[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6565860B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP6565860B2
JP6565860B2 JP2016203245A JP2016203245A JP6565860B2 JP 6565860 B2 JP6565860 B2 JP 6565860B2 JP 2016203245 A JP2016203245 A JP 2016203245A JP 2016203245 A JP2016203245 A JP 2016203245A JP 6565860 B2 JP6565860 B2 JP 6565860B2
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
circulation pump
anode
anode gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016203245A
Other languages
English (en)
Other versions
JP2018067370A (ja
Inventor
総紀 五十嵐
総紀 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016203245A priority Critical patent/JP6565860B2/ja
Priority to US15/694,234 priority patent/US10734662B2/en
Priority to CN201710946850.4A priority patent/CN107959034B/zh
Publication of JP2018067370A publication Critical patent/JP2018067370A/ja
Application granted granted Critical
Publication of JP6565860B2 publication Critical patent/JP6565860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池システムに関する。
従来の燃料電池システムとして、アノードガスを燃料電池(燃料電池スタック)のアノードに供給するアノードガス供給系に対して、燃料電池のアノードで消費されなかったアノードオフガスをアノードガス循環系に有する循環ポンプを介してアノードガス供給系に循環させる燃料電池システムが開発されている。アノードオフガスは、燃料電池反応で生成された生成水の水分を含んでいるので、燃料電池システムを長期間運転すると、アノードガス循環系(特に循環ポンプの近傍)に液水が滞留する場合がある。特許文献1には、アノードガス循環系に滞留した液水を、循環ポンプの回転数を上昇させて排水させることが記載されており、特に、滞留する水分量が所定値以上と判断された場合に、循環ポンプの上昇率を制限することが記載されている。
特開2016−95999号公報
ところで、本願の発明者は、燃料電池システムを起動し、暖機運転するときに、燃料電池から排出されるアノードオフガスの温度に比べて循環ポンプの温度が低いため、アノードガス循環系に大量の結露水が発生することを見出した。このような結露水は、特に外気温が低く燃料電池と循環ポンプの温度差が大きい場合に多く発生する。また、大量の結露水を循環ポンプで排出しようとすると、循環ポンプに異音が発生するおそれがある。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、燃料電池と、前記燃料電池にアノードガスを供給するアノードガス供給流路と、前記燃料電池からアノードオフガスを排出するアノードガス排出流路と、前記アノードガス供給流路と前記アノードガス排出流路とを接続するアノードガス循環流路と、前記アノードガス循環流路に設けられ、前記アノードオフガスを前記アノードガス供給流路に供給する循環ポンプと、前記燃料電池の温度を測定する第1温度センサと、前記循環ポンプの温度を測定する第2温度センサと、前記燃料電池システムの各機器を制御する制御部とを備える。前記制御部は、前記燃料電池システムを起動して暖機運転するとき、(a)前記第1温度センサにより測定された温度である第1温度と、前記第2温度センサにより測定された温度である第2温度と、を取得する処理と、(b)前記第1温度と前記第2温度が同じ温度の場合には、前記循環ポンプの回転数を基準回転数に設定し、前記第1温度と前記第2温度が同じ温度でない場合には、前記第1温度が同じ温度であれば前記第1温度と前記第2温度との温度差が大きいほど、及び、前記温度差が同じであれば前記第1温度が高いほど、前記基準回転数よりも回転数が高くなるように前記循環ポンプの回転数を設定して、前記循環ポンプを制御する処理と、を繰り返して実行し、前記循環ポンプを前記基準回転数で回転させる条件が満たされた場合には、前記循環ポンプの回転数を前記基準回転数にする。
燃料電池システムが起動されて暖機運転するときには、燃料電池が暖まり、アノードオフガスの温度が上昇する。アノードオフガスが循環ポンプに達すると、アノードオフガスが循環ポンプによって冷やされて結露する。一方、循環ポンプは、アノードオフガスにより暖められて、温度が上昇する。最終的には、アノードオフガスの温度と循環ポンプの温度はほぼ一致し、循環ポンプに新たな結露が生じなくなる。したがって、アノードオフガスの温度が上昇すると循環ポンプで生成する結露水の量が増加し、その後、循環ポンプの温度が上昇して、アノードオフガスの温度と循環ポンプの温度の温度差が減少に転ずると、生成する結露水の量が減少する。ここで、結露水の生成量は、第1温度と第2温度の温度差が大きいほど多い。
この形態によれば、(a)第1温度センサにより測定された温度である第1温度と、第2温度センサにより測定された温度である第2温度と、を取得する処理と、(b)第1温度と第2温度が同じ温度の場合には、循環ポンプの回転数を基準回転数に設定し、第1温度と第2温度が同じ温度でない場合には、第1温度が同じ温度であれば第1温度と第2温度との温度差が大きいほど、及び、温度差が同じであれば第1温度が高いほど、基準回転数よりも回転数が高くなるように循環ポンプの回転数を設定して、循環ポンプを制御する処理と、を繰り返して実行するので、循環ポンプに大量の結露水が蓄積する前に循環ポンプを高回転で回転させることができ、水、水蒸気を排出でき、異音を発生し難くできる。
(2)上記形態において、前記制御部は、前記処理(b)において、(b−1)温度と飽和水蒸気量との関係を用いて、前記第1温度における飽和水蒸気量と前記第2温度における飽和水蒸気量の差を算出し、(b−2)前記飽和水蒸気量の差が大きいほど前記循環ポンプの回転数が高くなるように前記循環ポンプの回転数を制御してもよい。
水蒸気が実際に結露するときに生成する結露水の量は、飽和水蒸気量の差以下である。この形態によれば、飽和水蒸気量の差を基準に循環ポンプの回転数を制御するので、水が循環ポンプに蓄積する前に循環ポンプを高回転で回転させることができ、水、水蒸気を排出できる。
(3)本発明の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、燃料電池と、前記燃料電池にアノードガスを供給するアノードガス供給流路と、前記燃料電池からアノードオフガスを排出するアノードガス排出流路と、前記アノードガス供給流路と前記アノードガス排出流路とを接続するアノードガス循環流路と、前記アノードガス循環流路に設けられ、前記アノードオフガスを前記アノードガス供給流路に供給する循環ポンプと、前記燃料電池の温度と前記循環ポンプの温度との少なくとも一方を測定する温度センサと、前記燃料電池システムの各機器を制御する制御部と、を備える。前記制御部は、前記燃料電池システムを起動して暖機運転するとき、前記温度センサにより測定された温度に基づいて予め定められている前記循環ポンプの回転数の遷移パターンに従って、前記循環ポンプの回転数を制御する。
本形態によれば、制御部は、燃料電池システムを起動して暖機運転するとき、制御部は、温度センサにより測定された温度に基づいて予め定められている循環ポンプの回転数の遷移パターンに従って、循環ポンプの回転数を制御するので、循環ポンプに大量の水が蓄積する前に循環ポンプを高回転で回転させることができ、アノードオフガス中の水、水蒸気を排出でき、異音を発生し難くできる。
本発明は、種々の形態で実現することが可能であり、例えば、燃料電池システム、燃料電池システムの制御方法等の種々の形態で実現することができる。
燃料電池システムの構成を示す概略図。 アノードガス循環系の循環ポンプ及び気液分離部を拡大して示す説明図。 燃料電池システムの起動後の燃料電池の第1温度と循環ポンプの第2温度の変化の一例を示すグラフ。 温度と飽和水蒸気量との関係を示すグラフ。 燃料電池システムの起動後の燃料電池の第1温度と循環ポンプの第2温度の温度差と、生成する結露水の量の時間変化を示す説明図。 第1実施形態の制御フローチャート。 第1温度における飽和水蒸気量と第2温度における飽和水蒸気量の差と、飽和水蒸気量の差に対応する循環ポンプの加算回転数との関係を示すグラフ。 第2実施形態の制御フローチャート。 第3実施形態の制御フローチャート。 ステップS125、S130における循環ポンプの回転数の遷移パターンを示すグラフ。
A.第1実施形態:
図1は、本発明の一実施形態としての燃料電池システム100の構成を示す概略図である。本実施形態において、燃料電池システム100は車両(「燃料電池車両」とも呼ぶ)に搭載されている。燃料電池システム100は、車両の運転者からのアクセル(不図示)による要求(以下、「アクセル位置」とも呼ぶ)に応じて、車両の動力源となる電力を出力する。
燃料電池システム100は、燃料電池10と、制御部20と、カソードガス供給系30と、カソードガス排出系40と、アノードガス供給系50と、アノードガス循環系60と、冷媒循環系70と、電力充放電系80とを備える。
燃料電池10は、燃料ガス(「アノードガス」とも呼ぶ)としての水素と酸化ガス(「カソードガス」とも呼ぶ)としての空気(厳密には酸素)の供給を受けて発電する固体高分子形燃料電池である。以下、アノードガスとカソードガスとをまとめて「反応ガス」とも呼ぶ。燃料電池10は、複数の単セル11が積層されたスタック構造を有する。本実施形態において、燃料電池10は、いわゆるカウンターフロー型の燃料電池であり、アノードガスとカソードガスが対抗して逆向きに流れる。通常、燃料電池10は、各単セル11の面に沿って、アノードガスが上側から下側を向いて流れ、カソードガスが下側から上側を向いて流れるように配置される。なお、燃料電池10には、反応ガスや冷媒のためのマニホールドが積層方向に沿った貫通孔として形成されるが、図示は省略する。
単セル11は、図示は省略するが、基本的に、発電体としての膜電極接合体(MEA:Membrane−Electrode Assembly)を、セパレータで挟持した構成を有している。MEAは、イオン交換膜からなる固体高分子型電解質膜(単に「電解質膜」とも呼ぶ)と、電解質膜のアノード側の面上に形成された触媒層及びガス拡散層からなるアノードと、電解質膜のカソード側の面上に形成された触媒層及びガス拡散層からなるカソードと、で構成される。また、セパレータとガス拡散層に接する面には、アノードガスやカソードガスを流す溝状のガス流路が形成されている。ただし、セパレータとガス拡散層との間に、ガス流路部が別途設けられる場合もある。
制御部20は、以下に説明するカソードガス供給系30と、カソードガス排出系40と、アノードガス供給系50と、アノードガス循環系60と、冷媒循環系70と、を構成する各機器を制御して、システムに対する外部からの出力要求に応じた電力を燃料電池10に発電させる制御装置である。制御部20は、例えば、CPU、ROM、RAM等を含むマイクロコンピュータを用いて、各種制御に対応するソフトウェアを実行し、全体制御部や、カソードガス供給系30及びカソードガス排出系40を制御するカソードガス制御部、アノードガス供給系50及びアノードガス循環系60を制御するアノードガス制御部、冷媒循環系70を制御する冷媒制御部等を、ソフトウェア的な構成で実現することができる。
カソードガス供給系30は、カソードガス配管31と、エアコンプレッサ32と、エアフロメータ33と、開閉弁34と、圧力計測部35とを備える。カソードガス配管31は、燃料電池10のカソード側の供給用マニホールドに接続された配管である。
エアコンプレッサ32は、カソードガス配管31を介して燃料電池10と接続されている。エアコンプレッサ32は、外気を取り込んで圧縮した空気を、カソードガスとして燃料電池10に供給する。エアフロメータ33は、エアコンプレッサ32の上流側において、エアコンプレッサ32が取り込む外気の量を計測し、制御部20に送信する。制御部20は、この計測値に基づいて、エアコンプレッサ32を駆動することにより、燃料電池10に対する空気の供給量を制御する。
開閉弁34は、エアコンプレッサ32と燃料電池10との間に設けられている。開閉弁34は、通常、閉じた状態であり、エアコンプレッサ32から所定の圧力を有する空気がカソードガス配管31に供給されたときに開く。圧力計測部35は、エアコンプレッサ32から供給される空気の圧力を、燃料電池10のカソード側の供給用マニホールドの入口近傍において計測し、制御部20に出力する。
カソードガス排出系40は、カソード排ガス配管41と、調圧弁43と、圧力計測部44とを備える。カソード排ガス配管41は、燃料電池10のカソード側の排出用マニホールドに接続された配管である。カソード排ガス(「カソードオフガス」とも呼ぶ)は、カソード排ガス配管41を介して、燃料電池システム100の外部へと排出される。
調圧弁43は、制御部20によって、その開度が制御されており、カソード排ガス配管41におけるカソード排ガスの圧力(燃料電池10のカソード側の背圧)を調整する。圧力計測部44は、調圧弁43の上流側に設けられており、カソード排ガスの圧力を計測し、その計測結果を制御部20に出力する。制御部20は、圧力計測部44の計測値に基づいて、調圧弁43の開度を調整することにより、燃料電池10に供給する空気の圧力を制御する。
アノードガス供給系50は、アノードガス配管51と、水素タンク52と、開閉弁53と、レギュレータ54と、水素供給装置55と、圧力計測部56とを備える。水素タンク52は、アノードガス配管51を介して燃料電池10のアノード側の供給用マニホールド(図示は省略)の入口と接続されており、タンク内に充填された水素を燃料電池10に供給する。なお、アノードガス配管51が本発明の「アノードガス供給流路」に相当する。
開閉弁53と、レギュレータ54と、水素供給装置55と、圧力計測部56とは、アノードガス配管51に、この順序で、上流側(水素タンク52側)から設けられている。開閉弁53は、制御部20からの指令により開閉し、水素タンク52から水素供給装置55の上流側への水素の流入を制御する。レギュレータ54は、水素供給装置55の上流側における水素の圧力を調整するための減圧弁であり、その開度が制御部20によって制御される。
水素供給装置55は、例えば、電磁駆動式の開閉弁であるインジェクタによって構成することができる。圧力計測部56は、水素供給装置55の下流側の水素の圧力を計測し、制御部20に送信する。制御部20は、圧力計測部56の計測値に基づき、水素供給装置55を制御することによって、燃料電池10に供給される水素の流量を制御する。
アノードガス循環系60は、アノード排ガス配管61と、気液分離部62と、アノードガス循環配管63と、循環ポンプ64と、アノード排水配管65と、排水弁66と、圧力計測部67と、ポンプ温度センサ68とを備える。アノードガス循環系60は、発電反応に用いられることなく燃料電池10のアノードから排出される未反応ガス(水素や窒素など)や排水を含むアノード排ガス(「アノードオフガス」とも呼ぶ)の循環および排出を行う。
アノード排ガス配管61は、気液分離部62と燃料電池10のアノード側排出用マニホールド(図示は省略)の出口とを接続する配管である。気液分離部62は、アノードガス循環配管63とアノード排水配管65とに接続されている。気液分離部62は、アノード排ガスに含まれる気体成分と水分とを分離し、気体成分については、アノードガス循環配管63へと誘導し、水分についてはアノード排水配管65へと誘導する。なお、アノード排ガス配管61が本発明の「アノードガス排出流路」に相当する。
アノードガス循環配管63は、アノードガス配管51の水素供給装置55より下流に接続されている。アノードガス循環配管63には、循環ポンプ64が設けられている。気液分離部62において分離された気体成分に含まれる水素は、循環ポンプ64によってアノードガス配管51へと送り出され、アノードガスとして再利用される。なお、アノードガス循環配管63が本発明の「アノードガス循環流路」に相当する。
アノード排水配管65は、気液分離部62において分離された水分を燃料電池システム100の外部へと排出するための配管である。アノード排水配管65には、排水弁66が設けられている。制御部20は、通常は、排水弁66を閉じておき、予め設定された所定の排水タイミングや、アノード排ガス中の不活性ガスの排出タイミングで排水弁66を開く。
アノードガス循環系60の圧力計測部67は、アノード排ガス配管61に設けられている。圧力計測部67は、燃料電池10の水素マニホールドの出口近傍において、アノード排ガスの圧力(燃料電池10のアノード側の背圧)を計測し、制御部20に送信する。制御部20は、アノードガス循環系60の圧力計測部67の計測値や、前述したアノードガス供給系50の圧力計測部56の計測値に基づいて燃料電池10に対する水素の供給を制御する。
また、ポンプ温度センサ68は、循環ポンプ64のケーシングの温度を計測し、制御部20に送信する。制御部20は、ポンプ温度センサ68と、後述するFC出口温度センサ76aの計測値に基づいて、後述するように、循環ポンプ64の回転数を制御する。ポンプ温度センサ68が、第2温度センサに対応する。
冷媒循環系70は、冷媒用配管71と、ラジエータ72と、冷媒循環用ポンプ75と、を備える。冷媒用配管71は、ラジエータ72より上流側の上流側配管71aと、下流側の下流側配管71bとを備える。上流側配管71aは、ラジエータ72の入口と燃料電池10の冷媒用排出用マニホールド(図示は省略)の出口とを接続する。下流側配管71bは、ラジエータ72の出口と燃料電池10の冷媒用供給用マニホールド(図示は省略)の入口とを接続する。
ラジエータ72は、冷媒用配管71を流れる冷媒と外気との間で熱交換させることにより冷媒を冷却する。冷媒循環用ポンプ75は、下流側配管71bの途中に設けられ、ラジエータ72において冷却された冷媒を燃料電池10に送り出す。FC出口温度センサ76aは上流側配管71aに設けられており、FC入口温度センサ76bは下流側配管71bに設けられている。FC出口温度センサ76aとFC入口温度センサ76bはそれぞれ、計測した冷媒の温度を制御部20へ送信する。制御部20は、FC出口温度センサ76aとFC入口温度センサ76の計測値(冷媒の温度)に基づいて、ラジエータ72の動作を制御する。
電力充放電系80は、負荷装置としての駆動モータ82と、インバータ(INV)84と、二次電池86と、DC/DCコンバータ88とを備える。燃料電池10は直流配線DCLを介してインバータ84に電気的に接続されており、二次電池86はDC/DCコンバータ88を介して直流配線DCLに電気的に接続されている。
二次電池86は、燃料電池10の出力電力や、駆動モータ82の回生電力によって充電され、燃料電池10とともに電力源として機能する。二次電池86は、例えばリチウムイオン電池で構成することができる。
DC/DCコンバータ88は、制御部20の指令に基づいて、燃料電池10の電流・電圧を制御するとともに、二次電池86の充・放電を制御し、直流配線DCLの電圧レベルを可変に調整する。インバータ84は、燃料電池10と二次電池86とから得られた直流電力を交流電力へと変換し、駆動モータ82に供給する。駆動モータ82はアクセル位置に対応してインバータ84から供給された電力に応じて、ギア等を介して接続された車輪WLを駆動する。また、駆動モータ82によって回生電力が発生する場合には、インバータ84は、その回生電力を直流電力に変換し、DC/DCコンバータ88を介して二次電池86に充電する。
以上説明した燃料電池システム100は、制御部20によって、カソードガス供給系30及びカソードガス排出系40や、アノードガス供給系50及びアノードガス循環系60、電力充放電系80が制御されて、アクセル位置に応じて、車両の動力源となる電力を燃料電池10から出力することができる。以下では、この燃料電池システム100の作動中において、アノードガス循環系60によるアノードガス(水素)の循環量を増加するために循環ポンプ64の回転数を上昇させる際の処理について説明を加える。
図2は、アノードガス循環系60の循環ポンプ64及び気液分離部62を拡大して示す説明図である。循環ポンプ64は、ルーツ式のポンプであり、吸入口641と、羽根車642、643と、送出口644と、を備える。燃料電池10の下部のアノード側の排出マニホールドの出口(不図示)に接続されたアノード排ガス配管61は、気液分離部62の下部に接続されている。気液分離部62の鉛直方向上部に接続された第1のアノードガス循環配管63aは、循環ポンプ64の鉛直方向下部の吸入口641に接続されている。循環ポンプ64の上部の送出口644に接続された第2のアノードガス循環配管63bは、アノードガス配管51(図1)に連結され、燃料電池10の上部のアノード側の供給用マニホールドの入口(不図示)に接続されている。すなわち、循環ポンプ64は、下部の吸入口641から吸入された水素を上部の送出口644から送出する構造となるように配置されている。
燃料電池システム100の起動後、特に暖機運転時には、循環ポンプ64が暖まっていない。この状態で燃料電池10から排出される暖かい湿ったアノードオフガスが流れてくると、アノードオフガス中の水蒸気が循環ポンプ64内で結露して、循環ポンプ64に水が溜まる。そして、循環ポンプ64内の水の量によっては、羽根車642、643に水が噛み、異音が発生する。かかる場合には、循環ポンプ64の回転数を上げることにより、アノードオフガス中の水蒸気や、結露により生じた水を排出すれば、循環ポンプ64内の水が減少して異音が発生し難くなる。
図3は、燃料電池システム100の起動後の燃料電池10の第1温度T1と循環ポンプ64の第2温度T2の変化の一例を示すグラフである。燃料電池10の第1温度T1は、FC出口温度センサ76aにより測定される。ここで、燃料電池10の第1温度T1は、燃料電池10から排出される冷媒の温度とほぼ等しいと考えられる。FC出口温度センサ76aが、燃料電池10の温度を測定する第1温度センサに対応する。第1温度センサは、燃料電池10の温度を直接または間接的に測定可能であればよく、冷媒循環系70の上流側配管71a以外の箇所(例えば燃料電池10そのもの)に第1温度センサを設ける様にしてもよい。燃料電池システム100がt0で起動すると、電気化学反応により生じた熱により、燃料電池10の第1温度T1が高くなっていく。なお、燃料電池10は、冷媒循環系70により冷却されるため、第1温度T1は、ある温度以上には上昇しない。図3に示す例では、時刻t2以降は、第1温度T1は、ほぼ同じ温度である。
燃料電池10から排出されたアノードオフガスが循環ポンプ64に達すると、アノードオフガスが循環ポンプ64を暖めるため、循環ポンプ64の第2温度T2は、上昇する。循環ポンプ64の第2温度T2は、燃料電池10の第1温度T1の上昇よりも少し遅れて時刻t1から上昇する。なお、循環ポンプ64の第2温度T2は、アノードオフガスの温度とほぼ等しくなると、それ以上は上昇しない。本実施形態では、時刻t4で循環ポンプ64の第2温度T2は、燃料電池10の第1温度T1とほぼ等しくなる。
燃料電池10の第1温度T1と循環ポンプ64の第2温度T2との温度差ΔTは、燃料電池システム100の起動直後は、第1温度T1と第2温度T2とがほぼ外気温と同じであるため、ほぼゼロである。その後、第1温度T1が上昇し始め、第1温度T1と第2温度T2との温度差ΔTは、増大する。第2温度T2は、時刻t1になると、第1温度T1に遅れて上昇する。その後、第1温度T1が上昇しなくなっても、第2温度T2は、第1温度T1とほぼ等しくなるまで上昇する。この間は、第1温度T1と第2温度T2との温度差ΔTは減少し、最後にほぼゼロとなる。すなわち、燃料電池10の第1温度T1と循環ポンプ64の第2温度T2との温度差ΔTは、燃料電池システム100の起動後、ゼロから増大し、その後、減少してゼロとなる。なお、時刻t1からt2の間は、燃料電池10の発熱量と、循環ポンプ64の熱容量により、(a)第1温度T1と第2温度T2との温度差ΔTがほぼ一定の場合、(b)ΔTが増加する場合、(c)ΔTが減少する場合、がありえる。図3において、時刻t3は、暖機運転を終了する時刻である。例えば、暖機運転は、燃料電池10の第1温度T1がほぼ一定となり、第2温度T2が予め定められた温度以上となったときに終了される。なお、暖機運転の終了は、他の条件に応じて決定してもよい。
図4は、温度と飽和水蒸気量との関係を示すグラフである。飽和水蒸気量は、1mの空間に存在できる水蒸気の質量を[g]で表したものである。なお、飽和水蒸気量は、飽和水蒸気圧と比例する。飽和水蒸気量は、温度が高いほど大きい。飽和状態の水蒸気を含むガスの温度が下がると、ガス中に含まれることができなくなった水蒸気が結露する。ここで、飽和状態の水蒸気を含むガスの温度が同じ温度だけ下がった場合、下がる前の温度が高いほど結露する水の量が多い。図4では、例として、T1a(50℃)からT2a(20℃)にΔTa(=30℃)下がりΔMaの結露水が生成する場合と、T1b(60℃)からT2b(30℃)にΔTb(=30℃)下がりΔMbの結露水が生成する場合とを記載している。これらを比較すると、温度が下がるときの温度の変化ΔTa、ΔTbは、いずれも30℃で同じであるが、結露する結露水の量は、ΔMa(≒33g)<ΔMb(≒50g)であり、T1b(60℃)からT2b(30℃)に下がる方が、T1a(50℃)からT2a(20℃)に下がるよりも多い。温度が下がるときの温度の変化が同じであっても、どの温度から下がるかにより、結露水の量は異なる。なお、実際のアノードオフガスの水蒸気圧が飽和水蒸気圧に達していない場合もあるので、飽和水蒸気量の差は、結露水の最大量を表している。
図5は、燃料電池システム100の起動後の燃料電池10の第1温度T1と循環ポンプ64の第2温度T2の温度差ΔTと、生成する結露水の量ΔMの時間変化を示す説明図である。燃料電池10の第1温度T1と循環ポンプ64の第2温度T2の温度差ΔTは、上述したように、燃料電池システム100の起動後、0℃から増加し、時刻t2で最大となり、その後、0℃に減少する。生成する結露水の量ΔMも、時刻t2で最大となり、その後減少し、時刻t4で温度差ΔTがゼロとなったときにゼロとなる。但し、図4に示した様に、温度が高いほど温度差に対する結露水の量が多いため、時刻t2に近づくにつれて生成する結露水の量は急激に増え、時刻t4に近づくにつれて生成する結露水の量は急激に減少する。
図6は、第1実施形態の制御フローチャートである。ステップS100で燃料電池システム100が起動されると、制御部20は、暖機運転を開始する。暖機運転とは、熱損失を意図的に増大させることによって、燃料電池10を急速に暖機するための運転である。暖機運転は、例えば通常運転に比べて燃料電池10へのカソードガスの供給量を絞ることにより行うことができる。ステップS110では、制御部20は、循環ポンプ64の回転数を、基準回転数R1とする。循環ポンプ64を回転させると、駆動音が発生する。この回転数が高いと、駆動音として目立つ。基準回転数R1は、燃料電池システム100の起動後において、循環ポンプ64が発生させる駆動音を目立ち難くできる回転数である。
ステップS120では、制御部20は、燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2とを取得する。ステップS140では、制御部20は、第1温度T1と第2温度T2とを用いて、循環ポンプ64の回転数Rを設定し、設定した回転数で循環ポンプ64を回転させる。第1温度T1と第2温度T2と、循環ポンプ64の回転数Rとの関係は、予め実験等により求められており、例えばルックアップテーブルやマップとして、制御部20に格納されている。循環ポンプ64を回転数Rは、(a)第1温度T1(あるいは第2温度T2)が同じ温度の時には、第1温度T1と第2温度T2との温度差ΔTが大きいほど高く、(b)第1温度T1と第2温度T2との温度差が同じ時には、第1温度T1(あるいは第2温度T2)が高いほど高い。
ステップS150では、制御部20は、循環ポンプ64を基準回転数で回転させる条件が満たされたか否かを判断する。例えば、循環ポンプ64を基準回転数で回転させる条件は、燃料電池10の第1温度T1が予め定められた温度以上であり、且つ燃料電池10の第1温度T1と循環ポンプ64の第2温度T2との差が予め定められた温度以下の場合、あるいは循環ポンプ64の第2温度T2が予め定められた温度以上の場合である。ただし、循環ポンプ64を基準回転数で回転させる条件は、これらの条件以外であってもよい。循環ポンプ64を基準回転数で回転させる条件を満たした場合には、制御部20は、ステップS160に移行し、循環ポンプ64を基準回転数R1で回転させる。その後、燃料電池システム100を搭載した車両が、走行状態となり、燃料電池10の発電量が増加した場合には、制御部20は、燃料電池10の発電量に応じて、循環ポンプ64の回転数を増大させる。走行状態になれば、走行音により、循環ポンプ64の回転による音は目立たなくなる。循環ポンプ64を基準回転数で回転させる条件を満たしていない場合には、ステップS120に戻り、同様のステップ(処理)を繰り返す。
結露水の生成量ΔMは、燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2との温度差ΔTが大きいほど多い。第1実施形態によれば、制御部20は、第1温度T1と第2温度T2が同じ温度の場合には、循環ポンプ64の回転数を基準回転数R1に設定し、第1温度T1と第2温度T2が同じ温度でない場合には、第1温度T1が同じ温度であれば第1温度T1と第2温度T2との温度差ΔTが大きいほど、及び、温度差ΔTが同じであれば第1温度T1が高いほど、基準回転数R1よりも回転数が高くなるように循環ポンプ64の回転数Rを設定し、設定した回転数で循環ポンプ64を回転させるので、結露水の生成量ΔMが多いときに、循環ポンプの回転数Rを上昇させことができ、水を排出しやすい。
B.第2実施形態:
第1実施形態では、制御部20は、燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2と、を取得し、第1温度T1と第2温度T2とを用いて、循環ポンプ64の回転数Rを設定し、設定した回転数で循環ポンプ64を回転させた。これに対し、第2実施形態では、制御部20は、第1温度T1と第2温度T2とを用いて、第1温度T1における飽和水蒸気量と第2温度T2における飽和水蒸気量との差ΔWを算出し、飽和水蒸気量の差ΔWから循環ポンプ64の加算回転数ΔRを算出し、循環ポンプ64を回転数(R1+ΔR1)で回転させる。
図7は、第1温度における飽和水蒸気量と第2温度における飽和水蒸気量の差ΔWと、飽和水蒸気量の差ΔWに対応する循環ポンプ64の加算回転数ΔRとの関係を示すグラフである。飽和水蒸気量の差ΔWと加算回転数ΔRとは、ほぼ比例している。こうすれば、飽和水蒸気量の差ΔWに応じて、循環ポンプ64の回転数を大きくできる。但し、飽和水蒸気量の差ΔWと加算回転数ΔRとは、飽和水蒸気量の差ΔWが増大すれば加算回転数ΔRも増大する曲線状の関係を有していてもよい。
図8は、第2実施形態の制御フローチャートである。図6に示す第1実施形態の制御フローチャートと比較すると、ステップS140を備えない代わりに、ステップS135、S145を備える。ステップS135では、制御部20は、第1温度T1における飽和水蒸気量と、第2温度T2における飽和水蒸気量との差ΔWを算出する。ステップS145では、図7に示すグラフを用いて、飽和水蒸気量の差ΔWから加算回転数ΔRを算出し、循環ポンプ64を回転数(R1+ΔR1)で回転させる。
以上、第2実施形態によれば、制御部20は、燃料電池システム100が起動されて暖機運転するときに、循環ポンプ64の回転数を、予め定められた基準回転数R1から飽和水蒸気量の差ΔWに応じた加算回転数ΔR分上昇させるように制御する。実際のアノードオフガスに含まれる水蒸気の量は、飽和水蒸気量以下である。したがって、アノードオフガスに含まれている水蒸気が実際に結露するときに生成する結露水の量は、飽和水蒸気量の差ΔW以下である。したがって、この飽和水蒸気量の差ΔWを基準に循環ポンプ64の加算回転数ΔRを算出し、循環ポンプ64を回転数(R1+ΔR1)で回転させれば、第1実施形態よりも確実に、水が循環ポンプ64に蓄積する前に水や水蒸気を排出できる。その結果、循環ポンプ64内で異音を発生させにくくできる。
第2実施形態では、飽和水蒸気量の差ΔWと、飽和水蒸気量の差ΔWに対応する循環ポンプ64の加算回転数ΔRとの関係を示すグラフを用いたが、飽和水蒸気量の差ΔWと、飽和水蒸気量の差ΔWに対応する循環ポンプ64の回転数(R1+ΔR1)との関係を示すグラフを用いてもよい。
C.第3実施形態:
第1実施形態では、制御部20は、燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2と、を取得し、第1温度T1と第2温度T2とを用いて、循環ポンプ64の回転数Rを設定し、設定した回転数で循環ポンプ64を回転させた。第3実施形態では、制御部20は、燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2との少なくとも一方の温度に基づいた予め循環ポンプ64の回転数の遷移パターンを決めておき、その遷移パターンに基づいて循環ポンプ64の回転数を制御する。
図9は、第3実施形態の制御フローチャートである。S140、S150を備えない代わりにステップS125、S130を備えている点が異なる。なお、ステップS120では、燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2との少なくとも一方を測定する。ステップS125では、時刻t5の時に循環ポンプ64の回転数が基準回転数R1よりも高い回転数R2となるように、循環ポンプ64の回転数の遷移パターンに従って循環ポンプ64の回転数を上昇させる。ステップS130では、時刻t6の時に循環ポンプ64の回転数がR1となるように、循環ポンプ64の回転数の遷移パターンに従って循環ポンプ64の回転数を下降させる。これらの遷移パターンは、燃料電池システム100の起動時における燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2に基づいて、複数の遷移パターンが準備されており、測定された燃料電池10の第1温度T1と、循環ポンプ64の第2温度T2の少なくとも一方に基づいて選択される。
図10は、ステップS125、S130における循環ポンプ64の回転数の遷移パターンを示すグラフである。この遷移パターンの基準回転数R1よりも上の部分の形状は、図5における結露水の量に類似している。なお、図10の時刻t5は、図5の時刻t2と同じ時刻でなくてもよく、図10の時刻t6は、図5の時刻t4と同じ時刻でなくてもよい。但し、時刻t5が時刻t2とほぼ一致し、時刻t6が時刻t4とほぼ一致することが好ましい。例えば、実験により、時刻t5が時刻t2とほぼ一致し、時刻t6が時刻t4とほぼ一致するように、回転数の遷移パターンを定めることができる。このように、第3実施形態における循環ポンプ64の回転数の遷移パターンは、第1実施形態あるいは第2実施形態において循環ポンプ64の回転数のどのように遷移したかを実験により取得し、この実験の結果から作成されることが好ましい。そのため、循環ポンプ64の回転数の遷移パターンは、生成する結露水の量にほぼ準じたパターンとなり、循環ポンプ64に大量の水が蓄積する前に高回転で水を排出でき、異音を発生し難くできる。
なお、結露水の生成量は、燃料電池システム100の起動時における燃料電池10の第1温度T1や循環ポンプ64の第2温度T2により異なる可能性がある。そのため、制御部20は、循環ポンプ64の回転数の遷移パターンとして、燃料電池システム100の起動時における燃料電池10の第1温度T1や循環ポンプ64の第2温度T2の少なくとも一方に応じて複数の遷移パターンを有している。
D.変形例:
(1)変形例1
上記実施形態では、燃料電池10から排出される冷媒の温度を燃料電池10の第1温度T1として測定しているが、結露に関するのは、アノードオフガスの温度である。したがって、アノードオフガスの温度を測定する温度センサを備え、その温度センサの測定値を燃料電池100の第1温度T1として利用してもよい。
(2)変形例2
上記実施形態において、制御部20は、マイクロコンピュータを用いて、各種制御に対応するソフトウェアを実行し、全体制御部や、カソードガス供給系30及びカソードガス排出系40を制御するカソードガス制御部、アノードガス供給系50及びアノードガス循環系60を制御するアノードガス制御部、冷媒循環系70を制御する冷媒制御部等を、ソフトウェア的な構成で実現する構成として説明した。しかしながら、制御部20は、カソード制御部やアノード制御部、冷媒制御部等の各制御部を、それぞれ、専用の処理回路により、ハードウェア的な構成で実現するようにしてもよい。
本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…燃料電池
11…単セル
20…制御部
30…カソードガス供給系
31…カソードガス配管
32…エアコンプレッサ
33…エアフロメータ
34…開閉弁
35…圧力計測部
40…カソードガス排出系
41…カソード排ガス配管
43…調圧弁
44…圧力計測部
50…アノードガス供給系
51…アノードガス配管
52…水素タンク
53…開閉弁
54…レギュレータ
55…水素供給装置
56…圧力計測部
60…アノードガス循環系
61…アノード排ガス配管
62…気液分離部
63,63a,63b…アノードガス循環配管
64…循環ポンプ
65…アノード排水配管
66…排水弁
67…圧力計測部
68…ポンプ温度センサ
70…冷媒循環系
71…冷媒用配管
71a…上流側配管
71b…下流側配管
72…ラジエータ
75…冷媒循環用ポンプ
76a…FC出口温度センサ(第1温度センサ)
76b…FC入口温度センサ
80…電力充放電系
82…駆動モータ
84…インバータ
86…二次電池
88…DC/DCコンバータ
100…燃料電池システム
641…吸入口
642、643…羽根車
644…送出口
WL…車輪
DCL…直流配線
R1…基準回転数
R2…基準回転数よりも高い回転数

Claims (3)

  1. 燃料電池システムであって、
    燃料電池と、
    前記燃料電池にアノードガスを供給するアノードガス供給流路と、
    前記燃料電池からアノードオフガスを排出するアノードガス排出流路と、
    前記アノードガス供給流路と前記アノードガス排出流路とを接続するアノードガス循環流路と、
    前記アノードガス循環流路に設けられ、前記アノードオフガスを前記アノードガス供給流路に供給する循環ポンプと、
    前記燃料電池の温度を測定する第1温度センサと、
    前記循環ポンプの温度を測定する第2温度センサと、
    前記燃料電池システムの各機器を制御する制御部と、
    を備え、
    前記制御部は、前記燃料電池システムを起動して暖機運転するとき、
    (a)前記第1温度センサにより測定された温度である第1温度と、前記第2温度センサにより測定された温度である第2温度と、を取得する処理と、
    (b)前記第1温度と前記第2温度が同じ温度の場合には、前記循環ポンプの回転数を基準回転数に設定し、前記第1温度と前記第2温度が同じ温度でない場合には、前記第1温度が同じ温度であれば前記第1温度と前記第2温度との温度差が大きいほど、及び、前記温度差が同じであれば前記第1温度が高いほど、前記基準回転数よりも回転数が高くなるように前記循環ポンプの回転数を設定して、前記循環ポンプを制御する処理と、
    を繰り返して実行し、
    前記循環ポンプを前記基準回転数で回転させる条件が満たされた場合には、前記循環ポンプの回転数を前記基準回転数にする、
    燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記制御部は、前記処理(b)において、
    (b−1)温度と飽和水蒸気量との関係を用いて、前記第1温度における飽和水蒸気量と前記第2温度における飽和水蒸気量の差を算出し、
    (b−2)前記飽和水蒸気量の差が大きいほど前記循環ポンプの回転数が高くなるように前記循環ポンプの回転数を制御する、
    燃料電池システム。
  3. 燃料電池システムであって、
    燃料電池と、
    前記燃料電池にアノードガスを供給するアノードガス供給流路と、
    前記燃料電池からアノードオフガスを排出するアノードガス排出流路と、
    前記アノードガス供給流路と前記アノードガス排出流路とを接続するアノードガス循環流路と、
    前記アノードガス循環流路に設けられ、前記アノードオフガスを前記アノードガス供給流路に供給する循環ポンプと、
    前記燃料電池の温度と前記循環ポンプの温度のうちの少なくとも一方を測定する温度センサと、
    前記燃料電池システムの各機器を制御する制御部と、
    を備え、
    前記制御部は、前記燃料電池システムを起動して暖機運転するとき、前記温度センサにより測定された温度に基づいて予め定められている前記循環ポンプの回転数の遷移パターンに従って、前記循環ポンプの回転数を制御し、
    前記遷移パターンは、前記燃料電池が生成する結露水の量に準じたパターンであって、前記燃料電池の温度と前記循環ポンプの温度との温度差が最大となるまでは前記循環ポンプの回転数を基準回転数から増加させ、その後、前記循環ポンプの回転数を減少させるパターンである
    燃料電池システム。
JP2016203245A 2016-10-17 2016-10-17 燃料電池システム Active JP6565860B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016203245A JP6565860B2 (ja) 2016-10-17 2016-10-17 燃料電池システム
US15/694,234 US10734662B2 (en) 2016-10-17 2017-09-01 Fuel cell system and control method therefor
CN201710946850.4A CN107959034B (zh) 2016-10-17 2017-10-12 燃料电池系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203245A JP6565860B2 (ja) 2016-10-17 2016-10-17 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2018067370A JP2018067370A (ja) 2018-04-26
JP6565860B2 true JP6565860B2 (ja) 2019-08-28

Family

ID=61904139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203245A Active JP6565860B2 (ja) 2016-10-17 2016-10-17 燃料電池システム

Country Status (3)

Country Link
US (1) US10734662B2 (ja)
JP (1) JP6565860B2 (ja)
CN (1) CN107959034B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429303B (zh) * 2019-07-03 2020-11-03 深圳国氢新能源科技有限公司 氢燃料电池发动机冷启动方法
CN111668514A (zh) * 2020-06-23 2020-09-15 江苏申氢宸科技有限公司 一种用于燃料电池的一体式水气分离循环装置
CN112018409B (zh) * 2020-09-07 2021-09-21 佛山市飞驰汽车科技有限公司 燃料电池公交车中的燃料电池热管理系统及热管理方法
JP6902307B1 (ja) * 2021-02-26 2021-07-14 株式会社エアロネクスト 移動手段を有する搭載部を備える飛行体及び搭載部
CN114023996B (zh) * 2021-10-28 2023-10-20 三一汽车制造有限公司 燃料电池系统及其控制方法和控制装置、车辆和介质
CN116505041B (zh) * 2023-06-29 2023-09-01 上海重塑能源科技有限公司 一种低温运行阳极控制方法及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE400068T1 (de) * 2002-10-01 2008-07-15 Dana Canada Corp Thermisches verwaltungssystem
JP2006294458A (ja) * 2005-04-12 2006-10-26 Nissan Motor Co Ltd 燃料電池システム
JP2007035517A (ja) * 2005-07-28 2007-02-08 Nissan Motor Co Ltd 燃料電池システム及び凍結防止方法
JP5152616B2 (ja) 2006-01-06 2013-02-27 トヨタ自動車株式会社 燃料電池システムとその運転停止方法
US8178247B2 (en) 2006-01-06 2012-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method
JP5226936B2 (ja) * 2006-03-22 2013-07-03 トヨタ自動車株式会社 燃料電池システム、および、燃料電池システムの運転方法
JP2012178353A (ja) 2012-04-18 2012-09-13 Mitsubishi Electric Corp 基板間コネクタ
JP5293857B2 (ja) 2012-05-10 2013-09-18 トヨタ自動車株式会社 燃料電池システム
EP2829691A1 (de) 2013-07-25 2015-01-28 Siemens Aktiengesellschaft Verfahren zum Betreiben einer GuD-Anlage
JP6123774B2 (ja) * 2014-11-11 2017-05-10 トヨタ自動車株式会社 燃料電池システム
JP6187431B2 (ja) * 2014-11-14 2017-08-30 トヨタ自動車株式会社 燃料電池システム
JP6172120B2 (ja) * 2014-11-14 2017-08-02 トヨタ自動車株式会社 燃料電池システム
JP6237585B2 (ja) * 2014-11-14 2017-11-29 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法

Also Published As

Publication number Publication date
CN107959034B (zh) 2021-03-12
JP2018067370A (ja) 2018-04-26
CN107959034A (zh) 2018-04-24
US20180108924A1 (en) 2018-04-19
US10734662B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
JP6565860B2 (ja) 燃料電池システム
US9893371B2 (en) Fuel cell system
JP6172120B2 (ja) 燃料電池システム
JP6187431B2 (ja) 燃料電池システム
JP6252595B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6299683B2 (ja) 燃料電池システム
JP4893745B2 (ja) 燃料電池システム
JP2009129596A (ja) 燃料電池システム
JP2013206625A (ja) 燃料電池システム
JP2008103228A (ja) 燃料電池システム
CN111146474A (zh) 燃料电池系统
JP4523981B2 (ja) 燃料電池システム
JP4940640B2 (ja) 燃料電池システム
JP5849579B2 (ja) 燃料電池システム
JP7347315B2 (ja) 燃料電池システム
JP4788322B2 (ja) 燃料電池システム
JP6717085B2 (ja) 燃料電池システム
JP2018195374A (ja) 燃料電池システム
JP7029268B2 (ja) 燃料電池システム
JP7316736B2 (ja) 燃料電池システム及びその制御方法
JP2020068153A (ja) 燃料電池システム
JP2007305519A (ja) 燃料電池システム
JP2021131961A (ja) 燃料電池システム
JP2020170650A (ja) 燃料電池システム
JP6139478B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151