[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6644241B2 - High purity vinylene carbonate - Google Patents

High purity vinylene carbonate Download PDF

Info

Publication number
JP6644241B2
JP6644241B2 JP2017169210A JP2017169210A JP6644241B2 JP 6644241 B2 JP6644241 B2 JP 6644241B2 JP 2017169210 A JP2017169210 A JP 2017169210A JP 2017169210 A JP2017169210 A JP 2017169210A JP 6644241 B2 JP6644241 B2 JP 6644241B2
Authority
JP
Japan
Prior art keywords
vinylene carbonate
solvent
temperature
purity
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2017169210A
Other languages
Japanese (ja)
Other versions
JP2017214423A (en
Inventor
宮内 博夫
博夫 宮内
岡野 一哉
一哉 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2017214423A publication Critical patent/JP2017214423A/en
Application granted granted Critical
Publication of JP6644241B2 publication Critical patent/JP6644241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、高純度ビニレンカーボネートに関する。
ビニレンカーボネートは、リチウム二次電池用電解液の溶媒及び添加剤として有用である。
The present invention relates to high-purity vinylene carbonate.
Vinylene carbonate is useful as a solvent and an additive for an electrolyte for a lithium secondary battery.

ビニレンカーボネートの合成法としては、これ迄に幾つかの方法が報告されている。例えばエチレンカーボネートの塩素化で得られるクロロエチレンカーボネートの脱塩化水素による方法(M.S.Newman and R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)、J.Am.Chem.Soc.,77,3789(1955))、特開平11−180974号公報)やエチレンカーボネートの脱水素による方法(米国特許第3,457,279号公報)等が知られている。   Several methods have been reported for the synthesis of vinylene carbonate. For example, a method by dehydrochlorination of chloroethylene carbonate obtained by chlorination of ethylene carbonate (MS Newman and RW Addor, J. Am. Chem. Soc., 75, 1263 (1953), J. Am Chem. Soc., 77, 3789 (1955)), Japanese Patent Application Laid-Open No. H11-180974), a method of dehydrogenating ethylene carbonate (U.S. Pat. No. 3,457,279), and the like.

電解液の溶媒として用いられるビニレンカーボネートについては、高品質のものが要求されるが、例えばクロロエチレンカーボネートを原料とするビニレンカーボネートについては、非常に多様な有機塩素化合物や無機塩素化合物を不純物として含有している。
このため、粗ビニレンカーボネートの精製方法についても、今迄に幾つかの方法が提案されている。
High quality is required for vinylene carbonate used as a solvent for the electrolytic solution.For example, vinylene carbonate made from chloroethylene carbonate contains a wide variety of organic chlorine compounds and inorganic chlorine compounds as impurities. are doing.
For this reason, several methods for purifying crude vinylene carbonate have been proposed so far.

例えば、減圧条件での蒸留(M.S.Newman and R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)、J.Am.Chem.Soc.,77,3789(1955))、融液晶析法によりビニレンカーボネートを部分的に結晶化させる操作を数回繰り返す方法(英国特許第899205号公報)とゾーンメルティングによる方法(M.Zief,H.Ruch and C.H.Schramm,J.Chem.Education,40,351(1963))及びクロロエチレンカーボネートの脱塩化水素反応をジブチルカーボネート等の高沸点溶媒中で行い、次いで蒸留する方法(特開2000−26449号公報)等が提案されている。   For example, distillation under reduced pressure conditions (MS Newman and RW Addor, J. Am. Chem. Soc., 75, 1263 (1953), J. Am. Chem. Soc., 77, 3789 (1955) )), A method of repeating the operation of partially crystallizing vinylene carbonate by a fusion liquid crystal deposition method several times (GB Patent No. 899205) and a method by zone melting (M. Zief, H. Ruch and CH. Schramm, J. Chem. Education, 40, 351 (1963)) and a method of performing a dehydrochlorination reaction of chloroethylene carbonate in a high boiling point solvent such as dibutyl carbonate, followed by distillation (JP-A-2000-26449). Has been proposed.

特開平11−180974号公報JP-A-11-180974 米国特許第3,457,279号公報U.S. Pat. No. 3,457,279 英国特許第899,205号公報UK Patent No. 899,205 特開2000−26449号公報JP-A-2000-26449

M.S.Newman and R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)M. S. Newman and R.S. W. Addor, J .; Am. Chem. Soc. , 75, 1263 (1953) J.Am.Chem.Soc.,77,3789(1955)J. Am. Chem. Soc. , 77, 3789 (1955) M.Zief,H.Ruch and C.H.Schramm,J.Chem.Education,40,351(1963)M. Zief, H .; Ruch and C.R. H. Schramm, J .; Chem. Education, 40, 351 (1963)

しかしながら、蒸留による精製法の場合、沸点がビニレンカーボネートに近い有機塩素化合物が製品中に不純物として混入するために品質的に満足できるものではない。
また、クロロエチレンカーボネートの脱塩化水素反応を高沸点溶媒中で行う方法については、高価な溶媒の回収が容易ではなく、工業的に満足できるものではない。
一方、融液晶析による方法については、高品質の製品を得ようとすれば、回収率を低くしなければならず、経済的に満足できるものではない。
However, in the case of the purification method by distillation, the organochlorine compound having a boiling point close to that of vinylene carbonate is mixed in the product as an impurity, and is not satisfactory in quality.
In addition, the method of performing the dehydrochlorination reaction of chloroethylene carbonate in a high-boiling solvent is not easy to recover an expensive solvent, and is not industrially satisfactory.
On the other hand, in the method based on fusion liquid crystal deposition, in order to obtain a high-quality product, the recovery rate must be reduced, which is not economically satisfactory.

本発明は、高品質のビニレンカーボネートを従来の方法よりも経済的に製造することが
できる方法を提供しようとするものである。
The present invention seeks to provide a process by which high quality vinylene carbonate can be produced more economically than conventional processes.

本発明者らは、かかる事情に鑑み鋭意検討した結果、粗ビニレンカーボネート中に不純物として含まれる塩素化合物については、極性溶媒及び/又は芳香族炭化水素溶媒に溶解すること、しかもその量が少ない場合には前記溶媒中に非極性溶媒が含まれていても塩素化合物は溶解したままであること、従って、かかる溶媒を用いて粗ビニレンカーボネートの晶析精製をすれば、不純物が製品の表面に付着したり、或いはそれ自身が固体として析出するという問題は起こらず、製品品質が向上することを見出し、本発明を完成するに至った。
即ち、本発明の要旨は、純度99.5%以上であり、塩素化合物の含有量が全塩素量として500ppm以下であるビニレンカーボネート、にある。
The present inventors have conducted intensive studies in view of such circumstances, and found that chlorine compounds contained as impurities in crude vinylene carbonate can be dissolved in a polar solvent and / or an aromatic hydrocarbon solvent, and when the amount is small. Means that even if the solvent contains a non-polar solvent, the chlorine compound remains dissolved.Therefore, if the crude vinylene carbonate is crystallized and purified using such a solvent, impurities adhere to the surface of the product. The present invention has been found to improve the quality of the product, and to complete the present invention.
That is, the gist of the present invention resides in vinylene carbonate having a purity of 99.5% or more and a chlorine compound content of 500 ppm or less as a total chlorine amount.

本発明によれば、粗ビニレンカーボネートを極性溶媒及び/又は芳香族炭化水素溶媒を含む溶媒に溶解させ、次いでビニレンカーボネートを固定として析出させることにより、高品質のビニレンカーボネートを経済的に得ることができる。   According to the present invention, it is possible to economically obtain high-quality vinylene carbonate by dissolving crude vinylene carbonate in a solvent containing a polar solvent and / or an aromatic hydrocarbon solvent, and then precipitating and precipitating vinylene carbonate. it can.

以下、本発明を詳細に説明する。
本発明の対象となる粗ビニレンカーボネートについては、その製造方法が限定されるものではないが、不純物として塩素化合物を含むものが好ましく、例えば前述したクロロエチレンカーボネートの脱塩化水素反応(M.S.Newman and R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)、J.Am.Chem.Soc.,77,3789(1955))により得られたものが好ましい。
Hereinafter, the present invention will be described in detail.
The production method of the crude vinylene carbonate, which is the object of the present invention, is not limited, but preferably contains a chlorine compound as an impurity. For example, the above-described dehydrochlorination reaction of chloroethylene carbonate (MS. Newman and RW Addor, J. Am. Chem. Soc., 75, 1263 (1953), J. Am. Chem. Soc., 77, 3789 (1955)) are preferable.

但し、原料となる粗ビニレンカーボネートの純度については、単蒸留等により好ましくは95%以上、より好ましくは97%以上迄精製したものがよい。
粗ビニレンカーボネートを溶解させる溶媒としては、極性溶媒及び/又は芳香族炭化水素溶媒、即ち、極性溶媒及び芳香族炭化水素溶媒から選ばれる少なくとも一種の溶媒が用いられる。かかる溶媒は単独でも二種以上の混合物でもよい。なお、本発明でいう「溶解」とは、粗ビニレンカーボネートと上記溶媒とがエマルジョン様に懸濁状態にあるものをも包含する。
However, the purity of the crude vinylene carbonate used as the raw material is preferably purified by simple distillation or the like to preferably 95% or more, more preferably 97% or more.
As the solvent in which the crude vinylene carbonate is dissolved, a polar solvent and / or an aromatic hydrocarbon solvent, that is, at least one solvent selected from a polar solvent and an aromatic hydrocarbon solvent is used. Such solvents may be used alone or as a mixture of two or more. The term “dissolve” as used in the present invention also includes those in which crude vinylene carbonate and the above-mentioned solvent are in a suspended state like an emulsion.

但し、かかる溶媒については、塩素含有不純物の溶解量が、溶媒100g当り0.1g以上、好ましくは1g以上であるものが好ましい。
なお、粗ビニレンカーボネート中に含まれる塩素化合物とは、ビニレンカーボネートがクロロエチレンカーボネートの脱塩酸により製造された場合には、例えばクロロエチレンカーボネート、ジクロロエチレンカーボネート、クロロアセトアルデヒド、クロロエタノール、ジメトキシメチルクロライド、反応溶媒の塩素化物のような有機塩素化合物である。
However, such a solvent is preferably one in which the amount of chlorine-containing impurities dissolved is 0.1 g or more, preferably 1 g or more per 100 g of the solvent.
Incidentally, the chlorine compound contained in the crude vinylene carbonate, when vinylene carbonate is produced by dehydrochlorination of chloroethylene carbonate, for example, chloroethylene carbonate, dichloroethylene carbonate, chloroacetaldehyde, chloroethanol, dimethoxymethyl chloride, reaction Organic chlorine compounds such as chlorinated solvents.

この場合、かかる非極性溶媒の具体例としては、例えばプロパン、ブタン、イソブタン、ペンタン、2−メチルブタン、ネオペンタン、シクロペンタン、ヘキサン、2−メチルペンタン、3−メチルペンタン、ヘプタン、2−メチルヘキサン、3−メチルヘキサン、シクロヘキサン、オクタン、イソオクタン、ノナン、イソノナン、デカン等が挙げられる。   In this case, specific examples of such a nonpolar solvent include, for example, propane, butane, isobutane, pentane, 2-methylbutane, neopentane, cyclopentane, hexane, 2-methylpentane, 3-methylpentane, heptane, 2-methylhexane, Examples include 3-methylhexane, cyclohexane, octane, isooctane, nonane, isononane, decane and the like.

本発明に用いられる極性溶媒の具体例としては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブタノール、t−ブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、アミルアルコール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−3−ペンタノール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、4−ヘプタノール、2−メチル−2−ヘキサノール、3−メチル−3−ヘキサノール、4−メチル−4−ヘキサノール、2−メチル−4−ヘキサノール、4−メチル−2−ヘキサノール、2−エチルヘキサノール、ベンジルアルコール、フェノール、レゾルシノール、1−フェニルエタノール、2−フェニルエタノール、1−フェニル−2−ブタノール、3−フェニル−1−ブタノール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、エチレングリコール、グリセロール等のアルコール類;エタノールアミン、プロパノールアミン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルエチルアミン、メチルブチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、t−ブチルアミン、1,2−エチレンジアミン、N,N,N’,N’−テトラメチル−1,2−エチレンジアミン、ジ(n−ブチル)アミン、トリブチルアミン、アニリン、N−メチルアニリン、N,N−ジメチルアニリン、トルイジン、N,N−ジメチルトルイジン等のアミン類;アセトアルデヒド、ブチルアルデヒド、ヘキサナール、プロピオンアルデヒド等のアルデヒド類;ブタノン、アセトン、メチルプロピルケトン、ジエチルケトン等のケトン類;ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、γ−ブチロラクトン、プロピオン酸ブチル等のカルボン酸エステル類;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、ジオキサン、トリオキサン、テトラヒドロフラン、メチル−t−ブチルエーテル、ジメトキシエタン等のエーテル類;フラン、ピロール、ピリジン、チオフェン等のヘテロ芳香族化合物;ホルムアミド、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、N−メチルピロリドン等のカルボキシアミド類;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル類;クロロベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、プロモベンゼン等のハロ芳香族化合物;臭化エチル、塩化エチル、フッ化エチル、臭化ブチル、塩化ブチル、塩化メチル、クロロホルム、ジクロロエタン、ジクロロメタン等のハロゲン化アルキル化合物;ニトロメタン、ニトロエタン、1−ニトロプロパン、2−ニトロプロパン、1−ニトロブタン、2−ニトロブタン、ニトロベンゼン、2−ニトロトルエン、3−ニトロトルエン等のニトロ化合物が挙げられる。   Specific examples of the polar solvent used in the present invention include, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, and 2-pentanol. , 3-pentanol, amyl alcohol, isoamyl alcohol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3-pentanol , 1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 2-methyl-2-hexanol, 3-methyl-3-hexanol, 4-methyl-4-hexanol, 2-methyl-4-hexanol, -Methyl-2-hexanol, 2-ethylhexanol, benzyl Alcohol, phenol, resorcinol, 1-phenylethanol, 2-phenylethanol, 1-phenyl-2-butanol, 3-phenyl-1-butanol, 1,2-propanediol, 1,3-propanediol, 1,2- Alcohols such as butanediol, 1,3-butanediol, 1,4-butanediol, ethylene glycol and glycerol; ethanolamine, propanolamine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, methylethylamine, methyl Butylamine, propylamine, dipropylamine, tripropylamine, diisopropylamine, triisopropylamine, t-butylamine, 1,2-ethylenediamine, N, N, N ', N'-tetra Amines such as tyl-1,2-ethylenediamine, di (n-butyl) amine, tributylamine, aniline, N-methylaniline, N, N-dimethylaniline, toluidine, N, N-dimethyltoluidine; acetaldehyde, butyraldehyde Aldehydes such as butane, acetone, methyl propyl ketone, and diethyl ketone; methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and propion Carboxylic esters such as methyl acrylate, γ-butyrolactone, butyl propionate; dimethyl ether, diethyl ether, methyl ethyl ether, dibutyl ether, diisopropyl ether, dioxane, trioxane, tetrahydrofuran , Methyl-t-butyl ether, ethers such as dimethoxyethane; heteroaromatic compounds such as furan, pyrrole, pyridine and thiophene; carboxamides such as formamide, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, N-methylpyrrolidone Nitriles such as acetonitrile, propionitrile, and butyronitrile; haloaromatic compounds such as chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and bromobenzene; ethyl bromide, ethyl chloride, ethyl fluoride; Alkyl halides such as butyl bromide, butyl chloride, methyl chloride, chloroform, dichloroethane, dichloromethane; nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, 1-nitro Tan, 2-nitrobutane, nitrobenzene, 2-nitrotoluene, nitro compounds such as 3-nitrotoluene and the like.

これらの中でも、エーテル類、ケトン類、エステル類、アルコール類が好ましい。
また、芳香族炭化水素溶媒の具体例としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、イソプロピルベンゼン等が挙げられる。これらの中でも、ベンゼン、トルエン、キシレンが好ましく、トルエンが特に好ましい。
かかる溶媒の使用量については、特に限定はされないが、粗ビニレンカーボネートに対して、通常、0.5〜20重量倍、好ましくは0.7〜5重量倍、より好ましくは0.8〜3重量倍である。
Among them, ethers, ketones, esters, and alcohols are preferred.
Further, specific examples of the aromatic hydrocarbon solvent include, for example, benzene, toluene, xylene, ethylbenzene, mesitylene, isopropylbenzene and the like. Among these, benzene, toluene and xylene are preferred, and toluene is particularly preferred.
The amount of the solvent used is not particularly limited, but is usually 0.5 to 20 times by weight, preferably 0.7 to 5 times by weight, and more preferably 0.8 to 3 times by weight relative to the crude vinylene carbonate. It is twice.

晶析はビニレンカーボネートの約5〜70重量%の溶液を放置して結晶を析出させてもよいが、その溶液を過冷却状態にすることにより結晶を析出させるのが好ましい。この場合、例えばその溶液を先ず0〜20℃(温度A)迄冷却し、温度Aで約1〜2時間撹拌した後、更に温度Aよりも5〜15℃低い温度B迄、例えば0.1〜10℃/時の速度で温度を下げ、この温度Bで約1〜2時間撹拌して晶析させるという手法が好ましい。   Crystallization may be carried out by leaving a solution of vinylene carbonate of about 5 to 70% by weight to precipitate crystals, but it is preferable to precipitate crystals by supercooling the solution. In this case, for example, the solution is first cooled to 0 to 20 ° C. (temperature A), stirred at temperature A for about 1 to 2 hours, and further cooled to a temperature B lower than temperature A by 5 to 15 ° C., for example, 0.1 It is preferable to lower the temperature at a rate of 〜1010 ° C./hour, and stir at the temperature B for about 1 to 2 hours to cause crystallization.

なお、過冷却状態にして晶析を行う場合、その溶液に冷却された溶媒を添加するとか、ドライアイス等の低温を固体を投入する等して局所的な温度分布を作るとか、その溶液に脂肪族炭化水素のようなビニレンカーボネートの溶解度の小さい溶媒を添加するとか、液体又は固体のビニレンカーボネートを添加する等して局所的な濃度分布を作るとか、或いは種晶等を加えることも好ましい。   When crystallization is performed in a supercooled state, a cooled solvent is added to the solution, a low temperature such as dry ice is poured into a solid to form a local temperature distribution, or the solution is subjected to crystallization. It is also preferable to add a solvent having low solubility of vinylene carbonate such as an aliphatic hydrocarbon, to create a local concentration distribution by adding liquid or solid vinylene carbonate, or to add a seed crystal or the like.

結晶を更に析出又は成長させる方法としては、例えば冷却、脂肪族炭化水素のようなビニレンカーボネートの溶解度の小さい溶媒を添加する方法、冷却された溶媒を添加する方法、液体のビニレンカーボネートを添加する方法等やそれらの組合せによる方法が使用できる。
ビニレンカーボネートの回収率は使用する溶媒に対する溶解度に依存し、温度、溶媒量で任意に設定することが出来るが、通常ビニレンカーボネートの回収率が60%以上、好ましくは80%以上になるように設定される。
As a method of further depositing or growing crystals, for example, cooling, a method of adding a solvent having low solubility of vinylene carbonate such as an aliphatic hydrocarbon, a method of adding a cooled solvent, a method of adding liquid vinylene carbonate Or a method based on a combination thereof can be used.
The recovery of vinylene carbonate depends on the solubility in the solvent used, and can be arbitrarily set by the temperature and the amount of the solvent. Usually, the recovery of vinylene carbonate is set to be 60% or more, preferably 80% or more. Is done.

析出した固体は、濾過、遠心分離等の方法で分離される。必要があれば、更に固体表面を適当な溶媒で洗浄する。この固体は、通常は融点以上に加熱し、ビニレンカーボネートを液体として取得する。このビニレンカーボネートはそのまま製品とすることもできるが、必要があればトッピング等で残留溶媒を除去することもできる。
このような方法により高純度のビニレンカーボネートを得ることができる。
The precipitated solid is separated by a method such as filtration and centrifugation. If necessary, the solid surface is further washed with a suitable solvent. This solid is usually heated above its melting point to obtain vinylene carbonate as a liquid. This vinylene carbonate can be used as a product as it is, but if necessary, the residual solvent can be removed by topping or the like.
By such a method, high-purity vinylene carbonate can be obtained.

但し、本発明にいう高純度ビニレンカーボネートとは、純度99.5%以上、好ましくは99.7%以上、より好ましくは99.9%以上で、塩素化合物の含有量が全塩素量として500ppm以下、好ましくは200ppm以下、より好ましくは50ppm以下のものを指す。
なお、この方法でも充分な品質のビニレンカーボネートが得られるが、更に高品質なものが必要である場合には本発明の方法を繰り返して使用することが出来る。
However, the high-purity vinylene carbonate referred to in the present invention has a purity of 99.5% or more, preferably 99.7% or more, more preferably 99.9% or more, and a chlorine compound content of 500 ppm or less in terms of total chlorine. , Preferably 200 ppm or less, more preferably 50 ppm or less.
Incidentally, vinylene carbonate of a sufficient quality can be obtained by this method, but if a higher quality is required, the method of the present invention can be used repeatedly.

以下、実施例により、本発明を更に具体的に説明するが、本発明は、その要旨を越えない限りこれらの実施例に限定されるものではない。
なお、分析はガスクロマトグラフィーで実施した。純度は溶媒が残存している場合は溶媒をカットした数値を使用した。
純度=(ビニレンカーボネート面積)/(全面積−残留溶媒ピーク面積)
実施例1〜10
撹拌機能を備えた500mlの四つ口フラスコに、ビニレンカーボネート(VC)と溶媒を仕込み、撹拌しながら、1時間当り2℃の速度で冷却した。ある温度(温度A)まで冷却すると固体が析出するので、その温度で1時間撹拌した後、所定の温度(温度B)まで1時間当り2℃の速度で冷却し、更に1時間撹拌した。固体を濾別し、5℃のヘキサンで2回洗浄した後、加熱融解し、液体を回収した。以下の表1に結果を示した。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples as long as the gist of the present invention is not exceeded.
The analysis was performed by gas chromatography. When the solvent remained, the numerical value which cut the solvent was used for the purity.
Purity = (vinylene carbonate area) / (total area-residual solvent peak area)
Examples 1 to 10
A 500 ml four-necked flask equipped with a stirring function was charged with vinylene carbonate (VC) and a solvent, and cooled at a rate of 2 ° C. per hour with stirring. When cooled to a certain temperature (temperature A), a solid precipitates. After stirring at that temperature for 1 hour, the mixture was cooled to a predetermined temperature (temperature B) at a rate of 2 ° C. per hour, and further stirred for 1 hour. The solid was separated by filtration, washed twice with hexane at 5 ° C., melted by heating, and the liquid was recovered. The results are shown in Table 1 below.

実施例11、12
撹拌機能を備えた50mlの三つ口フラスコに、ビニレンカーボネート(純度99.24%、全塩素6270ppm)10g、溶媒10gを仕込み、撹拌しながら冷却したところ固体が析出した。5℃で1時間撹拌した後、撹拌を停止し、−5℃で12時間静置した。固体を濾別し、5℃のヘキサンで2回洗浄した後、加熱融解し、液体を回収した。結果を以下の表2に示した。
Examples 11 and 12
10 g of vinylene carbonate (purity: 99.24%, total chlorine: 6270 ppm) and 10 g of a solvent were charged into a 50 ml three-necked flask equipped with a stirring function, and the mixture was cooled with stirring to precipitate a solid. After stirring at 5 ° C for 1 hour, the stirring was stopped, and the mixture was allowed to stand at -5 ° C for 12 hours. The solid was separated by filtration, washed twice with hexane at 5 ° C., melted by heating, and the liquid was recovered. The results are shown in Table 2 below.

実施例13
撹拌機能を備えた250L反応器に、ビニレンカーボネート(純度98.69%、全塩素3160ppm)40.0kgとトルエン40.0kg、ヘキサン40.0kgを仕込み撹拌しながら冷却した。14.7℃で種晶40gを添加し30分撹拌した後、14.3〜5℃で6時間撹拌し、更に4時間かけて4.0℃まで冷却した。固体を濾別し、5℃のヘキサン40kgで2回洗浄し、VCを固体で得た。回収率93.2%、純度99.94%、全塩素11ppm。
Example 13
A 250 L reactor equipped with a stirring function was charged with 40.0 kg of vinylene carbonate (purity: 98.69%, total chlorine: 3160 ppm), 40.0 kg of toluene, and 40.0 kg of hexane, and cooled while stirring. After adding 40 g of seed crystals at 14.7 ° C and stirring for 30 minutes, the mixture was stirred at 14.3 to 5 ° C for 6 hours, and further cooled to 4.0 ° C over 4 hours. The solid was filtered off and washed twice with 40 kg of hexane at 5 ° C. to obtain VC as a solid. Recovery rate 93.2%, purity 99.94%, total chlorine 11 ppm.

実施例14
掻き取り翼付きの250L反応器に、ビニレンカーボネート(純度98.69%、全塩素3160ppm)50.0kgとトルエン50.0kg、ヘキサン50.0kgを仕込み撹拌しながら冷却した。14.7℃で種晶50gを添加し30分撹拌した後、2.5時間かけて4.0℃まで冷却した。固体を濾別し、5℃のヘキサン50kgで2回洗浄し、VCを固体で得た。回収率93.3%、純度99.94%、全塩素15ppm。
Example 14
50.0 kg of vinylene carbonate (purity: 98.69%, total chlorine: 3160 ppm), 50.0 kg of toluene, and 50.0 kg of hexane were charged into a 250 L reactor equipped with scraping blades and cooled while stirring. After adding 50 g of seed crystals at 14.7 ° C and stirring for 30 minutes, the mixture was cooled to 4.0 ° C over 2.5 hours. The solid was filtered off and washed twice with 50 kg of hexane at 5 ° C. to obtain VC as a solid. Recovery rate 93.3%, purity 99.94%, total chlorine 15ppm.

比較例1
ビニレンカーボネート100g(純度99.24%、全塩素6270ppm)を4段の蒸留塔を使用し、還流比5〜10で2回精密蒸留した。収率69%、純度99.80%、全塩素量530ppm。
Comparative Example 1
100 g of vinylene carbonate (purity: 99.24%, total chlorine: 6270 ppm) was precision distilled twice at a reflux ratio of 5 to 10 using a four-stage distillation column. Yield 69%, purity 99.80%, total chlorine amount 530ppm.

Claims (7)

純度95%以上であり、塩素化合物を含む粗ビニレンカーボネートと、前記粗ビニレンカーボネートに対して0.5〜2重量倍の量の芳香族炭化水素溶媒とを含む、精製されたリチウム二次電池用電解液用ビニレンカーボネートを製造するための組成物であって、
0〜20℃の温度まで冷却し、その温度で1〜2時間撹拌する工程A、及び
工程Aの後、更に温度を5〜15℃低い温度まで、0.1〜10℃/時の速度で下げ、その温度で1〜2時間撹拌する工程B
を含む晶析に供される組成物
A purified lithium secondary battery having a purity of 95% or more and containing crude vinylene carbonate containing a chlorine compound and an aromatic hydrocarbon solvent in an amount of 0.5 to 2 times by weight of the crude vinylene carbonate. A composition for producing vinylene carbonate for an electrolytic solution ,
Cooling to a temperature of 0-20 ° C. and stirring at that temperature for 1-2 hours, and
After the step A, the temperature is further lowered to a temperature lower by 5 to 15 ° C. at a rate of 0.1 to 10 ° C./hour, and the mixture is stirred at that temperature for 1 to 2 hours.
A composition provided for crystallization comprising:
前記粗ビニレンカーボネートの塩素化合物の含有量が全塩素量として2880〜6270ppmである、請求項1に記載の組成物。   The composition according to claim 1, wherein the content of the chlorine compound in the crude vinylene carbonate is 2880 to 6270 ppm as a total chlorine amount. 前記粗ビニレンカーボネートの純度が98.24〜98.69%である、請求項1又は2に記載の組成物。   The composition according to claim 1, wherein the purity of the crude vinylene carbonate is 98.24 to 98.69%. 前記芳香族炭化水素溶媒がトルエンである、請求項1乃至3のいずれか一項に記載の組成物。   The composition according to any one of claims 1 to 3, wherein the aromatic hydrocarbon solvent is toluene. 前記粗ビニレンカーボネートに対して0.1〜1重量倍の量の前記芳香族炭化水素溶媒以外の非極性溶媒を更に含む、請求項1乃至4のいずれか一項に記載の組成物。   The composition according to any one of claims 1 to 4, further comprising a nonpolar solvent other than the aromatic hydrocarbon solvent in an amount of 0.1 to 1 times the weight of the crude vinylene carbonate. 前記非極性溶媒がヘキサン及び/又はヘプタンである、請求項5に記載の組成物。   The composition according to claim 5, wherein the non-polar solvent is hexane and / or heptane. 前記精製されたリチウム二次電池用電解液用ビニレンカーボネートは、純度99.9%以上であり、塩素化合物の含有量が全塩素量として15ppm以下である、請求項1乃至6のいずれか一項に記載の組成物。The purified vinylene carbonate for an electrolyte solution for a lithium secondary battery has a purity of 99.9% or more, and the content of a chlorine compound is 15 ppm or less as a total chlorine amount. A composition according to claim 1.
JP2017169210A 2000-11-29 2017-09-04 High purity vinylene carbonate Expired - Lifetime JP6644241B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000362419 2000-11-29
JP2000362419 2000-11-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015176506A Division JP6241465B2 (en) 2000-11-29 2015-09-08 High purity vinylene carbonate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2018134059A Division JP6796239B2 (en) 2000-11-29 2018-07-17 High-purity vinylene carbonate
JP2019170223A Division JP2019218401A (en) 2000-11-29 2019-09-19 High-purity vinylene carbonate

Publications (2)

Publication Number Publication Date
JP2017214423A JP2017214423A (en) 2017-12-07
JP6644241B2 true JP6644241B2 (en) 2020-02-12

Family

ID=40400704

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2008203872A Expired - Lifetime JP5457647B2 (en) 2000-11-29 2008-08-07 High purity vinylene carbonate
JP2011205643A Expired - Lifetime JP5901918B2 (en) 2000-11-29 2011-09-21 High purity vinylene carbonate
JP2013238007A Pending JP2014040478A (en) 2000-11-29 2013-11-18 High purity vinylene carbonate
JP2015176506A Expired - Fee Related JP6241465B2 (en) 2000-11-29 2015-09-08 High purity vinylene carbonate
JP2017169210A Expired - Lifetime JP6644241B2 (en) 2000-11-29 2017-09-04 High purity vinylene carbonate
JP2018134059A Expired - Lifetime JP6796239B2 (en) 2000-11-29 2018-07-17 High-purity vinylene carbonate
JP2019170223A Pending JP2019218401A (en) 2000-11-29 2019-09-19 High-purity vinylene carbonate
JP2020127141A Pending JP2020180159A (en) 2000-11-29 2020-07-28 High-purity vinylene carbonate

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2008203872A Expired - Lifetime JP5457647B2 (en) 2000-11-29 2008-08-07 High purity vinylene carbonate
JP2011205643A Expired - Lifetime JP5901918B2 (en) 2000-11-29 2011-09-21 High purity vinylene carbonate
JP2013238007A Pending JP2014040478A (en) 2000-11-29 2013-11-18 High purity vinylene carbonate
JP2015176506A Expired - Fee Related JP6241465B2 (en) 2000-11-29 2015-09-08 High purity vinylene carbonate

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018134059A Expired - Lifetime JP6796239B2 (en) 2000-11-29 2018-07-17 High-purity vinylene carbonate
JP2019170223A Pending JP2019218401A (en) 2000-11-29 2019-09-19 High-purity vinylene carbonate
JP2020127141A Pending JP2020180159A (en) 2000-11-29 2020-07-28 High-purity vinylene carbonate

Country Status (1)

Country Link
JP (8) JP5457647B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457647B2 (en) * 2000-11-29 2014-04-02 三菱化学株式会社 High purity vinylene carbonate
JP5826533B2 (en) * 2011-06-24 2015-12-02 三菱化学株式会社 Method for producing high-purity vinylene carbonate
JP2014080423A (en) * 2013-11-27 2014-05-08 Mitsubishi Chemicals Corp Method of producing high purity vinylene carbonate
CN106660983B (en) 2014-07-14 2019-12-20 宇部兴产株式会社 High-purity vinylene carbonate, nonaqueous electrolyte solution, and electricity storage device using same
JP6974434B2 (en) 2017-03-17 2021-12-01 旭化成株式会社 Non-aqueous electrolyte
CN115448904A (en) * 2022-08-30 2022-12-09 福建中盛宏业新材科技股份公司 Preparation method of high-purity vinylene carbonate and lithium battery electrolyte applying same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2873230A (en) * 1956-04-02 1959-02-10 Olin Mathieson Purification of vinylene carbonate
GB899205A (en) * 1960-04-28 1962-06-20 Ici Ltd The purification and polymerisation of vinylene carbonate
US3457279A (en) * 1964-10-21 1969-07-22 Jefferson Chem Co Inc Vinylene carbonate production
JP3368832B2 (en) * 1998-07-10 2003-01-20 宇部興産株式会社 Method for producing vinylene carbonate
JP3438636B2 (en) * 1998-08-27 2003-08-18 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP4197785B2 (en) * 1998-12-24 2008-12-17 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2002008721A (en) * 2000-04-17 2002-01-11 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery
JP3645154B2 (en) * 2000-06-09 2005-05-11 ニスカ株式会社 Image reading apparatus and image forming apparatus
JP4255228B2 (en) * 2000-11-29 2009-04-15 三菱化学株式会社 Method for producing high-purity vinylene carbonate
JP5457647B2 (en) * 2000-11-29 2014-04-02 三菱化学株式会社 High purity vinylene carbonate
JP2008203872A (en) * 2002-06-19 2008-09-04 Mitsubishi Chemicals Corp Electrophotographic photoreceptor
JP2011205643A (en) * 2011-03-18 2011-10-13 Shinzo Ito Method and system for transmission/reception and representation output of sports television broadcast, method and apparatus for receiving, representing and outputting sports television broadcast, method and apparatus for receiving, recording and transmitting sports television broadcast, method and apparatus for receiving, recording and reproducing sports television broadcast, and method for detecting start and end of play of sports
JP6281343B2 (en) * 2014-03-17 2018-02-21 株式会社リコー Authority delegation system, authority delegation method, and authority delegation program
JP6842947B2 (en) * 2017-02-23 2021-03-17 パナソニック株式会社 Harvesting equipment and harvesting method
JP6338733B2 (en) * 2017-04-26 2018-06-06 キヤノン株式会社 Apparatus, control method therefor, program, and storage medium

Also Published As

Publication number Publication date
JP2016014041A (en) 2016-01-28
JP2017214423A (en) 2017-12-07
JP2012025764A (en) 2012-02-09
JP2009029814A (en) 2009-02-12
JP2018200878A (en) 2018-12-20
JP5457647B2 (en) 2014-04-02
JP6241465B2 (en) 2017-12-06
JP6796239B2 (en) 2020-12-09
JP5901918B2 (en) 2016-04-13
JP2020180159A (en) 2020-11-05
JP2014040478A (en) 2014-03-06
JP2019218401A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6644241B2 (en) High purity vinylene carbonate
JP5150989B2 (en) Method for producing high-purity vinylene carbonate
JP4255228B2 (en) Method for producing high-purity vinylene carbonate
CN110105193B (en) Synthetic method of 2-halogen-5-bromobenzoic acid
JPH05125051A (en) Synthesis of substituted (quinolin-2-yl- methoxy)phenyl acetic acid with uniform stereostructure
WO2018141642A1 (en) Process for the preparation of 2-chloro-4-fluoro-5-nitrobenzotrichloride
JP5826533B2 (en) Method for producing high-purity vinylene carbonate
JPH08133999A (en) Production of geranylgeraniol
JP2002346303A (en) Crystallization method
JP5936947B2 (en) Method for producing high-purity vinylene carbonate
JP3735026B2 (en) Citalopram production method, intermediates thereof, and production method thereof
JP2014080423A (en) Method of producing high purity vinylene carbonate
CN113636964B (en) Green preparation method of aryl diselenide organic selenium compound
JPH05271125A (en) Synthesis using toluene compound
JPS5941973B2 (en) Terphenyl separation and purification method
JP4318755B2 (en) Purification method of substituted p-nitrodiphenyl ethers
US20040122260A1 (en) Process for preparing 2-nitro-4'-fluorobenzophenone
JPH03190847A (en) Purification of 3,4-dichloronitrobenzene
JP3036661B2 (en) Method for producing 2-chlorocyclododecadienone oxime
TW202130617A (en) Process for preparing 1,1'-disulfanediylbis(4-fluoro-2-methyl-5-nitrobenzene)
JPS6151575B2 (en)
JP4244304B2 (en) Method for producing bis-fluorinated phthalonitrile derivative
WO2021038586A1 (en) Improved process for the preparation of tezacaftor intermediate
JP2006199599A (en) Method for producing bis-fluorine-containing phthalonitrile compound
JPH07165660A (en) Recovery of 4-hydroxyneophy-3-phenoxybenzyl ether compounds

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6644241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term