[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6677250B2 - 直流回路、直流電力供給装置、移動体及び電力供給システム - Google Patents

直流回路、直流電力供給装置、移動体及び電力供給システム Download PDF

Info

Publication number
JP6677250B2
JP6677250B2 JP2017521773A JP2017521773A JP6677250B2 JP 6677250 B2 JP6677250 B2 JP 6677250B2 JP 2017521773 A JP2017521773 A JP 2017521773A JP 2017521773 A JP2017521773 A JP 2017521773A JP 6677250 B2 JP6677250 B2 JP 6677250B2
Authority
JP
Japan
Prior art keywords
circuit
current
current path
power supply
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017521773A
Other languages
English (en)
Other versions
JPWO2016194584A1 (ja
Inventor
直 森田
直 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2016194584A1 publication Critical patent/JPWO2016194584A1/ja
Application granted granted Critical
Publication of JP6677250B2 publication Critical patent/JP6677250B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Relay Circuits (AREA)
  • Fuses (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本開示は、直流回路、直流電力供給装置、移動体及び電力供給システム
に関する。
直流給電でも交流給電でも、電力の切断時にはアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。しかし直流給電では、ゼロ電圧となる瞬間がないため、アーク放電は自然には止まらない。
そのため、直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術が開示されている(特許文献1,2等参照)。
特開2003−203721号公報 特表2014−522088号公報
直流給電の場合に電力の切断時にアーク放電の発生を抑えることはもちろんであるが、アーク放電の発生を抑えるための構成が大規模なものになるのは好ましくなく、またアーク放電の発生を抑えるための構成を加えることで直流給電の最中に電力供給効率を低下させるのも好ましくない。従って、直流電力供給時の電力効率を低下させずに、直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが望ましい。
そこで本開示では、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制するとともに、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能な、新規かつ改良された直流回路、直流電力供給装置、移動体及び電力供給システムを提案する。
本開示によれば、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、を備え、前記第1の電流経路上には少なくともヒューズを備え、前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流回路が提供される。
また本開示によれば、直流電力を供給する直流電源と、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、を備え、前記第1の電流経路上には少なくともヒューズを備え、前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流電力供給装置が提供される。
以上説明したように本開示によれば、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制するとともに、アーク放電の抑制に半導体を用いた際に当該半導体の劣化時による短絡が発生しても安全を確保することが可能な、新規かつ改良された直流回路、直流電力供給装置、移動体及び電力供給システムを提供することが出来る。
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る直流回路を備えた直流電力供給装置の構成例を示す説明図である。 本開示の一実施形態に係る直流回路を備えた直流電力供給装置の構成例を示す説明図である。 電流の時間変化をグラフで示す説明図である。 本開示の一実施形態に係る直流回路の構成例を示す説明図である。 本開示の一実施形態に係る直流回路の構成例を示す説明図である。 ヒューズの溶断特性の例をグラフで示す説明図である。 警報ヒューズの構造例を示す説明図である。 警報ヒューズの構造例を示す説明図である。 本開示の一実施形態に係る直流回路の構成例を示す説明図である。 本開示の一実施形態に係る直流回路の構成例を示す説明図である。 本開示の一実施形態に係る直流回路の構成例を示す説明図である。 電流の時間変化をグラフで示す説明図である。 本開示の一実施形態に係る直流回路が備えられた電動駆動体の機能構成例を示す説明図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行うものとする。
1.本開示の一実施形態
1.1.背景
1.2.構成例
2.まとめ
<1.本開示の一実施形態>
[1.1.背景]
本開示の一実施形態について詳細に説明する前に、まず本開示の一実施形態の背景について説明する。
直流給電でも交流給電でも、電力の切断時には、電圧と電流がある所定の値以上になると、電極間の電位差によるスパークやアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。
しかし直流給電では、交流給電と違って電圧がゼロとなる瞬間がないため、アーク放電は自然には止まらない。アーク放電は、金属の溶断、溶着といった接点の劣化を発生させ、電力給電の信頼性が低下するおそれがある。
そのため、直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術が開示されている。例えば、コンデンサと抵抗とを用いたスナバ回路を揺動接触子の間に接続して回避する技術が従来から提案されている。
しかし、直流給電の場合にスナバ回路を用いてアーク放電を防ぐためには、容量の大きなコンデンサと小さな抵抗を用いなければ十分な効果が得られず、十分な効果を得ようとするとスナバ回路が大型化してしまう。また、スナバ回路を用いてアーク放電を防ぐ場合、直流電力の切断後に直流電源に再度接続しようとすると、容量の大きなコンデンサにチャージされた電荷によるショート電流が大きくなり、接点が溶着してしまう。
また差込プラグをプラグ受けに抜き差しすることによって直流給電を行う場合において、アーク放電の発生を防ぐために差込プラグに機械的スイッチを設け、差込プラグをプラグ受けから抜去する際にその機械的スイッチを操作することでアーク放電の発生を防ぐ技術もある。しかし、この技術では差込プラグの抜去時に機械的スイッチの操作という煩雑な操作を利用者に強いる必要が生じる。
機械的にアーク放電を除去する方法もある。しかし機械的にアーク放電を除去するためには、接点の引き剥がし速度を上げたり、磁気回路によってアークを引き剥がしたりするなどの構造が必要となり、アーク放電を除去するための回路が大型化してしまう。
直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術として、他に上記特許文献1,2等がある。
上記特許文献1は、直流給電時に電流が流れる経路上にスイッチング素子を設け、プラグ受けからの差込プラグの抜去時にスイッチング素子をオフにすることで、アーク放電の発生を抑える技術を開示している。
しかし、特許文献1に開示されている技術では、直流給電時に電流がスイッチング素子を流れるために、直流給電時にスイッチング素子において電力が消費されるとともに、直流給電時にスイッチング素子が発熱する。
上記特許文献2も、直流給電時に電流が流れる経路上にスイッチング素子を備えるアーク吸収回路を設け、プラグ受けからの差込プラグの抜去時にスイッチング素子をオフにすることで、アーク放電の発生を抑える技術を開示している。
しかし、特許文献2で開示されている技術では、アーク吸収回路として2つのスイッチング素子や、スイッチング素子をオフにするためのタイマを設けており、アーク電力を一時的に蓄えて、その蓄えた電力を放出するための回路が必要になり、回路が大型化する。
そこで本件開示者は、上述した背景に鑑み、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、正極側の電極に2つの接点を設け、受電側の電極との接点の切り替え時に直流電力の切断時に電極間で生じる電圧を抑制することで、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な技術を考案するに至った。
さらに、本件開示者は、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保できる技術を考案するに至った。
以上、本開示の一実施形態の背景について説明した。続いて、本開示の実施の形態について詳細に説明する。
[1.2.構成例]
図1は、本開示の一実施形態に係る直流回路を備えた直流電力供給装置の構成例を示す説明図である。図1に示したのは、直流電源から供給される直流電力を負荷に供給することを目的とした直流電力供給装置の構成例である。以下、図1を用いて本開示の一実施形態に係る直流電力供給装置の構成例について説明する。
図1に示した直流電力供給装置は、直流電源200から供給される直流電力を負荷10に供給している。直流電源200は所定の電圧Vsの直流電力を出力する。そして図1に示した直流電力供給装置は、直流電源200の正極側と負荷10との間に、直流回路100を備える。直流回路100は、直流電源200からの直流電流を遮断する際にアーク放電の発生を抑制する構成を有している。
直流回路100は、MOSFET T1と、コンデンサC1と、抵抗R1と、ダイオードD1と、スイッチSW1と、警報ヒューズ110と、を含んで構成される。直流回路100は、直流が流れる経路において並列である主系統と副系統とで電流を流す。スイッチSW1が設けられている系統を主系統とし、MOSFET T1が設けられている系統を副系統とする。
MOSFET T1は、本実施形態ではn型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor) を用いている。コンデンサC1は、MOSFET T1のドレイン端子とゲート端子との間に設けられる。また抵抗R1は、MOSFET T1のゲート端子とソース端子との間に設けられる。そしてコンデンサC1と抵抗R1とは直列に接続されている。MOSFET T1、コンデンサC1、抵抗R1、及びダイオードD1からなる回路は、スイッチSW1がオン状態からオフ状態へ切り替わる際に、直流電源200から負荷10へ流れる電流を抑制するために設けられる回路である。
直流回路100の動作について説明する。スイッチSW1の状態がオフ状態になっている場合にMOSFET T1もオフ状態であり、従って直流電源200から負荷10に電流は流れない。その後、スイッチSW1が操作されて、スイッチSW1の状態がオン状態に以降すると、直流電源200から負荷10に電流が流れるが、この状態ではMOSFET T1は引き続きオフ状態になっており、MOSFET T1には電流が流れない。
さらにその後、スイッチSW1が操作されて、スイッチSW1の状態がオフ状態になると、直流電源200から負荷10に電流が流れなくなる。この際にスイッチSW1がオフ状態になったことによって(スイッチSW1の両端が切り離されたことによって)生じるスイッチSW1の両端の電圧は、コンデンサC1を介してMOSFET T1のゲート電圧を誘起させて、MOSFET T1をオン状態にする。MOSFET T1がオン状態になると、直流電源200から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れる。
MOSFET T1がオン状態になり、直流電源200から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れることにより、スイッチSW1の両端の電圧が低減される。スイッチSW1の両端の電圧が低減されることによって、スイッチSW1がオフ状態になっても、スイッチSW1はアーク放電の発生に至ることはない。
MOSFET T1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。スイッチSW1がオフ状態になり、スイッチSW1の両端に発生した電圧によってコンデンサC1の充電が進むと、MOSFET T1のゲート電圧が低下し、MOSFET T1はオフ状態に移行することでMOSFET T1に電流が流れなくなる。
直流回路100の抵抗R1に並列に接続されたダイオードD1は、スイッチSW1がオフ状態からオン状態に移行した場合に、抵抗R1を介さずコンデンサC1に蓄積された電荷を短時間に放電するために設けられる。
直流回路100において、ダイオードD1が抵抗R1と並列に設けられることで、例えばスイッチSW1の接続がチャタリングなどの現象を起こしても、直流回路100の電圧積分機能が短時間で復帰できるようにしている。抵抗R1は、MOSFET T1のゲート端子に電圧を供給するが、電圧の供給時間はコンデンサC1の容量と抵抗R1の抵抗値との積の関係で決まる。
警報ヒューズ110は、MOSFET T1が設けられている副系統で過大な電流が流れるとヒューズ部が溶断するとともに、スイッチSW1が設けられている主系統での再通電を防止する機構が設けられているヒューズである。警報ヒューズ110の具体的な構成例は後述するが、警報ヒューズ110は、例えばヒューズが溶断すると、弾性力などを用いて、上記主系統での再通電を防止する機構を備えている。
図1に示した直流回路100において、正常な状態、すなわち、スイッチSW1がオン状態からオフ状態に切り替わり、MOSFET T1がオン状態となってから、警報ヒューズ110の定格通電時間(溶断するまでの時間)より短い時間でMOSFET T1がオフ状態になれば、警報ヒューズ110は溶断することはない。
しかし、異常な状態、すなわちMOSFET T1が故障するなどして、スイッチSW1がオン状態からオフ状態に切り替わり、MOSFET T1がオン状態となってから、警報ヒューズ110の溶断時間より短い時間でMOSFET T1がオフ状態にならなければ、警報ヒューズ110のヒューズ部に電流が流れ続け、警報ヒューズ110が溶断する。図2は、直流回路100における警報ヒューズ110が溶断している状態を示す説明図である。
そして警報ヒューズ110が溶断すると、スイッチSW1が設けられている主系統において警報ヒューズ110のスイッチ部がオフ状態となる。警報ヒューズ110のスイッチ部がオフ状態となると、仮にスイッチSW1がオン状態となっても、直流電源200から直流電力が負荷に供給されることがなくなる。従って、本開示の一実施形態に係る直流回路100は、異常な状態が発生した場合に、スイッチSW1の操作による再通電を防ぎ、安全な方向へ故障することが可能となる。
図3は、警報ヒューズ110に流れる電流の時間変化をグラフで示す説明図である。図3には、直流回路100が正常な状態における、警報ヒューズ110に流れる電流I1の時間変化と、直流回路100が異常な状態における、警報ヒューズ110に流れる電流I2の時間変化と、が示されている。
直流回路100が正常な状態では、定格電流を上回る電流が流れても、警報ヒューズ110の定格通電時間(溶断するまでの時間)より短い時間で電流I1が低下する。従って直流回路100が正常な状態では警報ヒューズ110は溶断しない。しかし、直流回路100が異常な状態では、MOSFET T1がオフ状態にならず電流が流れ続け、定格通電時間を超えて定格電流を上回る電流が流れると、最終的に警報ヒューズ110が溶断してようやく電流I2が低下する。
すなわち直流回路100は、定格電流を上回る電流が流れても定格通電時間より短い時間であれば警報ヒューズ110は溶断しないことを利用して、スイッチSW1がオン状態からオフ状態に切り替わってもスイッチSW1のアーク放電の発生を抑えることができる。また、直流回路100は、MOSFET T1が故障するなどして正常な状態では無くなった場合に、警報ヒューズ110ヒューズ部の溶断によって直流電源200からの主系統及び副系統での再通電を抑止することができる。
以上、本開示の一実施形態に係る直流電力供給装置の構成例について説明した。続いて本開示の一実施形態に係る直流電力供給装置の別の構成例について説明する。
図4は、本開示の一実施形態に係る直流電力供給装置の別の構成例を示す説明図である。図4に示したのは、プラグ受けにプラグが挿入された機器へ直流電力を供給することを目的とした直流電力供給装置の構成例である。
図4に示した直流電力供給装置は、プラグ受けからプラグが抜去される際にプラグ受け20とプラグ11との間でアーク放電の発生を抑制する直流回路100を備えた装置である。なお図4には図示していないが、図1、図2と同様に、直流電力を供給する直流電源が設けられていても良い。
プラグ11がプラグ受け20に完全に挿入され、正極側端子11aが接触子20aと接触子20bとの両方に接触して接触子20aと接触子20bとがショートされた状態では、MOSFET T1に電流が流れない。プラグ11がプラグ受け20から抜去され始めると、MOSFET T1の両端は正極側端子11aによりショートされているため、MOSFET T1もオフ状態にある。
その後、さらにプラグ11がプラグ受け20から抜去され続け、正極側端子11aが接触子20aに接触しなくなり、接触子20bだけに接触するようになると、正極側端子11aと接触子20aとの接触点の一部に電流集中が発生し、その電流集中による電圧が接触子20aと接触子20bとの間に発生する。
接触子20aと接触子20bとの間に発生した電圧はコンデンサC1を介してMOSFET T1のゲート電圧を誘起させて、MOSFET T1をオン状態にする。MOSFET T1がオン状態になると、接触子20aと接触子20bとの間の電圧を低下させる方向に電流が流れる。
MOSFET T1がオン状態になり、接触子20aと接触子20bとの間の電圧を低下させる方向に電流が流れることにより、正極側端子11aと接触子20aとの電位差が低減される。正極側端子11aと接触子20aとの電位差が低減されることによって、正極側端子11aが接触子20aから離れてもアーク放電の発生に至ることはない。
MOSFET T1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。正極側端子11aが接触子20aから離れてから、接触子20aと接触子20bとの間で発生した電圧によってコンデンサC1の充電が進むと、MOSFET T1のゲート電圧が低下し、MOSFET T1はオフ状態に移行することでMOSFET T1に電流が流れなくなる。
図4に示した直流回路100は、MOSFET T1がオフ状態に移行した後に正極側端子11aが接触子20bから離れても、MOSFET T1に電流が流れていないので、アーク放電の発生に至ることはない。
直流回路100の抵抗R1に並列に接続されたダイオードD1は、正極側端子11aが接触子20aと接触子20bとの両方に接触して接触子20aと接触子20bとがショートされた場合に、抵抗R1を介さずコンデンサC1に蓄積された電荷を短時間に放電するために設けられる。
直流回路100において、ダイオードD1が抵抗R1と並列に設けられることで、例えば接触子20aと接触子20bとの接続がチャタリングなどの現象を起こしても、直流回路100の電圧積分機能が短時間で復帰できるようにしている。抵抗R1は、MOSFET T1のゲート端子に電圧を供給するが、電圧の供給時間はコンデンサC1の容量と抵抗R1の抵抗値との積の関係で決まる。
図5は、本開示の一実施形態に係る直流電力供給装置の別の構成例を示す説明図である。図5に示したのは、直流電源から供給される直流電力を負荷に供給することを目的とした直流電力供給装置の構成例である。
図5に示した直流電力供給装置は、直流電力の供給と遮断との切り替えにリレー30を用いたものである。リレー30は、図示しない電源からの電流により発生させた電磁力に応じてスイッチの切り替えを行う。リレー30がスイッチを切り替えることで図5に示した直流電力供給装置は直流電力の供給と遮断とが切り替えられる。なお図5には図示していないが、図1、図2と同様に、直流電力を供給する直流電源が設けられていても良い。
図5に示したように、直流電力の供給と遮断との切り替えにリレー30を用いた場合であっても、直流電力供給装置は、直流回路100を設けることによって、異常な状態が発生した場合に、スイッチSW1の操作による再通電を防ぎ、安全な方向へ故障することができる。
図6は、ヒューズの溶断特性の例をグラフで示す説明図である。図6に示したように、ヒューズは短時間の通電では、定格より多くの電流が流れても溶断しない。例えば、10Aヒューズは通常の使用では12A以上の電流が流れ続けると溶断するが、図6に示したように、0.1秒以下であれば35A流れても溶断しない。
図7は、警報ヒューズ110の構造例を示す説明図である。図7に示したように、警報ヒューズ110は、ヒューズ111と、保持線112と、妨害機構113と、警報接点114と、バネ115と、を含んで構成される。図7に示したのは、ヒューズ111が溶断していない状態を示したものである。図7に示したE1、E2は、直流回路100における主系統に電流を流す導体であり、F1、F2は、直流回路100における副系統に電流を流す導体である。
図7に示したように、導体F1、F2に流れる電流によってヒューズ111が溶断していない状態では、図7に示した導体E1、E2が保持線112の張力により警報接点114によって接続されている。従って、ヒューズ111が溶断していない状態では、警報ヒューズ110は主系統に電流を流すことができる。
図8は、図7に示した警報ヒューズ110のヒューズ111が溶断した状態を示す説明図である。図8に示したように、ヒューズ111が溶断すると保持線112の張力が失われ、バネ115の力により警報接点114が導体E2から解離し、導体E1、E2の接続が無くなる。従って、ヒューズ111が溶断した状態では、警報ヒューズ110は主系統に電流を流さないようにすることができる。
またヒューズ111が溶断すると、図8に示したように、妨害機構113が警報ヒューズ110から飛び出す。この妨害機構113は、スイッチSW1と連携したスライドバー121の下降を妨害する。従って、ヒューズ111が溶断した状態では、警報ヒューズ110は主系統に電流を流さないようにするだけでなく、スイッチSW1をオフ状態のままロックさせることができる。
ここまで示してきた直流回路100は、アーク放電の発生を抑制するために、MOSFETとコンデンサとを組み合わせた構成を有していた。アーク放電の発生を抑制する構成は係る例に限定されるものではない。以下の説明では、アーク放電の発生を抑制するために、ソリッドステートリレー(SSR、半導体リレー)に機械式リレーを並列に接続した構成を有する直流回路に警報ヒューズを設けた場合について説明する。
図9は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図9に示したのは、ソリッドステートリレー(SSR、半導体リレー)に機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。
図9に示した直流回路100は、SSR130と、機械式リレーRY1と、ダイオードD11、D12、D13と、コンデンサC11、C12と、抵抗R11と、を備える。直流回路100は、直流が流れる経路において並列である主系統と副系統とで電流を流す。SSR130が設けられている系統を主系統とし、機械式リレーRY1が設けられている系統を副系統とする。
機械式リレーRY1は、端子V+から端子V−へ流れる電流によって発生する電磁力を用いて接点を切り替えるよう動作する。機械式リレーRY1は、端子V+から端子V−へ電流が流れていない場合は接点1bと接続し、端子V+から端子V−へ電流が流れている場合は電磁力を用いて接点1aと接続する。なお図9には図示していないが、図1、図2と同様に、端子V+へ直流電力を供給する直流電源が設けられていても良い。
SSR130は、端子Aから端子Bへの電力供給経路上に設けられている。本実施形態では、SSR130は、制御端子にハイ状態の電圧が印加されるとオン状態になり、制御端子にロー状態の電圧が印加されるとオフ状態となるように構成されている。
端子V+から端子V−へ電流が流れていない場合は、機械式リレーRY1に電流が流れていないので、機械式リレーRY1は接点1bと接続している。従って機械式リレーRY1の接点1bはクローズ状態であり、接点1aはオープン状態である。
その後、端子V+に電圧が印加されて端子V+から端子V−へ電流が流れると、機械式リレーRY1は徐々に電磁力を発生させる。機械式リレーRY1が発生させた電磁力がある程度まで達すると、機械式リレーRY1は接点1bとの接続を解除する。
さらに電磁力が上昇すると、機械式リレーRY1は接点1aと接続するが、その接点1aとの接続の際にはチャタリングが生じる。また端子V+に電圧が印加されると、その電圧がSSR130の制御端子に印加される、SSR130はオン状態になる。そして端子V+から端子V−へ電流が流れると、ダイオードD1を通じてコンデンサC1に電荷が蓄積される。
さらにその後、端子V+に電圧が印加されなくなり、端子V+から端子V−へ電流が流れなくなると、機械式リレーRY1は徐々に電磁力を減少させる。機械式リレーRY1が発生させた電磁力が減少を始めると、機械式リレーRY1は接点1aとの接続を解除する。さらに電磁力が減少すると、機械式リレーRY1は接点1bと接続するが、その接点1bとの接続の際にはチャタリングが生じる。
この際、コンデンサC11は、機械式リレーRY1は接点1bと接続するまでの間、SSR130をオン状態とさせるだけの電力を蓄積できることが望ましい。またこの際、ダイオードD12が逆バイアスから解放されて導通し、コンデンサC12が機械式リレーRY1のコイルを通して動作する。
すなわち、コンデンサC12は、機械式リレーRY1が接点1bと接続する際のチャタリングを吸収する。またコンデンサC12は、ダイオードD13を通してコンデンサC11の放電回路も形成するとともに機械式リレーRY1のサージを吸収させている。
従って図9に示した直流回路100は、端子V+から端子V−へ電流が流れなくなり、機械式リレーRY1が接点1aとの接続を解除してもアークの発生を抑え、サージを吸収することが出来る。また図9に示した直流回路100は、端子の数を4つにして、一般的なリレーと同じような接続を可能にしたことで、既存のリレーから置き換えて使用することができる。
図9に示した直流回路100は、警報ヒューズ110を備えている。SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子Aから流れる電流によっていずれ警報ヒューズ110が溶断する。警報ヒューズ110が溶断すると、機械式リレーRY1の接点1a側の経路上の、警報ヒューズ110のスイッチがオフ状態となる。
機械式リレーRY1の接点1a側の経路上の、警報ヒューズ110のスイッチがオフ状態となると、機械式リレーRY1が接点1a側に接続したとしても電流は端子Aから端子Bへ流れることはなくなる。従って、図9に示した直流回路100は、SSR130の半導体スイッチが故障するなどして正常にオフ状態に移行しなくなったとしても、機械式リレーRY1による再通電を抑止することができる。
図10は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図10に示したのは、SSRに機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。なお図10には図示していないが、図1、図2と同様に、端子V+へ直流電力を供給する直流電源が設けられていても良い。
図10に示した直流回路100は、図9に示した直流回路100と同様に警報ヒューズ110を備えているが、図10の警報ヒューズ110は、SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子V+から端子V−への経路上に設けられるスイッチがオフ状態となる。従って、図10に示した直流回路100は、SSR130の半導体スイッチが故障するなどして正常にオフ状態に移行しなくなったとしても、機械式リレーRY1による再通電を抑止することができる。
図10に示した直流回路100は、警報ヒューズ110が溶断すると機械式リレーRY1が動作しなくなる。図10に示した直流回路100は、異常発生時には機械式リレーRY1が動作しなくなることで、故障の発見をより容易にさせる効果が期待できる。
図11は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図11に示したのは、SSRに機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。なお図11には図示していないが、図1、図2と同様に、端子Aへ直流電力を供給する直流電源が設けられていても良い。
図11は、端子AとSSR130との間にヒューズ110’を配置し、ヒューズ110’とSSR130との間から機械式リレーRY1を駆動させる電源を供給する構成を有する直流回路100を示したものである。
図11に示した直流回路100は、SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子Aから流れる電流によっていずれヒューズ110’が溶断する。ヒューズ110’が溶断すると、機械式リレーRY1へ電流が流れなくなり、機械式リレーRY1が動作しなくなる。図11に示した直流回路100は、異常発生時には機械式リレーRY1が動作しなくなることで、故障の発見をより容易にさせる効果が期待できる。
図12は、図9〜図11に示した直流回路100において、ヒューズに流れる電流の時間変化の例を示す説明図である。図12には、直流回路100が正常な状態におけるヒューズに流れる電流I3の時間変化と、直流回路100が異常な状態における、ヒューズ110に流れる電流I4の時間変化と、が示されている。
SSR130の半導体スイッチが正常に動作している場合は、図12に示したように、パルス状の電流I3がヒューズに流れる。しかし、SSR130の半導体スイッチが故障等の理由によって正常に動作しなくなった場合は、図12に示したような電流I4が流れ、最終的に110が溶断して電流I4が低下する。
図13は、直流回路100を備えた移動体40の機能構成例を示す説明図である。移動体40は、例えば、ガソリン車のようにガソリンを動力源とする移動体であってもよく、電気自動車、ハイブリッド車、電気オートバイ等の、充放電可能なバッテリを主な動力源とする移動体であってもよい。図13には、移動体40に、バッテリ210と、バッテリから供給される電力により駆動する駆動部220と、が備えられた場合の例が示されている。駆動部220には、例えばワイパー、パワーウィンドウ、ライト、カーナビゲーションシステム、エアーコンディショナのような車両に備えられる装備品や、モーター等の移動体40を駆動させる装置などが含まれうる。
そして図13に示した移動体40には、バッテリ210から駆動部220へ直流電力が供給される経路の途中に、直流回路100が設けられている。図13に示した移動体40は、バッテリ210から駆動部220へ直流電力が供給される経路上に、直流回路100が設けられることで、例えばバッテリ210を一時着脱させる際等にアーク放電の発生を抑えることが出来る。
なお図13には、直流回路100が1つだけ備えられている移動体40の例を示したが、本開示は係る例に限定されるものではない。すなわち、直流回路100は直流電力が供給される経路の途中に複数設けられても良い。また直流回路100は、バッテリ210から駆動部220へ直流電力が供給される経路の途中だけでなく、他の場所、例えばバッテリ210を直流電力で充電する際の経路の途中に設けられても良い。移動体40は、バッテリ210を直流電力で充電する際の経路の途中に直流回路100を設けることで、安全にバッテリ210を直流電力で充電することができる。
<2.まとめ>
以上説明したように本開示の実施の形態によれば、直流電力の切断時に電極間で生じる電圧を抑制することで、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な直流回路100が提供される。
本開示の実施の形態に係る直流回路100は、半導体スイッチを用いて直流電力の遮断時にアーク放電の発生を抑制するが、半導体スイッチが故障するなどして正常に動作しなくなった場合に溶断するとともに、再通電を抑止する機構を備えたヒューズを設けている。上述したような構成により、本開示の実施の形態に係る直流回路100や、直流回路100を備えた直流電力供給装置は、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能となる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
を備え、
前記第1の電流経路上には少なくともヒューズを備え、
前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流回路。
(2)
前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
前記ヒューズが溶断すると前記機械的スイッチによる直流電力の供給を抑止する抑止機構を含む、前記(1)に記載の直流回路。
(3)
前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、前記(1)または(2)に記載の直流回路。
(4)
前記回路は、
前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
を備える、前記(3)に記載の直流回路。
(5)
前記回路は、
前記第1の電流経路上に設けられ、直流電源からの直流電流の供給及び遮断を切り替える半導体リレーと、
前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流電流の供給及び遮断を切り替える機械式リレーと、
を備え、
前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、前記(1)に記載の直流出力回路。
(6)
前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電流を出力する、前記(5)に記載の直流回路。
(7)
直流電力を供給する直流電源と、
直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
を備え、
前記第1の電流経路上には少なくともヒューズを備え、
前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流電力供給装置。
(8)
前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
前記ヒューズが溶断すると前記機械的スイッチによる直流電力の供給を抑止する抑止機構を含む、前記(7)に記載の直流電力供給装置。
(9)
前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、前記(7)または(8)に記載の直流電力供給装置。
(10)
前記回路は、
前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
を備える、前記(9)に記載の直流電力供給装置。
(11)
前記回路は、
前記第1の電流経路上に設けられ、直流電力の供給及び遮断を切り替える半導体リレーと、
前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記電源からの電力の供給及び遮断を切り替える機械式リレーと、
を備え、
前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、前記(7)に記載の直流電力供給装置。
(12)
前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電力を出力する、前記(11)に記載の直流電力供給装置。
(13)
前記(1)〜(6)のいずれかに記載の直流回路を備える、移動体。
(14)
直流電力を供給するバッテリと、
前記バッテリから供給される直流電力による駆動する駆動部と、
前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、前記(1)〜(6)のいずれかに記載の直流回路と、
を備える、電力供給システム。
1a :接点
1b :接点
10 :負荷
11 :プラグ
11a :正極側端子
11b :負極側端子
20 :プラグ受け
20a :接触子
20b :接触子
30 :リレー
100 :直流回路
110 :警報ヒューズ
110' :ヒューズ
111 :ヒューズ
112 :保持線
113 :妨害機構
114 :警報接点
115 :バネ
121 :スライドバー
C1 :コンデンサ
C11 :コンデンサ
C12 :コンデンサ
D1 :ダイオード
D11 :ダイオード
D12 :ダイオード
D13 :ダイオード
D2 :ダイオード
E1 :導体
E2 :導体
F1 :導体
F2 :導体
R1 :抵抗
R11 :抵抗
RY1 :機械式リレー
SW1 :スイッチ

Claims (14)

  1. 直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
    前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
    を備え、
    前記第1の電流経路上には少なくともヒューズを備え、
    前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
    前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流回路。
  2. 前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
    前記ヒューズが溶断すると前記機械的スイッチによる直流電力の供給を抑止する抑止機構を含む、請求項1に記載の直流回路。
  3. 前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項1または2に記載の直流回路。
  4. 前記回路は、
    前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
    前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
    前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
    を備える、請求項3に記載の直流回路。
  5. 前記回路は、
    前記第1の電流経路上に設けられ、直流電源からの直流電流の供給及び遮断を切り替える半導体リレーと、
    前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流電流の供給及び遮断を切り替える機械式リレーと、
    を備え、
    前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、請求項1に記載の直流回路。
  6. 前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
    前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
    前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電流を出力する、請求項5に記載の直流回路。
  7. 直流による電力を供給する直流電源と、
    直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
    前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
    を備え、
    前記第1の電流経路上には少なくともヒューズを備え、
    前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
    前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流電力供給装置。
  8. 前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
    前記ヒューズが溶断すると前記機械的スイッチによる直流の供給を抑止する抑止機構を含む、請求項7に記載の直流電力供給装置。
  9. 前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項7または8に記載の直流電力供給装置。
  10. 前記回路は、
    前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
    前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
    前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
    を備える、請求項9に記載の直流電力供給装置。
  11. 前記回路は、
    前記第1の電流経路上に設けられ、前記直流電源からの直流の供給及び遮断を切り替える半導体リレーと、
    前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流の供給及び遮断を切り替える機械式リレーと、
    を備え、
    前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、請求項7に記載の直流電力供給装置。
  12. 前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
    前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
    前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電力を出力する、請求項11に記載の直流電力供給装置。
  13. 請求項1〜6のいずれかに記載の直流回路を備える、移動体。
  14. 直流電力を供給するバッテリと、
    前記バッテリから供給される直流電力による駆動する駆動部と、
    前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、請求項1〜6のいずれかに記載の直流回路と、
    を備える、電力供給システム。
JP2017521773A 2015-06-04 2016-05-13 直流回路、直流電力供給装置、移動体及び電力供給システム Expired - Fee Related JP6677250B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015113746 2015-06-04
JP2015113746 2015-06-04
PCT/JP2016/064358 WO2016194584A1 (ja) 2015-06-04 2016-05-13 直流回路、直流電力供給装置、移動体及び電力供給システム

Publications (2)

Publication Number Publication Date
JPWO2016194584A1 JPWO2016194584A1 (ja) 2018-03-22
JP6677250B2 true JP6677250B2 (ja) 2020-04-08

Family

ID=57442025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521773A Expired - Fee Related JP6677250B2 (ja) 2015-06-04 2016-05-13 直流回路、直流電力供給装置、移動体及び電力供給システム

Country Status (3)

Country Link
JP (1) JP6677250B2 (ja)
TW (1) TWI689963B (ja)
WO (1) WO2016194584A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146942A1 (ja) * 2017-02-13 2018-08-16 ソニー株式会社 アーク抑制装置
TWI646747B (zh) * 2017-04-20 2019-01-01 碩天科技股份有限公司 Power output control module applied to the power distributor
WO2018198538A1 (ja) * 2017-04-26 2018-11-01 ソニー株式会社 アーク抑制装置、移動体及び電力供給システム
US10606291B2 (en) 2017-07-06 2020-03-31 Cyber Power Systems Inc. Power output control module for a power distributor
BE1026349B1 (de) * 2018-06-08 2020-01-13 Phoenix Contact Gmbh & Co Schutzschalter mit Überwachungseinrichtung und Verfahren hierfür
WO2020032592A1 (ko) * 2018-08-08 2020-02-13 주식회사 엘지화학 퓨징 장치
KR102578585B1 (ko) 2019-03-19 2023-09-15 주식회사 엘지에너지솔루션 배터리 안전성 시험 장치 및 방법
JP2021022955A (ja) * 2019-07-24 2021-02-18 株式会社Gsユアサ 蓄電素子の管理装置、及び、蓄電装置
KR102480829B1 (ko) * 2020-09-02 2022-12-23 주식회사 액트로 이산화탄소 세정기 제어장치 및 제어방법
JP2024138902A (ja) * 2023-03-27 2024-10-09 株式会社オートネットワーク技術研究所 劣化判定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034140A1 (ja) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル スイッチ
JP2011228274A (ja) * 2010-03-30 2011-11-10 Yamatake Corp リレー駆動回路
JP5594728B2 (ja) * 2010-07-23 2014-09-24 松尾博文 直流スイッチ
DE102011053524B4 (de) * 2011-09-12 2015-05-28 Sma Solar Technology Ag Sicherheitseinrichtung für eine Photovoltaikanlage und Verfahren zum Betreiben einer Sicherheitseinrichtung für eine Photovoltaikanlage
WO2014052810A1 (en) * 2012-09-28 2014-04-03 Arc Suppression Technologies Arc suppressor, system, and method
US9865410B2 (en) * 2013-09-25 2018-01-09 Abb Schweiz Ag Methods, systems, and computer readable media for topology control and switching loads or sources between phases of a multi-phase power distribution system

Also Published As

Publication number Publication date
TWI689963B (zh) 2020-04-01
JPWO2016194584A1 (ja) 2018-03-22
TW201712719A (zh) 2017-04-01
WO2016194584A1 (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6677250B2 (ja) 直流回路、直流電力供給装置、移動体及び電力供給システム
JP6641862B2 (ja) 電流制限回路、直流電力供給コネクタ及び直流電源装置
JP4884089B2 (ja) 車両用の電源装置
JP6623937B2 (ja) リレー装置及び電源装置
US20090212627A1 (en) Car power source apparatus
JP6024801B1 (ja) スイッチング装置、移動体、電力供給システム及びスイッチング方法
JP6973391B2 (ja) スイッチング装置、移動体及び電力供給システム
JP2009153274A (ja) 車両用の電源装置
JP2017114373A (ja) ジャンクションボックス
JP2016187235A (ja) バッテリシステム制御装置
JP6708136B2 (ja) 直流開閉器のアーク消去装置
JP6124630B2 (ja) 車両用電源遮断装置
WO2018131249A1 (ja) 直流開閉器のアーク消去装置
JP6977721B2 (ja) 直流回路
JP7138184B2 (ja) 電流経路の直流電流を遮断するための断路装置、及び、自動車の車載給電システム
JP7010245B2 (ja) アーク抑制装置
CN215580357U (zh) 供电电路和电池系统
JP2011016391A (ja) 回路遮断器
JP7226307B2 (ja) アーク抑制装置、移動体及び電力供給システム
JP7515780B2 (ja) 直流回路開閉装置
JP7491484B1 (ja) 車載用制御装置
WO2023242989A1 (ja) 遮断制御装置
WO2023152786A1 (ja) 車載用遮断制御装置
JP6662308B2 (ja) 直流電力供給コネクタ及び直流電源装置
WO2023195153A1 (ja) 車載用遮断電流供給装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6677250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees