[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5152616B2 - 燃料電池システムとその運転停止方法 - Google Patents

燃料電池システムとその運転停止方法 Download PDF

Info

Publication number
JP5152616B2
JP5152616B2 JP2006243179A JP2006243179A JP5152616B2 JP 5152616 B2 JP5152616 B2 JP 5152616B2 JP 2006243179 A JP2006243179 A JP 2006243179A JP 2006243179 A JP2006243179 A JP 2006243179A JP 5152616 B2 JP5152616 B2 JP 5152616B2
Authority
JP
Japan
Prior art keywords
injector
fuel cell
gas
valve body
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006243179A
Other languages
English (en)
Other versions
JP2007207745A (ja
Inventor
剛司 片野
典生 山岸
明寿 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006243179A priority Critical patent/JP5152616B2/ja
Priority to US12/084,574 priority patent/US8178247B2/en
Priority to PCT/JP2006/326166 priority patent/WO2007077904A1/ja
Priority to DE112006003142.2T priority patent/DE112006003142B4/de
Priority to CN2006800506411A priority patent/CN101356680B/zh
Priority to KR1020087016315A priority patent/KR100996695B1/ko
Publication of JP2007207745A publication Critical patent/JP2007207745A/ja
Application granted granted Critical
Publication of JP5152616B2 publication Critical patent/JP5152616B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池のガス供給系にインジェクタが設けられた燃料電池システムとその運転停止方法に関する。
現在、反応ガス(燃料ガス及び酸化ガス)の供給を受けて発電を行う燃料電池を備えた燃料電池システムが提案され、実用化されている。かかる燃料電池システムには、水素タンク等の燃料供給源から供給される燃料ガスを燃料電池へと流すための燃料供給流路が設けられている。
ところで、燃料供給源からの燃料ガスの供給圧力がきわめて高い場合には、この供給圧力を一定の値まで低減させる調圧弁(レギュレータ)が燃料供給流路に設けられるのが一般的である。近年においては、燃料ガスの供給圧力を例えば2段階に変化させる機械式の可変調圧弁(可変レギュレータ)を燃料供給流路に設けることにより、システムの運転状態に応じて燃料ガスの供給圧力を変化させる技術が提案されている(例えば、特許文献1参照)。
特開2004−139984号公報
しかし、前記特許文献1に記載されているような従来の機械式の可変調圧弁は、その構造上、燃料ガスの供給圧力を迅速に変化させることが困難である(すなわち応答性が低い)上に、目標圧力を多段階にわたって変化させるような高精度な調圧が不可能であった。
また、従来の機械式の可変調圧弁は、比較的複雑な構成を有しているため、大型で重量が大きく製作費用が嵩んでしまう。さらに、従来の機械式の可変調圧弁は、単に燃料ガスの供給圧力を変化させるものであるため、燃料ガスの供給を遮断する遮断弁を別途設ける必要がある。このため、システムの大型化(設置スペースの増大)や設備費用の増大を招来せしめるという問題がある。
そこで、燃料電池の運転状態に応じて燃料ガスの供給圧力を適切に変化させることが可能な応答性が高い燃料電池システムが望まれているが、燃料電池システムの燃料供給系には、燃料電池の発電に伴い酸化ガス供給系側で生成された水が燃料電池内を通過して混入するため、調圧弁に残留する水分が凍結してしまうと、低温起動時における調圧弁の安定動作が阻害される。
本発明は、かかる事情に鑑みてなされたものであり、低温起動時においても安定に作動し、燃料電池の運転状態に応じて燃料ガスの供給圧力を適切に変化させることが可能な応答性が高い燃料電池システムとその運転停止方法を提供することを目的とする。
前記目的を達成するため、本発明の燃料電池システムは、燃料電池と、この燃料電池に反応ガスを供給するためのガス供給系と、このガス供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、を備えた燃料電池システムにおいて、前記インジェクタは、その上流側と下流側とを連通する内部流路と、該内部流路内を移動可能に配置されその流路の開閉状態を変更する弁体と、を備えてなり、システム停止時又はシステム停止後に、少なくとも前記インジェクタの弁体の周囲の水分を低減させる水分低減手段を備えるものである。
かかる構成によれば、燃料電池の運転状態(燃料電池の発電量(電力、電流、電圧)、燃料電池の温度、燃料電池システムの異常状態、燃料電池本体の異常状態等)に応じてインジェクタの作動状態(インジェクタの弁体の開度(ガスの通過面積)、インジェクタの弁体の開放時間(ガスの噴射時間)等)を設定することができる。従って、燃料電池の運転状態に応じて燃料ガスの供給圧力を適切に変化させることができ、応答性を向上させることが可能となる。なお、「ガス状態」とは、ガスの状態(流量、圧力、温度、モル濃度等)を意味し、特にガス流量及びガス圧力の少なくとも一方を含む。
また、水分低減手段は、システム停止時にインジェクタ内の可動部である弁体の周囲の水分を低減させるので、燃料電池システムが低温環境下に曝されても、インジェクタ内で水分が凍結することによる弁体の固着が抑制される。
前記インジェクタは、通電により前記弁体を駆動する弁体駆動部(例えば、ソレノイド)を備え、前記水分低減手段は、前記弁体駆動部への通電制御により前記弁体の周囲の水分を低減させるものでもよい。
かかる構成によれば、通電による弁体駆動部の発熱によって反応ガスが昇温させられるので、弁体周囲の少なくとも一部が前記昇温により気化した水分は、インジェクタ外に容易に排出される。また、昇温ガスとして反応ガスを用いるため、昇温ガスを供給するために新たな配管系等の追加を行う必要がない。
前記水分低減手段は、前記インジェクタの弁体駆動部に閉弁状態が保持される電流を通電し、前記反応ガスを昇温させた後、前記インジェクタを開弁するものでもよい。
かかる構成によれば、インジェクタを閉弁状態としたままで弁体駆動部による反応ガスの昇温を行うことで、より少ないガス量による水分低減処理が可能となる。
本発明の燃料電池システムにおいて、前記インジェクタは、前記燃料電池の燃料極側に連通する燃料ガス供給系に配設されたものであり、前記水分低減手段は、前記インジェクタを開弁する前に、前記燃料電池の燃料極側の圧力をシステム停止後の目標圧力よりも低下させるものでもよい。
かかる構成によれば、燃料極側の圧力を例えば燃料供給を遮断した状態で燃料電池を発電させる等して所定の目標圧力よりも低下させることにより、燃料ガス供給系に配設されたインジェクタ内の水分の気化を促進させることができる。
前記インジェクタの上流側に反応ガス供給源からのガス供給を遮断する遮断弁を備え、前記水分低減手段は、前記遮断弁を閉弁した後、前記インジェクタの開弁に必要な電流(いわゆる突入電流)を弁体駆動部に継続的に通電し、前記遮断弁を開弁して前記反応ガス供給源からの反応ガスを前記インジェクタに供給した後、前記インジェクタを閉弁し、前記遮断弁を閉弁するものでもよい。
かかる構成によれば、遮断弁が閉じていることからインジェクタが開弁しても、インジェクタには反応ガスは供給されない。しかも、ソレノイドには、インジェクタの開弁に必要な電流、つまり、いわゆる開弁保持電流よりも大なる電流が継続的に通電される。したがって、インジェクタ内のガスを短時間で昇温させ得て、インジェクタ内の水分を効率的に気化することが可能となる。
この状態から遮断弁を開くと、インジェクタ内の昇温ガスは、遮断弁の上流(反応ガス供給源)から供給される反応ガスによって、少なくとも一部が気化した水分とともに当該インジェクタ外に押し出される。しかる後、インジェクタを閉弁し、遮断弁を閉弁することで、水分低減処理は完了する。
本発明の燃料電池システムは、前記燃料電池から排出された反応ガスのオフガスを当該燃料電池に戻すための循環流路と、前記循環流路に配設されたポンプと、を備え、前記水分低減手段は、前記ポンプの回転数が所定回転数以下の場合に、前記弁体の周囲の水分を低減させる処理を行うものでもよい。
かかる構成によれば、ポンプの回転数が十分に低く、インジェクタよりもガス流れ下流側の循環流路から水跳ねがない状態で、水分低減処理を行うことが可能となる。
前記水分低減手段は、前記燃料電池による発電(例えば、システム停止命令を受けた後に実施する、反応ガス消費のための発電及びガス供給系の減圧のための発電を含む。)が全て終了した後に、前記弁体の周囲の水分を低減させる処理を行うものでもよい。
かかる構成によれば、発電に伴う水の生成、発電に必要なガス供給のない状態で水分低減処理が行われるので、インジェクタ内の弁体に水分が付着することを抑制できる。
前記水分低減手段は、水分低減処理の一形態である結露抑制処理として、例えば、前記インジェクタの弁体駆動部に閉弁状態が保持される電流を所定時間通電し、その後当該通電を停止するものでもよい。
かかる構成によれば、インジェクタの弁体駆動部に開弁保持電流よりも小さな微弱電流が所定時間流れることによって、弁体駆動部が発熱してインジェクタが昇温するので、インジェクタよりも早くガス供給系配管で結露が発生することになり、インジェクタ内での結露の発生が抑制される。
前記所定時間は、外気または燃料電池の温度に応じて設定されてもよい。
かかる構成によれば、閉弁保持電流の通電時間の最適化、ひいては、結露抑制処理を含むシステム停止処理に必要な時間の短縮化を図ることが可能となる。
前記水分低減手段は、システム停止後に前記インジェクタの弁体駆動部に間欠的に通電するものでもよい。この間欠通電時における電流のオン・オフは、例えばタイマ等によって制御される。
前記水分低減手段は、前記インジェクタの弁体の周囲に結露が発生すると予測された場合に、前記インジェクタの弁体駆動部に通電するものでもよい。
かかる構成によれば、結露発生の虞がないときには無用となる結露抑制処理の実行を省略することができる一方で、システム停止時に結露抑制処理を実行したにもかかわらず、その後の環境変化等によって結露発生の虞が生じたともでも、結露発生を抑制することができる。
本発明に係る燃料電池システムの運転停止方法は、燃料電池と、この燃料電池に反応ガスを供給するためのガス供給系と、前記ガス供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、を備えた燃料電池システムの運転停止方法において、システム停止時に、少なくとも前記インジェクタの内部流路に配設された弁体の周囲の水分を低減させる工程を備えるものである。
かかる構成によれば、システム停止時にインジェクタ内の可動部である弁体の周囲の水分を低減させるので、燃料電池システムが低温環境下に曝されても、インジェクタ内で水分が凍結することによる弁体の固着が抑制される。
本発明によれば、システム停止時にインジェクタの弁体周りに存在する水分を低減させることが可能になるので、インジェクタ内の凍結による動作不良を抑制し得て、低温環境下における起動信頼性を向上させることができる。
以下、図面を参照して、本発明の実施形態に係る燃料電池システム1について説明する。本実施形態においては、本発明を燃料電池車両(移動体)の車載発電システムに適用した例について説明することとする。
まず、図1を用いて、本発明の実施形態に係る燃料電池システム1の構成について説明する。
本実施形態に係る燃料電池システム1は、図1に示すように、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池10を備えるとともに、燃料電池10に酸化ガスとしての空気を供給する酸化ガス配管系2、燃料電池10に燃料ガスとしての水素ガスを供給する水素ガス配管系3、システム全体を統合制御する制御装置4等を備えている。
燃料電池10は、反応ガスの供給を受けて発電する単電池を所要数積層して構成したスタック構造を有している。燃料電池10により発生した電力は、PCU(Power Control Unit)11に供給される。PCU11は、燃料電池10とトラクションモータ12との間に配置されるインバータやDC‐DCコンバータ等を備えている。また、燃料電池10には、発電中の電流を検出する電流センサ13が取り付けられている。
酸化ガス配管系2は、加湿器20により加湿された酸化ガス(空気)を燃料電池10に供給する空気供給流路21と、燃料電池10から排出された酸化オフガスを加湿器20に導く空気排出流路22と、加湿器20から外部に酸化オフガスを導くための排気流路23と、を備えている。空気供給流路21には、大気中の酸化ガスを取り込んで加湿器20に圧送するコンプレッサ24が設けられている。
水素ガス配管系3は、高圧(例えば、70MPa)の水素ガスを貯留した燃料供給源(反応ガス供給源)としての水素タンク30と、水素タンク30の水素ガスを燃料電池10に供給するための燃料供給流路としての水素供給流路31と、燃料電池10から排出された水素オフガス(反応ガスのオフガス)を水素供給流路31に戻すための循環流路32と、を備えている。水素ガス配管系3は、本発明におけるガス供給系の一実施形態である。
なお、水素タンク30に代えて、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、を燃料供給源として採用することもできる。また、水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。
水素供給流路31には、水素タンク30からの水素ガスの供給を遮断又は許容する遮断弁33と、水素ガスの圧力を調整するレギュレータ34と、インジェクタ35と、が設けられている。また、インジェクタ35の上流側には、水素供給流路31内の水素ガスの圧力及び温度を検出する一次側圧力センサ41及び温度センサ42が設けられている。また、インジェクタ35の下流側であって水素供給流路31と循環流路32との合流部の上流側には、水素供給流路31内の水素ガスの圧力を検出する二次側圧力センサ43が設けられている。
レギュレータ34は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置である。本実施形態においては、一次圧を減圧する機械式の減圧弁をレギュレータ34として採用している。機械式の減圧弁の構成としては、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする公知の構成を採用することができる。
本実施形態においては、図1に示すように、インジェクタ35の上流側にレギュレータ34を2個配置することにより、インジェクタ35の上流側圧力を効果的に低減させることができる。このため、インジェクタ35の機械的構造(弁体、筺体、流路、駆動装置等)の設計自由度を高めることができる。
また、インジェクタ35の上流側圧力を低減させることができるので、インジェクタ35の上流側圧力と下流側圧力との差圧の増大に起因してインジェクタ35の弁体65が移動し難くなることを抑制することができる。従って、インジェクタ35の下流側圧力の可変調圧幅を広げることができるとともに、インジェクタ35の応答性の低下を抑制することができる。
インジェクタ35は、弁体65を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧等のガス状態を調整することが可能な電磁駆動式の開閉弁である。つまり、インジェクタ35は、弁(弁体及び弁座)を電磁駆動力で直接開閉駆動するものであり、その駆動周期が高応答の領域まで制御可能であるため、高
い応答性を有する。
図3は、インジェクタ35の一実施例を示す断面図である。このインジェクタ35は、水素供給流路(燃料供給系)31の一部を構成するとともに、一方の口部51において水素供給流路31の水素タンク30側に配置され他方の口部52において水素供給流路31の燃料電池10側に配置される内部流路53が形成された金属製のシリンダ54を有しており、このシリンダ54には、口部51に繋がる第1通路部56と、この第1通路部56の口部51とは反対側に繋がる、第1通路部56よりも大径の第2通路部57と、この第2通路部57の第1通路部56とは反対側に繋がる、第2通路部57よりも大径の第3通路部58と、この第3通路部58の第2通路部57とは反対側に繋がる、第2通路部57および第3通路部58よりも小径の第4通路部59とが形成されており、これらで内部流路53が構成されている。
また、インジェクタ35は、第4通路部59の第3通路部58側の開口部を囲むように設けられたシール性部材からなる弁座61と、第2通路部57に移動可能に挿入される円筒部62および第3通路部58内に配置される第2通路部57よりも大径の傘部63を有し傘部63に斜めに連通穴64が形成された金属製の弁体65と、弁体65の円筒部62に一端側が挿入されると共に他端側が第1通路部56内に形成されたストッパ66に係止されることで弁体65を弁座61へ当接させて内部流路53を遮断するスプリング67と、弁体65をスプリング67の付勢力に抗して第3通路部58の第2通路部57側の段部68に当接するまで移動させることで弁体65を弁座61から離間させて連通穴64で内部流路53を連通させるソレノイド(弁体駆動部)69と、を有している。
本実施形態において、インジェクタ35の弁体65は、電磁駆動装置であるソレノイド69への通電制御により駆動され、このソレノイド69に給電されるパルス状励磁電流のオン・オフにより、内部流路53の開口時間(開弁時間)又は開口面積を2段階、多段階、連続的(無段階)、又はリニアに切り替えることができるようになっている。すなわち、インジェクタ35の開閉状態の制御方法としては、少なくとも、開弁時間を変更する方式と、開口面積を変更する方式とが存在する。
そして、制御装置4から出力される制御信号によって、インジェクタ35のガス噴射時間及びガス噴射時期が制御されることにより、水素ガスの流量及び圧力が高精度に制御される。
以上のとおり、インジェクタ35は、その下流に要求されるガス流量を供給するために、インジェクタ35の内部流路53に設けられた弁体65の開口面積(開度)及び開放時間の少なくとも一方を変更することにより、下流側(燃料電池10側)に供給されるガス流量(又は水素モル濃度)を調整する。
なお、インジェクタ35の弁体65の開閉によりガス流量が調整されるとともに、インジェクタ35下流に供給されるガス圧力がインジェクタ35上流のガス圧力より減圧されるため、インジェクタ35を調圧弁(減圧弁、レギュレータ)と解釈することもできる。また、本実施形態では、ガス要求に応じて所定の圧力範囲の中で要求圧力に一致するようにインジェクタ35の上流ガス圧の調圧量(減圧量)を変化させることが可能な可変調圧弁と解釈することもできる。
なお、本実施形態においては、図1に示すように、水素供給流路31と循環流路32との合流部A1より上流側にインジェクタ35を配置している。また、図1に破線で示すように、燃料供給源として複数の水素タンク30を採用する場合には、各水素タンク30から供給される水素ガスが合流する部分(水素ガス合流部A2)よりも下流側にインジェクタ35を配置するようにする。
循環流路32には、気液分離器36及び排気排水弁37を介して、排出流路38が接続されている。気液分離器36は、水素オフガスから水分を回収するものである。排気排水弁37は、制御装置4からの指令によって作動することにより、気液分離器36で回収した水分と、循環流路32内の不純物を含む水素オフガスと、を外部に排出(パージ)するものである。
また、循環流路32には、循環流路32内の水素オフガスを加圧して水素供給流路31側へ送り出す水素ポンプ39が設けられている。なお、排気排水弁37及び排出流路38を介して排出される水素オフガスは、希釈器40によって希釈されて排気流路23内の酸化オフガスと合流するようになっている。
制御装置4は、車両に設けられた加速操作装置(アクセル等)の操作量を検出し、加速要求値(例えばトラクションモータ12等の負荷装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。
なお、負荷装置とは、トラクションモータ12のほかに、燃料電池10を作動させるために必要な補機装置(例えばコンプレッサ24、水素ポンプ39、冷却ポンプのモータ等)、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等を含む電力消費装置を総称したものである。
制御装置4は、図示していないコンピュータシステムによって構成されている。かかるコンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイ等を備えるものであり、ROMに記録された各種制御プログラムをCPUが読み込んで実行することにより、各種制御動作が実現されるようになっている。
具体的には、制御装置4は、図2に示すように、燃料電池10の運転状態(電流センサ13で検出した燃料電池10の発電時の電流値)に基づいて、燃料電池10で消費される水素ガスの量(以下「水素消費量」という)を算出する(燃料消費量算出機能:B1)。本実施形態においては、燃料電池10の電流値と水素消費量との関係を表す特定の演算式を用いて、制御装置4の演算周期毎に水素消費量を算出して更新することとしている。
また、制御装置4は、燃料電池10の運転状態(電流センサ13で検出した燃料電池10の発電時の電流値)に基づいて、インジェクタ35下流位置における水素ガスの目標圧力値(燃料電池10への目標ガス供給圧)を算出する(目標圧力値算出機能:B2)。本実施形態においては、燃料電池10の電流値と目標圧力値との関係を表す特定のマップを用いて、制御装置4の演算周期毎に、二次側圧力センサ43が配置された位置(圧力調整が要求される位置である圧力調整位置)における目標圧力値を算出して更新することとしている。
また、制御装置4は、算出した目標圧力値と、二次側圧力センサ43で検出したインジェクタ35下流位置(圧力調整位置)の検出圧力値と、の偏差に基づいてフィードバック補正流量を算出する(フィードバック補正流量算出機能:B3)。フィードバック補正流量は、目標圧力値と検出圧力値との偏差を低減させるために水素消費量に加算される水素ガス流量(圧力差低減補正流量)である。本実施形態においては、PI制御等の目標追従型制御則を用いて、制御装置4の演算周期毎にフィードバック補正流量を算出して更新することとしている。
また、制御装置4は、前回算出した目標圧力値と、今回算出した目標圧力値と、の偏差に対応するフィードフォワード補正流量を算出する(フィードフォワード補正流量算出機能:B4)。フィードフォワード補正流量は、目標圧力値の変動に起因する水素ガス流量の変動分(圧力差対応補正流量)である。本実施形態においては、目標圧力値の偏差とフィードフォワード補正流量との関係を表す特定の演算式を用いて、制御装置4の演算周期毎にフィードフォワード補正流量を算出して更新することとしている。
また、制御装置4は、インジェクタ35の上流のガス状態(一次側圧力センサ41で検出した水素ガスの圧力及び温度センサ42で検出した水素ガスの温度)に基づいてインジェクタ35の上流の静的流量を算出する(静的流量算出機能:B5)。本実施形態においては、インジェクタ35の上流側の水素ガスの圧力及び温度と静的流量との関係を表す特定の演算式を用いて、制御装置4の演算周期毎に静的流量を算出して更新することとしている。
また、制御装置4は、インジェクタ35の上流のガス状態(水素ガスの圧力及び温度)及び印加電圧に基づいてインジェクタ35の無効噴射時間を算出する(無効噴射時間算出機能:B6)。ここで無効噴射時間とは、インジェクタ35が制御装置4から制御信号を受けてから実際に噴射を開始するまでに要する時間を意味する。本実施形態においては、インジェクタ35の上流側の水素ガスの圧力及び温度と印加電圧と無効噴射時間との関係を表す特定のマップを用いて、制御装置4の演算周期毎に無効噴射時間を算出して更新することとしている。
また、制御装置4は、水素消費量と、フィードバック補正流量と、フィードフォワード補正流量と、を加算することにより、インジェクタ35の噴射流量を算出する(噴射流量算出機能:B7)。そして、制御装置4は、インジェクタ35の噴射流量を静的流量で除した値にインジェクタ35の駆動周期を乗じることにより、インジェクタ35の基本噴射時間を算出するとともに、この基本噴射時間と無効噴射時間とを加算してインジェクタ35の総噴射時間を算出する(総噴射時間算出機能:B8)。
ここで、駆動周期とは、インジェクタ35の噴射孔の開閉状態を表す段状(オン・オフ)波形の周期を意味する。本実施形態においては、制御装置4により駆動周期を一定の値に設定している。
そして、制御装置4は、以上の手順を経て算出したインジェクタ35の総噴射時間を実現させるための制御信号を出力することにより、インジェクタ35のガス噴射時間及びガス噴射時期を制御して、燃料電池10に供給される水素ガスの流量及び圧力を調整する。
燃料電池システム1の通常運転時においては、水素タンク30から水素ガスが水素供給流路31を介して燃料電池10の燃料極に供給されるとともに、加湿調整された空気が空気供給流路21を介して燃料電池10の酸化極に供給されることにより、発電が行われる。この際、燃料電池10から引き出すべき電力(要求電力)が制御装置4で演算され、その発電量に応じた量の水素ガス及び空気が燃料電池10内に供給されるようになっている。本実施形態においては、このような通常運転時において燃料電池10に供給される水素ガスの圧力を高精度に制御する。
ところで、インジェクタ35は、加湿側(燃料電池10側)とドライ側(水素タンク30側)とを仕切る弁にもなっており、したがって、その凍結対策を行うことは、低温(例えば、氷点下)起動を実現する上で重要である。インジェクタ35内の水分を低減させない状態で燃料電池システム1を停止した後、次回のシステム起動時に氷点下となると、水分が凍結して弁体65が固着し、動作不良となる可能性がある。
インジェクタ35内の水分を低減させる方法としては、インジェクタ35の弁体65を開弁状態にしたまま内部流路に水素ガスを流通させ、この水素ガスにより内部流路を掃気する方法が考えられるが、この場合は水素ガスを大量に燃料電池10に供給することとなり、燃費が悪化するという課題がある。
そこで、本実施形態の燃料電池システム1においては、燃費の低下を抑えつつ、インジェクタ35内の水分を低減させるべく、システム停止時にインジェクタ35内の水分を低減させる水分低減処理(掃気処理)を行う。この水分低減処理は、制御装置4によって制御される。つまり、本実施形態の制御装置4は、インジェクタ35の通電制御、遮断弁33の開閉制御等を行う水分低減手段の一実施形態である。
通常運転時においては、水素タンク30から供給される水素ガスによってインジェクタ35は冷却されているが、水素ガスの流れが停止している状態では、ソレノイド69の発熱によってインジェクタ35内の水素ガスは加熱される。そこで、制御装置4は、イグニッションOFF等のシステム停止命令を受けた時(システム停止時)に、インジェクタ35のソレノイド69に閉弁状態が保持される閉弁保持電流を通電する。
通電によりソレノイド69が発熱すると、インジェクタ35内に滞留している水素ガスは、発熱したソレノイド69によって昇温する。これにより、少なくとも弁体65の周囲に存在する水分の一部は気化する。次いで、制御装置4は、前記閉弁状態を解除してインジェクタ35を開弁させると共にこの開弁状態を保持する電流をソレノイド69に継続的に通電し、インジェクタ35を開弁する。
すると、水素タンク30から供給される水素ガスと共に、弁体65の周囲に存在する、前記昇温した水素ガスによって一部が気化した水分が、インジェクタ35から排出される。さらに、昇温した水素ガスによって、弁体65を内包するインジェクタ35およびその下流側配管の温度が上昇するので、以後の水分結露も抑制される。
以上のように、本実施形態の燃料電池システム1によれば、弁体65の周囲に存在する水分を少ない水素ガスで効率良く気化排出して低減させることが可能となる。すなわち、燃費の低下を抑えつつ、インジェクタ35内の水分を低減させることができる。したがって、次回低温始動時の凍結によるインジェクタ35の動作不良を抑制し得て、低温環境下における起動信頼性を向上することができる。
また、本実施形態の燃料電池システム1によれば、燃料電池10の運転状態(発電時の電流値)に応じてインジェクタ35の作動状態(噴射時間)を設定することができる。従って、燃料電池10の運転状態に応じて水素ガスの供給圧力を適切に変化させることができ、応答性を向上させることが可能となる。また、水素ガスの流量調整弁及び可変調圧弁としてインジェクタ35を採用しているため、高精度な調圧(燃料電池10への水素ガスの供給圧力の調整)が可能となる。
すなわち、インジェクタ35は、燃料電池10の運転状態に応じた制御装置4からの制御信号を受けて、水素ガスの噴射時間や噴射時期を調整することができるため、従来の機械式の可変調圧弁よりも迅速かつ精確に圧力調整を行うことができる。また、インジェクタ35は、従来の機械式の可変調圧弁と比較すると小型・軽量であり低廉でもあるため、システム全体の小型化及び低廉化を実現させることができる。
上記した実施形態は、本発明を説明するための例示であり、本発明をこれに限定するものではなく、その要旨を逸脱しない限り、各種構成部品を適宜設計することができる。また、後述する他の実施形態を適宜組み合わせて適用してもよい。
例えば、上記水分低減処理において、制御装置4は、インジェクタ35の開弁前に燃料極側の圧力を低下させる制御を行ってもよい。具体的には、制御装置4は、インジェクタ35の閉弁後に燃料極側の圧力を、例えば水素ガス供給を遮断した状態で燃料電池10を発電させる等して所定の目標圧力よりも低下させる。
すなわち、図4に示すように、最終的なシステム停止後の目標圧力(符号a)よりも低い圧力となるように、水素ガス供給を絶った状態で燃料電池10に発電させて、水素供給流路31の圧力を低下させておく(符号b)。かかる圧力低下処理中は、上記のようにインジェクタ35の閉弁状態が保持される(解除されない)程度にソレノイド69に通電し、インジェクタ35内の水素ガスを昇温させる(符号c)。
しかる後、符号dのようにインジェクタ35が開弁するのに必要な突入電流をソレノイド69に通電すると、水素タンク30からの水素ガスがインジェクタ35内に流入して弁体65の周囲に存在する水分が吹き飛ばされると共に、符号eに示したように、燃料極側の圧力は上昇して目標圧力(符号a)となる。
このように、本実施形態によれば、燃料電池10の燃料極側の圧力を低下させることにより、水素供給流路31に配設されたインジェクタ35内の水分の気化が促進される。また、システム終了後の目標圧力の制御を排気排水弁37による場合よりも高精度で行うことが可能となる。
すなわち、排気排水弁37による圧力制御は、制御流体が気液混合であるため、精度の向上に限界がある。また、制御圧力が低いために弁径を大きくせざるを得ず、応答性の向上に不利である。これに対し、本実施形態のようにインジェクタ35を用いた圧力制御によれば、システム停止後の目標圧力への圧力制御を高精度に行える。よって、システム停止中における水素ガスの酸素極側へのクロスリーク量が減り、燃費の向上を図ることができる。
また、制御装置4は、水分低減処理として、遮断弁33を閉弁した後、インジェクタ35の開弁に必要な突入電流(突入電流>開弁保持電流)をソレノイド69に継続的に通電し、遮断弁33を開弁して継続通電により水素タンク30からの水素ガスをインジェクタ35に供給した後、インジェクタ35を閉弁し、遮断弁33を閉弁するようにしてもよい。
インジェクタ35の開弁後は、開弁に必要な突入電流よりも小なる開弁保持電流に切替えて通電するのが一般的なソレノイド69の通電制御であるが、本実施形態では、インジェクタ35の開弁後も引き続き開弁保持電流よりも大なる突入電流を継続して通電しているので、インジェクタ35内の水素ガスをより短時間で昇温させること、あるいは同一の昇温時間であればより高温に昇温させることが可能であり、より効率的な水分低減処理が実現される。
また、制御装置4は、水素ポンプ39の回転数が所定回転数以下の場合に限定して、上述の各水分低減処理を行うようにしてもよい。例えば、水素ポンプ39とインジェクタ35との間の配管距離が短い場合には、循環流路32から跳ね返った水分が上流側に位置するインジェクタ35の弁体65に付着する虞があるが、水素ポンプ39の回転数を下げると、下流側からの水跳ねがない状態となり、インジェクタ35の弁体65に対する水分の付着を抑制することができる。
また、制御装置4は、燃料電池10による発電(例えば、システム停止命令を受けた後に実施する、水素ガス消費のための発電および水素ガス配管系3の減圧のための発電を含む。)が全て終了した後に、上述の水分低減処理を行うようにしてもよい。かかる構成によれば、発電に伴う水の生成、発電に必要なガス供給のない状態で水分低減処理が行われるので、インジェクタ35内の弁体65に水が付着することを、より一層効果的に抑制することが可能となる。
ところで、インジェクタ35は、水素供給流路31や循環流路33の各配管(以下、水素系配管)に比べると熱容量が極めて小さいために、システム停止後における当該インジェクタ35の温度低下勾配は、水素系配管のそれよりも大きい。つまり、インジェクタ35は、水素系配管よりも冷えやすく、システム停止後は水素系配管よりも先に結露が発生してしまう。
そこで、制御装置4は、本発明に係る水分低減処理の一形態である結露抑制処理として、図5に示すように、イグニッションOFF等のシステム停止命令を受けた時に、インジェクタ35のソレノイド69に閉弁状態が保持される閉弁保持電流、言い換えれば、通常動作時における開弁保持電流よりも小さい電流を所定時間通電し、その後当該通電を停止してもよい。
かかる場合には、インジェクタ35のソレノイド69に開弁保持電流よりも小さな微弱電流を所定時間流すことにより、ソレノイド69が発熱してインジェクタ35が昇温するので、インジェクタ35よりも早く水素系配管側で結露が発生することになり、インジェクタ35内での結露の発生が抑制される。よって、氷点下においても、凍結によるインジェクタ35の動作不良は抑制される。
なお、閉弁保持電流の通電時間(所定時間)は、予め設定されている固定的な時間でもよいし、外気温または燃料電池10の温度(あるいは、燃料電池10を温調するための冷媒の温度)に応じて任意に設定される変動的な時間でもよい。後者の場合には、閉弁保持電流の通電時間の最適化、ひいては、上記の結露抑制処理を含むシステム停止処理に必要な時間の短縮化を図ることが可能となる。
また、上記の結露抑制処理は、システム停止時に実行することに代えて或いは加えて、システム停止後に実行してもよい。結露抑制処理をシステム停止後に実行する場合は、例えば図6に示すように、制御装置4は、システム停止後にインジェクタ35のソレノイド69に閉弁保持電流を間欠的に通電する。この間欠通電時における電流のオン・オフは、例えばタイマ等によって制御される。
また、制御装置4は、上記の結露抑制処理、つまり、システム停止時又はシステム停止後におけるインジェクタ35のソレノイド69への通電を、インジェクタ35の弁体の周囲に結露が発生すると予測された場合に実行してもよい。
かかる場合には、結露発生の虞がないときには無用となる結露抑制処理の実行を省略することができる一方で、システム停止時に結露抑制処理を実行したにもかかわらず、その後の環境変化等によって結露発生の虞が生じたともでも、結露発生を抑制することができる。
ここで、インジェクタ35内における結露発生の虞は、例えば、外気温、インジェクタ35の温度、燃料電池10の温度、水素系配管の温度、及びインジェクタ35の駆動ドライバに設けられている電流センサの値から求められるインジェクタ35の抵抗値等に代表されるパラメータのうち、少なくとも1つのパラメータを用いて判断することが可能である。
なお、以上の実施形態においては、燃料電池システム1の水素ガス配管系3に循環流路32を設けた例を示したが、例えば、図7に示すように、燃料電池10に排出流路38を直接接続して循環流路32を廃止することもできる。また、循環流路32に水素ポンプ39を設置することに代えて、エジェクタを設置してもよい。
また、以上の各実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した例を示したが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)に本発明に係る燃料電池システムを搭載することもできる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用してもよい。
本発明の実施形態に係る燃料電池システムの構成図である。 図1に示した燃料電池システムの制御装置の制御態様を説明するための制御ブロック図である。 図1に示した燃料電池システムに用いられるインジェクタの縦断面図である。 図1に示した燃料電池システムの他の実施形態において、インジェクタへの通電電流と燃料極側の圧力との関係を示した図である。 図1に示した燃料電池システムの他の実施形態において、インジェクタへの通電電流とシステム起動・停止信号との関係を示した図である。 図1に示した燃料電池システムの他の実施形態において、インジェクタへの通電電流とシステム停止後の経過時間との関係を示した図である。 図1に示した燃料電池システムの更に他の実施形態を示す構成図である。
符号の説明
1…燃料電池システム、3…水素ガス配管系(ガス供給系、燃料ガス供給系)、4…制御装置(水分低減手段)、10…燃料電池、30…水素タンク(反応ガス供給源)、31…水素供給流路、32…循環流路、33…遮断弁、35…インジェクタ、39…水素ポンプ(ポンプ)、53…内部流路、65…弁体、69…ソレノイド(弁体駆動部)

Claims (11)

  1. 燃料電池と、この燃料電池に反応ガスを供給するためのガス供給系と、このガス供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、を備えた燃料電池システムにおいて、
    前記インジェクタは、その上流側と下流側とを連通する内部流路と、該内部流路内を移動可能に配置されその流路の開閉状態を変更する弁体と、通電により前記弁体を駆動する弁体駆動部とを備えてなり、
    システム停止時又はシステム停止後に、少なくとも前記インジェクタの弁体の周囲の水分を前記弁体駆動部への通電制御により低減させる水分低減手段を備え
    前記水分低減手段は、前記インジェクタの弁体駆動部に閉弁状態が保持される電流を通電し、前記反応ガスを昇温させた後、前記インジェクタを開弁する燃料電池システム。
  2. 前記インジェクタは、前記燃料電池の燃料極側に連通する燃料ガス供給系に配設されたものであり、
    前記水分低減手段は、前記インジェクタを開弁する前に、前記燃料電池の燃料極側の圧力をシステム停止後の目標圧力よりも低下させる請求項1に記載の燃料電池システム。
  3. 燃料電池と、この燃料電池に反応ガスを供給するためのガス供給系と、このガス供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、前記インジェクタの上流側に反応ガス供給源からのガス供給を遮断する遮断弁とを備え、前記インジェクタが、その上流側と下流側とを連通する内部流路と、該内部流路内を移動可能に配置されその流路の開閉状態を変更する弁体と、を備えてなる燃料電池システムにおいて、
    システム停止時又はシステム停止後に、少なくとも前記インジェクタの弁体の周囲の水分を低減させる水分低減手段を備え、
    前記水分低減手段は、前記遮断弁を閉弁した後、前記インジェクタの開弁に必要な電流を弁体駆動部に継続的に通電し、前記遮断弁を開弁して前記反応ガス供給源からの反応ガスを前記インジェクタに供給した後、前記インジェクタを閉弁し、前記遮断弁を閉弁する燃料電池システム。
  4. 前記燃料電池から排出された反応ガスのオフガスを当該燃料電池に戻すための循環流路と、前記循環流路に配設されたポンプと、を備え、
    前記水分低減手段は、前記ポンプの回転数が所定回転数以下の場合に、前記弁体の周囲の水分を低減させる処理を行う請求項1乃至のいずれかに記載の燃料電池システム。
  5. 前記水分低減手段は、前記燃料電池による発電が全て終了した後に、前記弁体の周囲の水分を低減させる処理を行う請求項1乃至のいずれかに記載の燃料電池システム。
  6. 前記水分低減手段は、前記インジェクタの弁体駆動部に閉弁状態が保持される電流を所定時間通電し、その後当該通電を停止する請求項に記載の燃料電池システム。
  7. 前記所定時間は、外気または燃料電池の温度に応じて設定される請求項に記載の燃料電池システム。
  8. 前記水分低減手段は、システム停止後に前記インジェクタの弁体駆動部に間欠的に通電する請求項に記載の燃料電池システム。
  9. 前記水分低減手段は、前記インジェクタの弁体の周囲に結露が発生すると予測された場合に、前記インジェクタの弁体駆動部に通電する請求項に記載の燃料電池システム。
  10. 燃料電池と、この燃料電池に反応ガスを供給するためのガス供給系と、前記ガス供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、を備えた燃料電池システムの運転停止方法において、
    システム停止時に、前記インジェクタの弁体駆動部に閉弁状態が保持される電流を通電し、前記反応ガスを昇温させた後、前記インジェクタを開弁する工程を備える燃料電池システムの運転停止方法。
  11. 燃料電池と、この燃料電池に反応ガスを供給するためのガス供給系と、このガス供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、前記インジェクタの上流側に反応ガス供給源からのガス供給を遮断する遮断弁とを備えてなる燃料電池システムの運転停止方法において、
    システム停止時に、前記遮断弁を閉弁した後、前記インジェクタの開弁に必要な電流を当該インジェクタの弁体駆動部に継続的に通電し、前記遮断弁を開弁して前記反応ガス供給源からの反応ガスを前記インジェクタに供給した後、前記インジェクタを閉弁し、前記遮断弁を閉弁する工程を備える燃料電池システムの運転停止方法。
JP2006243179A 2006-01-06 2006-09-07 燃料電池システムとその運転停止方法 Expired - Fee Related JP5152616B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006243179A JP5152616B2 (ja) 2006-01-06 2006-09-07 燃料電池システムとその運転停止方法
US12/084,574 US8178247B2 (en) 2006-01-06 2006-12-21 Fuel cell system and its operation stop method
PCT/JP2006/326166 WO2007077904A1 (ja) 2006-01-06 2006-12-21 燃料電池システムとその運転停止方法
DE112006003142.2T DE112006003142B4 (de) 2006-01-06 2006-12-21 Brennstoffzellsystem und dessen Betriebsunterbrechungsverfahren
CN2006800506411A CN101356680B (zh) 2006-01-06 2006-12-21 燃料电池系统及其运行停止方法
KR1020087016315A KR100996695B1 (ko) 2006-01-06 2006-12-21 연료 전지 시스템 및 그 작동 정지 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006001858 2006-01-06
JP2006001858 2006-01-06
JP2006243179A JP5152616B2 (ja) 2006-01-06 2006-09-07 燃料電池システムとその運転停止方法

Publications (2)

Publication Number Publication Date
JP2007207745A JP2007207745A (ja) 2007-08-16
JP5152616B2 true JP5152616B2 (ja) 2013-02-27

Family

ID=38228254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243179A Expired - Fee Related JP5152616B2 (ja) 2006-01-06 2006-09-07 燃料電池システムとその運転停止方法

Country Status (4)

Country Link
JP (1) JP5152616B2 (ja)
KR (1) KR100996695B1 (ja)
DE (1) DE112006003142B4 (ja)
WO (1) WO2007077904A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882972B2 (ja) 2007-11-16 2012-02-22 トヨタ自動車株式会社 燃料電池システム
JP4363482B2 (ja) * 2007-11-20 2009-11-11 トヨタ自動車株式会社 燃料電池システム
JP5170529B2 (ja) * 2007-11-26 2013-03-27 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP5228263B2 (ja) * 2011-08-26 2013-07-03 トヨタ自動車株式会社 燃料電池システム
JP6565860B2 (ja) 2016-10-17 2019-08-28 トヨタ自動車株式会社 燃料電池システム
JP6783188B2 (ja) * 2017-05-25 2020-11-11 愛三工業株式会社 燃料電池システム
JP7042134B2 (ja) * 2018-03-29 2022-03-25 東京エレクトロン株式会社 基板処理システム及びガスの流量を求める方法
KR102518716B1 (ko) * 2018-07-16 2023-04-05 현대자동차주식회사 가스 공급 제어용 솔레노이드 밸브
CN109950578B (zh) * 2019-03-26 2021-09-14 浙江吉利汽车研究院有限公司 一种冷启动系统及其控制方法
DE102021203378A1 (de) * 2021-04-06 2022-10-06 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem und Ventil für ein Brennstoffzellensystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980410B2 (ja) * 1991-06-24 1999-11-22 株式会社デンソー 燃料噴射装置
JPH06275300A (ja) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 燃料電池システム
JP2865193B2 (ja) * 1994-09-20 1999-03-08 本田技研工業株式会社 燃料供給制御装置
US6161783A (en) * 1999-09-17 2000-12-19 Impco Technologies, Inc. Gaseous fuel injector
JP3820992B2 (ja) * 2002-01-08 2006-09-13 日産自動車株式会社 燃料電池システム
JP4595304B2 (ja) 2002-09-27 2010-12-08 株式会社エクォス・リサーチ 燃料電池システム
JP4654569B2 (ja) * 2003-06-23 2011-03-23 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
JP2005276764A (ja) * 2004-03-26 2005-10-06 Toyota Motor Corp 燃料電池システム
JP4887603B2 (ja) * 2004-05-14 2012-02-29 トヨタ自動車株式会社 燃料電池システム
JP4379205B2 (ja) * 2004-05-27 2009-12-09 トヨタ自動車株式会社 電磁弁制御装置
JP4642432B2 (ja) * 2004-10-27 2011-03-02 本田技研工業株式会社 燃料電池システム

Also Published As

Publication number Publication date
KR100996695B1 (ko) 2010-11-25
DE112006003142B4 (de) 2017-02-02
KR20080073784A (ko) 2008-08-11
WO2007077904A1 (ja) 2007-07-12
JP2007207745A (ja) 2007-08-16
DE112006003142T5 (de) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5152616B2 (ja) 燃料電池システムとその運転停止方法
JP5041272B2 (ja) 燃料電池システム及び移動体
JP5120590B2 (ja) 燃料電池システム及びインジェクタの診断方法
US8178247B2 (en) Fuel cell system and its operation stop method
JP4883360B2 (ja) 燃料電池システム
JP2007165186A (ja) 燃料電池システム及び移動体
JP4359856B2 (ja) 燃料電池システム及び移動体
JP2009123661A (ja) 燃料電池システム
JP2007280771A (ja) 燃料電池システム
JP2007317597A (ja) 燃料電池システム及び開閉弁の診断方法
JP2009123592A (ja) 燃料電池システム
JP5168821B2 (ja) 燃料電池システム
JP5224080B2 (ja) 燃料電池システムとオフガスパージ方法
JP2009021025A (ja) 燃料電池システム及び移動体
JP5057203B2 (ja) 燃料電池システム及び移動体
JP2007323873A (ja) 燃料電池システム及びその制御方法
JP2009104955A (ja) 燃料電池システム及びその制御方法
JP2008112702A (ja) 燃料電池システム
JP5045041B2 (ja) 燃料電池システム
JP2007184170A (ja) 燃料電池システムとその停止方法
WO2007069484A1 (ja) 燃料電池システム及び移動体
JP2008004320A (ja) 燃料電池システム及び移動体
JP5115685B2 (ja) 燃料電池システムとその運転停止方法
JP4863052B2 (ja) 燃料電池システム及び移動体
JP2008053151A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees