JP6510356B2 - Wafer support device - Google Patents
Wafer support device Download PDFInfo
- Publication number
- JP6510356B2 JP6510356B2 JP2015151344A JP2015151344A JP6510356B2 JP 6510356 B2 JP6510356 B2 JP 6510356B2 JP 2015151344 A JP2015151344 A JP 2015151344A JP 2015151344 A JP2015151344 A JP 2015151344A JP 6510356 B2 JP6510356 B2 JP 6510356B2
- Authority
- JP
- Japan
- Prior art keywords
- pbn
- wafer
- electrostatic chuck
- convex portion
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 37
- 239000011247 coating layer Substances 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 24
- 239000002245 particle Substances 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、半導体や液晶の製造プロセスに用いられるウエハ支持装置に関する。 The present invention relates to a wafer support apparatus used in a semiconductor or liquid crystal manufacturing process.
半導体や液晶の製造プロセスにおいて、ドライエッチングやPVD(物理的気相蒸着法)などを行う際にウエハを固定するための装置として静電チャックが広く用いられている。 An electrostatic chuck is widely used as an apparatus for fixing a wafer when performing dry etching, PVD (physical vapor deposition) or the like in a process of manufacturing a semiconductor or liquid crystal.
静電チャックは、たとえば図2に示すように、グラファイト板1の周囲をPBN(熱分解窒化ホウ素)などの絶縁層2で被覆してなる絶縁基材の表面に静電チャック用の導体電極3が所定パターンに配置されると共に、裏面にはヒータ用の導体電極4が所定パターンに配置され、これら電極3,4を絶縁被膜層5で被覆した構成を有する。図示しないが、電極3,4の両端は端子を通じて電源に接続されている。 The electrostatic chuck is, for example, as shown in FIG. 2, a conductor electrode 3 for electrostatic chucking on the surface of an insulating base material formed by coating the periphery of a graphite plate 1 with an insulating layer 2 such as PBN (pyrolytic boron nitride). Are arranged in a predetermined pattern, and conductor electrodes 4 for a heater are arranged in a predetermined pattern on the back surface, and these electrodes 3 and 4 are covered with an insulating coating layer 5. Although not shown, both ends of the electrodes 3 and 4 are connected to a power source through terminals.
このような構成の静電チャックにおいて、絶縁被膜層5の表面6にウエハ7を載置し、電極3の端子間に電圧を印加すると、クーロン力が発生し、ウエハ7を静電的にチャックする。図2の構成ではヒータ電極4が設けられているので、適正なチャック吸引力が発揮される最適温度に被吸着物6を均一に加熱しながらウエハ7をチャックすることができる。 In the electrostatic chuck having such a configuration, when the wafer 7 is placed on the surface 6 of the insulating film layer 5 and a voltage is applied between the terminals of the electrode 3, a coulomb force is generated and the wafer 7 is electrostatically chucked. Do. In the configuration of FIG. 2, since the heater electrode 4 is provided, the wafer 7 can be chucked while uniformly heating the object 6 to an optimum temperature at which an appropriate chuck suction force is exerted.
なお、図2は双極型静電チャックの構成例を示すものである。単極型静電チャックの場合は、絶縁基材上に単一の導体電極を配置したものを絶縁被膜層5で被覆した構成を有し、チャック電極3と、絶縁被覆膜5の表面6に載置した7との間に電圧印加することによってウエハ7をチャックする。 FIG. 2 shows a configuration example of the bipolar electrostatic chuck. In the case of a single-pole electrostatic chuck, a configuration in which a single conductor electrode is disposed on an insulating substrate is covered with the insulating coating layer 5, and the chuck electrode 3 and the surface 6 of the insulating coating film 5 The wafer 7 is chucked by applying a voltage between it and 7 placed thereon.
静電チャックにおける絶縁被膜層4は、108〜1013Ω・cmの範囲の電気抵抗率を有することが好ましい。絶縁被膜層5の電気抵抗率がこの範囲にあると、電極とウエハとの間に極微弱電流が流れることを許容し、ジョンソンラーベック効果によりチャック吸引力が大幅に増大する。 The insulating coating layer 4 in the electrostatic chuck preferably has an electrical resistivity in the range of 10 8 to 10 13 Ω · cm. When the electrical resistivity of the insulating coating layer 5 is in this range, a very weak current is allowed to flow between the electrode and the wafer, and the chuck attraction force is greatly increased by the Johnson-Labeck effect.
この観点から、本出願人は、CVD(化学的気相蒸着法)を用いてPBNに微量のカーボンを含有させたC−PBNで絶縁被膜層4とすることにより上記範囲の電気抵抗率を与える手法を発案した(特許文献1)。具体的には、PBN成形のための反応ガス(たとえば三塩化ホウ素+アンモニア)にカーボン添加のために必要なガス(たとえばメタン)を加えて減圧高温CVD炉内に導入することにより、微量カーボンを含有するPBN成形体からなる絶縁被膜層5を形成することができる。 From this point of view, the present applicant gives the electrical resistivity in the above-mentioned range by forming the insulating coating layer 4 with C-PBN in which a slight amount of carbon is contained in PBN using CVD (chemical vapor deposition). A method was proposed (Patent Document 1). Specifically, a trace amount of carbon is added by adding a gas (for example, methane) necessary for carbon addition to a reaction gas (for example, boron trichloride + ammonia) for PBN molding, and introducing into a reduced pressure high temperature CVD furnace. The insulating film layer 5 which consists of a PBN molded object to contain can be formed.
しかしながら、PBN(微量カーボンを含有するC−PBNを含む。以下同じ。)による絶縁被膜層5を形成した静電チャックは概ね満足すべき性能を発揮し得るものであるが、PBNは結晶質であるため、高温での使用条件において、PBN絶縁被膜層5からPBNの結晶が脱離してパーティクルを発生させ、これがウエハの裏面に付着して製品価値を著しく低下させるという問題があった。 However, although the electrostatic chuck having the insulating film layer 5 formed of PBN (including C-PBN containing a trace amount of carbon, the same applies hereinafter) can generally exhibit satisfactory performance, PBN is crystalline. Because of this, under high temperature use conditions, crystals of PBN are detached from the PBN insulating film layer 5 to generate particles, which adhere to the back surface of the wafer to significantly reduce the product value.
この点について発明者が実験を行ったところ、静電チャックのチャック電極パターン上に多数のパーティクルが発生することを確認した。このことから、絶縁被膜層5の表面6に直接載置されたウエハ7がチャック電極3に吸着されたときに、柔らかいPBNの表面6を引っ掻いてパーティクルを発生させているものと推測された。 When the inventor conducted an experiment on this point, it was confirmed that a large number of particles were generated on the chuck electrode pattern of the electrostatic chuck. From this, it is presumed that when the wafer 7 directly mounted on the surface 6 of the insulating film layer 5 is adsorbed to the chuck electrode 3, the surface 6 of the soft PBN is scratched to generate particles.
本発明は、上述した従来技術の不利欠点を解消し、パーティクルの発生を抑制できるウエハ支持装置を提供することを課題とする。なお、パーティクルの発生は、特に高温でのチャッキング時に顕著に見られるが、常温でのチャッキング時や単にウエハをPBN表面に接触させただけでも微量のパーティクルが発生することがあるので、静電チャックに限らず、ウエハ支持装置全般に共通する課題として認識することができる。 An object of the present invention is to solve the disadvantages of the prior art described above and to provide a wafer support apparatus capable of suppressing the generation of particles. The generation of particles is particularly noticeable during chucking at high temperatures, but a small amount of particles may be generated when chucking at normal temperature or simply bringing the wafer into contact with the PBN surface. It can be recognized as a problem common to wafer support devices in general as well as the electric chuck.
上記課題を解決するため、本発明者は、PBN絶縁被膜層の表面に、PBNより硬い熱分解黒鉛(PG)を部分的にコーティングすることによりパーティクルの発生を抑制できるのではないかとの考えに基いて実験と研究を重ねた結果、本発明を創案した。 In order to solve the above-mentioned problems, the present inventor has thought that generation of particles can be suppressed by partially coating pyrolytic graphite (PG) harder than PBN on the surface of the PBN insulating coating layer. As a result of repeated experiments and studies based on the present invention was created.
すなわち、本願の請求項1に係る発明は、少なくとも表面がPBNまたはC−PBNからなる本体と、この本体表面に部分的に形成されるPG(熱分解黒鉛)による凸部とを有し、該PG凸部の上面をウエハ載置面とすることを特徴とするウエハ支持装置である。 That is, the invention according to claim 1 of the present application has a main body of which at least the surface is PBN or C-PBN, and a convex portion by PG (pyrolytic graphite) partially formed on the main surface. The upper surface of the PG convex portion is a wafer mounting surface.
本願の請求項2に係る発明は、請求項1記載のウエハ支持装置において、複数のPG凸部が同一の高さに形成されて一つのウエハ載置面を与えることを特徴とする。 The invention according to claim 2 of the present application is characterized in that, in the wafer support apparatus according to claim 1, a plurality of PG convex portions are formed at the same height to provide one wafer mounting surface.
本願の請求項3に係る発明は、請求項2記載のウエハ支持装置において、複数のPG凸部が互いの間に間隔を置いて点在していることを特徴とする。 The invention according to claim 3 of the present application is characterized in that, in the wafer support apparatus according to claim 2, a plurality of PG convex portions are dotted at intervals.
本願の請求項4に係る発明は、請求項1ないし3のいずれか記載のウエハ支持装置において、本体が、絶縁基材上に導体電極が配置され、導体電極の表面をPBNまたはC−PBNからなる絶縁被膜層が形成されてなり、静電チャックとして使用されることを特徴とする。 The invention according to claim 4 of the present application is the wafer support apparatus according to any one of claims 1 to 3, wherein the main body is such that the conductor electrode is disposed on the insulating base material, and the surface of the conductor electrode is PBN or C-PBN. An insulating coating layer is formed and used as an electrostatic chuck.
本発明によれば、ウエハは、PBN(またはC−PBN)の表面に接触することなく、PBNより硬いPGからなる凸部の表面に載置されるので、パーティクルの発生を大幅に低減させることができ、パーティクルがウエハの裏面に付着して製品価値を低下させることを効果的に防止する。 According to the present invention, since the wafer is placed on the surface of the convex portion made of PG harder than PBN without contacting the surface of PBN (or C-PBN), the generation of particles is significantly reduced. Effectively prevent particles from adhering to the back of the wafer and reducing product value.
また、PBN表面にPGを全面コーティングするのではなく、PBN表面を部分的に覆う凸部としてPGを点状、線状、帯状、格子状などに形成することにより、ウエハの裏面がPG凸部表面(ウエハ載置面)に接触する面積が小さくなるので、この点からもパーティクルの発生を防止ないし抑制すると共に、PBNとPGの熱膨張率差による応力を分断・開放することでPGの剥離を防止することができる。 Also, instead of coating the entire surface of PGN with PG, the back surface of the wafer is formed by forming PG in the shape of a dot, line, band, grid, etc. as a convex portion that partially covers the surface of PBN. Since the area in contact with the surface (wafer mounting surface) is reduced, the generation of particles is also prevented or suppressed from this point, and the stress due to the thermal expansion coefficient difference between PBN and PG is divided and released to separate PGs. Can be prevented.
図1に本発明の一実施形態による静電チャックの一例を断面図で示す。この静電チャックは、グラファイト板1の周囲をPBN(熱分解窒化ホウ素)などの絶縁層2で被覆してなる絶縁基材の表面に静電チャック用の導体電極3が所定パターンに配置されると共に、裏面にはヒータ用の導体電極4が所定パターンに配置され、これら電極3,4を絶縁被膜層5で被覆した構成を有する。図示しないが、電極3,4の両端は端子を通じて電源に接続されている。この静電チャックの構成および作用は、既述した従来技術による静電チャック(図2)と基本的に同様である。 FIG. 1 is a cross-sectional view showing an example of an electrostatic chuck according to an embodiment of the present invention. In this electrostatic chuck, conductor electrodes 3 for electrostatic chuck are arranged in a predetermined pattern on the surface of an insulating base material formed by covering the periphery of a graphite plate 1 with an insulating layer 2 such as PBN (pyrolytic boron nitride) At the same time, a conductor electrode 4 for the heater is disposed in a predetermined pattern on the back surface, and these electrodes 3 and 4 are covered with the insulating coating layer 5. Although not shown, both ends of the electrodes 3 and 4 are connected to a power source through terminals. The configuration and operation of this electrostatic chuck is basically the same as the electrostatic chuck according to the prior art (FIG. 2) described above.
しかしながら、既述した従来技術による静電チャックはPBN絶縁被膜層5の表面6にウエハ7を直接載置して使用されるのに対し、この静電チャックにおいては、絶縁被膜層5の表面を部分的に覆うようにPG(熱分解黒鉛)による凸部8が複数形成されており、これら凸部8の上面は実質的に面一に形成されてウエハ7に対する載置面9を与えている点で大きく相違している。この構成により、ウエハ7はPBN絶縁被膜層5の表面6には接することなく、PBNより硬いPGからなる凸部8の上面によるチャック面9上に載置されることになるので、高温での使用条件においても、パーティクルの発生を防止または大幅に低減することができる。 However, while the electrostatic chuck according to the prior art described above is used by placing the wafer 7 directly on the surface 6 of the PBN insulating film layer 5, in this electrostatic chuck, the surface of the insulating film layer 5 is used. A plurality of projections 8 made of PG (pyrolytic graphite) are formed so as to partially cover them, and the upper surfaces of the projections 8 are formed substantially flush to provide the mounting surface 9 to the wafer 7 There is a big difference in points. With this configuration, the wafer 7 is placed on the chuck surface 9 by the upper surface of the convex portion 8 made of PG harder than PBN without being in contact with the surface 6 of the PBN insulating film layer 5. Also under the conditions of use, the generation of particles can be prevented or greatly reduced.
以下に試験例と共に本発明の実施例を挙げてさらに本発明について説明する。 The present invention will be further described with reference to the following test examples and the examples of the present invention.
厚さ10mmの円盤状グラファイト板1の表面に熱CVD法により300μm厚のPBN絶縁層2を形成し、さらに、同じく熱CVD法により50μm厚のPG層を表裏両面に形成した後、その表面側を部分的に除去して所定パターンのチャック電極3を形成すると共に、裏面側についても部分的に除去して所定パターンのヒータ電極4を形成した。次いで、同じく熱CVD法により、電極3,4を有するPBN絶縁層2の全面を被覆するように厚さ100μm厚のカーボン添加PBN(C−PBN)絶縁被膜層5を形成して、試験例1の静電チャックを製造した。この静電チャックは、既述した従来技術による静電チャック(図2)において、絶縁被膜層5をC−PBNで形成したものである。 The PBN insulating layer 2 of 300 μm in thickness is formed on the surface of a disk-shaped graphite plate 1 of 10 mm in thickness by thermal CVD, and a PG layer of 50 μm in thickness is also formed on both front and back sides similarly by thermal CVD. Were partially removed to form a chuck electrode 3 of a predetermined pattern, and the back side was also partially removed to form a heater electrode 4 of a predetermined pattern. Next, a carbon-doped PBN (C-PBN) insulating coating layer 5 having a thickness of 100 μm is formed to cover the entire surface of the PBN insulating layer 2 having the electrodes 3 and 4 similarly by thermal CVD. Manufactured electrostatic chuck. This electrostatic chuck is one in which the insulating coating layer 5 is formed of C-PBN in the above-described conventional electrostatic chuck (FIG. 2).
絶縁被膜層5を形成する際にメタンガスを用いなかったこと以外は試験例1と同様にして、試験例2の静電チャックを製造した。この静電チャックは、既述した従来技術による静電チャック(図2)において、絶縁被膜層5をカーボン不添加のPBNで形成したものである。 The electrostatic chuck of Test Example 2 was manufactured in the same manner as Test Example 1 except that methane gas was not used when forming the insulating coating layer 5. This electrostatic chuck is one in which the insulating coating layer 5 is formed of carbon-free PBN in the above-mentioned electrostatic chuck (FIG. 2) according to the prior art.
試験例1の静電チャックを得た後、さらに、C−PBN絶縁被膜層5の表面に、熱CVD法により5μm厚のPG層を形成した後、PGによる円柱状(直径1mm)の凸部8が中心間距離3mmで多数点在するように部分的に切除して、図1に示す構成の静電チャック(本発明実施例)を製造した。 After obtaining the electrostatic chuck of Test Example 1, and further forming a PG layer of 5 μm thickness on the surface of the C-PBN insulating film layer 5 by a thermal CVD method, a cylindrical (1 mm diameter) convex portion by PG An electrostatic chuck (invention according to the present invention) having the configuration shown in FIG. 1 was manufactured by partially cutting a number of 8 at a center distance of 3 mm.
これらの静電チャックについて、±0.25kV、±0.30kVおよび±0.50kVのDC電圧を印加したときのシリコンウエハ7に対するチャック力を測定したところ、表1に示す結果を得た。 With respect to these electrostatic chucks, when the DC voltages of ± 0.25 kV, ± 0.30 kV and ± 0.50 kV were applied, the chuck force for the silicon wafer 7 was measured, and the results shown in Table 1 were obtained.
特許文献1においても実証されているように、PBN絶縁被膜層5を有する試験例2の静電チャックに比べて、絶縁被膜層5をC-PBNとした試験例1の静電チャックはチャック力が大幅に増大している。C−PBN絶縁被膜層5上にPG凸部8を多数点在させた本発明実施例による静電チャックは、ウエハ載置面9がPG凸部8の上面によって与えられることになるので、PG凸部8を有しない試験例2の静電チャックと比べると、PG凸部8の高さ(本例では5μm)だけチャック電極3から離れており、これによってチャック力が低下しているが、その低下はわずかであり、実用上十分なチャック力を発揮し得るものであることを確認した。 As demonstrated also in patent document 1, compared with the electrostatic chuck of the test example 2 which has the PBN insulating film layer 5, the electrostatic chuck of the test example 1 which made the insulating film layer 5 C-PBN is a chucking force. There has been a significant increase. In the electrostatic chuck according to the embodiment of the present invention in which a large number of PG convex portions 8 are scattered on the C-PBN insulating film layer 5, the wafer mounting surface 9 is provided by the upper surface of the PG convex portion 8. Compared with the electrostatic chuck of the test example 2 which does not have the convex part 8, it is separated from the chuck electrode 3 by the height (5 μm in this example) of the PG convex part 8, and the chucking force is thereby reduced. It was confirmed that the decrease was slight and that it could exert a chucking force sufficient for practical use.
本発明実施例の静電チャックにおいて、絶縁被膜層5の表面6に形成したPG凸部8は、その後も剥離することがなかった。PG凸部8は、絶縁被膜層表面6のPBNに非接触にウエハ7を支持するために、絶縁被膜層表面6を部分的に覆うものとして点状、線状、帯状、格子状などに形成することができるが、上記実施例のように、多数のPG凸部8が各々独立した状態で点在するように形成することが、ウエハ裏面の接触面積を極小化してよりパーティクル発生抑制効果を高める上で好ましい。 In the electrostatic chuck of the embodiment of the present invention, the PG convex portion 8 formed on the surface 6 of the insulating coating layer 5 did not peel off thereafter. In order to support the wafer 7 in a noncontact manner on the PBN of the insulating coating layer surface 6 in a non-contact manner, the PG convex portion 8 is formed in a dot shape, a linear shape, a strip shape, or the like as partially covering the insulating coating layer surface 6 However, it is possible to minimize the contact area on the back surface of the wafer and to further suppress the generation of particles by forming the many PG convex portions 8 so as to be dispersed in a mutually independent state as in the above embodiment. It is preferable for enhancing.
次に、試験例1の静電チャックと本発明実施例の静電チャックについて、室温で静電チャックの電極3,4に電圧を印加せずに単にウエハを載置した場合(室温:wo/ESC)、500℃で静電チャックの電極3,4に電圧を印加せずに単にウエハを載置した場合(500℃:wo/ESC)、および、500℃で静電チャックの電極3,4に電圧を印加してウエハ7をチャッキングした場合(500℃:w/ESC)の3通りの条件において、発生したパーティクル数をサイズごとに計測したところ、表2に示す結果を得た。すなわち、C−PBN絶縁被膜層5上にPG凸部8を多数点在させた本発明実施例による静電チャックを用いると、C−PBN絶縁被膜層5の表面に直接ウエハを載置する試験例1の静電チャックに比べて、いずれの場合においてもパーティクル発生数が大幅に減少した。本発明実施例による静電チャックをウエハ支持装置として使用すると、いずれの場合も20μmを超える大きさのパーティクル発生量がゼロになり、パーティクル発生抑制効果が顕著に向上することを確認した。 Next, with respect to the electrostatic chuck of Test Example 1 and the electrostatic chuck of the embodiment of the present invention, in the case where the wafer is simply mounted without applying a voltage to the electrodes 3 and 4 of the electrostatic chuck at room temperature (room temperature: wo / When the wafer is simply mounted without applying a voltage to the electrodes 3 and 4 of the electrostatic chuck at 500 ° C. (500 ° C .: 500 ° C .: wo / ESC), and the electrodes 3 and 4 of the electrostatic chuck at 500 ° C. When the voltage is applied to chuck the wafer 7 (500.degree. C .: w / ESC) and the number of generated particles is measured for each size under three conditions, the results shown in Table 2 are obtained. That is, when using the electrostatic chuck according to the embodiment of the present invention in which a large number of PG convex portions 8 are scattered on the C-PBN insulating film layer 5, a test in which the wafer is directly mounted on the surface of the C-PBN insulating film layer 5 As compared with the electrostatic chuck of Example 1, the number of particles generated was significantly reduced in each case. When the electrostatic chuck according to the embodiment of the present invention was used as a wafer support apparatus, it was confirmed that the amount of particles generated having a size of more than 20 μm was zero in any case, and the particle generation suppressing effect was significantly improved.
上記実施例では、中心間距離3mmで直径1mm、高さ5μmのPG凸部8を点在させたが、C−PBN絶縁被膜層5の全表面積に対するPG凸部8の合計表面積の割合(PG凸部8の径や中心間距離によって増減する)やPG凸部8の高さが小さくなりすぎると、PG凸部8の上面9にウエハ7を載置したときに、ウエハ7の撓みによってウエハ裏面がC−PBN絶縁被膜層5の表面に接触して、パーティクル発生量を増大させてしまう。また、反対に、PG凸部合計表面積/絶縁被膜層全表面積の割合やPG凸部8の高さが大きくなりすぎると、実用上十分なチャック力を与えることができなくなる。 In the above embodiment, PG convex portions 8 having a center distance of 3 mm and a diameter of 1 mm and a height of 5 μm are scattered, but the ratio of the total surface area of PG convex portions 8 to the total surface area of C-PBN insulating coating layer 5 (PG When the wafer 7 is placed on the upper surface 9 of the PG convex portion 8 if the height of the PG convex portion 8 decreases due to the diameter of the convex portion 8 or the distance between the centers of the PG convex portion 8 being too small The back surface contacts the surface of the C-PBN insulating film layer 5 to increase the particle generation amount. On the other hand, if the ratio of the total surface area of the PG convex portion to the total surface area of the insulating coating layer or the height of the PG convex portion 8 is too large, it is impossible to apply a chucking force sufficient for practical use.
これらを考慮しつつ、PG凸部8の中心間距離および高さ、ならびにPG凸部合計表面積/絶縁被膜層全表面積の割合を様々に変えて実験を行ったところ、PG凸部8の高さについては、中心間距離10mmで直径1mmとした場合、高さが1μmのときは、ウエハ7が撓んでウエハ裏面がC−PBN絶縁被膜層5に接触したが、高さを2μmとしたときは接触しなかった。また、PG凸部8の高さを20μmとすると、チャック力が大幅に低下して実用に値しなくなることが分かった。 Taking into consideration the above, when the center-to-center distance and height of the PG convex portion 8 and the ratio of the total surface area of the PG convex portion / the total surface area of the insulating coating layer were changed variously, the height of the PG convex portion 8 was obtained. In the case where the distance between the centers is 10 mm and the diameter is 1 mm, when the height is 1 μm, the wafer 7 is bent and the back surface of the wafer is in contact with the C-PBN insulating film layer 5, but when the height is 2 μm I did not touch. In addition, it was found that when the height of the PG convex portion 8 is 20 μm, the chucking force is significantly reduced and it is not suitable for practical use.
また、PG凸部合計表面積/絶縁被膜層全表面積の割合を変えてチャック力を測定したところ、この表面積割合が64%のときは、実用に値するチャック力を確保することができなかったが、この表面積割合を減少させていくにつれてチャック力が増加して、42%のときに4.0g/cm2(印加電圧±0.5kV)のチャック力が得られた。この値は、8インチのウエハ7を吸着する直径190mmの静電チャック面積(ボルト穴やパターン間などチャック力を発揮することができない部分を除く有効面積:約198/cm2)に換算すると約792gのチャック力に相当するから、8インチシリコンウエハの重量(約50g)に対して約16倍の安全率でチャッキングできていることを意味しており、実用上十分なチャック力である。 In addition, when the chucking force was measured by changing the ratio of the total surface area of the PG convex portion / the total surface area of the insulating coating layer, when this surface area ratio was 64%, it was not possible to secure the chucking power that is practical. The chucking force increased as the surface area ratio decreased, and a chucking force of 4.0 g / cm 2 (applied voltage ± 0.5 kV) was obtained at 42%. This value is about 190mm in diameter of the electrostatic chuck that adsorbs the wafer 7 of 8 inches (effective area except for the part that can not exert the chucking force such as bolt holes and patterns: about 198 / cm 2 ). This corresponds to a chucking force of 792 g, meaning that chucking can be performed with a safety factor of about 16 times the weight of an 8-inch silicon wafer (about 50 g), which is a practically sufficient chucking force.
これらの結果から、ウエハ7の撓みによるウエハ裏面のC−PBN絶縁被膜層5表面への接触を防止してパーティクル発生抑制効果を顕著に発揮させ、しかも実用上十分なチャック力を確保するためには、(1)PG凸部8の高さは、2μm以上で20μm以下であることが好ましく、(2)PG凸部合計表面積/絶縁被膜層全表面積の割合は、42%以下であることが好ましいことを確認した。また、PBNとPGの熱膨張率差による応力を分断・開放してPGの剥離を防止するために、PG凸部8の大きさ(直径)は5mm以下、特に3mm以下とすることが好ましいことも確認した。 From these results, in order to prevent the contact of the back surface of the wafer 7 with the surface of the C-PBN insulating coating layer 5 due to the deflection of the wafer 7 to exert the particle generation suppressing effect remarkably and to secure a chucking force sufficient for practical use. (1) The height of the PG convex portion 8 is preferably 2 μm or more and 20 μm or less, and (2) the ratio of the total surface area of the PG convex portion / the total surface area of the insulating coating layer is 42% or less It confirmed that it was preferable. Also, in order to separate and release the stress due to the thermal expansion coefficient difference between PBN and PG to prevent peeling of PG, the size (diameter) of PG convex portion 8 is preferably 5 mm or less, particularly 3 mm or less. Also confirmed.
上記において実施例を中心として本発明を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に規定された発明の範囲内において広く変形ないし変更して実施可能である。たとえば、PG凸部8の上にTaC,SiC,NbCなどの炭化金属を成膜させることも、本発明の範囲内である。この場合は、PG凸部8上の該炭化金属膜の表面が互いに面一になってウエハ載置面9を与えることになる。また、PBNまたはC−PBNからなる絶縁被膜層5の膜厚は50〜300μmであることが好ましく、カーボン添加量は0〜10%であることが好ましい。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto, and can be widely modified or changed within the scope of the invention defined in the claims. For example, it is also within the scope of the present invention to deposit a metal carbide such as TaC, SiC, NbC on the PG convex portion 8. In this case, the surface of the metal carbide film on the PG convex portion 8 becomes flush with each other to provide the wafer mounting surface 9. Moreover, it is preferable that the film thickness of the insulation film layer 5 which consists of PBN or C-PBN is 50-300 micrometers, and it is preferable that carbon addition amount is 0 to 10%.
1 グラファイト板
2 絶縁層
3 チャック電極
4 ヒータ電極
5 絶縁被膜層(PBNまたはC−PBN)
6 絶縁被膜層の表面
7 ウエハ
8 PG凸部
9 ウエハ載置面
1 Graphite plate 2 Insulating layer 3 Chuck electrode 4 Heater electrode 5 Insulating coating layer (PBN or C-PBN)
6 Insulating Coating Layer Surface 7 Wafer 8 PG Convex Portion 9 Wafer Mounting Surface
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015151344A JP6510356B2 (en) | 2015-07-30 | 2015-07-30 | Wafer support device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015151344A JP6510356B2 (en) | 2015-07-30 | 2015-07-30 | Wafer support device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017034042A JP2017034042A (en) | 2017-02-09 |
JP6510356B2 true JP6510356B2 (en) | 2019-05-08 |
Family
ID=57988822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015151344A Active JP6510356B2 (en) | 2015-07-30 | 2015-07-30 | Wafer support device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6510356B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7251101B2 (en) | 2018-10-31 | 2023-04-04 | 日本精工株式会社 | Linear guide |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019057531A (en) | 2017-09-19 | 2019-04-11 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Wafer support device |
CN108863443B (en) * | 2018-07-10 | 2021-05-14 | 山东国晶新材料有限公司 | Preparation method of planar composite heater |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3978714B2 (en) * | 2002-02-26 | 2007-09-19 | ジーイー・スペシャルティ・マテリアルズ・ジャパン株式会社 | Manufacturing method of electrostatic chuck |
JP2004014603A (en) * | 2002-06-04 | 2004-01-15 | Ngk Spark Plug Co Ltd | Suction chuck |
JP4010541B2 (en) * | 2002-06-18 | 2007-11-21 | キヤノンアネルバ株式会社 | Electrostatic adsorption device |
US20060165994A1 (en) * | 2004-07-07 | 2006-07-27 | General Electric Company | Protective coating on a substrate and method of making thereof |
JP2011100844A (en) * | 2009-11-05 | 2011-05-19 | Shin-Etsu Chemical Co Ltd | Device having electrostatic chucking function and method of manufacturing the same |
JP6397621B2 (en) * | 2013-12-26 | 2018-09-26 | 日本特殊陶業株式会社 | Substrate holding member cleaning method |
-
2015
- 2015-07-30 JP JP2015151344A patent/JP6510356B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7251101B2 (en) | 2018-10-31 | 2023-04-04 | 日本精工株式会社 | Linear guide |
Also Published As
Publication number | Publication date |
---|---|
JP2017034042A (en) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW473792B (en) | Electrostatic chuck | |
TWI540672B (en) | Electrostatic chuck device | |
TW571382B (en) | Electrostatic chuck and substrate processing apparatus | |
US9466518B2 (en) | Electrostatic chuck device | |
TWI545683B (en) | High surface resistivity electrostatic chuck and method of manufacturing the same | |
JP5117500B2 (en) | Manufacturing method of electrostatic chuck mechanism | |
JPH08227933A (en) | Wafer heater with electrostatic attracting function | |
KR20110020269A (en) | Electrostatic chuck | |
US6917021B2 (en) | Heating apparatus with electrostatic attraction function | |
JP6510356B2 (en) | Wafer support device | |
JP4458995B2 (en) | Wafer support member | |
JP2007201068A (en) | Electrostatic chuck | |
JP2008159900A (en) | Ceramic heater with electrostatic chuck | |
JP4879771B2 (en) | Electrostatic chuck | |
KR20200062196A (en) | Wafer support device | |
JP3602067B2 (en) | Electrostatic chuck | |
JP3623938B2 (en) | Manufacturing method of electrostatic chuck | |
TW201639071A (en) | Wafer support structure | |
JP2010177698A (en) | Method for manufacturing electrostatic chuck | |
JP2013042049A (en) | Wafer support device | |
JP4302428B2 (en) | Wafer heating device having electrostatic adsorption function | |
JP5227568B2 (en) | Electrostatic chuck | |
JP2006237023A (en) | Electrostatic chuck | |
JP2004023022A (en) | Heating system having electrostatic attracting function and its manufacturing method | |
JP2010166086A (en) | Semiconductor manufacturing apparatus using electrostatic chuck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6510356 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |