[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6842563B2 - 遠心式回転機械のインペラ及び遠心式回転機械 - Google Patents

遠心式回転機械のインペラ及び遠心式回転機械 Download PDF

Info

Publication number
JP6842563B2
JP6842563B2 JP2019547841A JP2019547841A JP6842563B2 JP 6842563 B2 JP6842563 B2 JP 6842563B2 JP 2019547841 A JP2019547841 A JP 2019547841A JP 2019547841 A JP2019547841 A JP 2019547841A JP 6842563 B2 JP6842563 B2 JP 6842563B2
Authority
JP
Japan
Prior art keywords
impeller
edge
hub
rotary machine
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019547841A
Other languages
English (en)
Other versions
JPWO2019073551A1 (ja
Inventor
浩範 本田
浩範 本田
健一郎 岩切
健一郎 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Engine and Turbocharger Ltd filed Critical Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Publication of JPWO2019073551A1 publication Critical patent/JPWO2019073551A1/ja
Application granted granted Critical
Publication of JP6842563B2 publication Critical patent/JP6842563B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/021Blade-carrying members, e.g. rotors for flow machines or engines with only one axial stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/38Arrangement of components angled, e.g. sweep angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本開示は、遠心式回転機械のインペラ及び該インペラを備える遠心式回転機械に関する。
ターボチャージャやタービンなどの遠心式回転機械のインペラは、回転数の増加に伴って翼面及び翼端部に生じる遠心応力は増加傾向にある。この応力増加に対して、翼厚の調整やフィレット径を増加することで、インペラの強度を高める方法は、スロート面積の減少や性能低下を招くおそれがある。
特許文献1には、動翼の翼端部(高い遠心応力が加わることで変形が大きい部分)に円環を取り付けて強度を高め、遠心応力による変形を低減する手段が記載されている。しかし、この手段は、構造が複雑になるため、製造や組立てに要するコストが増加するという問題がある。
特開2016−061223号公報
従来のインペラは、典型的には、ハブ小径部側のエッジ(圧縮機の場合には前縁、タービンの場合には後縁)のチップを通る軸方向位置におけるインペラの半径方向断面が径方向に沿って延在する直線翼であった。
近年、加工技術の発展に伴い、3次元翼設計の実現性が高まる中、本発明者らは、3次元翼の望ましい形状について鋭意検討を重ねてきた。かかる検討により、3次元翼の場合には、従来の直線翼には殆ど問題にならない応力が翼チップ側で発生し得るとの知見を得た。即ち、動翼チップ(翼端部)の中央部には、遠心応力によって前縁と後縁とが変形することの結果として、引張り応力と曲げモーメントとが発生する。
この対策として、翼厚を増加したり、フィレット径を拡大する方法があるが、インペラの構造が複雑になり、かつ製造・組立てのコストが増加する問題がある。
幾つかの実施形態は、インペラのブレードの翼チップ側に発生する引張り応力及び曲げモーメントを低減することを目的とする。
(1)一実施形態に係る遠心式回転機械のインペラは、
遠心式回転機械のインペラであって、
軸方向における一端部に位置する小径部、および、前記軸方向における他端部に位置して前記小径部よりも大径である大径部を有するハブと、
前記小径部の軸方向位置に位置する第1エッジ、および、前記大径部の軸方向位置に位置する第2エッジを有し、前記ハブの外周面に設けられるブレードと、
を備え、
前記インペラは、前記第1エッジのチップを通る軸方向位置における第1半径方向断面のうち50%以上の翼高さ範囲の少なくとも一部が、半径方向に対して前記インペラの回転方向の下流側に傾斜している。
本発明者らの鋭意検討の結果、インペラの回転に伴う遠心応力によってハブ小径部側の第1エッジとハブ大径部側の第2エッジとが互いに逆方向に変形しようとする結果、両エッジ間の中央部領域において引張り応力が発生することを見出した。特に、直線翼で実績のある設計手法(遠心応力が最大となる最大外径部分について半径方向に対する回転方向上流側への傾斜角を決定し、最大外径部分に合わせて滑らかな翼形状となるように小径部側エッジの形状を決定する手法)を踏襲して3次元翼を設計する場合、ハブ大径部側のエッジの傾斜方向に合わせて、ハブ小径部側の第1エッジを回転方向上流側に傾斜させることになり、上記引張り応力が大きくなってしまう。
上記(1)の構成によれば、上記第1半径方向断面において、50%以上の翼高さ範囲の少なくとも一部が半径方向に対して回転方向の下流側に傾斜するようにしたので、第1エッジ側とハブ大径部側の第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(2)一実施形態では、前記(1)の構成において、
前記第1半径方向断面の翼厚方向の中点を結んだ第1基準線上において、
前記ハブのハブ面における半径方向位置に位置する第1ハブ側基準点と、
前記チップにおける半径方向位置に位置する第1チップ側基準点と、
を定義したとき、
前記第1チップ側基準点は、前記第1ハブ側基準点に対して前記回転方向の下流側に位置する。
上記(2)の構成によれば、第1チップ側基準点が前記第1ハブ側基準点に対して前記回転方向の下流側に位置するため、第1エッジ側と第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(3)一実施形態では、前記(2)の構成において、
前記第1基準線は、前記第1半径方向断面において前記回転方向の下流側に曲率中心を有する湾曲部を含む。
上記(3)の構成によれば、上記湾曲部の曲率中心が回転方向下流側にあるため、第1エッジ側とハブ大径部側の第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(4)一実施形態では、前記(2)又は(3)の構成において、
前記第1基準線は直線部を含む。
上記(4)の構成によれば、第1基準線が直線部を含むことで、ブレードの形状をシンプルな形状とすることができ、ブレードの製作が容易になる。
(5)一実施形態では、前記(2)〜(4)の何れかの構成において、
前記第1チップ側基準点と前記第1ハブ側基準点との間の位相角差Δθが20度以上である。
3次元翼は、直線翼を基準として曲がりの程度が大きくなるにつれて、強度的に成立させることが難しくなる。
この点、上記(5)の構成によれば、第1半径方向断面の少なくともチップ側を上記(1)の構成で述べた方向に傾斜させた上で、上記位相角差Δθを確保することで、第1エッジ側とハブ大径部側の第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。また、3次元翼の曲がりの程度が大きい場合においても強度的な成立性を高めることができる。
(6)一実施形態では、前記(2)〜(5)の何れかの構成において、
前記第1基準線は、該第1基準線上の各点の第1接線と、該各点を通る半径方向線との間の角度θについて、前記各点から径方向外側に向かう前記第1接線が前記半径方向線に対して前記回転方向の下流側に位置するときに前記角度θの符号が正となるように定義したとき、
前記θの最大値が20度以上である。
上記(6)の構成によれば、上記θの最大値が20度以上であるため、インペラの回転時、第1エッジ側を確実に第2エッジ側に対して逆方向、即ち、引張り応力を増加させない方向へ変形できる。これによって、引張り応力及び曲げモーメントを確実に低減することができる。
(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記インペラは、前記第2エッジのチップを通る軸方向位置における第2半径方向断面のうち50%以上の翼高さ範囲の少なくとも一部が、半径方向に対して前記インペラの回転方向の上流側に傾斜している。
上記(7)の構成によれば、上記第2半径方向断面において、第2エッジの50%以上の翼高さ範囲の少なくとも一部が、半径方向に対してインペラの回転方向の上流側に傾斜しているため、インペラの回転時、第1エッジ側とハブ大径部側の第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(8)一実施形態では、前記(7)の構成において、
前記第2半径方向断面の翼厚方向の中点を結んだ第2基準線上において、
前記ハブのハブ面における半径方向位置にある第2ハブ側基準点と、
前記チップにおける半径方向位置にある第2チップ側基準点と、
を定義したとき、
前記第2チップ側基準点は、前記第2ハブ側基準点に対して前記回転方向の上流側に位置する。
上記(8)の構成によれば、第2エッジの第2チップ側基準点が第2ハブ側基準点に対して回転方向上流側に位置するため、インペラの回転時、第2エッジ側を回転方向上流側へ変位させることができる。これによって、第1エッジと第2エッジ間においてチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(9)一実施形態では、前記(8)の構成において、
前記第2基準線は、前記第2半径方向断面に対して前記回転方向の上流側に曲率中心を有する湾曲部を含む。
上記(9)の構成によれば、上記湾曲部の曲率中心がインペラの回転方向上流側にあるため、インペラの回転時、第2エッジ側を回転方向上流側へ変位させることができる。これによって、第1エッジと第2エッジ間においてチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(10)一実施形態では、前記(8)又は(9)の構成において、
前記第2基準線は直線部を含む。
上記(10)の構成によれば、第2基準線が直線部を含むことで、ブレードの形状をシンプルな形状とすることができ、製作が容易になる。
(11)一実施形態では、前記(8)〜(10)の何れかの構成において、
前記第2チップ側基準点と前記第2ハブ側基準点との間の位相角差Δθが20度以上である。
上記(11)の構成によれば、第2半径方向断面の少なくともチップ側を上記(7)の構成で述べた方向に傾斜させた上で、上記位相角差Δθを確保することで、インペラの回転時、第1エッジ側とハブ大径部側の第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。また、3次元翼の曲がりの程度が大きい場合においても強度的な成立性を高めることができる。
(12)一実施形態では、前記(8)〜(11)の何れかの構成において、
前記第2基準線は、該第2基準線上の各点の第2接線と、該各点を通る半径方向線との間の角度θについて、前記各点から径方向外側に向かう前記第2接線が前記半径方向線に対して前記回転方向の上流側に位置するときに前記角度θの符号が正となるように定義したとき、
前記θの最大値が30度以上である。
上記(12)の構成によれば、上記θの最大値が30度以上であるため、インペラの回転時、第2エッジ側を確実に第1エッジ側に対して逆方向、即ち、引張り応力を増加させない方向へ変形できる。これによって、引張り応力及び曲げモーメントを確実に低減することができる。
(13)一実施形態に係る遠心式回転機械は、
前記(1)〜(12)の何れかの構成を有するインペラと、
前記インペラを覆うように設けられるケーシングと、
を備える。
上記(13)の構成によれば、インペラの回転時に加わる遠心応力によって、第1エッジ側と第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジと第2エッジ間でチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
(14)一実施形態では、前記(13)の構成において、
前記インペラが、
前記第1エッジとしての前縁と、
前記第2エッジとしての後縁と、
を含み、
前記遠心式回転機械は遠心式圧縮機である。
上記(14)の構成によれば、遠心式回転機械が遠心式圧縮機であるとき、インペラの回転時、ブレードの中央部領域に発生する引張り応力及び曲げモーメントを低減することができる。
幾つかの実施形態によれば、インペラの回転時にブレードのチップ側の中央部領域に発生する引張り応力及び曲げモーメントを低減できる。
一実施形態に係るインペラの側面図である。 一実施形態に係るインペラの正面図である。 一実施形態に係るインペラのブレード形状を示す正面図である。 一実施形態に係る遠心式回転機械の側面断面図である。 一実施形態に係るインペラのブレード形状を示す正面図である。 一実施形態に係るインペラのブレード形状を示す正面図である。 一実施形態に係るインペラのブレード形状を示す正面図である。 一実施形態に係るインペラのブレード形状を示す正面図である。 一実施形態に係るインペラのブレード形状を示す正面図である。 従来のインペラの側面図である。 従来のインペラの正面図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図10及び図11は、従来の遠心式圧縮機のインペラを示す。
図10及び図11において、従来の遠心式圧縮機のインペラ100は、ハブ部102と、ハブ部102の外周面に設けられる複数のブレード104とを備える。ハブ部102は、軸方向aにおける一端部に位置する小径部106及び軸方向aにおける他端部に位置して小径部106よりも大径である大径部108を有する。ブレード104は、小径部106の軸方向位置に位置する前縁110、及び大径部108の軸方向位置に位置する後縁112を有する。図中、bはインペラ100の回転方向を示す。
図11に示すように、前縁110と後縁112とは径方向で回転方向下流側に傾斜している。
図10に示すように、インペラ100が回転すると、ブレード104のミーン高さ位置周辺Aで大きな遠心応力が発生することは一般的に知られている。
本発明者等が分析した結果、遠心力に起因したブレード104の変形は、前縁側及び後縁側において大きくなり、前縁側は、ブレード104の周方向傾斜を緩和する方向(回転方向bの下流側に向かう矢印X方向)に変形し、後縁側は、どちらかと言えば、上方から下方(前縁側から後縁側に向かう矢印Y方向)に変形することがわかった。その結果、ブレード104の翼弦114のチップ側領域中央部Aに引張り応力と曲げモーメントMとが発生する。
遠心式の回転機械では、従来、直線翼(径方向に沿って前縁が直線的に延在する翼)が主流であったが、近年、3次元加工が可能となってきた。そこで、本発明者等は、3次元翼の検討過程において、前縁を半径方向に対して回転方向上流側に反らせた3次元形状を考案したが、上述のように、動翼チップのチップ側領域中央部A2に引っ張り応力が作用してしまうことが明らかになった。
図1〜図3は、一実施形態に係る遠心式回転機械のインペラ10を示す。図1はインペラ10の側面図、図2はインペラ10の正面図、図3は、後述する第1半径方向断面Sにおけるインペラ10のブレード14の形状を示す正面図である。
図1及び図2において、インペラ10は、ハブ部12と、ハブ部12の外周面に設けられる複数のブレード14とを備える。ハブ部12は、軸方向aにおける一端部に位置する小径部16及び軸方向aにおける他端部に位置して小径部16よりも大径である大径部18を有する。ブレード14は、小径部16の軸方向位置に位置する第1エッジ20、及び大径部18の軸方向位置に位置する第2エッジ22を有する。
図3に示すように、インペラ10は、第1エッジ20のチップ26を通る軸方向位置における第1半径方向断面Sのうち50%以上の翼高さ範囲の少なくとも一部が、半径方向cに対してインペラ10の回転方向bの下流側に傾斜している。
上記構成によれば、図2に示すように、第1半径方向断面Sを、50%以上の翼高さ範囲の少なくとも一部が半径方向cに対して回転方向bの下流側に傾斜するようにしたので、ハブ大径部側の第2エッジ22を半径方向cに対して回転方向上流側に傾斜させる場合であっても、第1エッジ側と第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。具体的には、第1エッジ側と第2エッジ側とが相対的に接近する方向、又はチップ側領域中央部A2に圧縮応力を発生させる方向へ変位させる。これによって、第1エッジ20と第2エッジ22との間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、図1及び図2において、ハブ部12の中心に回転軸28を備え、回転軸28は回転中心Oを中心として矢印b方向へ回転する。
一実施形態に係る遠心式回転機械50は、図4に示すように、上記構成を有するインペラ10と、インペラ10を覆うように設けられるケーシング52と、を備える。
上記構成によれば、インペラ10の回転時にブレード14に加わる遠心力によって、ブレード14は、第1エッジ20側と第2エッジ22側とを相対的に引張り応力を増加させない方向へ変形することができる。これによって、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、遠心式回転機械50は遠心式圧縮機であり、インペラ10が、第1エッジ20としての前縁と、第2エッジ22としての後縁と、を有するブレード14を備える。インペラ10の回転によって、被圧縮気体Gは吸入通路54からブレード間に形成された流路56を通って圧縮され、吐出通路58に吐出される。
この実施形態によれば、インペラ10の回転時、前縁と後縁との間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減することができる。
一実施形態では、図3に示すように、第1半径方向断面Sの翼厚方向の中点を結んだ第1基準線L上において、ハブ部12のハブ面における半径方向位置に位置する点を第1ハブ側基準点Phとし、チップ26における半径方向位置に位置する点を第1チップ側基準点Ptとしたとき、第1チップ側基準点Ptは、第1ハブ側基準点Phに対してインペラ10の回転方向bの下流側に位置する。
この実施形態によれば、第1チップ側基準点Ptが第1ハブ側基準点Phに対してインペラ回転方向の下流側に位置するため、第1エッジ20側と第2エッジ22側とを相対的に引張り応力を増加させない上述した方向へ変形させることができる。これによって、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、図3に示すように、第1基準線Lは、第1半径方向断面Sにおいて第1基準線Lよりインペラ回転方向bの下流側に曲率中心Cを有する湾曲部30を含む。
この実施形態によれば、湾曲部30の曲率中心Cがインペラ回転方向下流側にあるため、第1エッジ20側と第2エッジ22側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、図3に示すように、第1基準線Lは直線部32を含む。
この実施形態によれば、第1基準線Lが直線部32を含むことで、ブレード14の局面形状をシンプルな形状とすることができ、ブレード14の製作が容易になる。
図5及び図6は、第1半径方向断面Sにおける各実施形態に係るブレード14の形状を示す。
一実施形態では、図5に示すように、第1チップ側基準点Ptと第1ハブ側基準点Phとの間の位相角差Δθが20度以上である。
この実施形態によれば、第1半径方向断面Sの少なくともチップ側をインペラ回転方向下流側に傾斜させた上で、上記位相角差Δθを確保することで、第1エッジ側と第2エッジ側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。また、3次元翼の曲がりの程度が大きい場合においても強度的な成立性を高めることができる。
一実施形態では、図6に示すように、第1基準線Lは、この第1基準線上の各点の第1接線34と、第1基準線上の各点を通る半径方向線36との間の角度θについて、上記各点から径方向外側に向かう第1接線34が半径方向線36に対してインペラ回転方向bの下流側に位置するときに角度θの符号が正となるように定義したとき、θの最大値が20度以上となるように構成する。
この実施形態によれば、θの最大値が20度以上であるため、インペラ10の回転時、第1エッジ20側を確実に第2エッジ22側に対して引張り応力を増加させない方向へ変形できる。これによって、引張り応力及び曲げモーメントMを確実に低減できる。
図7〜図9は、後述する第2半径方向断面Sにおける各実施形態に係るブレード14の形状を示す。
一実施形態では、図7に示すように、インペラ10は、第2エッジ22のチップ38を通る軸方向位置における第2半径方向断面S(図1参照)のうち50%以上の翼高さ範囲の少なくとも一部が、半径方向に対してインペラ回転方向bの上流側に傾斜している。
この実施形態によれば、インペラ10の回転時、第1エッジ20側と第2エッジ22側とを相対的に引張り応力を増加させない方向へ変形させることができる。即ち、第1エッジ側と第2エッジ側とが相対的に接近する方向、又はチップ側領域中央部A2に圧縮応力を発生させる方向へ変位させる。
これによって、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、図7に示すように、第2半径方向断面Sの翼厚方向の中点を結んだ第2基準線L上において、ハブ部12のハブ面における半径方向位置にある点を第2ハブ側基準点Phとし、チップ38における半径方向位置にある点を第2チップ側基準点Ptとしたとき、第2チップ側基準点Ptは、第2ハブ側基準点Phに対してインペラ回転方向bの上流側に位置する。
この実施形態によれば、第2エッジ22の第2チップ側基準点Ptが第2ハブ側基準点Phに対して回転方向上流側に位置するため、インペラ回転時、第2エッジ22側を回転方向上流側へ変位させることができる。これによって、第1エッジ20と第2エッジ22間においてチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、図7に示すように、第2基準線Lは、第2半径方向断面Sに対してインペラ回転方向bの上流側に曲率中心Cを有する湾曲部40を含む。
この実施形態によれば、湾曲部40の曲率中心Cがインペラ回転方向上流側にあるため、インペラ回転時、第2エッジ22側を回転方向上流側へ変位させることができる。これによって、第1エッジ20と第2エッジ22間においてチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。
一実施形態では、図7に示すように、第2基準線Lは直線部42を含む。
この実施形態によれば、第2基準線Lが直線部42を含むことで、ブレード14の局面形状をシンプルな形状とすることができ、製作が容易になる。
一実施形態では、図8に示すように、第2チップ側基準点Ptと第2ハブ側基準点Phとの間の位相角差Δθが20度以上である。
この実施形態によれば、第2半径方向断面Sの少なくともチップ側をインペラ回転方向上流側に傾斜させた上で、位相角差Δθを20度以上確保することで、インペラ回転時、第1エッジ20側と第2エッジ22側とを相対的に引張り応力を増加させない方向へ変形させることができる。これによって、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMを低減できる。また、3次元翼の曲がりの程度が大きい場合においても強度的な成立性を高めることができる。
一実施形態では、図9に示すように、第2基準線Lは、この第2基準線上の各点Pの第2接線44と、各点Pを通る半径方向線36との間の角度θについて、各点Pから径方向外側に向かう第2接線44が半径方向線36に対してインペラ回転方向の上流側に位置するときに角度θの符号が正となるように定義したとき、θの最大値が30度以上である。
この実施形態によれば、角度θの最大値が30度以上であるため、インペラ回転時、第2エッジ22側を確実に第1エッジ20側に対して引張り応力を増加させない方向へ変形できる。これによって、引張り応力及び曲げモーメントMを確実に低減することができる。
一実施形態では、ΔθとΔθとが同程度となったとき、第1エッジ20と第2エッジ22間でチップ側領域中央部A2に発生する引張り応力及び曲げモーメントMの低減効果を最も高めることができる。
幾つかの実施形態によれば、遠心式回転機械、例えば、自動車用、舶用のターボチャージャ、ガスタービン、蒸気タービン等におけるインペラのブレードの翼チップ側に発生する引張り応力及び曲げモーメントを低減できる。
10、100 インペラ
12、102 ハブ部
14、104 ブレード
16、106 小径部
18、108 大径部
20 第1エッジ
22 第2エッジ
24、114 翼弦
26、38 チップ
28 回転軸
30、40 湾曲部
32、42 直線部
34 第1接線
36 半径方向線
44 第2接線
50 遠心式回転機械
52 ケーシング
54 吸入通路
56 流路
58 吐出通路
110 前縁
112 後縁
チップ側領域中央部
第1基準線
第2基準線
M 曲げモーメント
Ph 第1ハブ側基準点
Ph 第2ハブ側基準点
Pt 第1チップ側基準点
Pt 第2チップ側基準点
第1半径方向断面
第2半径方向断面
a 軸方向
b 回転方向
c 径方向
Δθ、Δθ 位相角差

Claims (13)

  1. 遠心式回転機械のインペラであって、
    軸方向における一端部に位置する小径部、および、前記軸方向における他端部に位置して前記小径部よりも大径である大径部を有するハブと、
    前記小径部の軸方向位置に位置する第1エッジ、および、前記大径部の軸方向位置に位置する第2エッジを有し、前記ハブの外周面に設けられるブレードと、
    を備え、
    前記インペラは、前記第1エッジのチップを通る軸方向位置における第1半径方向断面のうち50%以上の翼高さ範囲の少なくとも一部が、半径方向に対して前記インペラの回転方向の下流側に傾斜し
    前記第1半径方向断面の翼厚方向の中点を結んだ第1基準線上において、
    前記ハブのハブ面における半径方向位置に位置する第1ハブ側基準点と、
    前記チップにおける半径方向位置に位置する第1チップ側基準点と、
    を定義したとき、
    前記第1チップ側基準点は、前記第1ハブ側基準点に対して前記回転方向の下流側に位置する
    ことを特徴とする遠心式回転機械のインペラ。
  2. 前記第1基準線は、前記第1半径方向断面において前記回転方向の下流側に曲率中心を有する湾曲部を含むことを特徴とする請求項に記載の遠心式回転機械のインペラ。
  3. 前記第1基準線は直線部を含むことを特徴とする請求項1又は2に記載の遠心式回転機械のインペラ。
  4. 前記第1チップ側基準点と前記第1ハブ側基準点との間の位相角差Δθが20度以上であることを特徴とする請求項1乃至3の何れか一項に記載の遠心式回転機械のインペラ。
  5. 前記第1基準線は、該第1基準線上の各点の第1接線と、該各点を通る半径方向線との間の角度θについて、前記各点から径方向外側に向かう前記第1接線が前記半径方向線に対して前記回転方向の下流側に位置するときに前記角度θの符号が正となるように定義したとき、
    前記θの最大値が20度以上である
    ことを特徴とする請求項1乃至4の何れか一項に記載の遠心式回転機械のインペラ。
  6. 遠心式回転機械のインペラであって、
    軸方向における一端部に位置する小径部、および、前記軸方向における他端部に位置して前記小径部よりも大径である大径部を有するハブと、
    前記小径部の軸方向位置に位置する第1エッジ、および、前記大径部の軸方向位置に位置する第2エッジを有し、前記ハブの外周面に設けられるブレードと、
    を備え、
    前記インペラは、前記第1エッジのチップを通る軸方向位置における第1半径方向断面のうち50%以上の翼高さ範囲の少なくとも一部が、半径方向に対して前記インペラの回転方向の下流側に傾斜し、
    前記インペラは、前記第2エッジのチップを通る軸方向位置における第2半径方向断面のうち50%以上の翼高さ範囲の少なくとも一部が、半径方向に対して前記インペラの回転方向の上流側に傾斜している
    ことを特徴とする遠心式回転機械のインペラ。
  7. 前記第2半径方向断面の翼厚方向の中点を結んだ第2基準線上において、
    前記ハブのハブ面における半径方向位置にある第2ハブ側基準点と、
    前記チップにおける半径方向位置にある第2チップ側基準点と、
    を定義したとき、
    前記第2チップ側基準点は、前記第2ハブ側基準点に対して前記回転方向の上流側に位置する
    ことを特徴とする請求項に記載の遠心式回転機械のインペラ。
  8. 前記第2基準線は、前記第2半径方向断面に対して前記回転方向の上流側に曲率中心を有する湾曲部を含むことを特徴とする請求項に記載の遠心式回転機械のインペラ。
  9. 前記第2基準線は直線部を含むことを特徴とする請求項7又は8に記載の遠心式回転機械のインペラ。
  10. 前記第2チップ側基準点と前記第2ハブ側基準点との間の位相角差Δθが20度以上であることを特徴とする請求項7乃至9の何れか一項に記載の遠心式回転機械のインペラ。
  11. 前記第2基準線は、該第2基準線上の各点の第2接線と、該各点を通る半径方向線との間の角度θについて、前記各点から径方向外側に向かう前記第2接線が前記半径方向線に対して前記回転方向の上流側に位置するときに前記角度θの符号が正となるように定義したとき、
    前記θの最大値が30度以上である
    ことを特徴とする請求項7乃至10の何れか一項に記載の遠心式回転機械のインペラ。
  12. 請求項1乃至11の何れか一項に記載のインペラと、
    前記インペラを覆うように設けられるケーシングと、
    を備えることを特徴とする遠心式回転機械。
  13. 前記インペラが、
    前記第1エッジとしての前縁と、
    前記第2エッジとしての後縁と、
    を含み、
    前記遠心式回転機械は遠心式圧縮機であることを特徴とする請求項12に記載の遠心式回転機械。
JP2019547841A 2017-10-11 2017-10-11 遠心式回転機械のインペラ及び遠心式回転機械 Active JP6842563B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036807 WO2019073551A1 (ja) 2017-10-11 2017-10-11 遠心式回転機械のインペラ及び遠心式回転機械

Publications (2)

Publication Number Publication Date
JPWO2019073551A1 JPWO2019073551A1 (ja) 2020-04-09
JP6842563B2 true JP6842563B2 (ja) 2021-03-17

Family

ID=66100542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547841A Active JP6842563B2 (ja) 2017-10-11 2017-10-11 遠心式回転機械のインペラ及び遠心式回転機械

Country Status (5)

Country Link
US (1) US11525457B2 (ja)
EP (1) EP3696425B1 (ja)
JP (1) JP6842563B2 (ja)
CN (1) CN110573745B (ja)
WO (1) WO2019073551A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696425B1 (en) * 2017-10-11 2023-05-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller for centrifugal rotating machine, and centrifugal rotating machine
EP3835591B1 (en) 2019-12-13 2023-08-02 Dab Pumps S.p.A. Impeller for centrifugal pump, particularly for a recessed-impeller pump, and pump with such an impeller
US11835058B2 (en) * 2020-04-23 2023-12-05 Mitsubishi Heavy Industries Marine Machinery & Equipment Co., Ltd. Impeller and centrifugal compressor
GB2611561A (en) * 2021-10-08 2023-04-12 Cummins Ltd Compressor impeller
CN114962322B (zh) * 2022-05-24 2023-09-26 威灵(芜湖)电机制造有限公司 叶轮结构、风机及家用电器
JP2024136594A (ja) * 2023-03-24 2024-10-04 本田技研工業株式会社 ラジアルタービン用インペラ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447251B1 (en) * 2000-04-21 2002-09-10 Revcor, Inc. Fan blade
JP4178545B2 (ja) 2002-10-02 2008-11-12 株式会社Ihi 回転機械の動翼
JP3727027B2 (ja) * 2003-07-02 2005-12-14 行宣 阪田 遠心式羽根車及びその設計方法
DE102006048514B3 (de) * 2005-12-01 2007-05-10 Mtu Friedrichshafen Gmbh Leiteinrichtung für einen VTG-Abgasturbolader
US20080229742A1 (en) * 2007-03-21 2008-09-25 Philippe Renaud Extended Leading-Edge Compressor Wheel
US8272832B2 (en) * 2008-04-17 2012-09-25 Honeywell International Inc. Centrifugal compressor with surge control, and associated method
FR2943103B1 (fr) * 2009-03-13 2011-05-27 Turbomeca Compresseur axialo-centrifuge a angle de rake evolutif
US8579591B2 (en) * 2010-10-28 2013-11-12 Hamilton Sundstrand Corporation Centrifugal compressor impeller
JP5608062B2 (ja) 2010-12-10 2014-10-15 株式会社日立製作所 遠心型ターボ機械
JP5574951B2 (ja) * 2010-12-27 2014-08-20 三菱重工業株式会社 遠心圧縮機の羽根車
JP5881369B2 (ja) * 2011-10-27 2016-03-09 三菱重工業株式会社 タービン動翼及びこれを備えたガスタービン
JP5879103B2 (ja) * 2011-11-17 2016-03-08 株式会社日立製作所 遠心式流体機械
CN103256248B (zh) * 2012-02-21 2015-08-26 珠海格力电器股份有限公司 叶轮及包括该叶轮的离心压缩机
JP5611307B2 (ja) 2012-11-06 2014-10-22 三菱重工業株式会社 遠心回転機械のインペラ、遠心回転機械
JP6034162B2 (ja) * 2012-11-30 2016-11-30 株式会社日立製作所 遠心式流体機械
JP5606515B2 (ja) * 2012-12-13 2014-10-15 三菱重工業株式会社 圧縮機
CN105164426B (zh) * 2013-06-13 2017-05-17 三菱重工业株式会社 叶轮以及流体机械
JP2015045304A (ja) * 2013-08-29 2015-03-12 株式会社Ihi 遠心圧縮機および過給機
JP2016061223A (ja) 2014-09-18 2016-04-25 株式会社Ihi ターボ回転機械
JP2016169613A (ja) * 2015-03-11 2016-09-23 三菱重工業株式会社 インペラ、圧縮機、および、インペラの製造方法
CN205154739U (zh) * 2015-11-06 2016-04-13 重庆江增船舶重工有限公司 一种大流量高压比高效率离心式压气叶轮
US10221858B2 (en) * 2016-01-08 2019-03-05 Rolls-Royce Corporation Impeller blade morphology
WO2017122307A1 (ja) * 2016-01-14 2017-07-20 三菱重工業株式会社 圧縮機インペラ及びその製造方法
JP6710271B2 (ja) * 2016-03-31 2020-06-17 三菱重工エンジン&ターボチャージャ株式会社 回転機械翼
EP3696425B1 (en) * 2017-10-11 2023-05-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller for centrifugal rotating machine, and centrifugal rotating machine

Also Published As

Publication number Publication date
US20200056487A1 (en) 2020-02-20
EP3696425A1 (en) 2020-08-19
JPWO2019073551A1 (ja) 2020-04-09
US11525457B2 (en) 2022-12-13
EP3696425B1 (en) 2023-05-03
EP3696425A4 (en) 2021-05-12
CN110573745A (zh) 2019-12-13
CN110573745B (zh) 2021-11-26
WO2019073551A1 (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6842563B2 (ja) 遠心式回転機械のインペラ及び遠心式回転機械
EP2339115B1 (en) Turbine rotor assembly and steam turbine
JP4288051B2 (ja) 斜流タービン、及び、斜流タービン動翼
JP6034860B2 (ja) ターボ機械要素
JP6352628B2 (ja) テーパ付き部分スパン型シュラウド
US20170298951A1 (en) Compressor
US20080063528A1 (en) Turbine wheel
WO2014091804A1 (ja) 圧縮機
JPWO2017168766A1 (ja) 回転機械翼、過給機、および、これらの流れ場の形成方法
CN109844263B (zh) 涡轮机叶轮、涡轮机及涡轮增压器
KR20180134965A (ko) 터빈용 터빈 휠
US20180266442A1 (en) Compressor impeller and method for manufacturing same
JP6746943B2 (ja) 遠心圧縮機インペラ
JP7503461B2 (ja) タービンホイール、タービン及びターボチャージャ
JP2004263602A (ja) 軸流タービンのノズル翼、動翼およびタービン段落
WO2019239451A1 (ja) 回転翼及びこの回転翼を備える遠心圧縮機
US11401828B2 (en) Asymmetric turbomachinery housing for thermal expansion
KR102276503B1 (ko) 원심 압축기 및 터보차저
JP5851876B2 (ja) 水車用ランナおよび水車
WO2021215471A1 (ja) インペラ、及び遠心圧縮機
JP5483096B2 (ja) タービンの3次元インペラ
JPS63124806A (ja) 輻流タ−ボ機械
CN110005644B (zh) 带中间机匣的轴流压气机静子
JP2011252431A (ja) タービンインペラ
JP2019027327A (ja) 遠心ファン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150