[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6807039B2 - 露光装置及び露光方法、並びにデバイス製造方法 - Google Patents

露光装置及び露光方法、並びにデバイス製造方法 Download PDF

Info

Publication number
JP6807039B2
JP6807039B2 JP2019143646A JP2019143646A JP6807039B2 JP 6807039 B2 JP6807039 B2 JP 6807039B2 JP 2019143646 A JP2019143646 A JP 2019143646A JP 2019143646 A JP2019143646 A JP 2019143646A JP 6807039 B2 JP6807039 B2 JP 6807039B2
Authority
JP
Japan
Prior art keywords
exposure
heads
stage
position information
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019143646A
Other languages
English (en)
Other versions
JP2019194738A (ja
Inventor
柴崎 祐一
祐一 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2019194738A publication Critical patent/JP2019194738A/ja
Application granted granted Critical
Publication of JP6807039B2 publication Critical patent/JP6807039B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70133Measurement of illumination distribution, in pupil plane or field plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Transform (AREA)

Description

本発明は、露光装置及び露光方法、並びにデバイス製造方法に係り、特に、半導体素子などのマイクロデバイス(電子デバイス)を製造するリソグラフィ工程で用いられる露光装置及び露光方法、並びに前記露光装置又は露光方法を用いるデバイス製造方法に関する。
従来、半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。
この種の露光装置では、半導体素子の高集積化によるデバイスパターンの微細化に伴い、高い重ね合わせ精度(位置合わせ精度)が要求されるようになってきた。このため、パターンが形成されるウエハ又はガラスプレート等の基板の位置計測にも一層高い精度が要求されるようになってきた。
かかる要求に応える装置として、例えば特許文献1には、基板テーブル上に搭載された複数のエンコーダタイプのセンサ(エンコーダヘッド)を用いる位置計測システムを備えた露光装置が提案されている。この露光装置では、エンコーダヘッドは、基板テーブルに対向して配置されたスケールに計測ビームを照射し、スケールからの戻りビームを受光することによって、基板テーブルの位置を計測する。
しかるに、特許文献1に記載の位置計測システムを備えた露光装置は、スケールが有するグレーティングの格子ピッチ及び格子形状、すなわちグリッドが、長期にわたり「全く変動しないこと」が高精度な露光を実現するための前提となっている。また、グリッドが変動しても、露光結果に基づいて、その変動を監視する以外にその変動を監視する手段がない。
しかしながら、現在の露光装置のウエハステージに要求されている位置決め誤差の許容値がnmレベルであることを考えると、グリッドがnmレベルで見て長期に渡って変動しないとは考え難い。
また、300ミリウエハ時代から450ミリウエハ時代への移行が目前に迫っており、450ミリウエハ対応の露光装置になると、ウエハステージが大型化する反面、位置決め誤差の許容値は現在より厳しくなる(あるいは現在と同程度となる)ものと考えられる。450ミリウエハ対応の露光装置に上記特許文献1に記載の位置計測システムをそのまま用いることは、ウエハの大型化に伴うスケール(グレーティング)のさらなる大型化を考えても、現実問題としては困難であると考えられる。
同様の問題は、例えば特許文献2などに開示されるエンコーダシステムを備える露光装置でも生じる。
米国特許出願公開第2006/0227309号明細書 米国特許出願公開第2008/0088843号明細書
本発明は、上述した事情の下になされたもので、その第1の態様によれば、投影光学系を介して照明光で基板を露光する露光装置であって、前記基板の露光が行われる露光ステーション内において前記投影光学系を支持するメトロロジーフレームを有するボディと、前記投影光学系の下方に配置されるベース部材と、前記ベース部材上に配置され、前記基板を保持するステージと、前記ステージを駆動する平面モータを含む駆動系と、を有するステージシステムと、前記ステージに設けられる複数のヘッドを有し、前記ステージの位置情報を計測するエンコーダシステムと、前記エンコーダシステムの計測情報に基づいて前記駆動系を制御する制御装置と、を備え、前記複数のヘッドはそれぞれ、前記投影光学系の光軸と直交する所定面と実質的に平行となるように前記メトロロジーフレームに設けられるスケール部材に対してその下方から計測ビームを照射し、前記スケール部材は、それぞれ反射型格子が形成される4つの部分を有し、前記複数のヘッドはそれぞれ、前記所定面内で交差する2方向、及び前記所定面と直交する方向の少なくとも1方向に関して前記位置情報を計測可能であり、前記エンコーダシステムは、前記基板の露光動作において前記露光ステーション内で前記ステージが移動される移動領域内で前記4つの部分とそれぞれ対向するように前記ステージに設けられる4つのヘッド群を有し、前記4つのヘッド群のうち第1ヘッド群は、前記複数のヘッドのうちの少なくとも3つのヘッドを含み、前記少なくとも3つのヘッドのうち、少なくとも2つのヘッドは、前記第1ヘッド群によって前記位置情報の差分が計測されるように前記2方向の一方に関して前記位置情報を計測し、前記制御装置は、前記基板の露光中を含み、前記移動領域内を前記ステージが移動中に、前記第1ヘッド群が前記4つの部分のうち第1部分と対向しつつ前記ステージが移動されるように前記駆動系を制御するとともに、前記第1ヘッド群で計測される位置情報に基づいて前記第1部分のグリッド誤差を較正する露光装置が、提供される。
本発明の第2の態様によれば、デバイス製造方法であって、第1の態様に係る露光装置を用いて基板を露光することと、前記露光された基板を現像することと、を含むデバイス製造方法が、提供される。
本発明の第3の態様によれば、投影光学系を介して照明光で基板を露光する露光方法であって、前記投影光学系の下方でベース部材上に配置されるステージによって前記基板を保持することと、前記ステージに設けられる複数のヘッドを有するエンコーダシステムによって、前記ステージの位置情報を計測することと、前記複数のヘッドはそれぞれ、前記投影光学系の光軸と直交する所定面と実質的に平行となるように前記基板の露光が行われる露光ステーション内において前記投影光学系を支持するメトロロジーフレームに設けられるスケール部材に対してその下方から計測ビームを照射し、前記エンコーダシステムの計測情報に基づいて、前記ステージを駆動する平面モータを含む駆動系を制御することと、を含み、前記スケール部材は、それぞれ反射型格子が形成される4つの部分を有し、前記複数のヘッドはそれぞれ、前記所定面内で交差する2方向、及び前記所定面と直交する方向の少なくとも1方向に関して前記位置情報を計測可能であり、前記エンコーダシステムは、前記基板の露光動作において前記露光ステーション内で前記ステージが移動される移動領域内で前記4つの部分とそれぞれ対向するように前記ステージに設けられる4つのヘッド群を有し、前記4つのヘッド群のうち第1ヘッド群は、前記複数のヘッドのうちの少なくとも3つのヘッドを含み、前記少なくとも3つのヘッドのうち、少なくとも2つのヘッドは、前記第1ヘッド群によって前記位置情報の差分が計測されるように前記2方向の一方に関して前記位置情報を計測し、前記基板の露光中を含み、前記移動領域内を前記ステージが移動中に、前記第1ヘッド群が前記4つの部分のうち第1部分と対向しつつ前記ステージが移動されるとともに、前記第1ヘッド群で計測される位置情報に基づいて前記第1部分のグリッド誤差が較正される露光方法が、提供される。
本発明の第4の態様によれば、デバイス製造方法であって、第3の態様に係る露光方法を用いて基板を露光することと、前記露光された基板を現像することと、を含むデバイス製造方法が、提供される。
一実施形態に係る露光装置の構成を概略的に示す図である。 投影光学系の周囲に配置されるエンコーダシステムの構成を示す図である。 アライメント系の周囲に配置されるエンコーダシステムの構成を示す図である。 ウエハテーブル上面の第1象限のコーナー部分に配置される第1ヘッド群に属する3つのヘッドの配置の一例を説明するための図である。 ウエハステージを一部破砕して示す拡大図である。 ウエハステージ上のエンコーダヘッドの配置を示す図である。 ウエハテーブル上面の第1象限のコーナー部分に配置された第1ヘッド群の配置及び計測方向を示す図である。 図8(A)〜図8(C)は、それぞれ、ウエハテーブル上面の第3象限のコーナー部分に配置された第3ヘッド群、ウエハテーブル上面の第2象限のコーナー部分に配置された第2ヘッド群、及びウエハテーブル上面の第4象限のコーナー部分に配置された第4ヘッド群の配置及び計測方向を示す図である。 図1の露光装置におけるステージ制御に関連する制御系の主要な構成を示すブロック図である。 エンコーダヘッド及びスケール板の配置とエンコーダシステムの計測領域との関係を示す図である。 図11(A)及び図11(B)は、それぞれ各ヘッド群に属するヘッドの他の配置例を示す図である。
以下、本発明の一実施形態について、図1〜図10に基づいて説明する。
図1には、一実施形態に係る露光装置100の概略構成が示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、すなわち、いわゆるスキャナである。後述するように、本実施形態では投影光学系PLが設けられており、以下においては、投影光学系PLの光軸AXと平行な方向をZ軸方向、これに直交する面内でレチクルとウエハとが相対走査される方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行なう。
露光装置100は、照明系10、レチクルRを保持するレチクルステージRST、投影ユニットPU、ウエハWが載置されるウエハステージWST1,WST2を含むウエハステージ装置50、及びこれらの制御系等を備えている。
照明系10は、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、光源と、オプティカルインテグレータ等を含む照度均一化光学系、及びレチクルブラインド等(いずれも不図示)を有する照明光学系とを含む。照明系10は、レチクルブラインド(マスキングシステム)で設定(制限)されたレチクルR上のスリット状の照明領域IARを照明光(露光光)ILによりほぼ均一な照度で照明する。ここで、照明光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられている。
レチクルステージRST上には、回路パターンなどがそのパターン面(図1における下面)に形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系11(図1では不図示、図9参照)によって、XY平面内で微少駆動可能であるとともに、走査方向(図1における紙面直交方向であるY軸方向)に所定の走査速度で駆動可能となっている。
レチクルステージRSTのXY平面(移動面)内の位置情報(θz方向の位置(θz回転量)の情報を含む)は、図1に示される、移動鏡15(実際には、Y軸方向に直交する反射面を有するY移動鏡(あるいは、レトロリフレクタ)とX軸方向に直交する反射面を有するX移動鏡とが設けられている)に測長ビームを照射するレチクルレーザ干渉計(以下、「レチクル干渉計」という)16によって例えば0.25nm程度の分解能で常時検出される。なお、レチクルRの少なくとも3自由度方向の位置情報を計測するために、レチクル干渉計16の代わりに、あるいはそれと組み合わせて、例えば米国特許出願公開第2007/0288121号明細書などに開示されているエンコーダシステムを用いても良い。
投影ユニットPUは、レチクルステージRSTの図1における下方(−Z側)に配置され、不図示のボディの一部を構成するメインフレーム(メトロロジーフレーム)に保持されている。投影ユニットPUは、鏡筒40と、該鏡筒40に保持された複数の光学素子から成る投影光学系PLとを有している。投影光学系PLとしては、例えば、Z軸方向と平行な光軸AXに沿って配列された複数の光学素子(レンズエレメント)からなる屈折光学系が用いられている。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4倍、1/5倍又は1/8倍など)を有する。このため、照明系10からの照明光ILによって照明領域IARが照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PLを介してその照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLの第2面(像面)側に配置される、表面にレジスト(感応剤)が塗布されたウエハW上の、前記照明領域IARに共役な領域(露光領域)IAに形成される。そして、レチクルステージRSTとウエハステージWST1又はWST2との同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では照明系10、及び投影光学系PLによってウエハW上にレチクルRのパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
なお、メインフレームは、従来用いられている門型、及び例えば米国特許出願公開第2008/0068568号明細書などに開示される吊り下げ支持型のいずれであっても良い。
鏡筒40の−Z側端部の周囲には、例えば鏡筒40の下端面とほぼ同一面となる高さで、スケール板21がXY平面に平行に配置されている。スケール板21は、本実施形態では図2に示されるように、例えばL字状の4つの部分(部品)21,21,21,21から構成され、その中央に形成される例えば矩形の開口21a内に鏡筒40の−Z側端部が挿入されている。ここで、スケール板21のX軸方向及びY軸方向の幅はそれぞれa及びb、開口21aのX軸方向及びY軸方向の幅はそれぞれai及びbiである。
スケール板21から+X方向に離間した位置には、図1に示されるように、スケール板21とほぼ同一平面上にスケール板22が、配置されている。スケール板22も、図3に示されるように、例えばL字状の4つの部分(部品)22,22,22,22から構成され、その中央に形成される例えば矩形の開口22a内に後述するアライメント系ALGの−Z側端部が挿入されている。スケール板22のX軸方向及びY軸方向の幅はそれぞれa及びb、開口22aのX軸方向及びY軸方向の幅はそれぞれai及びbiである。なお、本実施形態ではX軸及びY軸方向に関してスケール板21、22の幅、及び開口21a、22aの幅をそれぞれ同一としたが、必ずしも同一の幅とする必要はなく、X軸及びY軸方向の少なくとも一方に関してその幅を異ならせても良い。
本実施形態では、スケール板21,22は、投影ユニットPU及びアライメント系ALGを支持する不図示のメインフレーム(メトロロジーフレーム)に吊り下げ支持されている。スケール板21,22の下面(−Z側の面)には、X軸を基準とする−45度方向(Y軸を基準とする−135度方向)を周期方向とする所定ピッチ、例えば1μmの格子と、X軸を基準とする45度方向(Y軸を基準とする−45度方向)を周期方向とする所定ピッチ、例えば1μmの格子とから成る反射型の2次元グレーティングRG(図2、図3及び図5参照)が形成されている。ただし、2次元グレーティングRG及び後述するエンコーダヘッドの構成上、スケール板21,22を構成する部分21〜21,22〜22のそれぞれの外縁近傍には幅tの非有効領域が含まれる。スケール板21,22の2次元グレーティングRGは、それぞれ、少なくとも露光動作時及びアライメント(計測)時におけるウエハステージWST1,WST2の移動範囲をカバーしている。
ウエハステージ装置50は、図1に示されるように、床面上に複数(例えば3つ又は4つ)の防振機構(図示省略)によってほぼ水平に支持されたステージベース12、ステージベース12上に配置されたウエハステージWST1,WST2、ウエハステージWST1,WST2を駆動するウエハステージ駆動系27(図1では一部のみ図示、図9参照)、及びウエハステージWST1,WST2の位置を計測する計測系等を備えている。計測系は、図9に示される、エンコーダシステム70,71及びウエハレーザ干渉計システム(以下、ウエハ干渉計システムと略称する)18等を備えている。なお、エンコーダシステム70,71及びウエハ干渉計システム18については、さらに後述する。ただし、本実施形態では、ウエハ干渉計システム18は必ずしも設けなくても良い。
ステージベース12は、図1に示されるように、平板状の外形を有する部材からなり、その上面は平坦度が高く仕上げられ、ウエハステージWST1,WST2の移動の際のガイド面とされている。ステージベース12の内部には、XY二次元方向を行方向、列方向としてマトリックス状に配置された複数のコイル14aを含むコイルユニットが、収容されている。
なお、ステージベース12とは別にこれを浮上支持するための別のベース部材を設けて、ステージベース12を、ウエハステージWST1,WST2の駆動力の反力の作用により、運動量保存則に従って移動するカウンターマス(反力キャンセラ)として機能させても良い。
ウエハステージWST1は、図1に示されるように、ステージ本体91と、該ステージ本体91の上方に配置され、Z・チルト駆動機構32a(図1では不図示、図9参照)によって、ステージ本体91に対して非接触で支持されたウエハテーブルWTB1とを有している。同様に、ウエハステージWST2は、図1に示されるように、ステージ本体91と、該ステージ本体91の上方に配置され、Z・チルト駆動機構32b(図1では不図示、図9参照)によって、ステージ本体91に対して非接触で支持されたウエハテーブルWTB2とを有している。
本実施形態では、ウエハステージWST2とウエハステージWST1とは、同様に構成されているので、以下では、ウエハステージWST1を代表的に取り上げて説明する。
ウエハテーブルWTB1は、Z・チルト駆動機構32aによって、電磁力等の上向きの力(斥力)と、自重を含む下向きの力(引力)との釣り合いを3点で調整することで、非接触で支持されるとともに、少なくともZ軸方向、θx方向、及びθy方向の3自由度方向に微小駆動される。ステージ本体91の底部には、スライダ部91aが設けられている。スライダ部91aは、XY平面内でXY二次元配列された複数の磁石から成る磁石ユニットと、該磁石ユニットを収容する筐体と、該筐体の底面の周囲に設けられた複数のエアベアリングとを有している。磁石ユニットは、前述のコイルユニットとともに、例えば米国特許第5,196,745号明細書などに開示される電磁力(ローレンツ力)駆動による平面モータ30を構成している。なお、平面モータ30としては、ローレンツ力駆動方式に限らず、可変磁気抵抗駆動方式の平面モータを用いることもできる。
ウエハステージWST1は、上記複数のエアベアリングによってステージベース12上に所定のクリアランス(隙間/間隔/間隙(ギャップ)/空間距離)、例えば数μm程度のクリアランスを介して浮上支持され、平面モータ30によって、X軸方向、Y軸方向及びθz方向に駆動される。従って、ウエハテーブルWTB1(ウエハW)は、ステージベース12に対して、6自由度方向(X軸方向、Y軸方向、Z軸方向、θx方向、θy方向及びθz方向(以下、X,Y,Z,θx、θy、θz)と略記する)に駆動可能である。
コイルユニットを構成する各コイル14aに供給される電流の大きさ及び方向が、主制御装置20によって制御される。本実施形態では、図9に示されるように、ウエハステージWST1及びWST2をそれぞれ駆動する共通の固定子(コイルユニット)を有する一対の平面モータ30と、ウエハステージWST1及びWST2がそれぞれ備えるZ・チルト駆動機構32a、32bとを含んで、ウエハステージ駆動系27が構成されている。なお、平面モータ30はムービングマグネット方式に限らず、ムービングコイル方式でも良い。また、平面モータ30として、磁気浮上方式の平面モータを用いても良い。この場合、前述のエアベアリングを設けなくても良い。また、平面モータ30によってウエハステージWST1を6自由度方向に駆動することとしても良い。また、ウエハテーブルWTB1を、X軸方向、Y軸方向、θz方向のうちの少なくとも一方向に微動可能としても良い。すなわち、ウエハステージWST1を粗微動ステージにより構成しても良い。
ウエハテーブルWTB1上には、不図示のウエハホルダを介してウエハWが載置され、不図示のチャック機構によって例えば真空吸着(又は静電吸着)され、固定されている。図示は省略されているが、ウエハテーブルWTB1上には、後述する一対のレチクルアライメント系13A,13B及びアライメント系ALGのそれぞれにより検出される一対の第1基準マーク、及び第2基準マーク等の複数の基準マークが形成された1つ又は複数の基準マーク部材が設けられている。
エンコーダシステム70,71は、それぞれ、投影光学系PL直下の領域を含む露光時移動領域とアライメント系ALG直下の領域を含む計測時移動領域とにおけるウエハテーブルWTB1,WTB2の6自由度方向(X,Y,Z,θx,θy,θz)の位置情報を求める(計測する)。ここで、エンコーダシステム70,71の構成等について詳述する。なお、露光時移動領域(第1移動領域)は、投影光学系PLを介してウエハの露光が行われる露光ステーション(第1領域)内で、露光動作中にウエハステージが移動される領域であり、その露光動作は、例えばウエハ上でパターンを転写すべき全てのショット領域の露光だけでなく、その露光のための準備動作(例えば、前述の基準マークの検出)なども含む。計測時移動領域(第2移動領域)は、アライメント系ALGによるウエハのアライメントマークの検出によってその位置情報の計測が行われる計測ステーション(第2領域)内で、計測動作中にウエハステージが移動される領域であり、その計測動作は、例えばウエハの複数のアライメントマークの検出だけでなく、アライメント系ALGによる基準マークの検出(さらには、Z軸方向に関するウエハの位置情報(段差情報)の計測)なども含む。
ウエハテーブルWTB1,WTB2には、それぞれ図2及び図3の平面図に示されるように、上面の中心(ウエハWの中心に一致)を原点として、第1象限、第2象限、第3象限及び第4象限の各コーナーの部分のそれぞれに、第1エンコーダヘッド群61、第2エンコーダヘッド群61、第3エンコーダヘッド群61、及び第4エンコーダヘッド群61が配置されている。なお、以下では、エンコーダヘッド群をヘッド群と略記する。第1ヘッド群61は、ウエハテーブルWTB1、WTB2上面の+X側かつ+Y側のコーナー部分に配置された3つのエンコーダヘッド(以下、適宜、ヘッドと略称する)60,601a,601b、を含む。3つのヘッド60,601a,601bは、本実施形態では、直角三角形の各頂点位置に配置されている。より具体的には、ヘッド60は、ウエハテーブルWTB1、WTB2上面の+X側かつ+Y側の角(頂点)の近傍に設けられている。ヘッド601aは、図4に拡大して示されるように、ヘッド60の設置位置から−X方向にΔxだけずれた点に配置されている。また、ヘッド601bは、ヘッド60の設置位置から−Y方向にΔyだけずれた点に配置されている。
図2(又は図3)に戻り、第2ヘッド群61は、ウエハテーブルWTB1、WTB2上面の−X側かつ+Y側のコーナー部分に配置された3つのヘッド60,602a,602bを含む。3つのヘッド60,602a,602bは、本実施形態では、ウエハテーブルWTB1、WTB2上に、その上面の中心(上述の原点)を通るY軸に平行な直線(センターライン)に関して、3つのヘッド60,601a,601bと対称となる配置で設けられている。
第3ヘッド群61は、ウエハテーブルWTB1、WTB2上面の−X側かつ−Y側のコーナー部分に配置された3つのヘッド60,603a,603bを含む。3つのヘッド60,603a,603bは、本実施形態では、ウエハテーブルWTB1、WTB2上に、その上面の中心に関して、3つのヘッド60,601a,601bと対称(点対称)となる配置で設けられている。
第4ヘッド群61は、ウエハテーブルWTB1、WTB2上面の+X側かつ−Y側のコーナー部分に配置された3つのヘッド60,604a,604bを含む。3つのヘッド60,604a,604bは、本実施形態では、ウエハテーブルWTB1、WTB2上に、その上面の中心を通るX軸に平行な直線(センターライン)に関して、3つのヘッド60,601a,601bと対称となる配置で設けられている。
図2に示されるように、ヘッド60,60間のX軸方向の離間距離とヘッド60,60間のX軸方向の離間距離は互いに等しくAである。また、ヘッド60,60間のY軸方向の離間距離とヘッド60,60間のY軸方向の離間距離は互いに等しくBである。これらの離間距離A,Bは、スケール板21の開口21aの幅ai,biよりも大きい。厳密には、前述の非有効領域の幅tを考慮して、A≧ai+2t,B≧bi+2tである。ヘッド60〜60、601a〜604a、及び601b〜604bのそれぞれは、図5にヘッド60を代表的に採り上げて示されるように、ウエハテーブルWTB1,WTB2に形成されたZ軸方向の所定深さの穴の内部にそれぞれ収容されている。
第1ヘッド群61に属するヘッド60、601a、601bは、図6及び図7に示されるように、X軸を基準として135度(−45度)の方向及びZ軸方向を計測方向とする2次元ヘッドである。同様に、第3ヘッド群61に属するヘッド60、603a、603bは、図6及び図8(A)に示されるように、X軸を基準として135度(−45度)の方向及びZ軸方向を計測方向とする2次元ヘッドである。
第2ヘッド群61に属するヘッド60、602a、602bは、図6及び図8(B)に示されるように、X軸を基準として45度(−135度)の方向及びZ軸方向を計測方向とする2次元ヘッドである。同様に、第4ヘッド群61に属するヘッド60、604a、604bは、図6及び図8(C)に示されるように、X軸を基準として45度(−135度)の方向及びZ軸方向を計測方向とする2次元ヘッドである。
第1ヘッド群61に属するヘッド(60、601a、601b)、第2ヘッド群61に属するヘッド(60、602a、602b)、第3ヘッド群61に属するヘッド(60、603a、603b)、及び第4ヘッド群61に属するヘッド(60、604a、604b)は、図2及び図5から明らかなように、それぞれ、対向するスケール板21の部分21、21、21、21、又はスケール板22の部分22、22、22、22の表面に形成された2次元グレーティングRGに計測ビーム(図5中の符号MB参照)を照射し、2次元グレーティングRGからの反射・回折ビームを受光することにより、それぞれの計測方向についてのウエハテーブルWTB1,WTB2(ウエハステージWST1,WST2)の位置情報を計測する。ここで、ヘッド60、601a、601b、60、602a、602b、60、603a、603b、60、604a及び604bのそれぞれとして、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のセンサヘッドを用いることができる。
上述のようにして構成されたヘッド60、601a、601b、60、602a、602b、60、603a、603b、60、604a及び604bのそれぞれでは、計測ビームの空気中での光路長が極短いため、空気揺らぎの影響が殆ど無視できる。ただし、本実施形態では、光源及び光検出器は各ヘッドの外部、具体的には、ステージ本体91の内部(又は外部)に設けられ、光学系のみが各ヘッドの内部に設けられている。そして、光源及び光検出器と、光学系とは、不図示の光ファイバを介して光学的に接続されている。ウエハテーブルWTB1(又はWTB2)の位置決め精度を向上させるため、ステージ本体91とウエハテーブルWTB1(又はWTB2)との間で、レーザ光等を空中伝送しても良い。
ウエハステージWST1,WST2が前述の露光時移動領域内に位置する際には、第1ヘッド群61に属するヘッド60、601a、601bは、スケール板21(の部分21)に計測ビーム(計測光)を照射し、スケール板21の表面(下面)に形成されたX軸を基準として135度の方向、すなわちX軸を基準として−45度の方向(以下、適宜、−45度方向又はα方向と称する)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の−45度方向(α方向)及びZ軸方向の位置を計測する2次元エンコーダ70、701a、701b、及び71、711a、711b(図9参照)を構成する。
ウエハステージWST1,WST2が前述の露光時移動領域内に位置する際には、第2ヘッド群61に属するヘッド60、602a、602bは、スケール板21(の部分21)に計測ビーム(計測光)を照射し、スケール板21の表面(下面)に形成されたX軸を基準として−135度の方向、すなわちX軸を基準として45度の方向(以下、適宜、45度方向又はβ方向と称する)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の45度方向(β方向)及びZ軸方向の位置を計測する2次元エンコーダ70、702a、702b、及び71、712a、712b(図9参照)を構成する。
ウエハステージWST1,WST2が前述の露光時移動領域内に位置する際には、第3ヘッド群61に属するヘッド60、603a、603bは、スケール板21(の部分21)に計測ビーム(計測光)を照射し、スケール板21の表面(下面)に形成された−45度方向(α方向)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の−45度方向(α方向)及びZ軸方向の位置を計測する2次元エンコーダ70、703a、703b、及び71、713a、713b(図9参照)を構成する。
ウエハステージWST1,WST2が前述の露光時移動領域内に位置する際には、第4ヘッド群61に属するヘッド60、604a、604bは、スケール板21(の部分21)に計測ビーム(計測光)を照射し、スケール板21の表面(下面)に形成された45度方向(β方向)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の45度方向(β方向)及びZ軸方向の位置を計測する2次元エンコーダ70、704a、704b、及び71、714a、714b(図9参照)を構成する。
また、ウエハステージWST1,WST2が前述の計測時移動領域内に位置する際には、第1ヘッド群61に属するヘッド60、601a、601bは、スケール板22(の部分22)に計測ビーム(計測光)を照射し、スケール板22の表面(下面)に形成された−45度方向(α方向)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の−45度方向(α方向)及びZ軸方向の位置を計測する2次元エンコーダ70、701a、701b、及び71、711a、711b(図9参照)を構成する。
ウエハステージWST1,WST2が前述の計測時移動領域内に位置する際には、第2ヘッド群61に属するヘッド60、602a、602bは、スケール板22(の部分22)に計測ビーム(計測光)を照射し、スケール板22の表面(下面)に形成された45度方向(β方向)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の45度方向(β方向)及びZ軸方向の位置を計測する2次元エンコーダ70、702a、702b、及び71、712a、712b(図9参照)を構成する。
ウエハステージWST1,WST2が前述の計測時移動領域内に位置する際には、第3ヘッド群61に属するヘッド60、603a、603bは、スケール板22(の部分22)に計測ビーム(計測光)を照射し、スケール板22の表面(下面)に形成された−45度方向(α方向)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の−45度方向(α方向)及びZ軸方向の位置を計測する2次元エンコーダ70、703a、703b、及び71、713a、713b(図9参照)を構成する。
ウエハステージWST1,WST2が前述の計測時移動領域内に位置する際には、第4ヘッド群61に属するヘッド60、604a、604bは、スケール板22(の部分22)に計測ビーム(計測光)を照射し、スケール板22の表面(下面)に形成された45度方向(β方向)を周期方向とする格子からの回折ビームを受光して、ウエハテーブルWTB1,WTB2の45度方向(β方向)及びZ軸方向の位置を計測する2次元エンコーダ70、704a、704b、及び71、714a、714b(図9参照)を構成する。
上述の説明からわかるように、本実施形態では、スケール板21,22のどちらに計測ビーム(計測光)を照射するか、すなわち、ウエハステージWST1,WST2が前述の露光時移動領域、計測時移動領域のいずれの領域内にあるかにかかわらず、ウエハステージWST1上のヘッド60、601a、601b、60、602a、602b、60、603a、603b、60、604a及び604bは、計測ビーム(計測光)を照射しているスケール板とともに、それぞれ2次元エンコーダ70、701a、701b、70、702a、702b、70、703a、703b、70、704a、704bを構成し、ウエハステージWST2上のヘッド60、601a、601b、60、602a、602b、60、603a、603b、60、604a及び604bは、計測ビーム(計測光)を照射しているスケール板とともに、それぞれ2次元エンコーダ71、711a、711b、71、712a、712b、71、713a、713b、71、714a、714bを構成するものとしている。
2次元エンコーダ(以下、適宜、エンコーダと略称する)70、701a、701b、70、702a、702b、70、703a、703b、70、704a、704b、71、711a、711b、71、712a、712b、71、713a、713b、71、714a、714bそれぞれの計測値は、主制御装置20(図9参照)に供給される。主制御装置20は、エンコーダ70〜70又はエンコーダ71〜71のうち、2次元グレーティングRGが形成されたスケール板21(を構成する部分21〜21)の下面に対向する少なくとも3つのエンコーダ(すなわち、有効な計測値を出力している少なくとも3つのエンコーダ)の計測値に基づいて、投影光学系PL直下の領域を含む露光時移動領域内でのウエハテーブルWTB1,WTB2の6自由度方向(X、Y、Z、θx、θy、θz)の位置情報を求める。
主制御装置20は、ウエハテーブルWTB1,WTB2の6自由度方向(X、Y、Z、θx、θy、θz)の位置情報に計測用いられた少なくとも3つのエンコーダのヘッドが属する少なくとも3群の全てのヘッドの計測値を用いて、例えば露光中を含み、露光時移動領域内をウエハテーブルWTB1,WTB2が移動中に、スケール板21の2次元グレーティングRGの変動に対応する露光時座標系のグリッド(グリッド誤差)のキャリブレーション(これについては、後述する)を実行する。
同様に、主制御装置20は、エンコーダ70〜70又はエンコーダ71〜71のうち、2次元グレーティングRGが形成されたスケール板22(を構成する部分22〜22)の下面に対向する少なくとも3つのエンコーダ(すなわち、有効な計測値を出力している少なくとも3つのエンコーダ)の計測値に基づいて、アライメント系ALG直下の領域を含む計測時移動領域内でのウエハテーブルWTB1,WTB2の6自由度方向(X、Y、Z、θx、θy、θz)の位置情報を求める。
主制御装置20は、ウエハテーブルWTB1,WTB2の6自由度方向(X、Y、Z、θx、θy、θz)の位置情報に計測用いられた少なくとも3つのエンコーダのヘッドが属する少なくとも3群の全てのヘッドの計測値を用いて、例えばアライメント中を含み、計測時移動領域内をウエハテーブルWTB1,WTB2が移動中に、スケール板22の2次元格子RGの変動に対応する計測時座標系のグリッド(グリッド誤差)のキャリブレーション(これについては、後述する)を実行することとしても良い。
また、本実施形態の露光装置100では、ウエハステージWST1,WST2(ウエハテーブルWTB1,WTB2)の位置は、ウエハ干渉計システム18(図9参照)によって、エンコーダシステム70,71とは独立して、計測可能である。ウエハ干渉計システム18の計測値は、例えばエンコーダシステム70,71の出力異常時のバックアップ用などとして補助的に用いられる。なお、ウエハ干渉計システム18の詳細は省略する。
アライメント系ALGは、図1に示されるように、投影光学系PLの+X側に所定間隔を隔てて配置されたオフアクシス方式のアライメント系である。本実施形態では、アライメント系ALGとして、一例としてハロゲンランプ等のブロードバンド(広帯域)光でマークを照明し、このマーク画像を画像処理することによってマーク位置を計測する画像処理方式のアライメントセンサの一種であるFIA(Field Image Alignment)系が用いられている。アライメント系ALGからの撮像信号は、不図示のアライメント信号処理系を介して主制御装置20(図9参照)に供給される。
なお、アライメント系ALGとしては、FIA系に限らず、例えばコヒーレントな検出光をマークに照射し、そのマークから発生する散乱光又は回折光を検出する、あるいはマークから発生する2つの回折光(例えば同次数の回折光、あるいは同方向に回折する回折光)を干渉させて検出するアライメントセンサを単独であるいは適宜組み合わせて用いることは勿論可能である。アライメント系ALGとして、例えば米国特許出願公開第2008/0088843号明細書などに開示される、複数の検出領域を有するアライメント系を採用しても良い。
この他、本実施形態の露光装置100には、アライメント系ALGと一緒に計測ステーションに配置され、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成の斜入射方式の多点焦点位置検出系(以下、多点AF系と略述する)AF(図1では不図示、図9参照)が設けられている。多点AF系AFによる計測動作はその少なくとも一部がアライメント系ALGによるマーク検出動作と並行して行われるとともに、前述のエンコーダシステムによってその計測動作中にウエハテーブルの位置情報が計測される。多点AF系AFの検出信号は、AF信号処理系(不図示)を介して主制御装置20に供給される(図9参照)。主制御装置20は、多点AF系AFの検出信号と前述のエンコーダシステムの計測情報に基づいて、ウエハW表面のZ軸方向の位置情報(段差情報/凹凸情報)を検出し、露光動作ではその事前検出情報と前述のエンコーダシステムの計測情報(Z軸、θx及びθy方向の位置情報)とに基づいて走査露光中のウエハWのいわゆるフォーカス・レベリング制御を実行する。なお、露光ステーション内で投影ユニットPUの近傍に多点AF系を設け、露光動作時にウエハ表面の位置情報(凹凸情報)を計測しつつウエハテーブルを駆動して、ウエハWのフォーカス・レベリング制御を実行することとしても良い。
露光装置100では、さらに、レチクルRの上方に、例えば米国特許第5,646,413号明細書などに開示される露光波長の光を用いたTTR(Through The Reticle)方式の一対のレチクルアライメント系13A,13B(図1では不図示、図9参照)が設けられている。レチクルアライメント系13A,13Bの検出信号は、不図示のアライメント信号処理系を介して主制御装置20に供給される。なお、レチクルアライメント系に代えて、ウエハステージWST上に設けられた不図示の空間像計測器を用いてレチクルアライメントを行っても良い。
図9には、露光装置100のステージ制御に関連する制御系が一部省略して、ブロック図にて示されている。この制御系は、主制御装置20を中心として構成されている。主制御装置20は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等からなるいわゆるマイクロコンピュータ(又はワークステーション)を含み、装置全体を統括して制御する。
上述のようにして構成された露光装置100では、デバイスの製造に際し、主制御装置20により、ウエハがローディングされたウエハステージWST1,WST2の一方を計測ステーション(計測時移動領域)内で移動して、アライメント系ALG及び多点AF系によるウエハの計測動作が実行される。すなわち、計測時移動領域内でウエハステージWST1,WST2の一方に保持されたウエハWに対して、アライメント系ALGを用いたマーク検出、いわゆるウエハアライメント(例えば米国特許第4,780,617号明細書などに開示されるエンハンスト・グローバル・アライメント(EGA)など)と、多点AF系を用いたウエハの面情報(段差/凹凸情報)の計測とが行われる。その際、エンコーダシステム70(エンコーダ70〜70)又はエンコーダシステム71(エンコーダ71〜71)により、ウエハテーブルWTB1,WTB2の6自由度方向(X,Y,Z,θx,θy,θz)の位置情報が求められる(計測される)。なお、ウエハアライメントの開始前又は終了後に、主制御装置20により、アライメント系ALGを用いて、ウエハステージWST1,WST2の一方に設けられた基準マーク部材上の第2基準マークの位置が計測されている。そして、ウエハアライメントの結果として算出されたウエハW上の複数のショット領域の配列座標は、第2基準マークを基準とする配列座標に置き換えられている。
ウエハアライメントなどの計測動作後、一方のウエハステージ(WST1又はWST2)は露光時移動領域に移動し、主制御装置20により、レチクルアライメント系13A,13B、ウエハテーブル(WTB1又はWTB2)上の基準マーク部材(不図示)などを用いて、通常のスキャニング・ステッパと同様の手順で、レチクルパターンの投影中心と一対の第1基準マークの中心との位置関係を求めるレチクルアライメント等が行われる。
そして、主制御装置20により、そのレチクルアライメントの結果とウエハアライメントの結果として得られた第2基準マークを基準とする複数のショット領域の配列座標とに基づいて、ステップ・アンド・スキャン方式の露光動作が行われ、ウエハW上の複数のショット領域にレチクルRのパターンがそれぞれ転写される。ステップ・アンド・スキャン方式の露光動作は、レチクルステージRSTとウエハステージWST1又はWST2との同期移動を行う走査露光動作と、ウエハステージWST1又はWST2をショット領域の露光のための加速開始位置に移動させるショット間移動(ステッピング)動作とを交互に繰り返すことで行われる。露光動作時には、エンコーダシステム70(エンコーダ70〜70)又はエンコーダシステム71(エンコーダ71〜71)により、一方のウエハテーブル(WTB1又はWTB2)の6自由度方向(X,Y,Z,θx,θy,θz)の位置情報が求められる(計測される)。
また、本実施形態の露光装置100は、2つのウエハステージWST1,WST2を備えている。そこで、一方のウエハステージ、例えばウエハステージWST1上にロードされたウエハに対してステップ・アンド・スキャン方式の露光を行うのと並行して、他方のウエハステージWST2上に載置されたウエハに対してウエハアライメントなどを行う、並行処理動作が行われる。
本実施形態の露光装置100では、前述の通り、主制御装置20は、露光時移動領域内及び計測時移動領域内のいずれにおいても、エンコーダシステム70(図9参照)を用いて、ウエハテーブルWTB1の6自由度方向(X,Y,Z,θx,θy,θz)の位置情報を求める(計測する)。また、主制御装置20は、露光時移動領域内及び計測時移動領域内のいずれにおいても、エンコーダシステム71(図9参照)を用いて、ウエハテーブルWTB2の6自由度方向(X,Y,Z,θx,θy,θz)の位置情報を求める(計測する)。
ここで、エンコーダシステム70,71によるXY平面内の3自由度方向(X軸方向,Y軸方向及びθz方向(X,Y,θz)とも略記する))の位置計測の原理などについてさらに説明する。ここでは、エンコーダヘッド60〜60又はエンコーダ70〜70の計測値は、エンコーダヘッド60〜60又はエンコーダ70〜70のZ軸方向でない計測方向の計測値を意味する。
本実施形態では、前述のようなエンコーダヘッド60〜60及びスケール板21の構成及び配置を採用したことにより、露光時移動領域内ではエンコーダヘッド60〜60のうちの少なくとも3つが、常時、スケール板21(の対応する部分21〜21)に対向する。
図10には、ウエハステージWST1上のエンコーダヘッド60〜60及びスケール板21の各部分21〜21の配置とエンコーダシステム70の計測領域A〜Aとの関係が示されている。図10では、ウエハテーブルWTB1の6自由度方向の位置情報の計測に用いられるヘッド60、60、60、及び60のみが図示されている。なお、ウエハステージWST2はウエハステージWST1と同様に構成されているので、ここではウエハステージWST1についてのみ説明する。
ウエハテーブルWTB1の中心(ウエハの中心に一致)が、露光時移動領域内で、かつ露光中心(露光領域IAの中心)Pに対して+X側かつ+Y側の領域(露光中心Pを原点とする第1象限内の領域(ただし、領域Aを除く))である第1領域A内に位置する場合、ウエハステージWST1上のヘッド60,60,60がそれぞれスケール板21の部分21,21,21に対向する。第1領域A内では、ヘッド60,60,60(エンコーダ70,70,70)から有効な計測値が主制御装置20に送られる。なお、以下の説明中のウエハステージWST1、WST2の位置は、そのウエハステージの中心(ウエハテーブルの中心及びウエハの中心にそれぞれ一致)の位置を意味する。すなわち、ウエハステージWST1、WST2の中心の位置と記述する代わりに、ウエハステージWST1、WST2の位置と記述する。
同様に、ウエハステージWST1が、露光時移動領域内で、かつ露光中心Pに対して−X側かつ+Y側の領域(露光中心Pを原点とする第2象限内の領域(ただし、領域Aを除く))である第2領域A内に位置する場合、ヘッド60,60,60がそれぞれスケール板21の部分21,21,21に対向する。ウエハステージWST1が、露光時移動領域内で、かつ露光中心Pに対して−X側かつ−Y側の領域(露光中心Pを原点とする第3象限内の領域(ただし、領域Aを除く))である第3領域A内に位置する場合、ヘッド60,60,60がそれぞれスケール板21の部分21,21,21に対向する。ウエハステージWST1が、露光時移動領域内で、かつ露光中心Pに対して+X側かつ−Y側の領域(露光中心Pを原点とする第4象限内の領域(ただし、領域Aを除く))である第4領域A内に位置する場合、ヘッド60,60,60がそれぞれスケール板21の部分21,21,21に対向する。
本実施形態では、図10に示されるように、ウエハステージWST1が、露光中心Pを中心とする十字状の領域A(露光中心Pを通るY軸方向を長手方向とする幅A−ai−2tの領域とX軸方向を長手方向とする幅B−bi−2tの領域とを含む領域(以下、第0領域と呼ぶ))内に位置する場合、ウエハステージWST1上の4つのヘッド60〜60がスケール板21(対応する部分21〜21)に対向する。従って、第0領域A内では、ヘッド60〜60(エンコーダ70〜70)から有効な計測値が主制御装置20に送られる。なお、本実施形態では上記条件(A≧ai+2t,B≧bi+2t)に加えて、パターンが形成されるウエハ上のショット領域のサイズ(W,L)を考慮して、条件A≧ai+W+2t,B≧bi+L+2tを加えても良い。ここで、W、Lは、それぞれ、ショット領域のX軸方向の幅、Y軸方向の長さである。W、Lは、それぞれ、走査露光区間の距離、X軸方向へのステッピングの距離に等しい。
主制御装置20は、ヘッド60〜60(エンコーダ70〜70)の計測値に基づいて、ウエハステージWST1のXY平面内での位置(X,Y,θz)を算出する。ここで、エンコーダ70〜70の計測値(それぞれC〜Cと表記する)は、ウエハステージWST1の位置(X,Y,θz)に対して、次式(1)〜(4)のように依存する。
=−(cosθz+sinθz)X/√2
+(cosθz−sinθz)Y/√2+√2psinθz…(1)
=−(cosθz−sinθz)X/√2
−(cosθz+sinθz)Y/√2+√2psinθz…(2)
= (cosθz+sinθz)X/√2
−(cosθz−sinθz)Y/√2+√2psinθz…(3)
= (cosθz−sinθz)X/√2
+(cosθz+sinθz)Y/√2+√2psinθz…(4)
ただし、pは、図6に示されるように、ウエハテーブルWTB1(WTB2)の中心からのヘッド60〜60それぞれのX軸及びY軸方向に関する距離である。
主制御装置20は、ウエハステージWST1の位置する領域A〜Aに応じてスケール板21に対向する3つのヘッド(エンコーダ)を特定し、それらの計測値が従う式を上式(1)〜(4)から選択して連立方程式を組み、3つのヘッド(エンコーダ)の計測値を用いて連立方程式を解くことにより、ウエハステージWST1のXY平面内での位置(X,Y,θz)を算出する。例えば、ウエハステージWST1が第1領域A内に位置する場合、主制御装置20は、ヘッド60,60,60(エンコーダ70,70,70)の計測値が従う式(1),(2),及び(4)から連立方程式を組み、式(1),(2),及び(4)それぞれの左辺に各ヘッドの計測値を代入して連立方程式を解く。
なお、ウエハステージWST1が第0領域A内に位置する場合、主制御装置20は、ヘッド60〜60(エンコーダ70〜70)から任意の3つを選択すれば良い。例えば、ウエハステージWST1が第1領域から第0領域に移動した後では、第1領域に対応するヘッド60,60,60(エンコーダ70,70,70)を選択すると良い。
主制御装置20は、上の算出結果(X,Y,θz)に基づいて、露光時移動領域内でウエハステージWST1を駆動(位置制御)する。
ウエハステージWST1が、計測時移動領域内に位置する場合、主制御装置20は、エンコーダシステム70(エンコーダ70〜70)を用いて3自由度方向(X,Y,θz)の位置情報を計測する。ここで、計測原理等は、露光中心Pがアライメント系ALGの検出中心に、スケール板21(の部分21〜21)がスケール板22(の部分22〜22)に置き換わる以外、ウエハステージWST1が先の露光時移動領域内に位置する場合と同様である。
さらに、主制御装置20は、ウエハステージWST1,WST2の位置に応じて、スケール板21,22に対向するヘッド60〜60のうちの3つを、少なくとも1つが異なる3つに切り換えて使用する。ここで、エンコーダヘッドを切り換える際には、例えば米国特許出願公開第2008/0094592号明細書などに開示されているように、ウエハステージの位置の計測値の連続性を保証するためのつなぎ処理が行われる。また、本実施形態では、例えば米国特許出願公開第2011/0053061号明細書に開示されている方法と同様の方法で、ステップ・アンド・スキャン方式の露光動作時におけるヘッド60〜60の切り換えとつなぎ処理が行われる。
次に、エンコーダシステム70,71による3自由度方向(Z,θx,θy)の位置計測の原理などについてさらに説明する。ここでは、エンコーダヘッド60〜60又はエンコーダ70〜70の計測値は、エンコーダヘッド60〜60又はエンコーダ70〜70のZ軸方向の計測値を意味する。
本実施形態では、前述のようなエンコーダヘッド60〜60及びスケール板21の構成及び配置を採用したことにより、露光時移動領域内では、ウエハステージWST1(WST2)の位置する領域A〜Aに応じて、エンコーダヘッド60〜60のうちの少なくとも3つがスケール板21(の対応する部分21〜21)に対向する。スケール板21に対向するヘッド(エンコーダ)から有効な計測値が主制御装置20に送られる。
主制御装置20は、エンコーダ70〜70の計測値に基づいて、ウエハステージWST1(WST2)の位置(Z,θx,θy)を算出する。ここで、エンコーダ70〜70のZ軸方向に関する計測値(前述のZ軸方向ではない計測方向、すなわちXY平面内の一軸方向についての計測値C〜Cと区別して、それぞれ、D〜Dと表記する)は、ウエハステージWST1(WST2)の位置(Z,θx,θy)に対して、次式(5)〜(8)のように依存する。
=−ptanθy+ptanθx+Z …(5)
= ptanθy+ptanθx+Z …(6)
= ptanθy−ptanθx+Z …(7)
=−ptanθy−ptanθx+Z …(8)
ただし、pは、ウエハテーブルWTB1(WTB2)の中心からのヘッド60〜60のX軸及びY軸方向に関する距離(図6参照)である。
主制御装置20は、ウエハステージWST1(WST2)の位置する領域A〜Aに応じて3つのヘッド(エンコーダ)の計測値の従う式を上式(5)〜(8)から選択し、選択した3つの式から構成される連立方程式に3つのヘッド(エンコーダ)の計測値を代入して解くことにより、ウエハステージWST1(WST2)の位置(Z,θx,θy)を算出する。例えば、ウエハステージWST1(又はWST2)が第1領域A内に位置する場合、主制御装置20は、ヘッド60,60,60(エンコーダ70,70,70)(又はヘッド60,60,60(エンコーダ71,71,71)の計測値が従う式(5),(6),及び(8)から連立方程式を組み、式(5),(6),及び(8)それぞれの左辺に計測値を代入して解く。
なお、ウエハステージWST1(又はWST2)が第0領域A内に位置する場合、ヘッド60〜60(エンコーダ70〜70)(又はヘッド60,〜60(エンコーダ71〜71))から任意の3つを選択し、選択した3つのヘッドの計測値が従う式から組まれる連立方程式を用いれば良い。
主制御装置20は、上の算出結果(Z,θx,θy)と前述の段差情報(フォーカスマッピングデータ)とに基づいて、露光時移動領域内でウエハステージWST1(又はWST2)をフォーカス・レベリング制御する。
ウエハステージWST1(又はWST2)が、計測時移動領域内に位置する場合、主制御装置20は、エンコーダシステム70又は71を用いて3自由度方向(Z,θx,θy)の位置情報を計測する。ここで、計測原理等は、露光中心がアライメント系ALGの検出中心に、スケール板21(の部分21〜21)がスケール板22(の部分22〜22)に置き換わる以外、ウエハステージWST1が先の露光時移動領域内に位置する場合と同様である。主制御装置20は、エンコーダシステム70又は71の計測値に基づいて、ウエハステージWST1又はWST2をフォーカス・レベリング制御する。なお、計測時移動領域(計測ステーション)では必ずしもフォーカス・レベリングを行わなくても良い。すなわち、マーク位置及び段差情報(フォーカスマッピングデータ)の取得を行っておき、その段差情報から段差情報取得時(計測時)のウエハステージのZ・チルト分を差し引くことで、ウエハステージの基準面、例えば上面を基準とする段差情報得て置く。そして、露光時には、この段差情報とウエハステージ(の基準面)の3自由度方向(Z,θx,θy)の位置情報とに基づいて、フォーカス・レベリングが可能になるからである。
さらに、主制御装置20は、ウエハステージWST1,WST2の位置に応じて、スケール板21,22に対向するヘッド60〜60のうちの3つを、少なくとも1つが異なる3つに切り換えて使用する。ここで、エンコーダヘッドを切り換える際には、ウエハステージWST1(又はWST2)の位置の計測値の連続性を保証するため、前述と同様のつなぎ処理が行われる。
次に、本実施形態に係る露光装置100で、上述した一連のシーケンスの実行中に実行される、露光時座標系のグリッド変動量の補正(較正)について、説明する。ここでは、ウエハステージWST1が、露光時移動領域を移動する場合について説明する。
このグリッド変動量の補正(較正)は、主制御装置20により、前述したようにしてウエハテーブルWTB1の6自由度方向の位置制御が、エンコーダ70〜70の中から選択された3つのエンコーダの計測値に基づいて行われるのと並行して、実行される。
主制御装置20は、例えば露光中などに、例えば第1ヘッド群61に属するヘッド60、601a、601bが、スケール板21の対応する部分21に対向した状態で、ウエハステージWST1がX軸方向に関してΔx移動する度に、例えばヘッド60、601a、(エンコーダ70、701a)のα方向の計測値を取り込み、次式(9)で表される差分データ、すなわちα方向のグリッド(αグリッド)のX位置に応じたずれΔα/δxを、順次積算する。これにより、離散的なαグリッド変動量のX軸方向に関する分布を求めることができる。
Δα/δx=ζ(x-Δx,y)−ζ(x,y)……(9)
また、主制御装置20は、例えば露光中などに、例えば第1ヘッド群61に属するヘッド60、601a、601bが、スケール板21の対応する部分21に対向した状態で、ウエハテーブルWTB1がY軸方向に関してΔy移動する度に、例えばヘッド60、601b、(エンコーダ70、701b)のα方向の計測値を取り込み、次式(10)で表される差分データ、すなわちαグリッドのY位置に応じたずれΔα/δyを、順次積算する。これにより、離散的なαグリッドの変動量のY軸方向に関する分布を求めることができる。
Δα/δy=ζ(x,y-Δy)−ζ(x,y)……(10)
主制御装置20は、上述した離散的なαグリッド変動量のX軸方向に関する分布、及び離散的なαグリッドの変動量のY軸方向に関する分布から、関数ζ(x,y)で表される、2次元グレーティングRGの第1象限部分(スケール板21の第1部分21)に発生したドリフト(αグリッドの変動)を補正するためのα補正マップを得ることができる。
主制御装置20は、例えば露光中などに、例えば第3ヘッド群61に属するヘッド60、603a、603bが、スケール板21の対応する部分21に対向した状態で、ウエハステージWST1がX軸方向に関してΔx移動する度に、例えばヘッド60、603a(エンコーダ70、703a)のα方向の計測値を、取り込み、式(9)と同様の差分データを、順次積算するとともに、ウエハステージWST1がY軸方向に関してΔy移動する度に、例えばヘッド60、603b(70、703b)のα方向の計測値を、取り込み、式(10)と同様の差分データを、順次積算する。そして、主制御装置20は、上述した差分データの積算から得られた離散的なαグリッド変動量のX軸方向に関する分布、及び離散的なαグリッドの変動量のY軸方向に関する分布から、関数(ζ(x,y)とする)で表される、2次元グレーティングRGの第3象限部分(スケール板21の第3部分21)に発生したドリフト(αグリッドの変動)を補正するためのα補正マップを得る。
主制御装置20は、例えば露光中などに、例えば第2ヘッド群61に属するヘッド60、602a、602bが、スケール板21の対応する部分21に対向している状態で、ウエハステージWST1がX軸方向に関してΔx移動する度に、例えばヘッド60、602a(エンコーダ70、702a)のβ方向の計測値を、取り込み、次式(11)で表される差分データを、順次積算するとともに、ウエハステージWST1がY軸方向に関してΔy移動する度に、例えばヘッド60、602b(70、702b)のβ方向の計測値を、取り込み、次式(12)で表される差分データを、順次積算する。そして、主制御装置20は、上述の差分データの積算から得られた離散的なβグリッド変動量のX軸方向に関する分布、及び離散的なβグリッドの変動量のY軸方向に関する分布から、関数ζ(x,y)で表される、2次元グレーティングRGの第2象限部分(スケール板21の第2部分21)に発生したドリフト(βグリッドの変動)を補正するためのβ補正マップを得る。
Δβ/δx=ζ(x-Δx,y)−ζ(x,y)……(11)
Δβ/δy=ζ(x,y-Δy)−ζ(x,y)……(12)
主制御装置20は、例えば露光中などに、例えば第4ヘッド群61に属するヘッド60、604a、604bが、スケール板21の対応する部分21に対向している状態で、ウエハステージWST1がX軸方向に関してΔx移動する度に、例えばヘッド60、604a(エンコーダ70、704a)のβ方向計測値を、取り込み、式(11)と同様の差分データを、順次積算するとともに、ウエハステージWST1がY軸方向に関してΔy移動する度に、例えばヘッド60、604b(70、704b)のβ方向の計測値を、取り込み、式(12)と同様の差分データを、順次積算する。そして、主制御装置20は、上述の差分データの積算から得られた離散的なβグリッド変動量のX軸方向に関する分布、及び離散的なβグリッドの変動量のY軸方向に関する分布から、関数(ζ(x,y)とする)で表される、2次元グレーティングRGの第4象限部分(スケール板21の第4部分21)に発生したドリフト(βグリッドの変動)を補正するためのβ補正マップを得る。
主制御装置20は、例えば露光中などに、上述したα補正マップ及びβ補正マップと同様にして、Z補正マップも作成する。
すなわち、主制御装置20は、例えば露光中などに、例えば第1ヘッド群61に属するヘッド60、601a、601bが、スケール板21の対応する部分21に対向している状態で、ウエハステージWST1がX軸方向に関してΔx移動する度に、例えばヘッド60、601a(エンコーダ70、701a)のZ軸方向の計測値を、取り込み、次式(13)で表される差分データを、順次積算するとともに、ウエハステージWST1がY軸方向に関してΔy移動する度に、例えばヘッド60、601b(70、701b)のZ軸方向の計測値を、取り込み、次式(14)で表される差分データを、順次積算する。そして、主制御装置20は、上述の差分データの積算から得られた離散的なZグリッド変動量のX軸方向に関する分布、及び離散的なZグリッドの変動量のY軸方向に関する分布から、関数η(x,y)で表される、2次元グレーティングRGの第1象限部分(スケール板21の第1部分21)に発生したZグリッドの変動(ドリフト)を補正するためのZ補正マップを得る。
ΔZ/δx=η(x-Δx,y)−η(x,y)……(13)
ΔZ/δy=η(x,y-Δy)−η(x,y)……(14)
主制御装置20は、例えば露光中などに、第2、第3及び第4ヘッド群に属するヘッドについても、スケール板21に対向している状態で、ウエハステージWST1がΔx移動する度、Δy移動する度に上記と同様の差分データの取り込み及び積算を行い、ドリフト形状(Zグリッドの変動)を表す関数(それぞれη(x,y)、η(x,y)、η(x,y)とする)を復元するとともに、Z補正マップを得る。
主制御装置20は、上記のウエハテーブルWTBの6自由度方向の位置計測と並行して、上記の差分計測を繰り返し行なって、エンコーダシステム70の座標系のグリッド誤差の更新を行う。以下では、このグリッド誤差の更新を、エンコーダシステム70の座標系のリフレッシュとも称する。
前述の如く、主制御装置20は、例えば露光時には、ウエハステージWST1の位置に応じて、スケール板21に対向するヘッド60〜60のうちの3つを、少なくとも1つが異なる3つに切り換えて使用する。すなわち、主制御装置20は、ヘッド60〜60のうちの3つ(エンコーダ70〜70のうちの3つ)により求められたウエハテーブルWTB1の位置情報に基づいてウエハテーブルWTB1を駆動するとともにウエハテーブルWTB1の位置に応じてウエハテーブルWTB1の位置情報の算出に用いられる3つのヘッドの少なくとも1つを、ウエハテーブルWTB1の位置情報の算出に用いられていない別のヘッド群に属するヘッドに切り換える。主制御装置20は、この切り換えに伴って、スケール板21の2次元グレーティングRGの上述したグリッド誤差の較正のための、前記差分のデータの取り込みの対象を、別のヘッド群に切り換える。本実施形態では、ウエハテーブルWTBの位置計測に用いられるヘッドの切り換えと同時に、前述した差分計測に用いられる冗長ヘッドの切り換えが行われる。
主制御装置20は、ウエハステージWST2が、露光時を含み、露光時移動領域を移動中には、エンコーダシステム71の座標系のリフレッシュを、上記と同様にして行う。
ところで、露光中は、ショットマップに従ってウエハステージWST1、WST2の移動が行われ、限られたエリアしかウエハステージWST1、WST2が通過しないので、取得できる差分データが少ない。そこで、主制御装置20は、上述したエンコーダシステム70、71の座標系のリフレッシュに際し、前述のように差分データの積算によりグリッド変動の低次成分である一次成分、例えばスケーリング(α、βグリッド)、及び曲がり(Zグリッド)のみを、リアルタイムで補正するようにしている。
そして、差分データの積算値を監視し、低次成分(一次成分)の変動量(補正量)が予め定めた第1の量より大きくなった場合に、より詳細な補正を行うこととしている。ここで、より詳細な補正とは、例えば、ウエハステージWST1、WST2を、それらの有効ストロークのほぼ全域で移動させて、前述の差分データの取得を行うことで、より多くの差分データを取得し、その多くの差分データに基づき、スケール板21の2次元グレーティングRGのより広い範囲に渡って行われる、前述と同様のグリッド変動量(誤差)の補正、又は、次に説明するのと同様の手法で行われる、少なくとも2次成分まで対象としたα、β及びZグリッドの変動量の補正を意味する。
低次成分(1次成分)の変動量(補正量)が第1の量より大きい予め定めた第2の量より大きい場合には、主制御装置20は、より高次の成分まで対象とした補正を行う必要がある旨を、例えば表示等によりオペレータに通知する。この通知に応答して、オペレータからより高次の補正が指示された場合、主制御装置20は、設計値通りの配置で複数の基準マークが形成された基準ウエハ(その表面にレジストが塗布されている)をウエハテーブルWTB1又はWTB2上に搭載し、複数のマークが所定の位置関係で配置された計測用レチクルをレチクルステージRST上に搭載する。そして、例えばステップ・アンド・リピート方式(又はステップ・アンド・スキャン方式)で露光を行う。露光終了後、主制御装置20は、その露光後の基準ウエハを、例えば露光装置100にインラインにて接続されているコータ・デベロッパに搬送するとともに、現像を指示する。そして、コータ・デベロッパにより、基準ウエハの現像が終了した旨の通知を受け取ると、主制御装置20は、現像後の基準ウエハを再びウエハテーブルWTB1又はWTB2上に搭載し、その基準ウエハ上に形成されたレジスト像から成るマークの対応する基準マークに対する位置を、例えばアライメント系ALGで順次検出する。そして、その検出結果に基づいて、より高次の成分まで対象としたα、β及びZグリッドの変動量の補正を行う。
この他、例えばオペレータは、前述した低次成分(1次成分)の変動量(補正量)に閾値(例えば、第2の量より大きい予め定めた第3の量)を設定しておき、主制御装置20が、低次成分の変動量が閾値を超えるか否かを監視し、変動量(補正量)が閾値を超えた場合に、グリッドのメンテナンスが必要である旨を、オペレータに通知するように設定しておいても良い。すなわち、前述した低次成分の変動量(補正量)をグリッドのメンテナンス要否を判断するためのモニター指標として活用しても良い。
以上詳細に説明したように、本実施形態に係る露光装置100によると、例えば、露光中など露光時移動領域にウエハステージWST1(又はWST2)があるとき、主制御装置20により、エンコーダシステム70のエンコーダ70〜70のうちの3つ(又はエンコーダシステム71のエンコーダ71〜71のうちの3つ)にて求められた6自由度方向の位置情報に基づいてウエハテーブルWTB1又はWTB2(ウエハステージWST1又はWST2)が駆動される。そして、このウエハテーブルWTB1又はWTB2(ウエハステージWST1又はWST2)の駆動と並行して、主制御装置20により、第1ヘッド群61、第2ヘッド群61、第3ヘッド群61及び第4ヘッド群61のうち、スケール板21に対向しているヘッド群では、それぞれに属する1つの基準となる1つのヘッド60と2つのヘッド60ia及び60ib(i=1〜4)それぞれとの計測方向(α方向及びZ方向、又はβ方向及びZ方向)に関する計測値の差分のデータが、取り込まれ、その取り込まれた差分のデータに基づいて、スケール板21の下面に形成された2次元グレーティングRGの4つの部分21〜21にそれぞれ対応する部分について、計測方向(α方向及びZ方向、又はβ方向及びZ方向)に関するグリッドの変動量を監視することが可能になる。また、主制御装置20により、そのグリッド誤差(特に低次の成分)の較正(補正)、すなわちエンコーダシステム70、71の座標系のリフレッシュがリアルタイムで行われる。従って、露光装置100によると、スケール板21の下面に形成された2次元グレーティングRGを計測面とするエンコーダシステム70又は71により、ウエハステージWST1又はWST2の露光時移動領域内での6自由度方向の位置を、長期に渡って精度良く計測するとともに制御することができ、ひいてはレチクルRのパターンをウエハW上の複数のショット領域に精度良く転写することが可能になる。
本実施形態に係る露光装置100では、主制御装置20により、エンコーダシステム70、71の座標系のリフレッシュが露光の際などにリアルタイムで実行される。このため、仮に450ミリウエハに対応するため、ウエハステージWST1、WST2とともにスケール板21(2次元グレーティングRG)がさらに大型化した場合であってもウエハテーブルWTB1又はWTB2の露光時移動領域内での6自由度方向の位置を、長期に渡って精度良く計測することが可能になる。
また、露光装置100では、主制御装置20が、ウエハアライメント計測(アライメント系ALGによるマーク検出)及びこれと並行して行われるウエハW表面のZ軸方向の位置情報(段差情報/凹凸情報)の検出時など計測時移動領域内でウエハステージWST1又はWST2が移動中にも、エンコーダシステム70、71の座標系のリフレッシュをリアルタイムで実行することができる。かかる場合には、EGA等のウエハアライメントの精度及び走査露光中のウエハWのフォーカス・レベリング制御精度を、長期に渡って高精度で維持することが可能になる。
さらに、本実施形態に係る露光装置100では、ヘッド60〜60の配置間隔A,Bは、それぞれ、スケール板21,22の開口の幅ai,biとショット領域のサイズW,Lとの和よりも大きく定められている。これにより、ウエハを露光するためにウエハを保持するウエハステージWST1,WST2を走査(等速)駆動する間に、ヘッド60〜60を切り換えることなしにウエハステージWST1,WST2の位置情報を計測することができる。従って、精度良くパターンをウエハ上に形成することができ、特に第2層目(セカンドレイヤ)以後の露光に際しては重ね合わせ精度を高精度に維持することが可能となる。
なお、上記実施形態中の説明では、ウエハテーブル上面の4隅に設けられたウエハテーブルの位置計測用の4つのヘッド60、60、60、60が、上述の配置条件を満足するとしたが、各ヘッド群61(i=1〜4)に属するヘッド60ia、60ib及び60の配置(図2参照)から明らかなように、ヘッド601a、602a、603a、604a、及びヘッド601b、602b、603b、604bも上述と同様の配置条件を満足している。
なお、上記実施形態では、スケール板21、22が、それぞれ4つの部分から構成され、これに対応してウエハステージWST1、WST2上に4つのヘッド群61〜61が設けられる場合について説明したが、これに限らず、スケール板21、22は、単一の部材によって構成されていても良い。この場合、2次元グレーティングRGは、大面積の単一の2次元グレーティングであっても良い。かかる場合において、ウエハステージWST1、WST2の移動ストロークが十分大きい場合には、ヘッド60とともに、ウエハステージWST1、WST2の所定自由度、例えば6自由度の位置計測が可能となる2つのヘッド(例えばヘッド60〜60のうちの2つ)に加え、第1ヘッド群61に属する2つの冗長ヘッド601a、601bのみを設けても良い。
また、上記実施形態で説明した各ヘッド群に属するヘッドの配置は、一例に過ぎない。例えば、第1ヘッド群に属するヘッドの配置として、例えば図11(A)に示されるような配置を採用しても良い。この場合、座標系のリフレッシュに際し、前述のドリフト形状(α、β、Zグリッドの変動)を表す関数として、x,yの関数ではなくα、βの関数を仮定することで、上記実施形態と同様にして座標系のリフレッシュを行うことができる。
あるいは、第1ヘッド群61に属するヘッドの配置として、例えば図11(B)に示されるような配置を採用しても良い。この場合、ヘッド60、601a、601bの計測方向が、X軸方向及びZ軸方向の2方向となっている。従って、第1ヘッド群61に属するヘッドが対向するスケール板21の第1部分には、少なくともX軸方向を周期方向とする一次元又は2次元のグレーティングが設けられる。第1ヘッド群に属するヘッドの配置として、図11(A)又は図11(B)に示される配置が採用される場合、第2、第3、第4ヘッド群にそれぞれ属するヘッドの配置として、図11(A)又は図11(B)に示される配置と、ウエハテーブル中心に関して点対称又は中心を通るX軸又はY軸に平行な直線に関して線対称な配置(ただし、第2、第3、第4ヘッド群のうち少なくとも1つの群に属するヘッドのXY平面内の計測方向は、第1ヘッド群に属するヘッドの計測方向と直交する)が採用される。
なお、これまでは、各ヘッド群にそれぞれ3つのヘッドが属する場合について説明したが、これに限らず、各ヘッド群にそれぞれ2つのヘッドが属していても良い。例えば、2つのヘッドの計測方向に、X軸方向及びY軸方向少なくとも1方向が含まれる場合には、これら2つのヘッドは、例えば図11(B)中のヘッド601a、601bと同様に、X軸及びY軸に交差する方向に離れて配置されていることが望ましい。また、2つのヘッドの計測方向に前述のα方向及びβ方向の少なくとも1方向が含まれる場合には、これら2つのヘッドは、例えば図11(A)中のヘッド601a、601bと同様に、α方向及びβ方向に交差するX軸方向(又はY軸方向)に離れて配置されていることが望ましい。
あるいは、各ヘッド群にそれぞれ4つ以上のヘッドが属していても良い。この場合も、各ヘッド群に属する全てのヘッドが同一直線上に位置しないようなヘッドの配置が採用される。この場合、前述の露光時座標系のリフレッシュに際し、各ヘッド群に属する、ウエハテーブルの6自由度方向の位置情報の計測に用いられる1つの基準となるヘッドと残りのヘッドそれぞれとの共通の計測方向に関する計測値の差分のデータを取得しても良いし、各ヘッド群に属する全ての異なるヘッド同士の前記共通の計測方向に関する差分のデータを取得しても良い。要は、各ヘッド群に属する、前記位置情報の計測に用いられる1つの基準となるヘッドと残りのヘッドのうち少なくとも2つのヘッドそれぞれとの前記共通の計測方向に関する計測値の差分のデータを含む各ヘッド群に属する異なるヘッド同士の前記共通の計測方向に関する差分のデータを取得し、その取得した差分のデータに基づいて、スケール板21(2次元グレーティングRG)の共通の計測方向に関するグリッドの変動量を監視し、グリッド誤差を較正できれば良い。
各ヘッド群にそれぞれ4つ以上のヘッドが属している場合、座標系のリフレッシュ時に、X軸又はY軸方向に関して、一度により多くの差分データを得ることができるので、2次以上の所定次数の成分までも対象としたグリッド変動量(グリッド誤差)の較正を、リアルタイムに行うこととしても良い。そして、この場合、前述した、「より詳細なグリッド誤差の補正」の一態様として、その所定次数より高次の成分までも対象としたグリッド変動量(グリッド誤差)の較正を、例えば前述と同様に基準ウエハ等を用いて行うようにしても良い。
なお、上記実施形態では、各ヘッド群にそれぞれ属する3つのヘッドのうち、1つの基準となるヘッドの計測値のみが、ウエハテーブルWTB1、WTB2の6自由度方向の位置の算出に用いられる場合について説明したが、これに限らず、各ヘッド群にそれぞれ属する3つのヘッドのうちの少なくとも2つの計測値を、ウエハテーブルWTB1、WTB2の6自由度方向の位置の算出に用いることとしても良い。例えば、各ヘッド群にそれぞれ属する3つのヘッドの計測値の平均をウエハテーブルWTB1、WTB2の6自由度方向の位置の算出に用いることとしても良い。かかる場合には、平均化効果により、より精度の高い位置計測が可能になる。
また、上記実施形態では、各ヘッドとして、XY平面内の一方向及びZ軸方向の2方向を計測方向とする2次元ヘッドが用いられ、かつその2方向について、露光時座標系のグリッド誤差の較正(補正)が行われる場合について説明したが、これに限られるものではない。例えば、XY平面内の一方向及びZ軸方向のうちの1つの方向に関して露光時座標系のグリッド誤差の較正(補正)が行われることとしても良い。また、各ヘッドとして、XY平面内の直交2方向及びZ軸方向を計測方向とする3次元ヘッドを用いても良い。あるいは、例えばヘッド60ia、60ibとして、2次元ヘッド又は3次元ヘッドから成るヘッド60の2つ又は3つの計測方向のうちの少なくとも1つの計測方向を、共通の計測方向とする、1次元ヘッド又は2次元ヘッドを用いても良い。XY平面内の1軸方向を計測方向とする1次元ヘッドを用いる場合、これと組み合わせて、Z軸方向を計測方向とする非エンコーダ方式の面位置センサを採用しても良い。
なお、上記実施形態では、スケール板21,22の部分21〜21,22〜22のそれぞれの下面に2次元グレーティングRGが形成された場合について例示したが、これに限らず、対応するエンコーダヘッド60〜60の計測方向(XY平面内での一軸方向)のみを周期方向とする1次元グレーティングが形成された場合においても、上記実施形態は適用可能である。
また、上記実施形態では、ウエハステージWST1、WST2上にヘッドが搭載され、ウエハステージWST1、WST2の外部にスケール板21、22(2次元グレーティングRG)が配置されたエンコーダシステムを備える露光装置について説明したが、これに限らず、ウエハステージの外部、例えば上方(又は下方)に複数のヘッドが設けられ、これに対向してウエハステージの上面(又は下面)にグレーティングなどの計測面が設けられたタイプのエンコーダシステムを備える露光装置、例えば米国特許出願公開第2008/0088843号明細書などに開示される露光装置などにも適用することが可能である。
なお、上記実施形態では、露光装置がスキャニング・ステッパである場合について説明したが、これに限らず、ステッパなどの静止型露光装置に上記実施形態を適用しても良い。ステッパなどであっても、露光対象の物体が搭載されたステージの位置をエンコーダで計測することにより、干渉計によりステージの位置を計測する場合と異なり、空気揺らぎに起因する位置計測誤差の発生を殆ど零にすることができ、エンコーダの計測値に基づいて、ステージを高精度に位置決めすることが可能になり、結果的に高精度なレチクルパターンのウエハ上への転写が可能になる。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の投影露光装置にも上記実施形態は適用することができる。
また、上記実施形態では露光装置100が、2つのウエハステージを備えたツインステージ型の露光装置である場合について例示したが、これに限らず、例えば、米国特許出願公開第2007/0211235号明細書及び米国特許出願公開第2007/0127006号明細書などに開示されるようにウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置、又はウエハステージを1つのみ備えるシングルステージ型の露光装置に上記実施形態を適用しても良い。
また、上記実施形態の露光装置を、例えば国際公開第99/49504号、米国特許出願公開第2005/0259234号明細書などに開示される液浸型としても良い。
また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。
また、照明光ILは、ArFエキシマレーザ光(波長193nm)に限らず、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
また、上記実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。かかる可変成形マスクを用いる場合には、ウエハ又はガラスプレート等が搭載されるステージが、可変成形マスクに対して走査されるので、そのステージの位置をエンコーダを用いて計測することで、上記実施形態と同等の効果を得ることができる。
また、例えば国際公開第2001/035168号に開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記実施形態を適用することができる。
さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。
半導体などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、上記実施形態の露光装置で、マスクに形成されたパターンをウエハ等の物体上に転写するリソグラフィステップ、露光されたウエハ(物体)を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置及び露光方法が用いられるので、高集積度のデバイスを歩留り良く製造することができる。
また、上記実施形態の露光装置(パターン形成装置)は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
以上説明したように、本発明の露光装置及び露光方法は、物体を露光するのに適している。また、本発明のデバイス製造方法は、半導体素子又は液晶表示素子などの電子デバイスを製造するのに適している。

Claims (27)

  1. 投影光学系を介して照明光で基板を露光する露光装置であって、
    前記基板の露光が行われる露光ステーション内において前記投影光学系を支持するメトロロジーフレームを有するボディと、
    前記投影光学系の下方に配置されるベース部材と、
    前記ベース部材上に配置され、前記基板を保持するステージと、前記ステージを駆動する平面モータを含む駆動系と、を有するステージシステムと、
    前記ステージに設けられる複数のヘッドを有し、前記ステージの位置情報を計測するエンコーダシステムと、
    前記エンコーダシステムの計測情報に基づいて前記駆動系を制御する制御装置と、を備え、
    前記複数のヘッドはそれぞれ、前記投影光学系の光軸と直交する所定面と実質的に平行となるように前記メトロロジーフレームに設けられるスケール部材に対してその下方から計測ビームを照射し、
    前記スケール部材は、それぞれ反射型格子が形成される4つの部分を有し、
    前記複数のヘッドはそれぞれ、前記所定面内で交差する2方向、及び前記所定面と直交する方向の少なくとも1方向に関して前記位置情報を計測可能であり、
    前記エンコーダシステムは、前記基板の露光動作において前記露光ステーション内で前記ステージが移動される移動領域内で前記4つの部分とそれぞれ対向するように前記ステージに設けられる4つのヘッド群を有し、
    前記4つのヘッド群のうち第1ヘッド群は、前記複数のヘッドのうちの少なくとも3つのヘッドを含み、
    前記少なくとも3つのヘッドのうち、少なくとも2つのヘッドは、前記第1ヘッド群によって前記位置情報の差分が計測されるように前記2方向の一方に関して前記位置情報を計測し、
    前記制御装置は、前記基板の露光中を含み、前記移動領域内を前記ステージが移動中に、前記第1ヘッド群が前記4つの部分のうち第1部分と対向しつつ前記ステージが移動されるように前記駆動系を制御するとともに、前記第1ヘッド群で計測される位置情報に基づいて前記第1部分のグリッド誤差を較正する露光装置。
  2. 請求項1に記載の露光装置において、
    前記制御装置は、前記所定面と平行な方向に関して前記第1部分のグリッド誤差を較正する露光装置。
  3. 請求項1または2に記載の露光装置において、
    前記少なくとも3つのヘッドは、前記2方向の他方に関して前記少なくとも2つのヘッドと位置が異なる少なくとも1つのヘッドを含む露光装置。
  4. 請求項1〜3のいずれか一項に記載の露光装置において、
    前記少なくとも2つのヘッドは、少なくとも前記一方の方向に関して互いに位置が異なるように前記ステージに配置される露光装置。
  5. 請求項1〜4のいずれか一項に記載の露光装置において、
    前記少なくとも3つのヘッドはそれぞれ、前記所定面と直交する方向を含む2方向に関して前記位置情報を計測可能である露光装置。
  6. 請求項1〜5のいずれか一項に記載の露光装置において、
    前記制御装置は、前記所定面と直交する方向に関して前記第1部分のグリッド誤差を較正する露光装置。
  7. 請求項1〜6のいずれか一項に記載の露光装置において、
    前記4つのヘッド群のうち前記第1ヘッド群と異なる第2、第3、第4ヘッド群はそれぞれ、少なくとも3つのヘッドを有し、
    前記少なくとも3つのヘッドは、前記2方向の一方または他方に関して前記位置情報を計測可能な少なくとも2つのヘッドを含み、
    前記制御装置は、前記第2、第3、第4ヘッド群がそれぞれ前記4つの部分のうち前記第1部分と異なる第2、第3、第4部分と対向しつつ前記ステージが移動されるように前記駆動系を制御するとともに、前記第2、第3、第4ヘッド群で計測される位置情報に基づいて前記第2、第3、第4部分のグリッド誤差をそれぞれ較正する露光装置。
  8. 請求項7に記載の露光装置において、
    前記第1、第3ヘッド群はそれぞれ、前記少なくとも2つのヘッドが前記一方の方向に関して前記位置情報を計測可能であり、前記第2、第4ヘッド群はそれぞれ、前記少なくとも2つのヘッドが前記2方向の他方に関して前記位置情報を計測可能であり、
    前記第1、第3ヘッド群は、前記他方の方向に関して離れて前記ステージに配置され、前記第2、第4ヘッド群は、前記一方の方向に関して離れて前記ステージに配置される露光装置。
  9. 請求項1〜8のいずれか一項に記載の露光装置において、
    前記エンコーダシステムは、前記所定面内で互いに直交する第1、第2方向を含む6自由度方向に関して前記ステージの位置情報を計測可能であり、
    前記2方向は、前記所定面内の回転方向に関して前記第1、第2方向と45度異なる露光装置。
  10. 請求項1〜9のいずれか一項に記載の露光装置において、
    前記少なくとも3つのヘッドはそれぞれ、前記所定面に直交する方向を含む2方向に関して前記位置情報を計測可能であり、
    前記制御装置は、前記第1ヘッド群が前記1つの部分と対向しつつ前記ステージが移動されるように前記駆動系を制御するとともに、前記第1ヘッド群で計測される位置情報に基づいて前記所定面と平行な方向および前記所定面と直交する方向に関して前記1つの部分のグリッド誤差を較正する露光装置。
  11. 請求項1〜10のいずれか一項に記載の露光装置において、
    記露光ステーションと異なる計測ステーションにおいて前記メトロロジーフレームに設けられ、前記基板のマークを検出するアライメント系を、さらに備え、
    前記スケール部材は、前記4つの部分を有する第1スケール板と、それぞれ前記反射型格子が形成され、前記4つの部分と異なる4つの部分を有する第2スケール板と、を含み、前記4つの部分によって実質的に囲まれる前記第1スケール板の開口内に前記投影光学系が配置されるとともに、前記異なる4つの部分によって実質的に囲まれる前記第2スケール板の開口内に前記アライメント系が配置されるように前記メトロロジーフレームに設けられる露光装置。
  12. 請求項11に記載の露光装置において、
    前記アライメント系による前記マークの検出動作において、前記複数のヘッドのうち、前記異なる4つの部分と対向するヘッドによって前記ステージの位置情報が計測され、
    前記制御装置は、前記第1ヘッド群が前記異なる4つの部分の1つと対向しつつ前記ステージが移動されるように前記駆動系を制御するとともに、前記第1ヘッド群で計測される位置情報に基づいて前記1つの部分のグリッド誤差を較正する露光装置。
  13. 請求項11または12に記載の露光装置において、
    前記第1、第2スケール板は同一平面内に配置されるように前記メトロロジーフレームに吊り下げ支持される露光装置。
  14. デバイス製造方法であって、
    請求項1〜13のいずれか一項に記載の露光装置を用いて基板を露光することと、
    前記露光された基板を現像することと、を含むデバイス製造方法。
  15. 投影光学系を介して照明光で基板を露光する露光方法であって、
    前記投影光学系の下方でベース部材上に配置されるステージによって前記基板を保持することと、
    前記ステージに設けられる複数のヘッドを有するエンコーダシステムによって、前記ステージの位置情報を計測することと、前記複数のヘッドはそれぞれ、前記投影光学系の光軸と直交する所定面と実質的に平行となるように前記基板の露光が行われる露光ステーション内において前記投影光学系を支持するメトロロジーフレームに設けられるスケール部材に対してその下方から計測ビームを照射し、
    前記エンコーダシステムの計測情報に基づいて、前記ステージを駆動する平面モータを含む駆動系を制御することと、を含み、
    前記スケール部材は、それぞれ反射型格子が形成される4つの部分を有し、
    前記複数のヘッドはそれぞれ、前記所定面内で交差する2方向、及び前記所定面と直交する方向の少なくとも1方向に関して前記位置情報を計測可能であり、
    前記エンコーダシステムは、前記基板の露光動作において前記露光ステーション内で前記ステージが移動される移動領域内で前記4つの部分とそれぞれ対向するように前記ステージに設けられる4つのヘッド群を有し、
    前記4つのヘッド群のうち第1ヘッド群は、前記複数のヘッドのうちの少なくとも3つのヘッドを含み、
    前記少なくとも3つのヘッドのうち、少なくとも2つのヘッドは、前記第1ヘッド群によって前記位置情報の差分が計測されるように前記2方向の一方に関して前記位置情報を計測し、
    前記基板の露光中を含み、前記移動領域内を前記ステージが移動中に、前記第1ヘッド群が前記4つの部分のうち第1部分と対向しつつ前記ステージが移動されるとともに、前記第1ヘッド群で計測される位置情報に基づいて前記第1部分のグリッド誤差が較正される露光方法。
  16. 請求項15に記載の露光方法において、
    前記所定面と平行な方向に関して前記第1部分のグリッド誤差が較正される露光方法。
  17. 請求項15または16に記載の露光方法において、
    前記少なくとも3つのヘッドは、前記2方向の他方に関して前記少なくとも2つのヘッドと位置が異なる少なくとも1つのヘッドを含む露光方法。
  18. 請求項15〜17のいずれか一項に記載の露光方法において、
    前記少なくとも2つのヘッドは、少なくとも前記一方の方向に関して互いに位置が異なるように前記ステージに配置される露光方法。
  19. 請求項15〜18のいずれか一項に記載の露光方法において、
    前記少なくとも3つのヘッドはそれぞれ、前記所定面と直交する方向を含む2方向に関して前記位置情報を計測する露光方法。
  20. 請求項15〜19のいずれか一項に記載の露光方法において、
    前記所定面と直交する方向に関して前記第1部分のグリッド誤差が較正される露光方法。
  21. 請求項15〜20のいずれか一項に記載の露光方法において、
    前記4つのヘッド群のうち前記第1ヘッド群と異なる第2、第3、第4ヘッド群はそれぞれ、少なくとも3つのヘッドを有し、
    前記少なくとも3つのヘッドは、前記2方向の一方または他方に関して前記位置情報を計測可能な少なくとも2つのヘッドを含み、
    前記第2、第3、第4ヘッド群がそれぞれ前記4つの部分のうち前記第1部分と異なる第2、第3、第4部分と対向しつつ前記ステージが移動されるとともに、前記第2、第3、第4ヘッド群で計測される位置情報に基づいて前記第2、第3、第4部分のグリッド誤差がそれぞれ較正される露光方法。
  22. 請求項21に記載の露光方法において、
    前記第1、第3ヘッド群はそれぞれ、前記少なくとも2つのヘッドが前記一方の方向に関して前記位置情報を計測可能であり、前記第2、第4ヘッド群はそれぞれ、前記少なくとも2つのヘッドが前記2方向の他方に関して前記位置情報を計測可能であり、
    前記第1、第3ヘッド群は、前記他方の方向に関して離れて前記ステージに配置され、前記第2、第4ヘッド群は、前記一方の方向に関して離れて前記ステージに配置される露光方法。
  23. 請求項15〜22のいずれか一項に記載の露光方法において、
    前記エンコーダシステムによって、前記所定面内で互いに直交する第1、第2方向を含む6自由度方向に関して前記ステージの位置情報が計測され、
    前記2方向は、前記所定面内の回転方向に関して前記第1、第2方向と45度異なる露光方法。
  24. 請求項15〜23のいずれか一項に記載の露光方法において、
    前記少なくとも3つのヘッドはそれぞれ、前記所定面に直交する方向を含む2方向に関して前記位置情報を計測可能であり、
    前記第1ヘッド群が前記1つの部分と対向しつつ前記ステージが移動されるとともに、前記第1ヘッド群で計測される位置情報に基づいて前記所定面と平行な方向および前記所定面と直交する方向に関して前記1つの部分のグリッド誤差が較正される露光方法。
  25. 請求項15〜24のいずれか一項に記載の露光方法において、
    記露光ステーションと異なる計測ステーションにおいて前記メトロロジーフレームに設けられるアライメント系によって、前記基板のマークが検出され、
    前記スケール部材は、前記4つの部分を有する第1スケール板と、それぞれ前記反射型格子が形成され、前記4つの部分と異なる4つの部分を有する第2スケール板と、を含み、前記4つの部分によって実質的に囲まれる前記第1スケール板の開口内に前記投影光学系が配置されるとともに、前記異なる4つの部分によって実質的に囲まれる前記第2スケール板の開口内に前記アライメント系が配置されるように前記メトロロジーフレームに設けられる露光方法。
  26. 請求項25に記載の露光方法において、
    前記マークの検出動作において、前記複数のヘッドのうち、前記異なる4つの部分と対向するヘッドによって前記ステージの位置情報が計測され、
    前記第1ヘッド群が前記異なる4つの部分の1つと対向しつつ前記ステージが移動されるとともに、前記第1ヘッド群で計測される位置情報に基づいて前記1つの部分のグリッド誤差が較正される露光方法。
  27. デバイス製造方法であって、
    請求項15〜26のいずれか一項に記載の露光方法を用いて基板を露光することと、
    前記露光された基板を現像することと、を含むデバイス製造方法。
JP2019143646A 2012-10-02 2019-08-05 露光装置及び露光方法、並びにデバイス製造方法 Active JP6807039B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012219952 2012-10-02
JP2012219952 2012-10-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018099241A Division JP6575829B2 (ja) 2012-10-02 2018-05-24 露光装置及び露光方法、並びにデバイス製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020193250A Division JP7069535B2 (ja) 2012-10-02 2020-11-20 露光装置及び露光方法、並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2019194738A JP2019194738A (ja) 2019-11-07
JP6807039B2 true JP6807039B2 (ja) 2021-01-06

Family

ID=50435011

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2014539783A Active JP6075657B2 (ja) 2012-10-02 2013-10-02 露光装置及び露光方法、並びにデバイス製造方法
JP2017002233A Active JP6344624B2 (ja) 2012-10-02 2017-01-11 露光装置及び露光方法、並びにデバイス製造方法
JP2018099241A Active JP6575829B2 (ja) 2012-10-02 2018-05-24 露光装置及び露光方法、並びにデバイス製造方法
JP2019143646A Active JP6807039B2 (ja) 2012-10-02 2019-08-05 露光装置及び露光方法、並びにデバイス製造方法
JP2020193250A Active JP7069535B2 (ja) 2012-10-02 2020-11-20 露光装置及び露光方法、並びにデバイス製造方法
JP2022068007A Active JP7288248B2 (ja) 2012-10-02 2022-04-18 露光装置及び露光方法、並びにデバイス製造方法
JP2023079813A Active JP7486062B2 (ja) 2012-10-02 2023-05-15 露光装置及び露光方法、並びにデバイス製造方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2014539783A Active JP6075657B2 (ja) 2012-10-02 2013-10-02 露光装置及び露光方法、並びにデバイス製造方法
JP2017002233A Active JP6344624B2 (ja) 2012-10-02 2017-01-11 露光装置及び露光方法、並びにデバイス製造方法
JP2018099241A Active JP6575829B2 (ja) 2012-10-02 2018-05-24 露光装置及び露光方法、並びにデバイス製造方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020193250A Active JP7069535B2 (ja) 2012-10-02 2020-11-20 露光装置及び露光方法、並びにデバイス製造方法
JP2022068007A Active JP7288248B2 (ja) 2012-10-02 2022-04-18 露光装置及び露光方法、並びにデバイス製造方法
JP2023079813A Active JP7486062B2 (ja) 2012-10-02 2023-05-15 露光装置及び露光方法、並びにデバイス製造方法

Country Status (7)

Country Link
US (7) US9678433B2 (ja)
EP (2) EP2905805B1 (ja)
JP (7) JP6075657B2 (ja)
KR (2) KR102311833B1 (ja)
CN (2) CN104838469B (ja)
HK (2) HK1211135A1 (ja)
WO (1) WO2014054690A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493547B2 (en) 2009-08-25 2013-07-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9678433B2 (en) 2012-10-02 2017-06-13 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
EP3264180B1 (en) 2015-02-23 2020-01-08 Nikon Corporation Substrate processing system and substrate processing method, and device manufacturing method
TWI749514B (zh) 2015-02-23 2021-12-11 日商尼康股份有限公司 測量裝置、微影系統、以及元件製造方法
CN111290221B (zh) 2015-02-23 2023-07-28 株式会社尼康 测量装置、光刻系统、曝光装置、测量方法、曝光方法以及元件制造方法
JP6819887B2 (ja) * 2015-09-30 2021-01-27 株式会社ニコン 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
KR20180059864A (ko) * 2015-09-30 2018-06-05 가부시키가이샤 니콘 이동체 장치, 노광 장치, 플랫 패널 디스플레이의 제조 방법, 및 디바이스 제조 방법, 그리고 계측 방법
JP6828688B2 (ja) * 2015-09-30 2021-02-10 株式会社ニコン 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
CN111812949A (zh) * 2015-09-30 2020-10-23 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
JP6727556B2 (ja) * 2015-09-30 2020-07-22 株式会社ニコン 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
CN113359395B (zh) * 2015-09-30 2024-07-09 株式会社尼康 曝光装置、平面显示器之制造方法、以及元件制造方法
JP6787404B2 (ja) * 2016-09-30 2020-11-18 株式会社ニコン 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
CN109819673B (zh) * 2016-09-30 2021-08-20 株式会社尼康 移动体装置、移动方法、曝光装置、曝光方法、平板显示器的制造方法、以及器件制造方法
US10782619B2 (en) * 2016-09-30 2020-09-22 Nikon Corporation Movable body apparatus, moving method, exposure apparatus, exposure method, flat-panel display manufacturing method, and device manufacturing method
US10593586B2 (en) * 2017-03-17 2020-03-17 Lam Research Corporation Systems and methods for controlling substrate approach toward a target horizontal plane
US11209373B2 (en) * 2019-06-21 2021-12-28 Kla Corporation Six degree of freedom workpiece stage
NO20190876A1 (en) * 2019-07-11 2021-01-12 Visitech As Real time Registration Lithography system
WO2022027191A1 (zh) * 2020-08-03 2022-02-10 Oppo广东移动通信有限公司 平面矫正方法及装置、计算机可读介质和电子设备
CN112864071B (zh) * 2021-01-18 2022-04-01 长鑫存储技术有限公司 校正半导体制造机台中晶圆位置的工具和方法
CN115790398B (zh) * 2023-01-06 2023-05-12 中国科学院长春光学精密机械与物理研究所 一种基于任意交叉二维光栅的多自由度测量装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
US5196745A (en) 1991-08-16 1993-03-23 Massachusetts Institute Of Technology Magnetic positioning device
KR100300618B1 (ko) 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
JPH06317431A (ja) * 1993-05-10 1994-11-15 Mitsubishi Heavy Ind Ltd エンコーダの校正方法
JP3448991B2 (ja) * 1994-11-29 2003-09-22 株式会社ニコン ステージ移動制御装置、投影型露光装置およびステージ駆動方法ならびに露光方法。
KR100819239B1 (ko) 1998-03-11 2008-04-03 가부시키가이샤 니콘 자외 레이저 장치, 레이저 장치, 노광 장치와 노광 방법, 디바이스 제조 방법, 자외광 조사 장치, 물체 패턴 검출 장치, 자외광 조사 방법 및 물체 패턴 검출 방법
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6771350B2 (en) 2000-02-25 2004-08-03 Nikon Corporation Exposure apparatus and exposure method capable of controlling illumination distribution
DE10011130A1 (de) 2000-03-10 2001-09-13 Mannesmann Vdo Ag Entlüftungseinrichtung für einen Kraftstoffbehälter
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
CN101872135B (zh) 2002-12-10 2013-07-31 株式会社尼康 曝光设备和器件制造法
JP2004235354A (ja) * 2003-01-29 2004-08-19 Canon Inc 露光装置
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US20080068568A1 (en) 2004-09-30 2008-03-20 Nikon Corporation Projection Optical Device And Exposure Apparatus
US20060139595A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and method for determining Z position errors/variations and substrate table flatness
US7515281B2 (en) * 2005-04-08 2009-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN2881536Y (zh) * 2005-09-13 2007-03-21 张天兴 一种测量络筒直径的装置
TWI638386B (zh) 2006-01-19 2018-10-11 尼康股份有限公司 Exposure apparatus and exposure method, and component manufacturing method
KR101342765B1 (ko) 2006-02-21 2013-12-19 가부시키가이샤 니콘 패턴 형성 장치, 마크 검출 장치, 노광 장치, 패턴 형성 방법, 노광 방법 및 디바이스 제조 방법
EP2738608B9 (en) 2006-08-31 2016-08-17 Nikon Corporation Exposure apparatus and exposure method
US7545507B2 (en) * 2007-03-15 2009-06-09 Agilent Technologies, Inc. Displacement measurement system
US7561280B2 (en) 2007-03-15 2009-07-14 Agilent Technologies, Inc. Displacement measurement sensor head and system having measurement sub-beams comprising zeroth order and first order diffraction components
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
NL1036618A1 (nl) * 2008-03-24 2009-09-25 Asml Netherlands Bv Encoder-type measurement system, lithograpic apparatus and method to detect an error on or in a grid or grating of an encoder-type measurement system.
JP5057235B2 (ja) * 2008-04-04 2012-10-24 株式会社ニコン 較正方法、露光方法及びデバイス製造方法、並びに露光装置
JP2010062210A (ja) * 2008-09-01 2010-03-18 Nikon Corp 露光装置、露光方法、及びデバイス製造方法
US8773635B2 (en) * 2008-12-19 2014-07-08 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8446569B2 (en) * 2009-06-19 2013-05-21 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9164400B2 (en) 2009-08-07 2015-10-20 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
US8493547B2 (en) 2009-08-25 2013-07-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8514395B2 (en) 2009-08-25 2013-08-20 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
JP2011054694A (ja) 2009-08-31 2011-03-17 Canon Inc 計測装置、露光装置およびデバイス製造方法
NL2005545A (en) * 2009-11-17 2011-05-18 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
US9678433B2 (en) * 2012-10-02 2017-06-13 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method

Also Published As

Publication number Publication date
KR102203305B1 (ko) 2021-01-14
EP2905805B1 (en) 2020-07-22
EP3723111A1 (en) 2020-10-14
JP2019194738A (ja) 2019-11-07
KR20150064186A (ko) 2015-06-10
US20150286147A1 (en) 2015-10-08
CN104838469B (zh) 2018-04-24
US20220121125A1 (en) 2022-04-21
KR102311833B1 (ko) 2021-10-12
JP7069535B2 (ja) 2022-05-18
JP6344624B2 (ja) 2018-06-20
HK1211135A1 (en) 2016-05-13
JP7288248B2 (ja) 2023-06-07
JP7486062B2 (ja) 2024-05-17
HK1256151A1 (zh) 2019-09-13
US20210041789A1 (en) 2021-02-11
CN108613638A (zh) 2018-10-02
JP2021036345A (ja) 2021-03-04
US20170235231A1 (en) 2017-08-17
WO2014054690A1 (ja) 2014-04-10
KR20210006523A (ko) 2021-01-18
US20190346770A1 (en) 2019-11-14
JP2017083886A (ja) 2017-05-18
US9678433B2 (en) 2017-06-13
JP2018142020A (ja) 2018-09-13
JP2022109261A (ja) 2022-07-27
CN104838469A (zh) 2015-08-12
US11747736B2 (en) 2023-09-05
US9891531B2 (en) 2018-02-13
CN108613638B (zh) 2020-09-18
EP3723111B1 (en) 2021-09-08
JP2023101546A (ja) 2023-07-21
US20180136566A1 (en) 2018-05-17
US10852639B2 (en) 2020-12-01
JPWO2014054690A1 (ja) 2016-08-25
JP6075657B2 (ja) 2017-02-08
EP2905805A4 (en) 2015-11-18
US20230143407A1 (en) 2023-05-11
US10409166B2 (en) 2019-09-10
US11579532B2 (en) 2023-02-14
JP6575829B2 (ja) 2019-09-18
US11256175B2 (en) 2022-02-22
EP2905805A1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP6807039B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP6788812B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP6548150B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6807039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250