[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6654155B2 - 光伝送システム、ponシステムおよび伝送方法 - Google Patents

光伝送システム、ponシステムおよび伝送方法 Download PDF

Info

Publication number
JP6654155B2
JP6654155B2 JP2017002200A JP2017002200A JP6654155B2 JP 6654155 B2 JP6654155 B2 JP 6654155B2 JP 2017002200 A JP2017002200 A JP 2017002200A JP 2017002200 A JP2017002200 A JP 2017002200A JP 6654155 B2 JP6654155 B2 JP 6654155B2
Authority
JP
Japan
Prior art keywords
modulation
optical
intensity
modulator
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002200A
Other languages
English (en)
Other versions
JP2018113555A (ja
Inventor
昇太 石村
昇太 石村
和樹 田中
和樹 田中
西村 公佐
公佐 西村
鈴木 正敏
正敏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2017002200A priority Critical patent/JP6654155B2/ja
Priority to PCT/JP2017/045658 priority patent/WO2018131406A1/ja
Priority to EP17891947.8A priority patent/EP3570463B1/en
Priority to CN201780081966.4A priority patent/CN110140308B/zh
Publication of JP2018113555A publication Critical patent/JP2018113555A/ja
Priority to US16/429,560 priority patent/US10666362B2/en
Application granted granted Critical
Publication of JP6654155B2 publication Critical patent/JP6654155B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

本発明は、マルチキャリア伝送における波長分散補償機能を有する、または波長分散の影響を回避可能な光伝送システム、PONシステムおよび伝送方法に関する。
光ファイバ伝送において、波長分散は信号劣化を引き起こす主たる要因の一つである。波長分散は、光学的に補償する必要があるが、光ファイバの距離に依存する分散補償ファイバを物理的に挿入する手法を採る場合は、運用面でのコスト高を招いてしまう。また、ディジタル信号処理によって補償する手法を採る場合は、ディジタル信号処理を行なうための装置が高価であるため、低コスト化が求められるアクセス回線ではこの手法を採ることは難しかった。さらに、PON(Passive Optical Network)などのPoint−to−MultiPoint(PtMP)方式を採るネットワークトポロジーにおいて、OLT(Optical line terminal)とそれぞれのONU(Optical network unit)へのパスの波長分散を補償する場合、それぞれの距離に応じた複数の分散補償ファイバが必要となる。
特許文献1では、複数の波長分散補償器をOLT内に備え、ONUの距離に応じてそれらを切り替える技術が開示されている。
特許第5416844号
しかしながら、波長分散の影響を回避するための現存の手法において、光学的なアプローチでは、伝送距離に応じた分散補償器が個別に必要となってしまい、また、電気的なアプローチでは、信号処理を行なうための高価な回路が必要となってしまい、ともにアクセスネットワークへ適用するにはコスト面での課題があった。また、PONなどのPtMPのようなネットワークトポロジーにおいては、OLTと各ONU間の距離がそれぞれ異なるため、累積分散量の異なる複数の経路それぞれに対し、分散補償器を設置しなければならなかった。
本発明は、このような事情に鑑みてなされたものであり、簡易な構成で波長分散の影響を回避することができる光伝送システム、PONシステムおよび伝送方法を提供することを目的とする。
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の光伝送システムは、送信局と複数の受信局とが光分岐器を介して接続され、光ファイバ伝送を実現する光伝送システムであって、前記送信局は、前記各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する制御回路部と、光信号に対して強度変調を行なう強度変調器と、光信号に対して位相変調を行なう位相変調器と、を備え、前記送信局から前記各受信局に対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とする。
このように、各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定するので、各受信局の割当て帯域を固定的に定め、強度変調または位相変調のどちらかを行なうことによって、すべての受信局は、常に帯域を占有して通信を行なうことが可能となる。その結果、ユーザのスループットを向上させることが可能となる。
(2)また、本発明の光伝送システムにおいて、前記制御部は、強度変調され光ファイバを伝送した光信号が、受信側で直接検波をすることができなくなる周波数を含む特定の帯域の光信号に対して位相変調を行なうことを決定することを特徴とする。
このように、強度変調され光ファイバを伝送した光信号が、受信側で直接検波をすることができなくなる周波数を含む特定の帯域の光信号に対して位相変調を行なうことを決定するので、強度変調に適しない周波数を使用せず、位相変調に適した周波数を用いて変調を行なうことが可能となる。
(3)また、本発明の光伝送システムにおいて、前記制御部は、位相変調され光ファイバを伝送した光信号が、受信側で直接検波をすることができなくなる周波数を含む特定の帯域の光信号に対して強度変調を行なうことを決定することを特徴とする。
このように、位相変調され光ファイバを伝送した光信号が、受信側で直接検波をすることができなくなる変調周波数を含む特定の帯域の光信号に対して強度変調を行なうことを決定するので、位相変調に適しない周波数を使用せず、強度変調に適した周波数を用いて変調を行なうことが可能となる。
(4)また、本発明の光伝送システムにおいて、前記強度変調器および前記位相変調器は、並列に接続され、単一の光源で発生した光が分岐されて、それぞれ前記強度変調器および前記位相変調器に入力され、前記制御回路部は、前記各受信局との伝送距離および変調帯域の情報に基づいて、前記強度変調器または前記位相変調器のいずれかを切り替えて変調を行なうことを特徴とする。
これにより、波長分散の影響を回避することが可能となる。
(5)また、本発明の光伝送システムにおいて、前記強度変調器および前記位相変調器は、並列に接続され、独立した2つの光源で発生した光が、それぞれ前記強度変調器および前記位相変調器に入力され、前記制御回路部は、前記各受信局との伝送距離および変調帯域の情報に基づいて、前記強度変調器または前記位相変調器のいずれかを切り替えて変調を行なうことを特徴とする。
これにより、波長分散の影響を回避することが可能となる。
(6)また、本発明の光伝送システムにおいて、前記強度変調器および前記位相変調器は、直列に接続され、単一の光源で発生した光が順次前記強度変調器および前記位相変調器に入力され、前記制御回路部は、前記各受信局との伝送距離および変調帯域の情報に基づいて、前記強度変調器または前記位相変調器のいずれかを用いて変調を行なうことを特徴とする。
これにより、波長分散の影響を回避することが可能となる。
(7)また、本発明の光伝送システムにおいて、前記強度変調器は、光源の機能と強度変調器の機能の両方を備えることを特徴とする。
これにより、波長分散の影響を回避することが可能となる。
(8)また、本発明のPONシステムは、OLT(Optical Line Terminal)と複数のONU(Optical Network Unit)とが光分岐器を介して接続され、光ファイバ伝送を実現するPON(Passive Optical Network)システムであって、前記OLTは、前記各ONUとの伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する制御回路部と、光信号に対して強度変調を行なう強度変調器と、光信号に対して位相変調を行なう位相変調器と、を備え、前記OLTから前記各ONUに対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とする。
このように、各ONUとの伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定するので、各ONUの割当て帯域を固定的に定め、強度変調または位相変調のどちらかを行なうことによって、すべてのONUは、常に帯域を占有して通信を行なうことが可能となる。その結果、ユーザのスループットを向上させることが可能となる。
(9)また、本発明の伝送方法は、送信局と複数の受信局とが光分岐器を介して接続され、光ファイバ伝送を実現する光伝送システムの伝送方法であって、前記送信局において、前記各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定するステップと、光信号に対して強度変調または位相変調を行なうステップと、を少なくとも含み、前記送信局から前記各受信局に対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とする。
このように、各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定するので、各受信局の割当て帯域を固定的に定め、強度変調または位相変調のどちらかを行なうことによって、すべての受信局は、常に帯域を占有して通信を行なうことが可能となる。その結果、ユーザのスループットを向上させることが可能となる。
本発明によれば、簡易な構成で波長分散の影響を回避することが可能となる。
第1の実施形態に係る光送信器の概略構成を示す図である。 第1の実施形態に係る他の光送信器の概略構成を示す図である。 制御回路部の機能を示すブロック図である。 強度変調された光信号と位相変調された光信号それぞれについて、光ファイバ20km伝送後の直接検波した光信号の出力RFパワーを、最大値で規格化して示した図である。 20km伝送における強度変調器と位相変調器への0〜20GHzのマルチキャリアのチャネル配分の一例を示す図である。 20km伝送における強度変調器と位相変調器への0〜20GHzのマルチキャリアのチャネル配分の一例を示す図である。 20km伝送における強度変調器と位相変調器への0〜20GHzのマルチキャリアのチャネル配分の一例を示す図である。 第2の実施形態に係る光送信器の概略構成を示す図である。 第3の実施形態に係る光送信器の概略構成を示す図である。 第4の実施形態に係る光送信器の概略構成を示す図である。 第5の実施形態に係るPONシステムの概略構成を示す図である。 第6の実施形態に係る光伝送システムの概略構成を示す図である。
本発明者らは、光ファイバを介して通信を行なう光伝送システムにおいて、強度変調信号と位相変調信号の出力パワーが相補的な関係であることに着目し、送信局と各受信局との伝送路の距離および変調帯域の情報に基づいて、強度変調または位相変調のいずれかを選択的に用いることによって、波長分散による信号劣化を防ぎ、分散補償をなくすことができ、その結果、すべての受信局が常に帯域を占有して通信を行なうことを見出し、本発明をするに至った。
すなわち、本発明の光伝送システムは、送信局と複数の受信局とが光分岐器を介して接続され、光ファイバ伝送を実現する光伝送システムであって、前記送信局は、前記各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する制御回路部と、光信号に対して強度変調を行なう強度変調器と、光信号に対して位相変調を行なう位相変調器と、を備え、前記送信局から前記各受信局に対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とする。
これにより、本発明者らは、簡易な構成で波長分散の影響を回避し、すべての受信局が常に帯域を占有して通信を行なうことを可能とした。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。
図1Aは、第1の実施形態に係る光送信器の概略構成を示す図である。この光送信器10は、光伝送システムにおける送信局やPONシステムにおけるOLTに設けられ、光を出力する半導体レーザ(光源)11、光分岐器12、強度変調器13、VOA(Variable Optical Attenuator:可変光減衰器)14、位相変調器15、VOA16、光合波器17および制御回路部30を備える。
半導体レーザ11から出力された光は、光分岐器12により2分岐され、片方は強度変調器13、もう片方は位相変調器15へと入力される。また、制御回路部30は、光伝送システムにおける各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する。PONシステムに適用される場合は、OLTと各ONUとの伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する。いずれかの変調器によって変調された光信号は、VOA14およびVOA16を介して、光合波器17によって合波され、光ファイバへ送出される。なお、ここでは、VOA14およびVOA16を備える態様を示したが、本発明はこれに限定されず、VOA14およびVOA16を不要とする場合もある。
なお、図1Bに示すように、2つの半導体レーザ21aおよび21bを設け、各半導体レーザ21aおよび21bから、それぞれ強度変調器13と位相変調器15に光を入力する構成を採ることも可能である。このような構成を採ることにより、光の合波のみの処理となるため、偏波クロストークの発生を抑制することができる。
図2は、制御回路部30の機能を示すブロック図である。制御回路部30は、帯域割当部31、強度変調パラメータ最適化回路32および位相変調パラメータ最適化回路33を備える。帯域割当部31には、元信号(電気信号)が入力されると共に、適用されるシステムが光伝送システムである場合は、送信局から各受信局までの伝送路の距離、変調帯域の情報が入力される。適用されるシステムがPONシステムである場合は、OLTから各ONUまでの伝送路の距離、変調帯域の情報が入力される。帯域割当部31は、本実施形態に係る光伝送システムまたはPONシステムで使用する光信号の周波数帯域を、強度変調の対象とするか、または位相変調の対象とするかを決定する。強度変調の信号成分は強度変調パラメータ最適化回路32に入力され、位相変調の信号成分は、位相変調パラメータ最適化回路33に入力され、それぞれにおいて、必要なパラメータが最適化される。その後、それぞれ最適化された信号が強度変調器13および位相変調器15に入力される。
図3は、強度変調された光信号と位相変調された光信号それぞれについて、光ファイバ20km伝送後の直接検波した光信号の出力RFパワーを、最大値で規格化して示した図である。図3に示すとおり、強度変調された信号の出力RFパワーは、20km伝送後では、変調周波数10GHz程度までは、一定の出力が得られているが、そこから徐々に減衰していき、変調周波数14GHz付近でほとんど0となってしまう。その後、徐々に出力RFパワーが増えていき、20GHz付近で再びピークを迎える。
一方、位相変調された信号は、強度変調された信号とは逆の傾向を有している。つまり、直流付近でほとんど0であった電気出力が、変調周波数が上がるごとに徐々に増えていき、変調周波数14GHz付近でピークを迎える。
これは、光伝送する際に、強度変調信号においては、AM−PM変換によって、本来振幅成分を有する信号が、14GHz付近で位相成分となってしまい、直接検波ができなくなってしまうためである。一方、位相変調信号においては、伝送中のPM−AM変換により、位相成分が振幅成分に変換され、直接検波によって受信が可能となる。このように、強度変調信号と位相変調信号の光ファイバ伝送後の電気出力の大きさの関係は、強度変調信号がピークとなる際には位相変調信号が0となり、またその逆に位相変調信号がピークとなる際には強度変調信号が0となる、といった相補的な関係を有している。この関係は、光ファイバの距離に関わらず常に成立する。この性質を利用すれば、強度変調信号が減衰してしまうようなマルチキャリアのチャネルは、位相変調器15に割り当て、位相変調し、各変調器から出力された信号を合波した後、光ファイバで伝送することで、通常の受信器構成を変えることなく、広帯域な信号が可能となる。
帯域割当部31に予め送信局(またはOLT)と各受信局(またはONU)との伝送路の距離を入力しておくことで、信号劣化が顕著になる帯域を予測することができる。つまり、図3に示すように、予め入力された送信局(またはOLT)と各受信局(またはONU)との伝送路の距離において、強度変調で品質劣化が顕著になると予想される受信局(またはONU)が用いるチャネルは位相変調器15へ割り当てる操作を行なう。一方、位相変調で品質劣化が顕著になると予想される受信局(またはONU)が用いるチャネルは強度変調器13へ割り当てる操作を行なう。
図4A〜図4Cは、20km伝送における強度変調器と位相変調器への0〜20GHzのマルチキャリアのチャネル配分の一例を示す図である。この例では、全部で12個のチャネルが存在しており、強度変調器のみを用いた従来の手法では、7番目から10番目までのチャネル品質は、波長分散によって劣化する。この劣化するチャネルを、強度変調器には割り当てず、位相変調器に割り当てると、この帯域での位相変調信号成分はちょうど、振幅変調成分に変換され信号の検出が可能となるため、全てのチャネルが使用可能となる。
このように、本実施形態によれば、受信局(またはONU)毎に、強度変調器および位相変調器への適切なチャネルの割り当てをすることにより、分散補償器を用いることなく波長分散を抑制することができる。
(第2の実施形態)
図5は、第2の実施形態に係る光送信器の概略構成を示す図である。この光送信器40は、光伝送システムにおける送信局やPONシステムにおけるOLTに設けられ、光を出力する光源である半導体レーザ11、偏波ビームスプリッタ(PBS: Polarization Beam Splitter)18、強度変調器13、位相変調器15、偏波ビームコンバイナ(PBC: Polarization Beam Combiner)19および制御回路部30を少なくとも備える。
偏波ビームスプリッタ18は、受信した信号を周波数信号と位相信号とに分ける処理を行なう。強度変調器13は、周波数信号を受信し光信号へ変換する。位相変調器15は、位相信号を受信し光信号へ変換する。偏波ビームコンバイナ19は、強度変調器13および位相変調器15から出力された互いに直交する偏波を重ねる処理を行なう。半導体レーザ11から出力された光は、2つに分岐され、各変調器で変調された後、再度合成されるが、この際に2つの光路の光が緩衝、つまり偏波クロストークを起こし、受信側では雑音として現れる可能性がある。しかし、第2の実施形態の構成を採ることによって、偏波クロストークの発生を抑制することができる。
(第3の実施形態)
図6は、第3の実施形態に係る光送信器の概略構成を示す図である。この光送信器50は、光伝送システムにおける送信局やPONシステムにおけるOLTに設けられ、図6に示す通り、強度変調器13および位相変調器15が直列に配置されている。チャネルの割り当て方法は、第1の実施形態および第2の実施形態と同じであるが、強度変調器13および位相変調器15を直列に配置することによって、カプラ、PBSおよびPBCなどの光デバイスが不要となり、コストを抑えることができる。
(第4の実施形態)
図7は、第4の実施形態に係る光送信器の概略構成を示す図である。図7に示すように、この光送信器60は、光伝送システムにおける送信局やPONシステムにおけるOLTに設けられ、半導体レーザと強度変調器が一体となった直接変調型レーザ23を用いる。このように直接変調型レーザ23を用いることで、さらにコストを抑えることができる。
(第5の実施形態)
図8は、本実施形態に係るPONシステムの概略構成を示す図である。ここでは、第1〜第4の実施形態に係る光送信器が、PONシステム70のOLT71に適用されている。光送信器から出力される光信号は、光ファイバ25および26−1〜26−nを介して、ONU27−1〜27−Nに入力される。本発明は、このようなPtMPのネットワークにも用いることができる。OLT71から各ONU27−1〜27−Nの距離はそれぞれ異なるため、固定的な分散補償では累積分散量の異なるそれぞれのパスに対応できない。各ONU27−1〜27−Nの使用する帯域が異なるWDM−PONやOFDM−PONなどでは、それぞれのONUが使用できない帯域を回避しながら、また、他のONUが使用する帯域とも衝突が起こらないよう時間的に制御しなければならない。したがって、1ユーザが常に1つの帯域を使用し続けることができない。なお、このPONシステムでは、DMT(離散マルチトーン)方式が適用され、チャネル数は、ONUの数よりも小さく、伝送距離は、ONU毎に異なるものとする。
ところで、通常の強度変調器のみを用いた状況で、あるONUが割り当てられるべき帯域において、OLT〜ONU間の光ファイバ伝送で累積する波長分散量によって、Dispersion−induced RF power fadingが生じ、その帯域におけるチャネルの品質が著しく劣化しているとする。しかしながら、そのような帯域は、位相変調信号を使用することで、品質改善が可能である。変調器を強度変調器から位相変調器へスイッチすることで、信号劣化を防ぐことができる。これにより、仮にユーザに固定的に帯域割り当てを行なっても、強度変調器または位相変調器のどちらかはDispersion−induced RF power fadingを生じないため、どちらかの変調器を使用すれば、常に一定の品質を保った伝送を行なうことができる。
各ONUへのチャネルが、強度変調器と位相変調器のどちらに割り当てられるかは、予めOLTから全てのONUへの伝送距離を把握した制御回路により行なわれる。すなわち、図2に示したように、各ONU宛ての元信号について、帯域割当部31が、伝送路の距離および変調帯域の情報に基づいて、強度変調器に割り当てるか位相変調器に割り当てるかを判断する。このように、各ONUの割り当て帯域を固定的に定め、強度変調器あるいは位相変調器のどちらかに割り当てることで、全てのONUは常に帯域を占有して通信を行なうことができ、従来のベストエフォートなマルチキャリア伝送を採用したPONシステムより、ユーザのスループットを向上させることができる。
(第6の実施形態)
図9は、本実施形態に係る光伝送システムの概略構成を示す図であり、特に、「Point to Multi Point」構成の光伝送システムを示している。ここでは、第1〜第4の実施形態に係る光送信器が、光伝送システム80の送信局81に適用されている。光送信器から出力される光信号は、光ファイバ25および26−1〜26−nを介して、受信局28−1〜28−Nに入力される。本発明は、このようなPtMPのネットワークにも用いることができる。なお、この光伝送システムでは、DMT(離散マルチトーン)方式または広帯域(複数チャネルを使用)伝送方式が適用されるものとする。そして、全帯域または複数の帯域を使用して通信を行なう。送信局81が複数の受信局と同時に通信を行なうことはなく、送信局81からの伝送距離は、受信局毎に異なるものとする。本実施形態では、送信局81が、受信局を切り替えるたびに、帯域割当回路がサブキャリア毎に強度変調または位相変調を動的に割り当てる。
通常の強度変調器のみを用いた状況で、ある受信局が割り当てられるべき帯域において、送信局〜受信局間の光ファイバ伝送で累積する波長分散量によって、Dispersion−induced RF power fadingが生じ、その帯域におけるチャネルの品質が著しく劣化しているとする。しかしながら、上述したように、そのような帯域は、位相変調信号を使用することで、品質改善が可能である。変調器を強度変調器から位相変調器へスイッチすることで、信号劣化を防ぐことができる。これにより、仮にユーザに固定的に帯域割り当てを行なっても、強度変調器または位相変調器のどちらかはDispersion−induced RF power fadingを生じないため、どちらかの変調器を使用すれば、常に一定の品質を保った伝送を行なうことができる。
各受信局28−1〜28−Nへのチャネルが、強度変調器と位相変調器のどちらに割り当てられるかは、予め送信局81から全ての受信局28−1〜28−Nへの伝送距離を把握した制御回路により行なわれる。すなわち、図2に示したように、各受信局28−1〜28−N宛ての元信号について、帯域割当部31が、伝送路の距離および変調帯域の情報に基づいて、強度変調器に割り当てるか位相変調器に割り当てるかを判断する。このように、各受信局28−1〜28−Nの割り当て帯域を固定的に定め、強度変調器あるいは位相変調器のどちらかに割り当てることで、全ての受信局28−1〜28−Nは常に帯域を占有して通信を行なうことができ、従来のベストエフォートなマルチキャリア伝送を採用した光伝送システムより、ユーザのスループットを向上させることができる。
以上説明したように、本実施形態によれば、強度変調器および位相変調器への適切なチャネルの割り当てをすることにより、分散補償器を用いることなく波長分散を抑制することができる。
10 光送信器
11 半導体レーザ
12 光分岐器
13 強度変調器
14 VOA
15 位相変調器
16 VOA
17 光合波器
18 偏波ビームスプリッタ
19 偏波ビームコンバイナ
21a 半導体レーザ
21b 半導体レーザ
23 直接変調型レーザ
25、26−1〜26−n 光ファイバ
27−1〜27−N ONU
28−1〜28−N 受信局
30 制御回路部
31 帯域割当部
32 強度変調パラメータ最適化回路
33 位相変調パラメータ最適化回路
40 光送信器
50 光送信器
60 光送信器
70 PONシステム
71 OLT
80 光伝送システム
81 送信局

Claims (9)

  1. 送信局と複数の受信局とが光分岐器を介して接続され、光ファイバ伝送を実現する光伝送システムであって、
    前記送信局は、前記各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する制御回路部と、
    光信号に対して強度変調を行なう強度変調器と、
    光信号に対して位相変調を行なう位相変調器と、を備え、
    前記送信局から前記各受信局に対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とする光伝送システム。
  2. 前記制御回路部は、強度変調され光ファイバを伝送した光信号が、受信側で直接検波をすることができなくなる周波数を含む特定の帯域の光信号に対して位相変調を行なうことを決定することを特徴とする請求項1記載の光伝送システム。
  3. 前記制御回路部は、位相変調され光ファイバを伝送した光信号が、受信側で直接検波をすることができなくなる周波数を含む特定の帯域の光信号に対して強度変調を行なうことを決定することを特徴とする請求項1記載の光伝送システム。
  4. 前記強度変調器および前記位相変調器は、並列に接続され、単一の光源で発生した光が分岐されて、それぞれ前記強度変調器および前記位相変調器に入力され、
    前記制御回路部は、前記各受信局との伝送距離および変調帯域の情報に基づいて、前記強度変調器または前記位相変調器のいずれかを切り替えて変調を行なうことを特徴とする請求項1から請求項3のいずれかに記載の光伝送システム。
  5. 前記強度変調器および前記位相変調器は、並列に接続され、独立した2つの光源で発生した光が、それぞれ前記強度変調器および前記位相変調器に入力され、
    前記制御回路部は、前記各受信局との伝送距離および変調帯域の情報に基づいて、前記強度変調器または前記位相変調器のいずれかを切り替えて変調を行なうことを特徴とする請求項1から請求項3のいずれかに記載の光伝送システム。
  6. 前記強度変調器および前記位相変調器は、直列に接続され、単一の光源で発生した光が順次前記強度変調器および前記位相変調器に入力され、
    前記制御回路部は、前記各受信局との伝送距離および変調帯域の情報に基づいて、前記強度変調器または前記位相変調器のいずれかを用いて変調を行なうことを特徴とする請求項1から請求項3のいずれかに記載の光伝送システム。
  7. 前記強度変調器は、光源の機能と強度変調器の機能の両方を備えることを特徴とする請求項6記載の光伝送システム。
  8. OLT(Optical Line Terminal)と複数のONU(Optical Network Unit)とが光分岐器を介して接続され、光ファイバ伝送を実現するPON(Passive Optical Network)システムであって、
    前記OLTは、前記各ONUとの伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定する制御回路部と、
    光信号に対して強度変調を行なう強度変調器と、
    光信号に対して位相変調を行なう位相変調器と、を備え、
    前記OLTから前記各ONUに対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とするPONシステム。
  9. 送信局と複数の受信局とが光分岐器を介して接続され、光ファイバ伝送を実現する光伝送システムの伝送方法であって、
    前記送信局において、前記各受信局との伝送距離および変調帯域の情報に基づいて、光信号に対して強度変調を行なうか、または位相変調を行なうかを決定するステップと、
    光信号に対して強度変調または位相変調のいずれか一方を行なうステップと、を少なくとも含み、
    前記送信局から前記各受信局に対して、強度変調または位相変調のいずれか一方に変調された光信号を伝送することを特徴とする伝送方法。
JP2017002200A 2017-01-10 2017-01-10 光伝送システム、ponシステムおよび伝送方法 Active JP6654155B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017002200A JP6654155B2 (ja) 2017-01-10 2017-01-10 光伝送システム、ponシステムおよび伝送方法
PCT/JP2017/045658 WO2018131406A1 (ja) 2017-01-10 2017-12-20 光伝送システム、ponシステムおよび伝送方法
EP17891947.8A EP3570463B1 (en) 2017-01-10 2017-12-20 Optical transmission system, pon system and transmission method
CN201780081966.4A CN110140308B (zh) 2017-01-10 2017-12-20 光传输系统、无源光网络系统以及传输方法
US16/429,560 US10666362B2 (en) 2017-01-10 2019-06-03 Optical transmission system, PON system, and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002200A JP6654155B2 (ja) 2017-01-10 2017-01-10 光伝送システム、ponシステムおよび伝送方法

Publications (2)

Publication Number Publication Date
JP2018113555A JP2018113555A (ja) 2018-07-19
JP6654155B2 true JP6654155B2 (ja) 2020-02-26

Family

ID=62839838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002200A Active JP6654155B2 (ja) 2017-01-10 2017-01-10 光伝送システム、ponシステムおよび伝送方法

Country Status (5)

Country Link
US (1) US10666362B2 (ja)
EP (1) EP3570463B1 (ja)
JP (1) JP6654155B2 (ja)
CN (1) CN110140308B (ja)
WO (1) WO2018131406A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654155B2 (ja) 2017-01-10 2020-02-26 Kddi株式会社 光伝送システム、ponシステムおよび伝送方法
US10992389B2 (en) 2018-02-07 2021-04-27 Infinera Corporation Independently routable digital subcarriers with configurable spacing for optical communication networks
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11032020B2 (en) 2019-04-19 2021-06-08 Infiriera Corporation Synchronization for subcarrier communication
US11838105B2 (en) 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11239935B2 (en) * 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11177889B2 (en) * 2019-05-14 2021-11-16 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US20210075536A1 (en) 2019-09-05 2021-03-11 Infinera Corporation Dynamically switching queueing schemes for network switches
US12081269B2 (en) 2019-10-10 2024-09-03 Infinera Corporation Hub-leaf laser synchronization
AU2020364257A1 (en) 2019-10-10 2022-05-26 Infinera Corporation Network switches systems for optical communications networks
EP4042606A1 (en) 2019-10-10 2022-08-17 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
EP3863198B1 (en) * 2020-02-07 2023-10-04 Nokia Solutions and Networks Oy Apparatus and method for signal modulation in a point-to-multipoint optical network
WO2023012897A1 (ja) * 2021-08-03 2023-02-09 日本電信電話株式会社 光送信器、光伝送システムおよび光送信方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882545A (en) 1972-11-15 1975-05-06 Lanier Electronic Lab Inc Apparatus and method for detecting tone signals occuring within a predetermined frequency range
DE19628321C1 (de) * 1996-07-13 1998-01-15 Univ Dresden Tech Multiplexverfahren für zwei Subcarrier und Anordnung hierzu
US5926275A (en) * 1997-06-19 1999-07-20 Honeywell Inc. Vibration error reduction servo for a fiber optic gyroscope
EP1131910B1 (en) * 1998-11-17 2009-09-02 Templex Technology Inc. Code-based optical networks, methods, and apparatus
US7065298B1 (en) 1998-11-17 2006-06-20 Intel Corporation Code-based optical networks, methods, and apparatus
WO2001067165A2 (en) * 2000-03-09 2001-09-13 Optium, Inc. Apparatuses and methods for generating optical signals
JP4417208B2 (ja) * 2004-09-10 2010-02-17 日本電信電話株式会社 光アクセスシステム、光サービスユニットおよび光ネットワークユニット
US8548334B2 (en) * 2006-12-06 2013-10-01 Mohammad Mazed Dynamic intelligent bidirectional optical access communication system with object/intelligent appliance-to-object/intelligent appliance interaction
JP4701192B2 (ja) * 2007-02-01 2011-06-15 富士通株式会社 伝送システムおよび伝送方法
CN100570968C (zh) * 2008-03-19 2009-12-16 中国科学院上海光学精密机械研究所 高功率激光装置的相位调制装置
CN101640569A (zh) * 2008-07-30 2010-02-03 华为技术有限公司 一种光传输的方法、设备和系统
JP5675122B2 (ja) * 2010-01-29 2015-02-25 日本オクラロ株式会社 光モジュール
WO2012032566A1 (ja) 2010-09-06 2012-03-15 株式会社日立製作所 Ponシステム,およびolt
JP5682249B2 (ja) * 2010-11-12 2015-03-11 三菱電機株式会社 光通信システム
US9312962B2 (en) * 2012-11-13 2016-04-12 Infinera Corporation Intensity-based modulator
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
FR3024622A1 (fr) * 2014-08-04 2016-02-05 Orange Signal optique comprenant une succession de rafales multi-bandes de signaux multi-porteuses de donnees, systeme et procede d'emission d'un tel signal, et reseau de transport optique correspondant.
JP6381372B2 (ja) * 2014-08-29 2018-08-29 Kddi株式会社 無線装置、ベースバンド処理装置、無線基地局システムおよびプログラム
WO2016042535A1 (en) * 2014-09-19 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) Optical transmitters and receivers using polarization multiplexing
JP2017002200A (ja) 2015-06-11 2017-01-05 株式会社リコー ケミカルヒートポンプ用反応材及びその製造方法
US9979472B1 (en) * 2016-12-29 2018-05-22 Juniper Networks, Inc. Methods and apparatus for detecting and compensating power imbalance and modulation imperfection for a coherent optical transmitter
JP6654155B2 (ja) 2017-01-10 2020-02-26 Kddi株式会社 光伝送システム、ponシステムおよび伝送方法

Also Published As

Publication number Publication date
CN110140308A (zh) 2019-08-16
CN110140308B (zh) 2021-08-27
US10666362B2 (en) 2020-05-26
JP2018113555A (ja) 2018-07-19
US20190288777A1 (en) 2019-09-19
EP3570463A1 (en) 2019-11-20
EP3570463B1 (en) 2021-02-03
EP3570463A4 (en) 2020-01-15
WO2018131406A1 (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6654155B2 (ja) 光伝送システム、ponシステムおよび伝送方法
US9768879B2 (en) Device and method for transmitting multicarrier signals
US8964581B2 (en) Bandwidth variable communication method, bandwidth variable communication apparatus, transmission bandwidth determination apparatus, transmission bandwidth determination method, node apparatus, communication path setting system, communication path setting
US7831118B2 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
US9853728B2 (en) Method for determining numbers of bits allocated to subcarriers and optical transmission system
US10270534B2 (en) Method and transmitter device for creating an optical transmit signal
JP6606963B2 (ja) スパンの観点からのスペクトル管理システム及び方法
US9467244B2 (en) Transmission apparatus and transmission system
CN110324089B (zh) 一种无源光网络系统的信号传输方法及相关设备
JP5137906B2 (ja) 光アクセス網、光加入者装置および光アクセス網の通信設定方法
US20110076018A1 (en) Improved Optical Access Network and Nodes
JP5414373B2 (ja) 光アクセス網、光通信方法および光加入者装置
CN111183598B (zh) 低成本的强度调制与直接检测(imdd)光发射器和光接收器
Ji et al. Optical layer traffic grooming in flexible optical WDM (FWDM) networks
JP5786471B2 (ja) 光通信装置
US7295775B2 (en) Method and a system for monitoring the transmission of optical signals
US10419153B2 (en) Optical transmitter and optical transmitting method
Kodama et al. Frequency-packed multiband-coherent transceiver with symbol rate-adaptive Nyquist WDM signals
Zhou et al. A novel multi-band OFDMA-PON architecture using signal-to-signal beat interference cancellation receivers based on balanced detection
KR101672394B1 (ko) 다중 파장 수동형 광통신 네트워크를 위한 파장 튜닝 시간 측정 장치 및 방법
Qin et al. Demonstration of multi-channel hitless defragmentation with fast auto-tracking coherent RX LOs
KR102201238B1 (ko) 직교 주파수 분할 다중접속 수동형 광 네트워크, 및 그 네트워크의 상향 대역폭 자원할당방법
CN108512601B (zh) 一种多归接入网络的方法和装置
JP6625503B2 (ja) アナログRoFシステムおよび光通信方法
US10063317B2 (en) Network management with per-node cross-phase-modulation (XPM) compensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200129

R150 Certificate of patent or registration of utility model

Ref document number: 6654155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150