JP6516058B1 - Current sensor and method of manufacturing bus bar used therefor - Google Patents
Current sensor and method of manufacturing bus bar used therefor Download PDFInfo
- Publication number
- JP6516058B1 JP6516058B1 JP2018198714A JP2018198714A JP6516058B1 JP 6516058 B1 JP6516058 B1 JP 6516058B1 JP 2018198714 A JP2018198714 A JP 2018198714A JP 2018198714 A JP2018198714 A JP 2018198714A JP 6516058 B1 JP6516058 B1 JP 6516058B1
- Authority
- JP
- Japan
- Prior art keywords
- current
- wiring portion
- bus bar
- detection
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
【課題】バスバーに流れる測定対象電流を分流させることによって大電流の測定を可能とした電流センサにおいて、バスバーの温度差に起因する測定誤差を低減することを目的とする。【解決手段】本発明による電流センサは、測定対象電流Iが流れるバスバー10と、領域Aに配置される磁気センサを備える。バスバー10は、測定対象電流Iの一部が流れる検出配線部11と、測定対象電流Iの残りの部分が流れる分岐配線部12A,12Bとを有する。検出配線部11は、分岐配線部12A,12Bよりも電流経路が長く、且つ、検出配線部11と分岐配線部12A,12Bは、電流方向と垂直な断面の形状が互いに等しい。本発明によれば、電流経路の長さの差に起因する発熱量の差が熱容量の差によって相殺されることから、バスバーの温度差に起因する測定誤差を低減することが可能となる。【選択図】図3An object of the present invention is to reduce a measurement error caused by a temperature difference of a bus bar in a current sensor capable of measuring a large current by dividing a current to be measured flowing through the bus bar. A current sensor according to the present invention includes a bus bar 10 through which a current to be measured I flows, and a magnetic sensor disposed in an area A. The bus bar 10 has a detection wiring portion 11 through which a part of the measurement target current I flows, and branch wiring portions 12A and 12B through which the remaining part of the measurement target current I flows. The detection wiring portion 11 has a longer current path than the branch wiring portions 12A and 12B, and the detection wiring portion 11 and the branch wiring portions 12A and 12B have the same cross-sectional shape perpendicular to the current direction. According to the present invention, it is possible to reduce the measurement error due to the temperature difference of the bus bars because the difference in heat generation amount due to the difference in the length of the current path is offset by the difference in heat capacity. [Selected figure] Figure 3
Description
本発明は電流センサ及びこれに用いるバスバーの製造方法に関し、特に、大電流の測定に適した電流センサ及びこれに用いるバスバーの製造方法に関する。 The present invention relates to a current sensor and a method of manufacturing a bus bar used therefor, and more particularly to a current sensor suitable for measuring a large current and a method of manufacturing a bus bar used therein.
電流センサは、測定対象電流によって発生する磁界を磁気センサによって検出するタイプが一般的である。例えば、特許文献1には、測定対象電流が流れるバスバーを2分岐し、一方の分岐バーに流れる電流によって発生する磁界を磁気センサによって検出するタイプの電流センサが開示されている。 The current sensor is generally of a type in which a magnetic sensor detects a magnetic field generated by the current to be measured. For example, Patent Document 1 discloses a current sensor of a type in which a bus bar through which a current to be measured flows is branched into two and a magnetic sensor generates a magnetic field generated by a current flowing through one of the branch bars.
特許文献1に記載された電流センサは、バスバーを2分岐し、その一方の分岐バーに磁気センサを割り当てていることから、バスバーに流れる測定対象電流が大電流であっても、分岐バーに流れる電流の電流量が抑えられることから、大電流の測定に適している。 In the current sensor described in Patent Document 1, since the bus bar is branched into two and the magnetic sensor is allocated to one of the branch bars, even if the current to be measured flowing through the bus bar is a large current, it flows to the branch bar Since the amount of current can be reduced, it is suitable for measuring a large current.
特許文献1に記載された電流センサにおいては、2つの分岐バーの長さが同じであることから、単位断面積当たりの電流密度は同じであり、したがって、単位断面積当たりの発熱量も同じである。しかしながら、2つの分岐バーは断面積自体が互いに異なっていることから、熱容量が互いに相違する。このため、実際には2つの分岐バーには温度差が生じ、これにより電気抵抗率に差が生じることから、測定対象電流の分流比が変化してしまう。その結果、測定対象電流の測定値に誤差が生じるという問題があった。 In the current sensor described in Patent Document 1, since the lengths of the two branched bars are the same, the current density per unit cross sectional area is the same, and accordingly, the calorific value per unit cross sectional area is also the same. is there. However, the two branch bars have different heat capacities because the cross-sectional areas themselves are different from each other. For this reason, a temperature difference actually occurs in the two branch bars, which causes a difference in the electrical resistivity, so that the diversion ratio of the current to be measured changes. As a result, there is a problem that an error occurs in the measured value of the current to be measured.
したがって、本発明は、バスバーに流れる測定対象電流を分流させることによって大電流の測定を可能とした電流センサにおいて、バスバーの温度差に起因する測定誤差を低減することを目的とする。また、本発明は、このような電流センサに用いるバスバーの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to reduce a measurement error caused by a temperature difference between bus bars in a current sensor that can measure a large current by dividing a current to be measured flowing through the bus bars. Another object of the present invention is to provide a method of manufacturing a bus bar used for such a current sensor.
本発明による電流センサは、測定対象電流が流れるバスバーと、バスバーから発生する磁界を検出する磁気センサとを備え、バスバーは、測定対象電流の一部が流れる検出配線部と、測定対象電流の残りの部分が流れる分岐配線部とを有し、磁気センサは、検出配線部に流れる測定対象電流の一部によって発生する磁界を検出し、検出配線部は、分岐配線部よりも電流経路が長く、検出配線部と分岐配線部は、電流方向と垂直な断面の形状が互いに等しいことを特徴とする。 The current sensor according to the present invention includes a bus bar through which the current to be measured flows and a magnetic sensor detecting a magnetic field generated from the bus bar, and the bus bar has a detection wiring portion through which a part of the current to be measured flows and the rest of the current to be measured The magnetic sensor detects a magnetic field generated by a part of the current to be measured flowing through the detection wiring portion, and the detection wiring portion has a longer current path than the branch wiring portion, The detection wiring portion and the branch wiring portion are characterized in that the shapes of cross sections perpendicular to the current direction are equal to each other.
本発明によれば、分岐配線部よりも検出配線部の電流経路の方が長いことから、検出配線部に流れる電流の電流量をより低減することが可能となる。これにより、大電流の測定が可能となる。しかも、検出配線部と分岐配線部の断面形状が互いに等しいことから、電流経路の長さの差に起因する発熱量の差が熱容量の差によって相殺される。これにより、バスバーの温度差に起因する測定誤差を低減することが可能となる。 According to the present invention, since the current path of the detection wiring portion is longer than the branch wiring portion, it is possible to further reduce the amount of current flowing in the detection wiring portion. This makes it possible to measure a large current. In addition, since the cross-sectional shapes of the detection wiring portion and the branch wiring portion are equal to each other, the difference in the amount of heat generation due to the difference in the length of the current path is offset by the difference in heat capacity. This makes it possible to reduce the measurement error caused by the temperature difference between the bus bars.
本発明において、バスバーは分岐配線部を複数有しても構わない。これによれば、検出配線部に流れる電流の電流量がよりいっそう低減することから、より大電流を測定することが可能となる。 In the present invention, the bus bar may have a plurality of branch wiring portions. According to this, since the amount of current flowing in the detection wiring portion is further reduced, it is possible to measure a larger current.
本発明において、バスバーは、検出配線部の一端及び分岐配線部の一端に接続された入力配線部と、検出配線部の他端及び分岐配線部の他端に接続された出力配線部とをさらに有し、検出配線部、分岐配線部、入力配線部及び出力配線部からなる部分は、厚さが一定の金属板からなるものであっても構わない。これによれば、厚さが一定の金属板をパンチング加工することによって容易にバスバーを作製することが可能となる。 In the present invention, the bus bar further includes an input wiring portion connected to one end of the detection wiring portion and one end of the branch wiring portion, and an output wiring portion connected to the other end of the detection wiring portion and the other end of the branch wiring portion. The portion including the detection wiring portion, the branch wiring portion, the input wiring portion, and the output wiring portion may be formed of a metal plate having a constant thickness. According to this, it is possible to easily manufacture the bus bar by punching a metal plate having a constant thickness.
本発明によるバスバーの製造方法は、電流センサに用いるバスバーの製造方法であって、厚さが一定の金属板を用意し、金属板をパンチング加工することにより、入力配線部と、出力配線部と、一端が入力配線部に接続され、他端が出力配線部に接続された検出配線部と、一端が入力配線部に接続され、他端が出力配線部に接続された分岐配線部とを有し、検出配線部の幅と分岐配線部の幅が同じであるバスバーを作製することを特徴とする。 A method of manufacturing a bus bar according to the present invention is a method of manufacturing a bus bar used for a current sensor, wherein a metal plate having a constant thickness is prepared, and a metal plate is punched to form an input wiring portion and an output wiring portion. One end connected to the input wiring portion and the other end connected to the output wiring portion, and the branch wiring portion one end connected to the input wiring portion and the other end connected to the output wiring portion And the width of the detection wiring portion is equal to the width of the branch wiring portion.
本発明によれば、厚さが一定の金属板をパンチング加工することにより、加工幅が一定である検出配線部及び分岐配線部を有するバスバーを作製していることから、検出配線部と分岐配線部の加工精度が完全に一致する。このため、加工精度の差に起因する測定誤差を低減することが可能となる。 According to the present invention, by forming a bus bar having a detection wiring portion and a branch wiring portion having a constant processing width by punching a metal plate having a constant thickness, the detection wiring portion and the branch wiring are formed. The machining accuracy of the parts completely matches. For this reason, it becomes possible to reduce the measurement error resulting from the difference in processing accuracy.
このように、本発明によれば、バスバーに流れる測定対象電流を分流させることによって大電流の測定を可能とした電流センサにおいて、バスバーの温度差に起因する測定誤差を低減することが可能となる。また、本発明によれば、このような電流センサに用いるバスバーの製造方法を提供することが可能となる。 As described above, according to the present invention, it is possible to reduce the measurement error caused by the temperature difference of the bus bar in the current sensor that enables the measurement of a large current by dividing the current to be measured flowing through the bus bar. . Further, according to the present invention, it is possible to provide a method of manufacturing a bus bar used for such a current sensor.
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の好ましい実施形態による電流センサの外観を示す略斜視図である。 FIG. 1 is a schematic perspective view showing the appearance of a current sensor according to a preferred embodiment of the present invention.
図1に示すように、本実施形態による電流センサは、測定対象電流Iが流れるバスバー10と、バスバー10に取り付けられたケース20とを有している。バスバー10は、銅(Cu)などの良導体からなる金属板であり、y方向における厚みは一定である。特に限定されるものではないが、本実施形態による電流センサは、測定対象電流Iが大電流である場合を想定して、2枚のバスバー10を重ねて使用している。2つのバスバー10は、入力配線部13及び出力配線部14において、接続プレート18を介して固定される。このため、2つのバスバー10は接しておらず、これにより接触抵抗に起因する測定誤差の発生を防止している。入力配線部13、出力配線部14及び接続プレート18にはネジ穴19が設けられており、ネジ穴19を用いて測定対象となる機器に固定される。
As shown in FIG. 1, the current sensor according to the present embodiment includes a
ケース20の内部には磁気センサが収容される。図2は、ケース20の上蓋を除去した状態を示す略斜視図である。図2に示すように、ケース20の内部には、回路基板30と、回路基板30に搭載された磁気センサ40が収容されている。ケース20は、それ自体が磁気コアであっても構わない。磁気センサ40の種類については特に限定されないが、フラックスゲートセンサ、MI(磁気インピーダンス)センサ、ホールセンサ、AMRセンサ、GMRセンサ、TMRセンサなどを用いることができる。図1に示した端子電極E1〜E4は、回路基板30から導出されたものであり、使用する磁気センサ40の種類に応じて所定の素子に接続される。例えば、磁気センサ40がフラックスゲートセンサであれば、端子電極E1,E2が検出コイルの一端及び他端に接続され、端子電極E3,E4が補償コイルの一端及び他端に接続される。
A magnetic sensor is housed inside the
図3は、バスバー10の形状を説明するための平面図である。
FIG. 3 is a plan view for explaining the shape of
図3に示すように、バスバー10は、入力配線部13と出力配線部14の間に接続された検出配線部11及び分岐配線部12A,12Bを有する。検出配線部11と分岐配線部12A,12Bは並列に接続されており、このため、入力配線部13から出力配線部14に測定対象電流Iが流れると、測定対象電流Iの一部である電流Idが検出配線部11に流れ、測定対象電流Iの残りの部分である電流IbA,IbBがそれぞれ分岐配線部12A,12Bに流れる。したがって、I=Id+IbA+IbBである。
As shown in FIG. 3, the
検出配線部11は、z方向に延在する第1及び第2の部分111,112と、x方向に延在する第3の部分113からなり、電流Idは、第1の部分111、第3の部分113及び第2の部分112の順に流れる。したがって、第1の部分111に流れる電流Idの向きと、第2の部分112に流れる電流Idの向きは互いに逆である。そして、磁気センサ40は、検出配線部11の第1の部分111と第2の部分112に挟まれた領域Aに配置される。
Detecting the
一方、2つの分岐配線部12A,12Bは、いずれもx方向に延在しており、入力配線部13と出力配線部14を最短距離で接続している。したがって、電流経路の長さとしては、分岐配線部12A,12Bよりも検出配線部11の方が長い。これにより、検出配線部11に流れる電流Idがより低減される。本実施形態において2つの分岐配線部12A,12Bを並列に設けているのは、分岐配線部12A,12Bの抵抗値を下げることによって検出配線部11に流れる電流Idをより減らすためである。分岐配線部の本数については2本に限定されず、図4に示す変形例によるバスバー10Aのように、3つの分岐配線部12A〜12Cを並列に設けても構わない。
On the other hand, the two branch wiring
模式図である図5に示すように、領域Aに磁気センサ40を配置すると、検出配線部11に流れる電流Idによって領域Aには同方向の磁束が印加される。図5に示す例では、検出配線部11の第1の部分111に流れる電流Idによって反時計回りの磁束φ1が発生し、検出配線部11の第2の部分112に流れる電流Idによって時計回りの磁束φ2が発生するため、領域Aに印加される磁束の向きはいずれもy方向となる。したがって、領域Aに磁気センサ40を配置し、磁気センサ40によってy方向における磁界の強度を検出すれば、検出配線部11に流れる電流Idの量を検出することが可能となる。そして、検出配線部11に流れる電流Idと、分岐配線部12A,12Bに流れる電流IbA,IbBの分流比は既知であることから、電流Idの検出値に基づいて測定対象電流Iを算出することが可能となる。
As shown in FIG. 5 which is a schematic view, when the
図6に示すように、磁気センサ40は磁気コア41を備えていても構わない。図6に示す例では、z方向に開口した環状の磁気コア41を用い、磁気コア41に囲まれた領域に検出配線部11、可飽和磁性体M及びその周囲に巻回された検出コイルCを配置している。つまり、図1及び図2に示すケース20自体が磁気コア41である場合にこのような構成を得ることができる。このような磁気コア41を用いれば、外乱磁界が磁気コア41をバイパスすることから、外乱磁界の影響を低減することが可能となる。
As shown in FIG. 6, the
本実施形態においては、バスバー10のy方向における厚みが一定であり、且つ、検出配線部11及び分岐配線部12A,12Bの導体幅、つまり、電流方向に対して垂直な幅も一定である。具体的には、検出配線部11を構成する第1及び第2の部分111,112のx方向における幅、検出配線部11を構成する第3の部分113のz方向における幅、分岐配線部12A,12Bのz方向における幅は、互いに一致している。このことは、検出配線部11と分岐配線部12A,12Bの電流方向と垂直な断面形状が互いに等しいことを意味する。
In the present embodiment, the thickness of the
このため、分岐配線部12A,12Bのそれぞれの長さを2Lとし、検出配線部11の長さをkLとすると、検出配線部11、分岐配線部12A及び分岐配線部12Bの抵抗値の比は、k:2:2となり、したがって、検出配線部11に流れる電流Id、分岐配線部12Aに流れる電流IbA、分岐配線部12Aに流れる電流IbAの比は、2:k:kとなる。そして、検出配線部11及び分岐配線部12A,12Bは互いに同じ断面積を有していることから、検出配線部11、分岐配線部12A及び分岐配線部12Bにおける発熱量の比も、2:k:kとなる。
Therefore, assuming that the length of each of the
ここで、検出配線部11は、分岐配線部12A,12Bに対してk/2倍の長さを有しており、且つ、検出配線部11及び分岐配線部12A,12Bは互いに同じ断面積を有していることから、検出配線部11、分岐配線部12A及び分岐配線部12Bの体積、つまり熱容量の比は、k:2:2となる。このことは、分岐配線部12A,12Bの方が検出配線部11よりもk/2倍速く熱を放出することを意味する。つまり、分岐配線部12A,12Bは、それぞれ検出配線部11よりもk/2倍の熱を発生する代わりに、k/2倍速く熱を放出することから、検出配線部11と分岐配線部12A,12Bの間で温度差が生じにくい。その結果、温度差に起因する抵抗値の変化が抑えられることから、測定対象電流Iを設計通りに分流させることが可能となり、温度差に起因する測定誤差が低減される。
Here, the
バスバー10は、銅(Cu)などからなる厚さが一定の金属板を用意し、この金属板に対してパンチング加工を施すことにより、検出配線部11、分岐配線部12A,12B、入力配線部13及び出力配線部14からなるバスバー10を一工程で作製することができる。金属板に対するパンチング加工においては、平面位置によって金属板の厚みや加工幅が異なっていると、平面位置によってパンチング条件に差が生じることから、設計通りの形状に加工することが困難である。これに対し、本実施形態のバスバー10は、使用する金属板の厚みが一定であり、且つ、検出配線部11及び分岐配線部12A,12Bの加工幅が一定であることから、高い加工精度を確保することが可能となる。これにより、加工精度のばらつきに起因する測定誤差についても低減することが可能となる。
The
また、分流比を変更する場合には、同じ導体幅を持つ分岐配線部の本数を変更すればよい。分岐配線部の本数を変更した場合であっても、検出配線部と分岐配線部の導体幅を一致させておけば、発熱量の差が熱容量の差によって相殺されることから、温度差に起因する測定誤差を低減することが可能となる。 Further, when changing the diversion ratio, the number of branch wiring portions having the same conductor width may be changed. Even when the number of branch wiring parts is changed, if the conductor widths of the detection wiring part and the branch wiring part are made to be the same, the difference in heat generation amount is offset by the difference in heat capacity. Measurement error can be reduced.
また、本実施形態においては、2枚のバスバー10を重ねて使用することにより、バスバー10に流れる電流密度が半分に抑えられている。同じ電流密度は、2倍の厚みを有するバスバーを用いることによっても得られるが、この場合、使用する金属板の厚みが厚くなることからパンチング加工時における加工精度が低下する。これに比べ、2枚のバスバー10を重ねて使用すれば、金属板の厚みが半分となることから、パンチング加工時における加工精度を高めることが可能となる。しかも、金属板の厚みが薄いことから、高周波電流が流れた場合の表皮効果に起因する測定誤差も抑制される。
Further, in the present embodiment, by overlapping and using the two
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. It is needless to say that they are included in the scope.
10,10A バスバー
11 検出配線部
111 第1の部分
112 第2の部分
113 第3の部分
12A〜12C 分岐配線部
13 入力配線部
14 出力配線部
18 接続プレート
19 ネジ穴
20 ケース
30 回路基板
40 磁気センサ
41 磁気コア
A 領域
C 検出コイル
E1〜E4 端子電極
I 測定対象電流
M 可飽和磁性体
φ1,φ2 磁束
10,
Claims (3)
前記バスバーから発生する磁界を検出する磁気センサと、を備え、
前記バスバーは、前記測定対象電流の一部が流れる検出配線部と、前記測定対象電流の残りの部分が流れる複数の分岐配線部とを有し、
前記磁気センサは、前記検出配線部に流れる前記測定対象電流の前記一部によって発生する磁界を検出し、
前記検出配線部は、前記複数の分岐配線部よりも電流経路が長く、
前記検出配線部と前記複数の分岐配線部は、電流方向と垂直な断面の形状が互いに等しいことを特徴とする電流センサ。 Bus bars through which the current to be measured flows,
And a magnetic sensor for detecting a magnetic field generated from the bus bar,
The bus bar includes a detection wiring portion in which a part of the current to be measured flows, and a plurality of branch wiring portions in which the remaining portion of the current to be measured flows.
The magnetic sensor detects a magnetic field generated by the part of the current to be measured flowing through the detection wiring portion,
The detection wiring portion has a longer current path than the plurality of branch wiring portions.
The current sensor, wherein the detection wiring portion and the plurality of branch wiring portions have the same cross-sectional shape perpendicular to the current direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198714A JP6516058B1 (en) | 2018-10-22 | 2018-10-22 | Current sensor and method of manufacturing bus bar used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198714A JP6516058B1 (en) | 2018-10-22 | 2018-10-22 | Current sensor and method of manufacturing bus bar used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6516058B1 true JP6516058B1 (en) | 2019-05-22 |
JP2020067304A JP2020067304A (en) | 2020-04-30 |
Family
ID=66625470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018198714A Active JP6516058B1 (en) | 2018-10-22 | 2018-10-22 | Current sensor and method of manufacturing bus bar used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6516058B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021085711A (en) * | 2019-11-26 | 2021-06-03 | ローム株式会社 | Current detector |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841272A (en) * | 1995-12-20 | 1998-11-24 | Sundstrand Corporation | Frequency-insensitive current sensor |
JP3463879B2 (en) * | 2002-02-15 | 2003-11-05 | 矢崎総業株式会社 | Current detection device and electric connection box for vehicle |
JP2003329711A (en) * | 2002-05-16 | 2003-11-19 | Mitsubishi Heavy Ind Ltd | Controller for motor |
JP5067574B2 (en) * | 2008-09-30 | 2012-11-07 | Tdk株式会社 | Current sensor |
JP2015034774A (en) * | 2013-08-09 | 2015-02-19 | 株式会社リコー | Current detection system, current detection method, and charge control device |
DE102013112760A1 (en) * | 2013-11-19 | 2015-05-21 | Danfoss Silicon Power Gmbh | Power module with integrated current measurement |
US9846180B2 (en) * | 2013-12-11 | 2017-12-19 | Eaton Corporation | Current sensing assembly employing magnetic sensors |
JP2015132516A (en) * | 2014-01-10 | 2015-07-23 | 日立金属株式会社 | Electric current detection structure |
JP6477684B2 (en) * | 2014-03-07 | 2019-03-06 | 日立金属株式会社 | Current detector |
WO2017187733A1 (en) * | 2016-04-27 | 2017-11-02 | アルプス電気株式会社 | Current sensor |
-
2018
- 2018-10-22 JP JP2018198714A patent/JP6516058B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021085711A (en) * | 2019-11-26 | 2021-06-03 | ローム株式会社 | Current detector |
Also Published As
Publication number | Publication date |
---|---|
JP2020067304A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9880206B2 (en) | Electric current sensor | |
JP6462850B2 (en) | Current sensor | |
WO2016194240A1 (en) | Electric current sensor | |
JP2015137892A (en) | Current detection structure | |
JP2019100923A (en) | Current sensor | |
JP2019516971A (en) | Busbar current sensor assembly | |
JP2008216230A (en) | Current sensor | |
JP2015137894A (en) | current detection structure | |
WO2018003361A1 (en) | Mount structure and mount substrate of shunt resistor | |
JP2010101871A (en) | Current sensor | |
JP2016125907A (en) | Current sensor | |
JP2008203238A (en) | Current detecting device | |
JP6516058B1 (en) | Current sensor and method of manufacturing bus bar used therefor | |
CN107271932B (en) | Improved B-H measuring coil and method for measuring two-dimensional magnetic characteristics of cubic sample based on improved B-H measuring coil | |
JP5630633B2 (en) | Multiphase current detector | |
JP6471826B1 (en) | Current sensor and method of manufacturing bus bar used therefor | |
JP5057245B2 (en) | Current sensor | |
JP2010256316A (en) | Current sensor | |
JP2012088096A (en) | Current detection circuit | |
JP2010101635A (en) | Magnetic balance type current sensor | |
JP2011022070A (en) | Magnetic field sensor | |
WO2020262064A1 (en) | Electric current sensor and method for manufacturing same | |
WO2020262065A1 (en) | Current sensor | |
JP5622027B2 (en) | Multiphase current detector | |
WO2021084801A1 (en) | Current sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181121 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20181121 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20181214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6516058 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |