

また、上記複動式回転ツール3のプローブ4の先端部は、回転方向とは反対方向に形成された渦状凹部を有することが好ましい。この渦状凹部は、プローブ先端部の平面部または凸曲面部よりも凹んだ形状であることが好ましい。なお、凹んだ形状としては、例えば、断面形状が溝状や階段状(略水平の段を有する段差形状)であるものを挙げることができる。このような渦状凹部を設けることによって、アルミニウム合金板と鋼板の合わせ面以上まで挿入したプローブ先端部による撹拌で生じる摩擦熱により軟化した材料を、プローブ先端部の外側から内側へ向かって流動させて、プローブ先端部の押圧による材料の外側への流出を抑制することができる。また、これにより、合わせ面における塑性流動を助長し、新生面の形成を促進することができ、さらに、合わせ面において鋼板側からアルミニウム合金板側に突出するバリや小片の発生を抑制することができる。これらのバリや小片は、高温で生成されるため、その周辺に脆弱な金属間化合物が生成され易く、接合継手の強度が低下する原因となる。なお、渦状凹部を設けることによる上記効果は、渦状の向きをプローブの回転方向とは反対方向に設けることによってのみ得られる。 Moreover, the tip of the probe 4 of the double-acting rotary tool 3 preferably has a spiral recess formed in the direction opposite to the direction of rotation. It is preferable that the spiral recess has a shape that is more recessed than the flat portion or the convex curved portion of the probe tip. Examples of the recessed shape include those having a groove-like or step-like cross-sectional shape (a stepped shape having substantially horizontal steps). By providing such a spiral concave portion, the material softened by the frictional heat generated by the stirring by the probe tip that is inserted above the mating surface of the aluminum alloy plate and the steel plate is made to flow from the outside to the inside of the probe tip. , the outflow of the material to the outside due to the pressing of the tip of the probe can be suppressed. In addition, this can promote plastic flow on the mating surfaces, promote the formation of new surfaces, and further suppress the generation of burrs and small pieces protruding from the steel plate side to the aluminum alloy plate side on the mating surfaces. . Since these burrs and small pieces are generated at high temperatures, fragile intermetallic compounds are likely to be generated around them, causing a decrease in the strength of the joint. It should be noted that the above effect of providing the spiral recess can be obtained only by providing the direction of the spiral in the direction opposite to the rotating direction of the probe.

また、上記プローブの先端部に形成する渦状凹部の本数は、1以上設けることが好ましい。しかし、渦状凹部の本数が6を超えると、材料の塑性流動を促進する効果が飽和するだけでなく、形状の複雑化によりプローブ先端部が破損し易くなる。なお、渦状凹部の本数は、材料の塑性流動を向上しつつ、プローブ先端部の破損を防止する観点から、プローブ先端部の直径に応じて変化させることが好ましく、具体的には、プローブ先端部の直径が大きいほど多くし、プローブ先端部の直径が小さいほど少なくするのが望ましい。なお、好ましい本数は2~4本である。 Moreover, it is preferable that one or more spiral recesses be formed in the tip of the probe. However, if the number of spiral recesses exceeds 6, not only will the effect of promoting the plastic flow of the material be saturated, but also the probe tip will be likely to break due to the complicated shape. The number of spiral recesses is preferably changed according to the diameter of the probe tip from the viewpoint of preventing breakage of the probe tip while improving the plastic flow of the material. It is desirable that the larger the diameter of the probe tip, the smaller the number. A preferable number is 2 to 4.

また、プローブ先端部に設ける1本の渦状凹部の長さは、プローブ先端部の外周の長さを1周としたとき、0.25周以上1周以下とするのが好ましい。この渦状凹部の長さについても、プローブ先端部の直径に応じて変化させるのが好ましく、プローブ先端部の直径が大きいほど長くし、プローブ先端部の直径が小さいほど短くするのが望ましい。 Further, the length of one spiral recess provided at the tip of the probe is preferably 0.25 or more and 1 or less when the length of the outer periphery of the tip of the probe is taken as one turn. The length of the spiral recess is also preferably varied according to the diameter of the probe tip, preferably longer for larger probe tip diameters and shorter for smaller probe tip diameters.

図3は、本発明に適合する複動式の回転ツールを示したものであり、図3の(a)、(c)、(e)および(g)は、プローブの先端部が平面の例、(b)、(d)、(f)および(h)にはプローブの先端部が凸型局面の例である。また、(c)~(h)には、プローブの先端部に渦状凹部を4本設けた例を示した。 FIG. 3 shows a double-acting rotary tool compatible with the present invention, and FIGS. , (b), (d), (f) and (h) are examples in which the tip of the probe is convex. Also, (c) to (h) show an example in which four spiral recesses are provided at the tip of the probe.

一方、複動式回転ツール3のショルダー5は、断面がリング状で、アルミニウム合金板と接触する表面は、平面、凸型曲面および凹型曲面のいずれでもよいが、凸型曲面にすることで、1000mm/min以上での高速接合が可能となるので好ましい。また、上記アルミニウム合金板と接触する表面は、プローブ先端部と同様、回転方向とは反対方向に形成された渦状凹部を有することが好ましい。なお、アルミニウム合金板と接触する表面を曲面とする場合、上記曲面の曲率半径は30mm以上とするのが好ましい。 On the other hand, the shoulder 5 of the double-acting rotary tool 3 has a ring-shaped cross section, and the surface in contact with the aluminum alloy plate may be a flat surface, a convex curved surface, or a concave curved surface. This is preferable because it enables high-speed bonding at 1000 mm/min or higher. Further, the surface that comes into contact with the aluminum alloy plate preferably has a spiral recess formed in a direction opposite to the direction of rotation, like the tip of the probe. When the surface in contact with the aluminum alloy plate is curved, the radius of curvature of the curved surface is preferably 30 mm or more.

また、ショルダーのアルミニウム合金板と接触する表面に設ける渦状凹部は、先端部のその他の面(平面または曲面)よりも凹んだ形状とすることが必要である。なお、凹んだ形状としては、例えば、断面形状が溝状や階段状(略水平の段を有する段差形状)であるものを挙げることができる。このような溝状凹部を設けることによって、ショルダーのアルミニウム合金板と接触する表面を、アルミニウム合金板の表面に押圧し、撹拌する際に生じる摩擦熱により軟化した材料を、ショルダーのアルミニウム合金板と接触する表面の外側から内側へ向かって流動させて、ショルダーのアルミニウム合金板と接触する表面から外側へ材料が流出するのを抑制することができる。また、これにより、押圧部の塑性流動を促進することができるとともに、接合部の厚さが元の厚さに対して減少することを防止し、さらに、バリのない美麗な接合部表面を形成することができる。なお、この渦状凹部を設けることによる効果は、渦状凹部をショルダーの回転方向とは反対方向に設けることによってのみ得られる。 Further, the spiral recess provided on the surface of the shoulder that contacts the aluminum alloy plate must be recessed from the other surface (flat or curved surface) of the tip. Examples of the recessed shape include those having a groove-like or step-like cross-sectional shape (a stepped shape having substantially horizontal steps). By providing such a groove-shaped concave portion, the surface of the shoulder contacting the aluminum alloy plate is pressed against the surface of the aluminum alloy plate, and the material softened by the frictional heat generated when stirring is applied to the aluminum alloy plate of the shoulder. It is possible to prevent the material from flowing outward from the surface of the shoulder contacting the aluminum alloy plate by causing the material to flow from the outside to the inside of the contact surface. In addition, this can promote the plastic flow of the pressed portion, prevent the thickness of the joint from decreasing with respect to the original thickness, and form a beautiful joint surface without burrs. can do. The effect of providing this spiral recess can only be obtained by providing the spiral recess in a direction opposite to the direction of rotation of the shoulder.

また、上記ショルダーのアルミニウム合金板と接触する表面に形成する渦状凹部の数は、1本以上とするのが好ましい。しかし、渦状凹部の数が6を超えると、材料の塑性流動を促進する効果が飽和するだけでなく、形状の複雑化によりショルダー表面が破損し易くなるおそれがあるので、6本以下とするのが好ましい。なお、ショルダー表面に設ける渦状凹部の本数は、材料の塑性流動を促進しつつ、ショルダー表面の破損を防止する観点から、ショルダーの直径に応じて変化させることが好ましく、具体的には、ショルダーの径が大きいほど多くし、ショルダーの径が小さいほど少なくするのが望ましい。 Moreover, it is preferable that the number of spiral recesses formed on the surface of the shoulder contacting the aluminum alloy plate is one or more. However, if the number of spiral recesses exceeds 6, not only will the effect of promoting the plastic flow of the material saturate, but there is a risk that the shoulder surface will be easily damaged due to the complicated shape. is preferred. The number of spiral recesses provided on the shoulder surface is preferably changed according to the diameter of the shoulder from the viewpoint of preventing damage to the shoulder surface while promoting plastic flow of the material. It is desirable that the larger the diameter, the larger the number, and the smaller the diameter of the shoulder, the smaller the number.

また、ショルダーのアルミニウム合金板と接触する表面に形成する1本の渦状凹部の長さは、ショルダーの外周の長さを1周としたとき、0.5周以上2周以下とするのが好ましい。なお、ショルダーのアルミニウム合金板と接触する表面に形成する渦状凹部の長さについても、ショルダーの径に応じて変化させるのが好ましく、ショルダーの径が大きいほど長くし、ショルダーの径が小さいほど短くするのが望ましい。 Further, the length of one spiral recess formed on the surface of the shoulder that contacts the aluminum alloy plate is preferably 0.5 or more and 2 or less when the length of the outer circumference of the shoulder is taken as one turn. . The length of the spiral recess formed on the surface of the shoulder that contacts the aluminum alloy plate is also preferably changed according to the diameter of the shoulder. It is desirable to

先述したように、図3は、本発明に適合する複動式の回転ツールを示したものであるが、図3の(a)~(d)には、ショルダーのアルミニウム合金板と接触する表面を凹曲面とした例、(e)および(f)には上記表面を平面とした例、また、(g)および(h)には上記表面を凸曲面とした例を示した。また、(e)~(h)には、ショルダーのアルミニウム合金板と接触する表面に渦状凹部を4本設けた例を示した。 As mentioned above, FIG. 3 shows a double-acting rotary tool suitable for the present invention, in which FIGS. is a concave surface, (e) and (f) are flat surfaces, and (g) and (h) are convex surfaces. Also, (e) to (h) show an example in which four spiral recesses are provided on the surface of the shoulder contacting the aluminum alloy plate.

さらに、本発明の摩擦撹拌接合方法は、本発明の効果をより高めるためには、ショルダーの回転数SS(回/分)、ショルダーの径SD(mm)、プローブの径PD(mm)および複動式回転ツールの移動速度(すなわち接合速度)JS(mm/分)により表される単位接合長当たりのショルダーによる発熱量と相関するパラメータ:SS×(SD-PD)/JSが、アルミニウム合金板の厚さt(mm)に対して、下記(1)式;
3000×t≦SS×(SD-PD)/JS≦34000×t ・・・(1)
を満たしていることが好ましい。
Furthermore, in order to further enhance the effects of the present invention, the friction stir welding method of the present invention includes a shoulder rotation speed SS (rotations/minute), a shoulder diameter SD (mm), a probe diameter PD (mm) and a multiplicity of A parameter that correlates with the amount of heat generated by the shoulder per unit joint length represented by the moving speed of the dynamic rotary tool (that is, the welding speed) JS (mm/min): SS × (SD 3 - PD 3 )/JS is aluminum The following formula (1) for the thickness t 1 (mm) of the alloy plate;
3000×t 1 ≦SS×(SD 3 −PD 3 )/JS≦34000×t 1 (1)
is preferably satisfied.

回転ツールのショルダーの回転速度SSをプローブの回転速度PDより高くすることで、プローブ先端によるアルミニウム合金板と鋼板との合わせ面の摩擦撹拌を最小限に留めるとともに、上記プローブの回転速度の低下による入熱不足を高速回転するショルダーによる摩擦撹拌で補完することで、接合界面のピーク温度を抑制することができる。しかし、SS×(SD-PD)/JSが3000×t未満では、ショルダーによるアルミニウム合金板表面の摩擦撹拌による発熱が不十分となり、アルミニウム合金板と鋼板の合わせ面に冶金的に接合された状態の接合界面を形成することができなくなる。一方、34000×tを超えると、ショルダーによるアルミニウム合金板表面の摩擦撹拌による発熱が過度となり、アルミニウム合金板と鋼板の合わせ面の接合界面周辺に過度な熱量が投入されて、接合界面のピーク温度(最高到達温度)が上昇したり、冷却速度が低下したりして、脆弱な金属間化合物の生成が助長されるようになる。なお、より好ましい(SD-PD)/JSの範囲は、10000×t以上、25000×t以下の範囲である。 By setting the rotation speed SS of the shoulder of the rotary tool higher than the rotation speed PD of the probe, friction stirring of the mating surface between the aluminum alloy plate and the steel plate due to the tip of the probe is minimized, and due to the decrease in the rotation speed of the probe The peak temperature at the joint interface can be suppressed by supplementing the insufficient heat input with friction stirring by the shoulder rotating at high speed. However, when SS×(SD 3 −PD 3 )/JS is less than 3000×t 1 , heat generation due to friction stirring on the surface of the aluminum alloy plate due to the shoulder becomes insufficient, and the mating surfaces of the aluminum alloy plate and the steel plate are metallurgically joined. It becomes impossible to form a bonded interface in a state of being bonded. On the other hand, when it exceeds 34000 × t 1 , heat generation due to friction stirring on the surface of the aluminum alloy plate due to the shoulder becomes excessive, and an excessive amount of heat is input around the joint interface between the aluminum alloy plate and the steel plate, resulting in the peak of the joint interface. The temperature (maximum attainable temperature) increases and the cooling rate decreases, thereby promoting the formation of brittle intermetallic compounds. A more preferable range of (SD 3 -PD 3 )/JS is 10000×t 1 or more and 25000×t 1 or less.

また、本発明の摩擦撹拌接合方法は、複動式回転ツールのプローブの回転数PS(回/分)、プローブの径PD(mm)および複動式回転ツールの移動速度(すなわち接合速度)JS(mm/分)により表される単位接合長さ当たりのプローブによる発熱量と相関するパラメータ:PS×PD/JSが、アルミニウム合金板の厚さt(mm)に対して、下記(2)式;
100×t≦PS×PD/JS≦1100×t ・・・(2)
を満たしていることが好ましい。
In addition, the friction stir welding method of the present invention comprises a double-acting rotary tool probe rotation speed PS (times/min), a probe diameter PD (mm), and a double-acting rotary tool movement speed (i.e., welding speed) JS A parameter that correlates with the amount of heat generated by the probe per unit joint length represented by (mm/min): PS×PD 3 /JS is the following (2 )formula;
100×t 1 ≦PS×PD 3 /JS≦1100×t 1 (2)
is preferably satisfied.

PS×PD/JSが100×t未満では、プローブによるアルミニウム合金板の摩擦撹拌が不十分となり、欠陥が発生し易くなるため好ましくない。一方、1100×tを超えると、プローブ先端で合わせ面の鋼板側を過度に摩擦撹拌するため、接合界面の温度上昇を招き、脆弱な金属間化合物の生成を助長する。なお、より好ましいPS×PD/JSの範囲は、120×t以上、900×t以下の範囲である。 When PS×PD 3 /JS is less than 100×t 1 , frictional stirring of the aluminum alloy plate by the probe becomes insufficient and defects tend to occur, which is not preferable. On the other hand, if it exceeds 1100 x t1, the tip of the probe frictionally agitates the steel plate side of the mating surface excessively, causing a temperature rise at the joint interface and promoting the formation of brittle intermetallic compounds. A more preferable range of PS×PD 3 /JS is 120×t 1 or more and 900×t 1 or less.

また、本発明の摩擦撹拌接合方法は、複動式回転ツールのショルダーの径SD(mm)が、アルミニウム合金板の厚さt(mm)に対して、下記(3)式;
4×t≦SD≦15×t ・・・(3)
を満たすことが好ましい。
Further, in the friction stir welding method of the present invention, the diameter SD (mm) of the shoulder of the double-acting rotary tool is expressed by the following formula (3) with respect to the thickness t 1 (mm) of the aluminum alloy plate;
4×t 1 ≦SD≦15×t 1 (3)
is preferably satisfied.

複動式回転ツールのショルダーは、アルミニウム合金板の表面に回転させながら当接させ、アルミニウム合金板を摩擦撹拌することで摩擦発熱、塑性発熱が発生して接合部が加熱される。しかし、ショルダーの直径SDが4×tmm未満では、厚さ方向に均一な塑性流動が得られない。一方、15×tmmを超えると、塑性流動を生じる領域を不要に広げるのみで、回転ツールに過大な負荷がかかる。したがって、ショルダーの直径SDを、アルミニウム合金板の厚さt(mm)に対して、4×tmm以上かつ15×tmm以下に限定することで、アルミニウム合金板の表面から厚さ方向の温度分布を均一化し、接合部の欠陥発生を抑制しつつ、アルミニウム合金板と鋼板の合わせ面に形成される接合界面に、冶金的に接合される状態を確保する上で必要十分な熱量を供給することができる。なお、好ましいショルダーの径SD(mm)は、6×tmm以上、12×tmm以下の範囲である。 The shoulder of the double-acting rotary tool is brought into contact with the surface of the aluminum alloy plate while being rotated, and the aluminum alloy plate is friction-stirred to generate frictional heat and plastic heat to heat the joint. However, when the shoulder diameter SD is less than 4×t 1 mm, uniform plastic flow cannot be obtained in the thickness direction. On the other hand, if it exceeds 15×t 1 mm, it only unnecessarily widens the region where plastic flow occurs, and an excessive load is applied to the rotary tool. Therefore, by limiting the diameter SD of the shoulder to 4 x t 1 mm or more and 15 x t 1 mm or less with respect to the thickness t 1 (mm) of the aluminum alloy plate, the thickness from the surface of the aluminum alloy plate A necessary and sufficient amount of heat to ensure a state of metallurgical bonding at the bonding interface formed between the mating surfaces of the aluminum alloy plate and the steel plate, while making the temperature distribution in the direction uniform and suppressing the occurrence of defects in the joint. can be supplied. A preferred shoulder diameter SD (mm) is in the range of 6×t 1 mm or more and 12×t 1 mm or less.

さらに、本発明の摩擦撹拌接合方法は、複動式回転ツールのプローブの径PD(mm)は、アルミニウム合金板の厚さt(mm)に対して、下記(4)式;
≦PD≦5×t ・・・(4)
を満たすことが好ましい。
Furthermore, in the friction stir welding method of the present invention, the diameter PD (mm) of the probe of the double-acting rotary tool is expressed by the following formula (4) with respect to the thickness t 1 (mm) of the aluminum alloy plate;
t 1 ≤ PD ≤ 5 x t 1 (4)
is preferably satisfied.

アルミニウム合金板と鋼板の重ね接合を行う際に、プローブの先端をアルミニウム合金板と鋼板の合わせ面もしくは合わせ面の鋼板側まで挿入することで、合わせ面に両材料の新生面同士が接触する接合界面を形成し、冶金的な接合状態を確保することができる。しかし、プローブの直径PDがtmm未満では、接合界面の面積を十分に確保し、必要な接合強度が得られない。一方、5×tmmを超えると、接合時に接合材料がプローブの周囲を流動する距離が長くなり、接合界面における欠陥発生を防止することが困難となる。したがって、プローブの直径PDをtmm以上かつ5×tmm以下に限定することで、両材料の合わせ面に冶金的な接合状態を確保された接合界面の面積を必要十分に確保し、接合強度を高めることができる。なお、好ましいプローブの径PD(mm)は、2×tmm以上、4×tmm以下の範囲である。 When lap joining an aluminum alloy plate and a steel plate, by inserting the tip of the probe to the mating surface of the aluminum alloy plate and steel plate or to the steel plate side of the mating surface, the joint interface where the new surfaces of both materials come into contact with each other. can be formed to ensure metallurgical bonding. However, if the diameter PD of the probe is less than t 1 mm, it is not possible to secure a sufficient bonding interface area and obtain the necessary bonding strength. On the other hand, if it exceeds 5×t 1 mm, the distance over which the bonding material flows around the probe during bonding becomes long, making it difficult to prevent the occurrence of defects at the bonding interface. Therefore, by limiting the diameter PD of the probe to t 1 mm or more and 5 × t 1 mm or less, a necessary and sufficient area of the bonding interface where the metallurgical bonding state is secured between the mating surfaces of both materials is secured, Bonding strength can be increased. A preferable probe diameter PD (mm) is in the range of 2×t 1 mm or more and 4×t 1 mm or less.

さらに、本発明の摩擦撹拌接合方法は、複動式回転ツールをアルミニウム合金板の表面から回転させながら挿入するプローブ先端の挿入量Pは、アルミニウム合金板と鋼板の合わせ面を基準(0mm)とした場合(図2参照)、鋼板側へ0mm以上0.5mm以下の範囲とするのが好ましい。 Furthermore, in the friction stir welding method of the present invention, the insertion amount P of the probe tip inserted while rotating the double-acting rotary tool from the surface of the aluminum alloy plate is based on the mating surface of the aluminum alloy plate and steel plate (0 mm). In this case (see FIG. 2), it is preferable to set the distance from 0 mm to 0.5 mm toward the steel plate.

プローブの先端をアルミニウム合金板と鋼板の合わせ面もしくは合わせ面の鋼板側まで挿入することで、合わせ面に両材料の新生面同士が接触する接合界面を形成することができ、冶金的な接合状態を確保することができる。しかし、0mm未満では、プローブの先端が合わせ面まで到達せず、プローブ先端の材料撹拌による新生面の形成が達成できない。一方、0.5mmを超えると、プローブ先端で合わせ面の鋼板側を過度に摩擦撹拌するため、形成された接合界面の過度の温度上昇を招き、脆弱な金属間化合物の生成を助長するため好ましくない。なお、好ましい挿入量Pは、0.2~0.4mmの範囲である。 By inserting the tip of the probe to the mating surface of the aluminum alloy plate and steel plate or to the steel plate side of the mating surface, it is possible to form a joint interface where the new surfaces of both materials come into contact with each other on the mating surface. can be secured. However, if the distance is less than 0 mm, the tip of the probe does not reach the mating surface, and a new surface cannot be formed by stirring the material at the tip of the probe. On the other hand, if it exceeds 0.5 mm, the tip of the probe frictionally stirs the steel plate side of the mating surface excessively, which causes an excessive temperature rise at the formed joint interface and promotes the formation of a brittle intermetallic compound, which is preferable. do not have. A preferable insertion amount P is in the range of 0.2 to 0.4 mm.

また、本発明の摩擦撹拌接合方法は、アルミニウム合金板の表面から回転させながら挿入する回転ツール3の回転軸は、アルミニウム合金板1の表面に対して垂直とするのが好ましい。例えば、回転ツールの回転軸を、アルミニウム合金板の表面に対する垂線に対し、接合方向とは反対側に傾斜させると、回転ツールが受ける負荷を、回転軸方向の圧縮応力と、回転軸と直角方向の曲げ応力とに分け、回転ツールが受ける曲げ方向の力を低減することができるので、回転ツールの破損を防止することができる。しかし,その場合、プローブ先端をアルミニウム合金板と鋼板の合わせ面もしくは合わせ面の鋼板側まで挿入し、合わせ面に接する両材料を摩擦撹拌して接合界面を形成する際、合わせ面に対するプローブ先端の当接が偏り、均質な新生面を形成することが難しくなる。したがって、回転ツールの回転軸を、アルミニウム合金板の表面に対する垂線に対し、接合方向とは反対側に傾斜させる場合であっても、傾斜角は5°以下に抑えることが好ましい。 In addition, in the friction stir welding method of the present invention, it is preferable that the rotation axis of the rotating tool 3 which is rotated and inserted from the surface of the aluminum alloy plate 1 is perpendicular to the surface of the aluminum alloy plate 1 . For example, if the rotation axis of the rotary tool is inclined in the direction opposite to the welding direction with respect to the perpendicular to the surface of the aluminum alloy plate, the load received by the rotary tool is divided into the compressive stress in the direction of the rotation axis and the load in the direction perpendicular to the rotation axis. Since the force in the bending direction that the rotating tool receives can be reduced, damage to the rotating tool can be prevented. However, in that case, when the probe tip is inserted to the mating surface of the aluminum alloy plate and steel plate or to the steel plate side of the mating surface, and the two materials in contact with the mating surfaces are frictionally stirred to form the joint interface, the probe tip to the mating surface The contact is biased, and it becomes difficult to form a homogeneous new surface. Therefore, even when the rotation axis of the rotary tool is inclined in the direction opposite to the joining direction with respect to the normal to the surface of the aluminum alloy plate, the inclination angle is preferably suppressed to 5° or less.

表1に示した、JIS H 4000で規定されるA5052アルミニウム合金板と、590MPa級の自動車用高強度冷延鋼板とを重ね合わせた被接合体に対して複動式の摩擦撹拌接合を適用し、1回の接合長さを0.3mとする接合実験を行った。
なお、上記複動式の摩擦撹拌接合には、図3に示した形状、寸法の複動式の回転ツールを用いた。また、比較例として、図4に示した形状、寸法の複動式の回転ツールを用いた。これらの回転ツールの仕様を表2に纏めて示したが、これらの回転ツールのプローブ径PDおよびショルダー径SDは(3)式および(4)式をそれぞれ満たしている。
また、上記回転ツールのプローブおよびショルダーには、接合材料である表1に記載のアルミニウム合金板および鋼板よりも硬い、ビッカース硬さHvが530の工具鋼(SKD61)を素材としたものを用いた。また、接合する際、上記複動式の回転ツールのショルダーおよびプローブは、共に時計回りに回転させた。
また、その他の接合条件については表3に示した。なお、表3中に示した傾斜角αは、アルミニウム合金板の表面に対する垂線に対し、接合方向とは反対側に傾斜させた角度である。
Double-acting friction stir welding was applied to the objects to be joined, which are shown in Table 1, in which an A5052 aluminum alloy plate specified by JIS H 4000 and a high-strength cold-rolled steel plate for automobiles of 590 MPa class are superimposed. , a joining experiment was conducted with a joining length of 0.3 m.
For the double-acting friction stir welding, a double-acting rotary tool having the shape and dimensions shown in FIG. 3 was used. As a comparative example, a double-acting rotary tool having the shape and dimensions shown in FIG. 4 was used. The specifications of these rotary tools are summarized in Table 2, and the probe diameter PD and shoulder diameter SD of these rotary tools satisfy formulas (3) and (4), respectively.
In addition, for the probe and shoulder of the rotary tool, tool steel (SKD61) with a Vickers hardness Hv of 530, which is harder than the aluminum alloy plate and steel plate listed in Table 1, which is the joining material, was used as the raw material. . During joining, both the shoulder and the probe of the double-acting rotary tool were rotated clockwise.
Table 3 shows other joining conditions. In addition, the inclination angle α shown in Table 3 is an angle inclined in the direction opposite to the joining direction with respect to a line perpendicular to the surface of the aluminum alloy plate.

Figure 0007173081000001
Figure 0007173081000001

Figure 0007173081000002
Figure 0007173081000002

Figure 0007173081000003
Figure 0007173081000003

斯くして得た接合継手について、接合状態の成否の確認、接合界面における金属間化合物の厚さの測定および接合継手の引張試験を、以下の要領で行った。
<接合状態の成否>
接合状態の成否は、作製した接合継手が、接合した後、自ずと剥離する状態であるか否かを確認した。剥離しない場合は接合状態成立をとして「〇」、剥離した場合は接合状態不成立として「×」として示した。
<金属間化合物の厚さ>
金属間化合物の厚さは、作製した接合継手を、接合部を横切る(接合方向と直角)方向に切断し、その断面に露出した接合界面中央部を、走査型電子顕微鏡を用いて5000倍で3ヶ所以上を観察し、金属間化合物の厚さの測定し、その平均値を求めた。
<接合継手の引張試験>
接合継手の引張試験は、作製した接合継手から、図5に示したように、接合部を引張方向に対して直角になるように含む、幅20mmの引張試験片を採取し、引張試験を行い、剪断強度を測定した。
With respect to the bonded joint thus obtained, confirmation of the success or failure of the bonding state, measurement of the thickness of the intermetallic compound at the bonding interface, and tensile testing of the bonded joint were performed in the following manner.
<Success or failure of bonding state>
The success or failure of the bonded state was confirmed by confirming whether or not the manufactured bonded joint was in a state of spontaneous separation after bonding. When there was no peeling, the bonding state was established, and "O" was indicated.
<Thickness of intermetallic compound>
The thickness of the intermetallic compound is determined by cutting the prepared joint in the direction across the joint (perpendicular to the joint direction), and examining the central portion of the joint interface exposed in the cross section with a scanning electron microscope at a magnification of 5000. Three or more points were observed, the thickness of the intermetallic compound was measured, and the average value was obtained.
<Tensile test of bonded joint>
In the tensile test of the bonded joint, a tensile test piece with a width of 20 mm including the joint perpendicular to the tensile direction is taken from the manufactured bonded joint as shown in FIG. 5, and the tensile test is performed. , the shear strength was measured.

上記評価試験の結果を表4に併記した。この結果から、以下のことがわかる。
まず、本発明の条件を満たす、No.1~8の継手(発明例1~8)は、いずれも接合状態が成立し、かつ、接合界面の金属間化合物の厚さが0.9μm以下であったため、6.5kN以上の引張強度(剪断引張強さ)を得ることができた。
これに対して、No.13および14の継手(比較例5、6)は、プローブ先端のアルミニウム合金板と鋼板の合わせ面から鋼板側への挿入量Pが本発明の範囲より小さかったため、接合界面が形成されず、接合後に自ずと剥離する、接合状態不成立となった。
また、No.11および12の継手(比較例3、4)は、ショルダーの回転数SSとプローブの回転数PSが同一で、本発明を逸脱する条件であったため、接合状態は成立したものの、プローブからの発熱量が過大となり、接合界面の金属間化合物の厚さが1.1μm以上になったため、継手の引張強さが4.9kN以下となった。
また、No.9および10の継手(比較例1,2)は、本発明に適合していない図4に示した回転ツールを使用した例であり、合わせ面に対してプローブ先端を均等に当接することができず、均質な新生面を有する接合界面を形成することができなかった。そのため、一応、接合状態が成立し、接合界面の金属間化合物を0.7μm以下とすることができたものの、均質な新生面の領域が狭いため、継手の引張強さが5.3kN以下となった。
The results of the above evaluation test are also shown in Table 4. The results show the following.
First, No. 1, which satisfies the conditions of the present invention. Joints Nos. 1 to 8 (Invention Examples 1 to 8) had a joint state, and the thickness of the intermetallic compound at the joint interface was 0.9 μm or less, so a tensile strength of 6.5 kN or more ( shear tensile strength) could be obtained.
On the other hand, No. In the joints of Nos. 13 and 14 (Comparative Examples 5 and 6), the insertion amount P from the mating surface of the aluminum alloy plate and the steel plate at the tip of the probe to the steel plate side was smaller than the range of the present invention. After that, the bonding state was not established, and the bonding state was detached by itself.
Also, No. In the joints Nos. 11 and 12 (Comparative Examples 3 and 4), the rotation speed SS of the shoulder and the rotation speed PS of the probe were the same, and the conditions deviated from the present invention. Since the amount was excessive and the thickness of the intermetallic compound at the joint interface became 1.1 μm or more, the tensile strength of the joint became 4.9 kN or less.
Also, No. Joints 9 and 10 (comparative examples 1 and 2) are examples using the rotating tool shown in FIG. Therefore, it was not possible to form a bonded interface having a homogeneous new surface. As a result, although a joint state was established and the intermetallic compound at the joint interface was reduced to 0.7 μm or less, the joint tensile strength was 5.3 kN or less because the area of the homogeneous new surface was narrow. rice field.

本発明の技術は、自動車部材のみならず、鉄道車両、航空機、船舶、建築構造物、電気機器等にも利用することができる。 The technology of the present invention can be applied not only to automobile members, but also to railway vehicles, aircraft, ships, building structures, electrical equipment, and the like.

1:アルミニウム合金板
2:鋼板
3:複動式の回転ツール
4:プローブ
5:ショルダー
6:アルミニウム合金板と鋼板の合わせ面
7:接合界面
8:接合部
9:裏当て治具
10:塑性流動領域
1: aluminum alloy plate 2: steel plate 3: double-acting rotary tool 4: probe 5: shoulder 6: mating surface of aluminum alloy plate and steel plate 7: joint interface 8: joint 9: backing jig 10: plastic flow region

Claims (7)

アルミニウム合金板と鋼板とを重ね合わせ、鋼板側に裏当て治具を当接して固定した被接合体を、回転ツールとして先端に同軸的に配設したプローブとショルダーが別体に構成され、回転数を別個に設定可能とした複動式回転ツールを用い、上記複動式回転ツールのプローブを回転させながらアルミニウム合金板側から被接合体内に挿入し、かつ、上記複動式回転ツールのショルダーを回転させながらアルミニウム合金板の表面に当接させ、その状態で上記回転ツールを接合方向に移動させて被接合体を摩擦撹拌し、塑性流動させて摩擦撹拌接合する方法において、
上記プローブには、断面が円形で、先端部が平面もしくは曲率半径が10mm以上の凸型曲面に形成してなるものを用い、
上記プローブの先端部を、アルミニウム合金板の表面からアルミニウム合金板と鋼板との合わせ面もしくは該合わせ面より鋼板側まで挿入し、
上記ショルダーの回転数SS(回/分)をプローブの回転数PS(回/分)より高くすることを特徴とする摩擦撹拌接合方法。
An aluminum alloy plate and a steel plate are superimposed on each other, and a backing jig is abutted on the steel plate side to fix the object to be joined. Using a double-acting rotary tool whose number can be set separately, the probe of the double-acting rotary tool is inserted into the object to be joined from the aluminum alloy plate side while rotating, and the shoulder of the double-acting rotary tool is rotated and brought into contact with the surface of the aluminum alloy plate, and in this state, the rotating tool is moved in the welding direction to frictionally stir the object to be welded, and plastic flow is performed to perform friction stir welding,
The probe has a circular cross section and a flat tip or a convex curved surface with a radius of curvature of 10 mm or more,
Inserting the tip of the probe from the surface of the aluminum alloy plate to the mating surface between the aluminum alloy plate and the steel plate or from the mating surface to the steel plate side,
A friction stir welding method, wherein the number of rotations SS (rotations/minute) of the shoulder is higher than the number of rotations PS (rotations/minute) of the probe.
上記複動式回転ツールは、プローブの先端部に、回転方向とは反対方向に形成された渦状凹部を有することを特徴とする請求項1に記載の摩擦撹拌接合方法。 2. The friction stir welding method according to claim 1, wherein the double-acting rotary tool has a spiral recess formed in the tip of the probe in a direction opposite to the direction of rotation. 上記複動式回転ツールは、ショルダーのアルミニウム合金板と接触する表面がリング状で、平面もしくは凸型曲面に形成してなり、かつ、回転方向とは反対方向に形成された渦状凹部を有することを特徴とする請求項1または2に記載の摩擦撹拌接合方法。 The double-acting rotary tool has a ring-shaped surface that contacts the aluminum alloy plate of the shoulder and is formed into a plane or a convex curved surface, and has a spiral recess formed in a direction opposite to the direction of rotation. The friction stir welding method according to claim 1 or 2, characterized by: ショルダーの回転数SS(回/分)、ショルダーの径SD(mm)、プローブの径PD(mm)および接合速度JS(mm/分)により表される単位接合長さ当たりのショルダーによる発熱量と相関するパラメータ:SS×(SD-PD)/JSが、アルミニウム合金板の厚さt(mm)に対して下記(1)式を満たし、かつ、プローブの回転数PS(回/分)、プローブの径PD(mm)および接合速度JS(mm/分)により表される単位接合長さ当たりのプローブによる発熱量と相関するパラメータ:PS×PD/JSが、アルミニウム合金板の厚さt(mm)に対して下記(2)式を満たすことを特徴とする請求項1~3のいずれか1項に記載の摩擦撹拌接合方法。

3000×t≦SS×(SD-PD)/JS≦34000×t ・・・(1)
100×t≦PS×PD/JS≦1100×t ・・・(2)
The amount of heat generated by the shoulder per unit bonding length represented by the number of shoulder rotations SS (times/min), the shoulder diameter SD (mm), the probe diameter PD (mm), and the bonding speed JS (mm/min) Correlating parameter: SS × (SD 3 - PD 3 ) / JS satisfies the following formula (1) with respect to the thickness t 1 (mm) of the aluminum alloy plate, and the number of rotations of the probe PS (times/minute ), the probe diameter PD (mm) and the welding speed JS (mm/min), a parameter that correlates with the amount of heat generated by the probe per unit welding length: PS×PD 3 /JS is the thickness of the aluminum alloy plate. The friction stir welding method according to any one of claims 1 to 3, wherein the following formula (2) is satisfied for the thickness t 1 (mm).
3000×t 1 ≦SS×(SD 3 −PD 3 )/JS≦34000×t 1 (1)
100×t 1 ≦PS×PD 3 /JS≦1100×t 1 (2)
回転ツールのショルダーの径SD(mm)およびプローブの径PD(mm)がアルミニウム合金板の厚さt(mm)に対して、下記(3)および(4)式を満たすことを特徴とする請求項1~4のいずれか1項に記載の摩擦撹拌接合方法。

4×t≦SD≦15×t ・・・(3)
≦PD≦5×t ・・・(4)
The diameter SD (mm) of the shoulder of the rotary tool and the diameter PD (mm) of the probe satisfy the following formulas (3) and (4) with respect to the thickness t 1 (mm) of the aluminum alloy plate. The friction stir welding method according to any one of claims 1 to 4.
Note 4 x t 1 ≤ SD ≤ 15 x t 1 (3)
t 1 ≤ PD ≤ 5 x t 1 (4)
アルミニウム合金板の表面から回転させながら挿入する回転ツールのプローブ先端の、アルミニウム合金板と鋼板の合わせ面から鋼板側への挿入量P(mm)を、0mm以上0.5mm以下の範囲内とすることを特徴とする請求項1~5のいずれか1項に記載の摩擦撹拌接合方法。 The insertion amount P (mm) of the probe tip of the rotating tool that is inserted from the surface of the aluminum alloy plate while rotating it from the mating surface of the aluminum alloy plate and steel plate to the steel plate side is within the range of 0 mm or more and 0.5 mm or less. The friction stir welding method according to any one of claims 1 to 5, characterized in that: アルミニウム合金板の表面から回転させながら挿入する回転ツールの回転軸を、アルミニウム合金板の表面に対して垂直とすることを特徴とする請求項1~6のいずれか1項に記載の摩擦撹拌接合方法。 Friction stir welding according to any one of claims 1 to 6, wherein the rotation axis of the rotating tool that is rotated and inserted from the surface of the aluminum alloy plate is perpendicular to the surface of the aluminum alloy plate. Method.
JP2020069636A 2020-04-08 2020-04-08 Friction stir welding method for aluminum alloy plate and steel plate Active JP7173081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020069636A JP7173081B2 (en) 2020-04-08 2020-04-08 Friction stir welding method for aluminum alloy plate and steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069636A JP7173081B2 (en) 2020-04-08 2020-04-08 Friction stir welding method for aluminum alloy plate and steel plate

Publications (2)

Publication Number Publication Date
JP2021164943A JP2021164943A (en) 2021-10-14
JP7173081B2 true JP7173081B2 (en) 2022-11-16

Family

ID=78021437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069636A Active JP7173081B2 (en) 2020-04-08 2020-04-08 Friction stir welding method for aluminum alloy plate and steel plate

Country Status (1)

Country Link
JP (1) JP7173081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192969B (en) * 2021-12-31 2023-06-27 沈阳航空航天大学 Reverse backfill type friction stir spot welding method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028732A1 (en) 1999-10-19 2001-04-26 Norsk Hydro Asa Friction stir spot welding method and apparatus
JP2002079383A (en) 2000-09-04 2002-03-19 Nippon Light Metal Co Ltd Method of joining and joining tool
JP2002096183A (en) 2000-09-21 2002-04-02 Showa Denko Kk Joining tool for friction stir joining and friction stir joining method
JP2003048083A (en) 2001-08-01 2003-02-18 Mazda Motor Corp Rotary tool, and treating method and surface treatment method of member using the rotary tool
JP2003225780A (en) 2002-01-30 2003-08-12 Nippon Light Metal Co Ltd Aluminum based structure and production method therefor
JP2006159247A (en) 2004-12-07 2006-06-22 Nissan Motor Co Ltd Working probe for friction stirring and joining, and joining method
JP2007301579A (en) 2006-05-09 2007-11-22 Osaka Industrial Promotion Organization Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same
JP2010260109A (en) 2010-07-22 2010-11-18 Sumitomo Light Metal Ind Ltd Method for joining different kind metal members
JP2016124002A (en) 2014-12-26 2016-07-11 トヨタ自動車株式会社 Friction point joint device and friction point joint method
WO2020032141A1 (en) 2018-08-08 2020-02-13 川崎重工業株式会社 Friction stir welding device and operation method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028732A1 (en) 1999-10-19 2001-04-26 Norsk Hydro Asa Friction stir spot welding method and apparatus
JP2002079383A (en) 2000-09-04 2002-03-19 Nippon Light Metal Co Ltd Method of joining and joining tool
JP2002096183A (en) 2000-09-21 2002-04-02 Showa Denko Kk Joining tool for friction stir joining and friction stir joining method
JP2003048083A (en) 2001-08-01 2003-02-18 Mazda Motor Corp Rotary tool, and treating method and surface treatment method of member using the rotary tool
JP2003225780A (en) 2002-01-30 2003-08-12 Nippon Light Metal Co Ltd Aluminum based structure and production method therefor
JP2006159247A (en) 2004-12-07 2006-06-22 Nissan Motor Co Ltd Working probe for friction stirring and joining, and joining method
JP2007301579A (en) 2006-05-09 2007-11-22 Osaka Industrial Promotion Organization Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same
JP2010260109A (en) 2010-07-22 2010-11-18 Sumitomo Light Metal Ind Ltd Method for joining different kind metal members
JP2016124002A (en) 2014-12-26 2016-07-11 トヨタ自動車株式会社 Friction point joint device and friction point joint method
WO2020032141A1 (en) 2018-08-08 2020-02-13 川崎重工業株式会社 Friction stir welding device and operation method therefor

Also Published As

Publication number Publication date
JP2021164943A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US8960523B2 (en) Friction stir welding of dissimilar metals
JP6350334B2 (en) Joining method and composite rolled material manufacturing method
KR102706548B1 (en) Double-sided friction stir welding method, manufacturing method for cold-rolled steel strip and plated steel strip, double-sided friction stir welding device, and manufacturing equipment for cold-rolled steel strip and plated steel strip
KR102281397B1 (en) Double-sided friction stir welding method and double-sided friction stir welding device for metal plates
JP7247996B2 (en) Rotary tool for double-sided friction stir welding and double-sided friction stir welding method
US20100089977A1 (en) Friction stir welding of dissimilar metals
EP1291115A2 (en) Interface preparation for weld joints
US11964338B2 (en) Method for low-temperature joining of metal materials, and joint structure
JP6901001B2 (en) Rotating tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method
JP2005288499A (en) Friction stir welding method and reforming method thereby
US7766214B2 (en) Friction stir welding method
JP4751625B2 (en) Formation method of welded joint
JP7173081B2 (en) Friction stir welding method for aluminum alloy plate and steel plate
JP2010149134A (en) Friction stir welding method and friction stir welding apparatus
JP2002283070A (en) Friction stir welding method for different kinds of metallic materials
JP2003266182A (en) Friction stir welding method for different kind of metallic material
JP7165315B2 (en) Friction stir welding method for aluminum alloy plate and steel plate
JP3673819B2 (en) Friction stir welding method between metals
JP6675554B2 (en) Dissimilar material friction stir welding method
Chen Refill friction stir spot welding of dissimilar alloys
JP2018089647A (en) Joint member and manufacturing method of the same
Eliseev et al. Influence of Sonication on the Structure and Strength of Aluminum-Steel Bimetals Produced by Friction Stir Welding
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
WO2024219083A1 (en) Rotating tool for double-sided friction stir welding
JP4194419B2 (en) Joining method and joining joint of iron-based material and aluminum-based material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7173081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150