WO2023012897A1 - 光送信器、光伝送システムおよび光送信方法 - Google Patents
光送信器、光伝送システムおよび光送信方法 Download PDFInfo
- Publication number
- WO2023012897A1 WO2023012897A1 PCT/JP2021/028779 JP2021028779W WO2023012897A1 WO 2023012897 A1 WO2023012897 A1 WO 2023012897A1 JP 2021028779 W JP2021028779 W JP 2021028779W WO 2023012897 A1 WO2023012897 A1 WO 2023012897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modulation
- optical
- signal
- communication
- modulating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5161—Combination of different modulation schemes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
Definitions
- the present invention relates to the technology of an optical transmitter, an optical transmission system, and an optical transmission method.
- FIG. 14 shows a configuration example of communication in APN (APN: All Photonics Network) of IOWN (Innovative Optical and Wireless Network).
- APN All Photonics Network
- FIG. 14A shows a configuration example (short-range communication) in which return communication is performed by an optical gateway device between user devices connected to the same optical gateway device (Ph-GW: Photonic Gateway).
- FIG. 14B shows a configuration example (long-distance communication) in which data is transferred by pass-through communication between user devices connected to different optical gateway devices.
- FIG. 15 is a diagram showing a schematic configuration of an optical transmission system according to the prior art.
- FIG. 15A shows a configuration example of an optical transmission system using an intensity modulation-direct detection method
- FIG. 15B shows a configuration example of an optical transmission system using a phase modulation-digital coherent detection method.
- Conventional optical transmitters using adaptive modulation have, for example, a configuration that changes the multi-level degree of a signal to be transmitted using a digital signal processing circuit, a Reed-Solomon code or LDPC (Low-Density Parity-Check Code).
- the mainstream method is to obtain a gain by changing the redundancy of FEC (Forward Error Correction) using a check code) code or the like. For example, as shown in FIG.
- FEC Forward Error Correction
- modulation signals are NRZ (Non-return-to-zero) signals, PAM (Pulse-Amplitude Modulation ) 4 signal, PAM8 signal, PAM16 signal, etc., to adaptively change the multilevel degree of amplitude modulation (see, for example, Non-Patent Document 1).
- the modulation signal is switched to a 4QAM (Quadrature amplitude modulation) signal, a 16QAM signal, a 64QAM signal, etc. Accordingly, the multilevel degree of phase-amplitude modulation is adaptively changed (see, for example, Non-Patent Document 2).
- the present invention aims to provide a technology capable of improving the degree of freedom in changing the transmission method or transmission parameters in adaptive modulation of optical transmission.
- a first modulation section that generates an optical modulated signal by intensity modulation of an optical signal
- a second modulation section that generates an optical modulated signal by phase/frequency modulation of the optical signal
- modulation of the optical signal a modulation method switching unit that switches the means to either the first modulation unit or the second modulation unit, wherein the modulation method switching unit selects one of the first modulation unit and the second modulation unit to be connected to is an optical transmitter that switches the modulating means to a modulating unit corresponding to the device of the above.
- One aspect of the present invention accommodates one or more user devices including the optical transmitter described above and an optical receiver that detects an optical signal by a direct detection method or a digital coherent detection method, and the one or more user devices. and a route control device for controlling a communication route by the one or more network node devices, wherein the optical transmitter performs the negotiation with the user device of the communication partner.
- a route control device for controlling a communication route by the one or more network node devices, wherein the optical transmitter performs the negotiation with the user device of the communication partner.
- any one of a first modulating section that generates an optically modulated signal by intensity modulation of an optical signal and a second modulating section that generates an optically modulated signal by phase/frequency modulation of the optical signal includes: In the optical transmission method, the modulation means is switched to one of the first modulation section and the second modulation section that corresponds to a device that is a communication partner.
- FIG. 1 is a diagram illustrating a configuration example of an optical transmission system according to a first embodiment
- FIG. FIG. 4 is an image diagram showing an outline of switching of a modulation method of a light source
- FIG. 11 is an image diagram of correction of an optically modulated signal by an optical transmitter according to a modification
- FIG. 10 is a diagram showing a configuration example of an optical transmitter of a modified example
- FIG. 11 is an image diagram showing an outline of switching of the modulation method of the light source by the optical transmitter of the modified example
- FIG. 10 is a diagram showing a configuration example of an optical transmitter of a modified example
- FIG. 11 is an image diagram showing an outline of switching of the modulation method of the light source by the optical transmitter of the modified example
- FIG. 10 is a diagram illustrating a configuration example of an optical transmission system according to a second embodiment
- FIG. 11 is a diagram illustrating a configuration example of an optical transmission system according to a third embodiment
- FIG. 12 is a diagram illustrating a configuration example of an optical transmission system according to a fourth embodiment
- FIG. 12 is a diagram illustrating a configuration example of an optical transmission system according to a fifth embodiment
- FIG. 3 is a diagram showing a configuration example of connection between a user device and an optical gateway device as a 3R repeater;
- FIG. 3 is a diagram showing a configuration example regarding short-distance communication between an optical gateway device and a user device; 1 shows an example of communication configuration in APN (APN: All Photonics Network) of IOWN (Innovative Optical and Wireless Network). 1 is a diagram showing an outline of a configuration of an optical transmission system according to conventional technology; FIG.
- FIG. 1 is a diagram showing a configuration example of an optical transmission system 1A of the first embodiment.
- the optical transmission system 1A includes an optical transmitter 10, an optical receiver 20, and an optical transmission line 30.
- the optical transmitter 10 modulates data to be transmitted (hereinafter referred to as “target data”) into an optical signal and outputs the optical signal to the optical transmission line 30 .
- the optical transmission line 30 has an optical fiber and connects the optical transmitter 10 and the optical receiver 20 .
- the optical receiver 20 receives the optical signal from the optical transmission line 30 and demodulates it, thereby restoring the target data sent from the optical transmitter 10 .
- the configurations of the optical transmitter 10 and the optical receiver 20 will be described in more detail below.
- the optical transmitter 10 includes, for example, a light source 110, a digital signal processing circuit 120, a DA converter 130, and an intensity modulator 140.
- Light source 110 emits continuous light to DA converter 130 and intensity modulator 140 .
- the light source 110 outputs, for example, a DFB laser (Distributed Feedback Laser) as continuous light.
- DFB laser Distributed Feedback Laser
- the digital signal processing circuit 120 is a circuit that performs digital signal processing regarding transmission of target data.
- the digital signal processing circuit 120 includes a modulated signal output section 121 and a modulation scheme switching section 122 .
- the modulated signal output unit 121 generates a modulated signal for modulating the output light of the light source 110 and outputs the modulated signal to the DA converter 130 .
- the digital signal processing circuit 120 is configured using a processor such as a CPU (Central Processing Unit) and memory.
- the digital signal processing circuit 120 functions as a modulation signal output section 121, a modulation method switching section 122, and a digital signal processing section for optical signals by the processor executing a program.
- All or part of these functions may be implemented using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
- the above program may be recorded on a computer-readable recording medium.
- Computer-readable recording media include portable media such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, semiconductor storage devices (such as SSD: Solid State Drives), hard disks and semiconductor storage built into computer systems. It is a storage device such as a device.
- the above program may be transmitted via telecommunication lines.
- the DA converter 130 receives the modulated signal from the digital signal processing circuit 120, converts the received modulated signal into an analog signal, and outputs the analog signal.
- a modulated signal converted into an analog signal is hereinafter referred to as an "analog modulated signal".
- the analog modulated signal output from the DA converter 130 is input to the light source 110 or the intensity modulator 140 under the control of the modulation scheme switching section 122, which will be described later.
- the modulation scheme switching unit 122 has a function of switching the modulation scheme of the light source 110 between intensity modulation and phase/frequency modulation. Specifically, the modulation scheme switching unit 122 changes the amplitude and bias point of the modulation signal, the device to which the modulation signal is applied, etc., to those corresponding to the modulation scheme after the change, thereby changing the modulation scheme of the light source 110. to switch.
- the modulation scheme switching section 122 can be configured as part of the functions of the digital signal processing circuit 120 . For example, the modulation scheme switching unit 122 is configured to switch the modulation scheme according to the optical receiver type of the communication partner registered in advance.
- the modulation scheme switching unit 122 may be configured to switch the modulation scheme of the light source 110 in response to input of a switching operation.
- the digital signal processing circuit 120 may include an input device such as a button or switch for receiving an input of a modulation method switching operation.
- the modulation method switching unit 122 controls the circuit so that the analog modulated signal output by the DA converter 130 is input to the light source 110.
- Light source 110 is configured to phase/frequency modulate the bias current with an input analog modulating signal.
- the bias current is phase/frequency modulated based on the analog modulating signal, resulting in frequency and phase changes (commonly referred to as chirp) in the output light of light source 110, which chirp provides phase/frequency modulation of light source 110. be done. Since such a modulation method controls the operation itself of outputting continuous light from the light source 110, it can be said to be a more direct modulation method than intensity modulation, which will be described later.
- modulating the output light of the light source 110 may be expressed as "modulating the light source 110".
- the modulation method switching unit 122 controls the circuit so that the analog modulated signal output by the DA converter 130 is input to the intensity modulator 140 .
- the intensity modulator 140 receives the analog modulation signal from the DA converter 130 and modulates the output light of the light source 110 by intensity modulation based on the input analog modulation signal.
- the intensity modulator 140 receives continuous light from the light source 110 and intensity-modulates the received continuous light based on an analog modulation signal to generate an optical modulation signal.
- the intensity modulator 140 sends out the generated optical modulated signal to the optical transmission line 30 .
- the intensity modulator 140 is, for example, an EA (Electro-Absorption) modulator.
- Intensity modulator 140 may be a Mach-Zehnder modulator.
- FIG. 2 is an image diagram showing an outline of switching of the modulation method of the light source 110.
- FIG. FIG. 2(A) represents an image of the modulation of the light source 110 by phase/frequency modulation
- FIG. 2(B) represents an image of the modulation of the light source 110 by intensity modulation.
- the example of FIG. 2 represents the case where the light source 110 is modulated with an NRZ signal that can take a binary value of 0 or 1.
- the optical transmitter 10 of the first embodiment configured as described above can realize phase/frequency modulation of the light source 110 by modulating the bias current applied to the light source 110 with an analog modulation signal, and the intensity The light source 110 can be intensity-modulated by providing the modulator 140 . Therefore, according to the optical transmitter 10 of the first embodiment, there is no need to prepare separate optical transmitters for the intensity modulation method and the phase/frequency modulation method. can respond. That is, according to the optical transmitter 10 of the first embodiment, it is possible to improve the degree of freedom in changing the transmission method or transmission parameters in adaptive modulation of optical transmission.
- the optical transmitter 10 of the first embodiment when the light source 110 is modulated by phase/frequency modulation, not only the phase/frequency modulation component of the analog modulation signal but also the intensity modulation component is generated as the bias current of the light source 110 is modulated. applied.
- the optical transmitter 10 is configured to correct the modulated optical signal such that the intensity modulated component is removed by operating the intensity modulator 140 to modulate with the inverse pattern of the modulated component of the light source 110 .
- FIG. 3 is an image diagram of correction of an optically modulated signal by the optical transmitter 10 of the modified example.
- FIG. 3A is a diagram showing the intensity of the optical signal (optical modulation signal) output from the light source 110 as a result of modulating the bias current applied to the light source 110 with the modulation signal.
- FIG. 3B is corrected by the intensity modulator 14 modulating the optically modulated signal output in FIG.
- FIG. 4 is a diagram showing the intensity of an optically modulated signal; With such a configuration, the modified optical transmitter 10 can improve the accuracy of phase/frequency modulation.
- the configuration of adaptive modulation in the optical transmitter 10 of the first embodiment may be combined with conventional adaptive modulation that changes the degree of multi-level and FEC type.
- the configuration of adaptive modulation in the optical transmitter 10 of the first embodiment is such that the chromatic dispersion resistance is improved by modulating the DFB laser in intensity modulation by an EA (Electro-Absorption) modulator. It may be combined with a configuration that applies a chirp.
- EA Electro-Absorption
- the optical transmitter 10 of the first embodiment may be configured to implement phase/frequency modulation and intensity modulation by modulating the bias current of the light source 110 .
- FIG. 4 is a diagram showing a configuration example of the optical transmitter 10 of the modification.
- the optical transmitter 10 of the modified example differs from the optical transmitter 10 of the first embodiment in that the intensity modulator 140 is not provided. In this configuration, phase/frequency modulation and intensity modulation can be achieved by changing the magnitude of the bias current applied to light source 110 .
- FIG. 5 is an image diagram showing an outline of switching of the modulation method of the light source 110 by the optical transmitter 10 of the modified example.
- FIG. 5(A) represents an image of phase/frequency modulation
- FIG. 5(B) represents an image of intensity modulation.
- the modulation scheme switching section 122 can implement phase/frequency modulation in the same manner as in the first embodiment.
- the modulation method switching unit 122 sets the bias current value to be applied to the light source 110 to a larger current value during the intensity modulation than during the phase/frequency modulation.
- a desired extinction ratio can be obtained, so that the modulation scheme switching section 122 can realize intensity modulation by modulating the bias current.
- the optical transmitter 10 of the modified example is configured to modulate the light source 110 by controlling the output operation itself of the light source 110 for both phase/frequency modulation and intensity modulation.
- the optical transmitter 10 since there are many parts in which the circuit operations can be shared in the phase/frequency modulation and the intensity modulation, the optical transmitter 10 can be configured with a smaller circuit scale. can.
- the optical transmitter 10 of the first embodiment may be configured to include a Mach-Zehnder modulator 150 instead of the intensity modulator 140 .
- FIG. 6 is a diagram showing a configuration example of the optical transmitter 10 of the modification. In this configuration, the optical transmitter 10 can realize intensity modulation and phase modulation of the light source 110 by changing the bias voltage and modulation amplitude applied to the Mach-Zehnder modulator 150 .
- FIG. 7 is an image diagram showing an outline of switching of the modulation scheme of the light source 110 by the optical transmitter 10 of the modified example.
- FIG. 7A represents an image of intensity modulation
- FIG. 7B represents an image of phase modulation.
- the Mach-Zehnder modulator 150 has an extinction characteristic that varies sinusoidally with respect to voltage. determines the bias voltage and amplitude of the modulation signal. At this time, there is no change in the output phase. On the other hand, during phase modulation, the bias voltage and amplitude of the modulation signal are determined from the point where the light transmittance is 100% to the next point where the light transmittance is 100%. This causes the phase to fluctuate by 180 degrees.
- the configuration of adaptive modulation in the optical transmitter 10 of the modified example may be combined with conventional adaptive modulation that changes the degree of multilevel and FEC type.
- the Mach-Zehnder modulator 150 may be an IQ modulator capable of modulating both the I-axis and the Q-axis.
- An intensity-modulated signal can be transmitted by modulating with a bias and the same amplitude.
- FIG. 8 is a diagram showing a configuration example of the optical transmission system 1B of the second embodiment.
- the optical transmission system 1 is a system in which user devices having the optical transmitter 10 of the first embodiment communicate with each other.
- the user device 2A is configured to include an optical receiver 20A that receives an optical signal by direct detection
- the user device 2B is configured to include an optical receiver 20B that receives an optical signal by a digital coherent detection method.
- the multiplexer/demultiplexer 21 multiplexes/demultiplexes optical signals of different wavelengths for transmission/reception of optical signals, and inputs/outputs the combined/demultiplexed signals.
- the user devices 2 decide by negotiation at the start of communication whether to transmit and receive optical signals using either intensity modulation or phase/frequency modulation. can do. That is, according to the optical transmission system 1 of the second embodiment, each user device 2 determines a modulation scheme according to the transmission path between the user device of the communication partner by transmitting/receiving the main signal, and changes the transmission path. Since it is possible to adaptively switch the modulation scheme for communication, it is possible to improve the degree of freedom in changing the transmission scheme or transmission parameters in the adaptive modulation of optical transmission.
- FIG. 9 is a diagram showing a configuration example of an optical transmission system 1C according to the third embodiment.
- the optical transmission system 1B of the second embodiment is configured to negotiate the initial authentication phase using communication of the main signal.
- each user device 2C uses a control signal transmission path (hereinafter referred to as a "second path") separately from the main signal transmission path (hereinafter referred to as a "first path"). ), and the optical signal loss (path loss) in the transmission path between the communication destination user device 2C and the configuration of the optical receiver in the communication destination user device 2C via the second route and other information (hereinafter referred to as “control information”).
- the user equipment 2C determines the modulation scheme based on the control information notified from the user equipment 2C of the communication destination.
- each user device 2C includes a control signal communication unit 22 in addition to the optical transmitter 10, optical receiver 20, and multiplexer/demultiplexer 21 of the first embodiment.
- the control signal communication unit 22 transmits and receives a signal (control signal) indicating control information via the second path.
- the second route may be configured as a network physically separate from the first route as shown in FIG. They may be configured as logically different transmission paths using the same physical network.
- the second path may be configured as a separate channel using a wavelength independent from that of the first path in the optical transmission line used as the first path, It may be configured as a pseudo control channel implemented by AMCC (Auxiliary Management and Control Channel) that enables transmission of control signals within the wavelength range of the main signal.
- AMCC Advanced Management and Control Channel
- each user device 2C uses a second path that is physically or logically independent from the first path that transmits the main signal, and uses a modulation scheme can be negotiated. That is, according to the optical transmission system 1C of the third embodiment, each user device 2C recognizes the configuration of the transmission path based on the control signals that are transmitted and received to each other, thereby adaptively adjusting the modulation scheme in response to changes in the transmission path. Since communication can be performed by switching, it is possible to improve the degree of freedom in changing the transmission method or transmission parameters in adaptive modulation of optical transmission.
- the modulation scheme switching unit 122 of the optical transmitter 10 may be configured to determine the modulation scheme of the optical transmitter 10 based on communication destination information registered in advance.
- the second path can be omitted in the optical transmission system 1C and the system configuration can be simplified.
- FIG. 10 is a diagram showing a configuration example of an optical transmission system 1D according to the fourth embodiment.
- the user devices 2 are directly connected to communicate with each other.
- each user device 2D communicates via a network node device (hereinafter referred to as "NW node device") 40.
- NW node device a network node device
- FIG. The user device 2D differs from the user device 2C of the third embodiment in that it directly communicates with the network node device 40, but has the same basic configuration as the user device 2C.
- the NW node device 40 is a device that transfers optical communication using an optical switch. Communication between user devices 2D is realized by one or more NW node devices 40 transferring communication.
- the integrated controller 50 is a device that comprehensively controls one or more NW node devices 40 .
- each user device 2D negotiates a modulation scheme with the NW node device 40 to which it is connected.
- each NW node device 40 includes a control signal communication section 41 similar to the control signal communication section 22 of the user device 2D.
- the control signal communication unit 22 communicates with the control signal communication unit 41 of the NW node device 40, thereby notifying the NW node device 40 of the control information of each user device, and sending the communication destination from the NW node device 40. Acquire the control information of the user device 2D.
- the modulation method switching unit 122 of the optical transmitter 10 determines the modulation method in communication with the communication destination user equipment 2D based on the control information acquired from the NW node device 40, and selects the modulation method. switch.
- the control signal communication unit 41 supplies the control signal input from the user device 2D of the negotiation partner to the integrated controller 50, and the communication of the user device 2D to the user device 2D of the negotiation partner.
- a control signal is output for the control information of the previous user device 2D.
- the control signal communication unit 41 of each NW node device 40 has a function of sharing control information acquired from each user device 2D via the integrated controller 50 . With this control information sharing function, the user device 2D can acquire the control information of the communication destination user device 2D from the NW node device 40 to which it is connected, and in communication with the communication destination user device 2D
- the modulation scheme can be determined through negotiation with the directly connected NW node device 40 .
- FIG. 11 is a diagram showing a configuration example of an optical transmission system 1E according to the fifth embodiment.
- the optical transmission system 1E of the fifth embodiment includes an APN network NW including a first access area A1, a second access area A2, local networks LN1 and LN2, and a core network CN.
- the first access area A1 and the second access area A2 represent the range of service areas that accommodate end-user terminals via the user equipment 2E.
- the first access area A1 includes a user device 2E-1 wirelessly connecting a mobile communication terminal TM1 such as a smart phone or a mobile phone, and a user device 2E-2 wire-connecting a device TM2 such as a broadcasting device.
- the second access area A2 includes a user device 2E-3 that connects a server device group TM3 installed in a data center or the like by wire.
- the optical receiver 20 of each user device 2E detects an optical signal by the direct detection method.
- the configuration of the first access area A1 and the second access area A2 illustrated in FIG. 11 is an example, and the access areas are not limited to the illustrated devices, and any device may be connected.
- the APN network NW may be configured to include one access network, or may be configured to include three or more access networks.
- the local networks LN1 and LN2 are networks that accommodate equipment in the corresponding access areas.
- the core network CN is a network that accommodates the local networks LN1 and LN2.
- FIG. 11 shows the case where the core network CN accommodates two local networks LN1 and LN2, but the number of local networks accommodated by the core network CN may be one or three or more. There may be.
- the local network LN1 may be configured as a full mesh network with a plurality of optical gateway devices 60 (Ph-GW: Photonic Gateway).
- the optical gateway device 60-1 that accommodates the first access area A1 and the optical gateway device 60-2 that accommodates the second access area A2 communicate via an arbitrary transfer route. Long-distance communication is possible by relaying.
- the optical gateway device 60 that is the transfer destination may be configured as a 3R repeater.
- FIG. 12 is a diagram showing a configuration example of connection between the user device 2E and the optical gateway device 60 as a 3R repeater.
- the user device 2E shown in FIG. 12 is the user device 2E-3 in long-distance communication in FIG. 12, and the optical gateway device 60 as a 3R repeater shown in FIG. 60-2.
- the optical gateway device 60 includes, for example, a multiplexer/demultiplexer 61 that inputs and outputs an optical signal to/from the optical transmission line 30, and an optical receiver 62 that demodulates the optical signal of upstream communication by phase/frequency modulation. , an optical transmitter 63 for modulating an optical signal for downstream communication by intensity modulation, and a digital signal processing circuit 64 for performing digital signal processing of the optical signal.
- the multiplexer/demultiplexer 61 is assumed to be a device such as a splitter or a circulator that has little wavelength dependence, or a device such as a wavelength demultiplexing filter that multiplexes/demultiplexes according to a communication wavelength band.
- the optical receiver 62 includes, for example, an optical amplifier 621, a local light source 622, a polarization/phase diversity optical receiver 623, an AD converter 624, and a digital coherent detector 625.
- the digital coherent detector 625 is realized by the digital signal processing circuit 120 and detects the optical signal by the digital coherent detection method.
- the optical transmitter 63 includes a DA converter 631, a light source 632, an intensity modulator 633, and an optical amplifier 634, for example.
- the optical gateway device 60 configured as a 3R repeater may be referred to as a "3R repeater 60".
- the optical transmitter 10 of the user equipment 2E is configured to communicate with the optical receiver 62 of the 3R repeater 60 by phase/frequency modulation. This enables reception with high sensitivity in the 3R repeater 60 in uplink communication.
- the optical receiver 20 since it is assumed here that the user equipment 2E detects the optical signal by the direct detection method, the optical receiver 20 communicates with the optical transmitter 63 of the 3R repeater 60 by the intensity modulation method. It is assumed that the
- the 3R repeater 60 is configured to improve the intensity of output light by means of an optical amplifier 634. good too. For example, if the difference in reception sensitivity between upstream communication and downstream communication is A [dB], the intensity of the output light from the optical transmitter 63 is higher than the intensity of the output light for upstream communication by A [dB].
- the gain of amplifier 634 may be adjusted.
- a pre-amplifier may be arranged in front of the digital signal processing circuit 64 of the 3R repeater 60.
- the modulation scheme can be determined by the same negotiation method as in the fourth embodiment. Also, in the user equipment 2E or the 3R repeater 60, if the information of the connection destination equipment is registered in advance, the modulation scheme may be determined based on the registered information.
- the optical gateway device 60 accommodating the access area network functions as an optical switch, and short-distance communication is possible by returning the communication of the user devices 2E.
- the communication of the user device 2E-1 whose communication destination is the user device 2E-2 is returned to the user device 2E-2 by the optical gateway device 60-1.
- FIG. 13 is a diagram showing a configuration example related to short-range communication between user devices 2E via the optical gateway device 60.
- FIG. 13 As described above, in the short-distance communication within the same access network, the communication of the user equipment 2E is looped back by the optical switch function of the optical gateway device 60. The configuration is such that they are directly connected via the transmission line 30 .
- the digital signal processing circuit 120 in FIG. 13 includes a DA converter and an AD converter for transmission and reception. That is, in short-range communication, each user device 2E can determine the modulation scheme by the same negotiation method as in the third embodiment. Also, in this case, if the information of the connection destination apparatus is registered in advance in each user apparatus 2E, the modulation scheme may be determined based on the registered information.
- the optical transmission system 1E of the fifth embodiment configured as described above, when the transmission path loss is small, for example, during return communication in the optical gateway device 60, the user equipments 2E are directly connected.
- the transmission path loss is large, the communication is transferred via the network of the optical gateway device 60, and the optical signal is amplified by the 3R repeater 60 and communicated to the user device 2E of the communication partner. can be relayed.
- a Mach-Zehnder modulator may be used instead of the intensity modulator.
- the optical transmitter 10 or the optical transmission system 1E of the embodiment described above requires different optical transmitters (intensity modulators, DP-IQ modulators: Dual Polarization In-phase Quadrature modulators) for different modulation schemes.
- DP-IQ modulators Dual Polarization In-phase Quadrature modulators
- the signal applied to the modulating element, its bias value, and the amplitude according to the desired modulation method it is possible to switch between intensity modulation and phase/frequency modulation using only the intensity modulator.
- an economical optical transmitter that can communicate with both optical receivers of the direct detection method and the digital coherent reception method with the same optical transmitter. can be realized.
- the present invention can be applied to a transmitting device, a receiving device, or an optical transmission system that communicates via an optical transmission line.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
Description
<第1実施形態>
図1は、第1実施形態の光伝送システム1Aの構成例を示す図である。光伝送システム1Aは、光送信器10と、光受信器20と、光伝送路30とを備える。光送信器10は送信対象のデータ(以下「対象データ」という。)を光信号に変調して光伝送路30に出力する。光伝送路30は光ファイバを備え、光送信器10と光受信器20とを接続する。光受信器20は、光伝送路30から光信号を入力して復調することにより、光送信器10が送出した対象データを復元する。以下、光送信器10と光受信器20の構成についてより詳細に説明する。
第1実施形態の光送信器10では、位相/周波数変調で光源110を変調する場合、光源110のバイアス電流の変調に伴い、アナログ変調信号の位相/周波数変調成分だけでなく、強度変調成分も印加される。この場合、光送信器10は、光源110の変調成分の逆パターンで変調するように強度変調器140を作動させることで強度変調成分が除去されるように光変調信号を補正するように構成されてもよい。図3は、変形例の光送信器10による光変調信号の補正のイメージ図である。図3(A)は、光源110に印加されるバイアス電流を変調信号で変調した結果として光源110から出力される光信号(光変調信号)の強度を示す図である。一方、図3(B)は、強度変調器14が、図3(A)で出力された光変調信号を図3(A)の変調信号と逆パターンの変調信号で変調することによって補正された光変調信号の強度を示す図である。このような構成により、変形例の光送信器10は、位相/周波数変調の精度を高めることができる。
図8は、第2実施形態の光伝送システム1Bの構成例を示す図である。光伝送システム1は、第1実施形態の光送信器10を備えたユーザ装置同士が通信するシステムである。ここで、第1実施形態の光送信器10を備えたユーザ装置の構成としては、図8に示すユーザ装置2Aおよび2Bの2種類の構成を想定する。ユーザ装置2Aは、直接検波方式で光信号を受信する光受信器20Aを備える構成であるのに対し、ユーザ装置2Bは、デジタルコヒーレント検波方式で光信号を受信する光受信器20Bを備える構成である。合分波器21は、光信号の送受信において異なる波長の光信号を合分波して入出力するものである。
図9は、第3実施形態の光伝送システム1Cの構成例を示す図である。第2実施形態の光伝送システム1Bでは、主信号の通信を利用して初期認証フェーズにネゴシエーションをする構成であった。これに対して、第3実施形態の光伝送システム1Cでは、各ユーザ装置2Cが主信号の伝送経路(以下「第1経路」という。)とは別に制御信号の伝達経路(以下「第2経路」という。)を有し、第2経路を介して、通信先のユーザ装置2Cとの間の伝送経路における光信号の損失(経路損失)や、通信先のユーザ装置2Cにおける光受信器の構成などの情報(以下「制御情報」という。)をやり取りする。第3実施形態の光伝送システム1Cにおいて、ユーザ装置2Cは、通信先のユーザ装置2Cから通知された制御情報をもとに変調方式を決定する。
第3実施形態の光伝送システム1Cにおいて、各ユーザ装置2Cには、通信先のユーザ装置を示す情報(以下「通信先情報」という。)が予め登録されてもよい。この場合、光送信器10の変調方式切替部122は、予め登録されている通信先情報に基づいて光送信器10の変調方式を決定するように構成されてもよい。この場合、変調方式を決定するための制御信号を送受信する必要がなくなるので、光伝送システム1Cにおいて第2経路を省略し、システム構成を簡素化することができる。
図10は、第4実施形態の光伝送システム1Dの構成例を示す図である。第2実施形態の光伝送システム1Bおよび第3実施形態の光伝送システム1Cでは、ユーザ装置2同士が直接的に接続されて通信した。これに対して、第4実施形態の光伝送システム1Dでは、各ユーザ装置2Dがネットワークノード装置(以下「NWノード装置」という。)40を介して通信する。ユーザ装置2Dは、直接的にはネットワークノード装置40と通信する点で第3実施形態のユーザ装置2Cと異なるが、基本的な構成はユーザ装置2Cと同様である。NWノード装置40は、光スイッチによって光通信を転送する装置である。ユーザ装置2D同士の通信は、1つ以上のNWノード装置40が通信を転送することによって実現される。統合コントローラ50は、1つ以上のNWノード装置40を統合的に制御する装置である。
図11は、第5実施形態の光伝送システム1Eの構成例を示す図である。図11に示すように、第5実施形態の光伝送システム1Eは、第1のアクセスエリアA1と、第2のアクセスエリアA2と、ローカルネットワークLN1およびLN2と、コアネットワークCNとを備えるAPNネットワークNWに適用される。ここで、第1のアクセスエリアA1および第2のアクセスエリアA2は、ユーザ装置2Eを介してエンドユーザの端末を収容するサービスエリアの範囲を表す。例えば、第1のアクセスエリアA1は、スマートフォンや携帯電話等の移動通信端末TM1を無線接続するユーザ装置2E-1と、放送機器等の機器TM2を有線接続するユーザ装置2E-2とを備える。また、例えば、第2のアクセスエリアA2は、データセンタ等に設置されたサーバ機器群TM3などを有線接続するユーザ装置2E-3を備える。ここでは、各ユーザ装置2Eの光受信器20が、直接検波方式で光信号を検波する場合を想定する。
第5実施形態の光伝送システム1Eでは、強度変調器に代えてマッハツェンダ型変調器が用いられてもよい。
Claims (8)
- 光信号の強度変調によって光変調信号を生成する第1変調部と、
光信号の位相/周波数変調によって光変調信号を生成する第2変調部と、
前記光信号の変調手段を前記第1変調部および前記第2変調部のいずれかに切り替える変調方式切替部と、
を備え、
前記変調方式切替部は、前記第1変調部および前記第2変調部のうち、接続先の装置に応じた変調部に前記変調手段を切り替える、
光送信器。 - 前記第2変調部は、前記光信号を発する光源に印加するバイアス電流を前記変調手段に係る変調信号で変調することにより前記光信号の位相/周波数変調を実現する、
請求項1に記載の光送信器。 - 前記第1変調部は、電界吸収型変調器またはマッハツェンダ型変調器によって前記光信号の強度変調を実現する、
請求項2に記載の光送信器。 - 前記第1変調部は、前記第2変調部が前記光源に印加するバイアス電流よりも大きな電流値でバイアス電流を印加することにより前記光信号の強度変調を実現する、
請求項2に記載の光送信器。 - 前記通信方式切替部は、前記接続先の装置との初期通信時において、前記接続先の装置との通信に使用する変調方式をネゴシエーションによって決定する、
請求項1から4のいずれか一項に記載の光送信器。 - 請求項5に記載の光送信器と、
直接検波方式またはデジタルコヒーレント検波方式で光信号を検波する光受信器と、
を備える1以上のユーザ装置と、
前記1以上のユーザ装置を収容する1以上のネットワークノード装置と、
前記1以上のネットワークノード装置による通信経路を制御する経路制御装置と、
を備え、
前記光送信器は、前記通信相手のユーザ装置との間で実施する前記ネゴシエーションに係る情報を、前記経路制御装置を介してやり取りする、
光伝送システム。 - 第1のユーザ装置が、直接検波方式の光受信器を備える第2のユーザ装置と短距離通信する場合、前記第1のユーザ装置の光送信器は、強度変調方式で前記第2のユーザ装置の光受信器と通信し、
第1のユーザ装置が、第3のユーザ装置と長距離通信する場合、前記第1のユーザ装置の光送信器は、前記第1のユーザ装置と前記第3のユーザ装置との間の通信を中継するネットワークノード装置が備えるデジタルコヒーレント検波方式の光受信器と、位相/周波数変調方式で通信する、
請求項6に記載の光伝送システム。 - 光信号の強度変調によって光変調信号を生成する第1変調部と、光信号の位相/周波数変調によって光変調信号を生成する第2変調部とのいずれかの手段で光信号を変調する変調ステップと、
前記光信号の変調手段を前記第1変調部および前記第2変調部のいずれかに切り替える変調方式切替ステップと、
を有し、
前記変調方式切替ステップにおいて、前記第1変調部および前記第2変調部のうち、通信相手となる装置に応じた変調部に前記変調手段を切り替える、
光送信方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/294,288 US20250096902A1 (en) | 2021-08-03 | 2021-08-03 | Optical transmitting apparatus, optical transmission system and optical transmission method |
PCT/JP2021/028779 WO2023012897A1 (ja) | 2021-08-03 | 2021-08-03 | 光送信器、光伝送システムおよび光送信方法 |
JP2023539419A JPWO2023012897A1 (ja) | 2021-08-03 | 2021-08-03 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/028779 WO2023012897A1 (ja) | 2021-08-03 | 2021-08-03 | 光送信器、光伝送システムおよび光送信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023012897A1 true WO2023012897A1 (ja) | 2023-02-09 |
Family
ID=85154417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028779 WO2023012897A1 (ja) | 2021-08-03 | 2021-08-03 | 光送信器、光伝送システムおよび光送信方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20250096902A1 (ja) |
JP (1) | JPWO2023012897A1 (ja) |
WO (1) | WO2023012897A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5875340A (ja) * | 1981-09-03 | 1983-05-07 | インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレイシヨン | 光周波数変調システム |
JPH04502217A (ja) * | 1988-12-14 | 1992-04-16 | ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ | 位相変調 |
JP2001086104A (ja) * | 1999-09-14 | 2001-03-30 | Sharp Corp | 双方向伝送システム |
JP2008249848A (ja) * | 2007-03-29 | 2008-10-16 | Fujitsu Ltd | 光変調装置および光変調方式切替方法 |
WO2014141685A1 (ja) * | 2013-03-15 | 2014-09-18 | 日本電気株式会社 | 光送受信器、光通信システムおよび光送受信方法 |
US20160282699A1 (en) * | 2013-03-20 | 2016-09-29 | Xieon Networks S.À.R.L. | Optical iq modulator control |
JP2018019245A (ja) * | 2016-07-27 | 2018-02-01 | 富士通株式会社 | 信号処理装置および信号処理方法 |
JP2018113555A (ja) * | 2017-01-10 | 2018-07-19 | Kddi株式会社 | 光伝送システム、ponシステムおよび伝送方法 |
JP2018195925A (ja) * | 2017-05-15 | 2018-12-06 | 日本電信電話株式会社 | 光送信器、および光通信システム |
JP2018201118A (ja) * | 2017-05-26 | 2018-12-20 | 日本電信電話株式会社 | 光送受信システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5870728B2 (ja) * | 2012-02-10 | 2016-03-01 | 富士通株式会社 | 光パス確立方法及び光ノード装置 |
-
2021
- 2021-08-03 JP JP2023539419A patent/JPWO2023012897A1/ja active Pending
- 2021-08-03 WO PCT/JP2021/028779 patent/WO2023012897A1/ja active Application Filing
- 2021-08-03 US US18/294,288 patent/US20250096902A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5875340A (ja) * | 1981-09-03 | 1983-05-07 | インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレイシヨン | 光周波数変調システム |
JPH04502217A (ja) * | 1988-12-14 | 1992-04-16 | ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ | 位相変調 |
JP2001086104A (ja) * | 1999-09-14 | 2001-03-30 | Sharp Corp | 双方向伝送システム |
JP2008249848A (ja) * | 2007-03-29 | 2008-10-16 | Fujitsu Ltd | 光変調装置および光変調方式切替方法 |
WO2014141685A1 (ja) * | 2013-03-15 | 2014-09-18 | 日本電気株式会社 | 光送受信器、光通信システムおよび光送受信方法 |
US20160282699A1 (en) * | 2013-03-20 | 2016-09-29 | Xieon Networks S.À.R.L. | Optical iq modulator control |
JP2018019245A (ja) * | 2016-07-27 | 2018-02-01 | 富士通株式会社 | 信号処理装置および信号処理方法 |
JP2018113555A (ja) * | 2017-01-10 | 2018-07-19 | Kddi株式会社 | 光伝送システム、ponシステムおよび伝送方法 |
JP2018195925A (ja) * | 2017-05-15 | 2018-12-06 | 日本電信電話株式会社 | 光送信器、および光通信システム |
JP2018201118A (ja) * | 2017-05-26 | 2018-12-20 | 日本電信電話株式会社 | 光送受信システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023012897A1 (ja) | 2023-02-09 |
US20250096902A1 (en) | 2025-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10284323B2 (en) | Optical transceiver with external laser source | |
US7986878B2 (en) | Adjustable bit rate optical transmission using programmable signal modulation | |
US11581950B2 (en) | Out-of-band communication channel for sub-carrier-based optical communication systems | |
JP2019193266A (ja) | 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大 | |
US20210021365A1 (en) | Out-of-band communication channel for subcarrier-based optical communication systems | |
US8687979B2 (en) | Method, device and system for generating and receiving a phase polarization modulated signal | |
JP6045723B2 (ja) | コヒーレント検波を用いるm−pam光学システムのためのレベルスペーシング | |
CN107408991A (zh) | 使用双工媒体、自零差检测(shd)、相干检测和非制冷激光器的光收发器 | |
US20080063028A1 (en) | Photonics-based Multi-band Wireless Communication Methods | |
US11296812B2 (en) | Out-of-band communication channel for subcarrier-based optical communication systems | |
Fang et al. | Overcoming laser phase noise for low-cost coherent optical communication | |
JP2018042104A (ja) | 光通信システム | |
EP1475914B1 (en) | Network element for use in an optical communication network, in particular a DWDM communication network | |
US11239935B2 (en) | Out-of-band communication channel for subcarrier-based optical communication systems | |
US11476966B2 (en) | Out-of-band communication channel for subcarrier-based optical communication systems | |
WO2023012897A1 (ja) | 光送信器、光伝送システムおよび光送信方法 | |
Hodara et al. | Data centers and beyond, optical fiber communications breakthroughs from OFC 2019 | |
US20200213009A1 (en) | Optical communication apparatus, server apparatus, optical transport system, and optical communication method | |
US10715363B1 (en) | Optical communication apparatus, server apparatus, and optical transport system | |
US11489613B2 (en) | Out-of-band communication channel for subcarrier-based optical communication systems | |
US20220149947A1 (en) | Optical transponder, and method for controlling same | |
WO2023218532A1 (ja) | 光送信装置、光通信システム及び光送信方法 | |
Chand et al. | Optical LAN for avionics platforms | |
WO2024241368A1 (ja) | 光中継装置、光伝送システム及び光中継方法 | |
WO2008033722A2 (en) | Photonics-based multi-band wireless communication methods or systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21952726 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023539419 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18294288 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21952726 Country of ref document: EP Kind code of ref document: A1 |
|
WWP | Wipo information: published in national office |
Ref document number: 18294288 Country of ref document: US |