[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6403909B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6403909B2
JP6403909B2 JP2017563478A JP2017563478A JP6403909B2 JP 6403909 B2 JP6403909 B2 JP 6403909B2 JP 2017563478 A JP2017563478 A JP 2017563478A JP 2017563478 A JP2017563478 A JP 2017563478A JP 6403909 B2 JP6403909 B2 JP 6403909B2
Authority
JP
Japan
Prior art keywords
power supply
drive signal
short
time
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017563478A
Other languages
English (en)
Other versions
JPWO2017130357A1 (ja
Inventor
友美 望月
友美 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017130357A1 publication Critical patent/JPWO2017130357A1/ja
Application granted granted Critical
Publication of JP6403909B2 publication Critical patent/JP6403909B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/062Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from DC input or output
    • H02M1/143Arrangements for reducing ripples from DC input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Description

本発明は、交流電力を直流電力に変換する電力変換装置に関する。
下記特許文献1に示される直流電源装置は、スイッチ手段を電源半周期中に1回のみ短絡させることによってリアクタに電流を流し、高調波電流を抑制し力率を改善する構成である。ただし、スイッチ手段を電源半周期中に1回のみ短絡させる場合、高調波を抑制するためにはリアクタのインダクタンス値を大きくする必要があるとともに、インダクタンス値が大きくなるとリアクタでの発熱が大きくなる。これは、入力電流をスイッチ手段の動作によって流した後、入力電流がゼロになると、力率が悪化するだけでなく、かえって高次成分の高調波量が通常よりも大きくなるためである。また、1回のみの短絡では、入力電流がゼロにならないようにするため、リアクタに大きなエネルギーを蓄える必要があるからである。
下記特許文献2の従来技術では、スイッチ手段を電源半周期に2回以上短絡させることにより、リアクタのインダクタンス値を小さくし、かつ、発熱を低下させることが可能になる。さらに、インダクタンス値が小さくなると、リアクタの外形も小さくなるので、リアクタの小型化が可能となる。
特許第2763479号公報 特許第3485047号公報
上記特許文献1,2に代表される従来技術では、力率、損失、高調波、騒音、または設計負荷といった要因を考慮すると、スイッチ手段の電源半周期におけるスイッチング回数が負荷条件によって異なる。そのため、これらの要因を考慮した場合、スイッチング回数を運転中に切り替える必要があるが、スイッチング回数の切替時に短絡時間を変化させても電源電圧のゼロ点からスイッチング開始までの遅延時間を適切に制御しないと直流電圧が急激に変化してしまい、直流電圧制御の不安定化、過電圧または電圧不足といった保護により運転が停止し、直流電圧を用いた負荷に対して悪影響を与えてしまう場合がある。
本発明は、上記に鑑みてなされたものであって、交流電源を短絡する短絡部のスイッチング回数を負荷に対応して変化させる場合でも直流電圧の変動を抑制することができる電力変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するため、本発明に係る電力変換装置は、交流電源からの交流電力を直流電力に変換する整流器、リアクタを介して交流電源を短絡する短絡部および短絡部の短絡動作を制御する制御部を備える。制御部は、負荷条件に基づいて交流電源出力波形の半周期中における短絡動作の回数を変化させ、かつ、短絡動作の回数を変化させた後の交流電源出力波形のゼロクロス点から短絡までの遅延時間を、短絡動作の回数を変化させる前の交流電源出力波形のゼロクロス点から短絡までの遅延時間と異ならせる。
本発明によれば、交流電源を短絡する短絡部のスイッチング回数を負荷に対応して変化させる場合でも直流電圧の変動を抑制することができる、という効果を奏する。
実施の形態1,2における電力変換装置の構成例を示す図 リアクタ、短絡部、整流回路、および平滑コンデンサから成る簡易回路を示す図 交流電源の正極側半周期に短絡素子を1回短絡したときの電源電流の波形を示す図 電源半周期中のスイッチング回数が1回から2回に増加し、遅延時間は変化しない場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が1回から2回に増加し、遅延時間が変化する場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が2回から1回に減少し、遅延時間は変化しない場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が2回から1回に減少し、遅延時間が変化する場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が1回から2回に増加し、遅延時間と通電時間が変化する場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が1回から2回に増加し、遅延時間と通電時間が変化する場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が2回から1回に減少し、遅延時間と通電時間が変化する場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が2回から1回に減少し、遅延時間と通電時間が変化する場合に検出される直流電圧の変動を示す図 電源半周期中のスイッチング回数が2回から1回に減少し、遅延時間が変化する場合に検出される直流電圧の変動と電源電流の変化を示す図 電源半周期中のスイッチング回数が2回から1回に減少し、遅延時間が変化する場合に検出される直流電圧の変動と電源電流の変化を示す図 実施の形態3における電力変換装置の構成例を示す図 パルス制御用基準電圧生成回路の第1の構成図 パルス制御用基準電圧生成回路の第2の構成図 第2のパルス分割部の構成例を示す図 正極側半周期および負極側半周期に駆動信号を複数のパルスに分割したときの電源電流の波形を示す図 電源半周期中に短絡部を1回スイッチングする駆動信号を示す図 電源半周期中に短絡部を複数回スイッチングする駆動信号を示す図 第1のパルス分割部に利用するデータの作成手順を示すフローチャート 駆動信号生成部で生成される駆動信号のオン時間と、パルス分割部で生成される駆動信号のオン時間と、パルス分割部で生成される駆動信号のオフ時間とを示す図 電源半周期中に生成されるN個の駆動信号のオンデューティの経時的変化を表す図 電源半周期中に生成されるN個の駆動信号のオフデューティの経時的変化を表す図 本実施の形態における制御部のハードウェア構成を示すブロック図
以下に、本発明の実施の形態に係る電力変換装置を図面に基づいて詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1および後述する実施の形態2における電力変換装置100の構成例を示す図である。電力変換装置100は、図1に示すように、電源部である交流電源1からの交流電力を直流電力に変換する整流器3と、交流電源1と整流器3との間に接続されたリアクタ2と、交流電源1の電源電圧Vsを検出する電源電圧検出部7と、リアクタ2に流れる電源電流Isを検出する電流検出手段10と、リアクタ2を介して交流電源1を短絡する短絡部30と、交流電源1の半周期中に1回または複数回のスイッチングパルスである駆動信号Saを生成し、生成した駆動信号Saで短絡部30の開閉動作を制御する制御部20を有する。
リアクタ2は、短絡部30よりも交流電源1側に接続され、図示例では整流器3の一方の入力端と交流電源1との間に挿入されている。また、電流検出手段10は、リアクタ2と整流器3との間に配される電流検出素子9と、電流検出素子9に流れる電流を検出する電流検出部8とを有して構成される。電流検出部8としては、増幅器またはレベルシフト回路が例示される。電流検出素子9としては、カレントトランスまたはシャント抵抗が例示される。
整流器3は、4つのダイオードを組み合わせたダイオードブリッジで構成された整流回路4と、整流回路4の出力端子間に接続され、整流回路4から出力される全波整流波形の電圧を平滑化する平滑コンデンサ5と、を有して構成される。
双方向スイッチである短絡部30は、リアクタ2を介して交流電源1に並列に接続されたダイオードブリッジ31と、ダイオードブリッジ31の両出力端に接続された短絡素子32と、を有して構成される。短絡素子32が金属酸化膜半導体電界効果トランジスタである場合、短絡素子32のゲートは制御部20の駆動信号波形生成部50に接続され、駆動信号波形生成部50からの駆動信号Saによって短絡素子32がオンオフする構成である。短絡素子32がオンされたとき、リアクタ2およびダイオードブリッジ31を介して交流電源1が短絡する。
制御部20は、マイクロコンピュータで構成され、直流電圧Vdcおよび電源電圧Vsに基づいて短絡素子32を制御するためのスイッチングパルスである駆動信号Saを生成する駆動信号波形生成部50を有する。
駆動信号波形生成部50では、短絡動作モードの電流オープンループ制御にて、短絡部30を電源半周期中に1回または複数回オンオフ動作させている。以下、幾つかの図面を参照して、短絡部30の動作を説明する。
図2は、リアクタ2、短絡部30、整流回路4、および平滑コンデンサ5から成る簡易回路を示す図である。図2には、短絡部30のオンまたはオフ時における電流経路が示されている。
図3は、交流電源1の正極側半周期に短絡素子32を1回短絡したときの要部波形を示す図である。図3には、上段側から、正極側の電源半周期における電源電圧Vsの波形と、リアクタ2に流れる電源電流Isの波形と短絡部30を1回短絡したときのシングルパルスである駆動信号Saの波形とが示されている。
Tdlは、電源電圧Vsが上昇する際のゼロクロス点T0から一定時間が経過した時点で駆動信号Saがオンになるまでの遅延時間を表す。Tonは、電源電圧の正極側半周期内に生成される駆動信号Saのオン時間である。Tは、駆動信号Saがオンになってからオフになるまでの期間を表す。なお、図示例では、駆動信号Saのパルス数が1つであるため、オン時間Tonと期間Tは同一幅である。
遅延時間Tdlが経過した時点で駆動信号Saがオンになることで短絡部30がオンされる。このとき、交流電源1、リアクタ2、および短絡部30により閉回路が形成され、交流電源1がリアクタ2を介して短絡される。そのため閉回路に電源電流Isが流れ、リアクタ2には磁気エネルギーが蓄積される。蓄積されたエネルギーは、短絡部30がオフされると同時に負荷11側に放出され、整流回路4で整流され、平滑コンデンサ5に転送される。この一連の動作により、図2に示すような経路で電源電流Isが流れる。これにより、力率改善無しのパッシブモードよりも電源電流Isの通電角を広げることができ、力率を改善できる。
短絡動作モードでは、短絡部30の遅延時間Tdl、オン時間Tonの幅を制御することで、リアクタ2に蓄積するエネルギーを制御でき、直流電圧Vdcを特定の値まで無段階で昇圧させることができる。
図3では短絡部30を電源半周期中に1回スイッチングする例を示したが、負荷条件によっては、力率改善、高調波抑制、または直流電圧の昇圧を目的として、スイッチング回数を増加させる場合がある。なお、スイッチングとは短絡部30の短絡動作を示し、スイッチング回数とは短絡部30の短絡動作の回数を示す。また、負荷条件とは、負荷の動作が軽いか重いかの観点によって決まる定性的または定量的な条件である。負荷条件を定性的に表現する場合、例えば負荷を所望に動作させるときのトルク電流が相対的に小さいときを軽負荷、負荷を所望に動作させるときのトルク電流が相対的に大きいときを重負荷と称することが一般的である。
図4は、電源半周期中のスイッチング回数が1回から2回に増加したときに検出される直流電圧Vdcの変動を示す第1の図である。
図4には、一例として2周期分の電源電圧Vsの波形と、直流電圧検出部6で検出される直流電圧Vdcの波形と、電流検出手段10で検出されたリアクタ2に流れる電源電流Isの波形と、駆動信号Saの波形とが示されている。なお、図4の動作例では、電源電圧の1周期目と2周期目の間でスイッチング回数を切り替えており、直流電圧Vdcの値は、電源電圧の1周期目における平均値と電源電圧の2周期目における平均値を表している。
電源電圧の1周期目の正極側半周期と負極側半周期におけるスイッチング回数は、各々1回である。一方、電源電圧の2周期目の正極側半周期と負極側半周期におけるスイッチング回数は各々2回である。
Ton1は、電源電圧の1周期目の正極側および負極側の半周期内に生成される駆動信号Saのオン時間である。T1は、当該駆動信号Saがオンになってからオフになるまでの期間である。オン時間Ton1と期間T1は同一幅である。そしてTdl1は、電源電圧の1周期目の電源電圧Vsのゼロクロス点から駆動信号Saがオンになるまでの遅延時間である。
Ton21は、電源電圧の2周期目の正極側および負極側に生成される2つの駆動信号Saのうち、1つ目の駆動信号Saのオン時間であり、Ton22は、2つ目の駆動信号Saのオン時間である。また、Toffは、1つ目の駆動信号Saがオフになってから2つ目の駆動信号Saがオンになるまでの短絡部30の解放期間である。T2は、1つ目の駆動信号Saがオンになってからオフになるまでの時間と、1つ目の駆動信号Saがオフになってから2つ目の駆動信号Saがオンになるまでの時間と、2つ目の駆動信号Saがオンになってからオフになるまでの時間を足し合わせたものである。すなわち期間T2は、オン時間Ton21と、オフ時間Toffと、オン時間Ton22とを足し合わせた時間に等しい。そしてTdl2は、電源電圧2周期目の電源電圧Vsのゼロクロス点から1つ目の駆動信号Saがオンになるまでの遅延時間である。
図4の動作例では、期間T1と期間T2とが等しく、遅延時間Tdl1と遅延時間Tdl2とが等しいものとする。期間T1と期間T2とが等しい場合、オン時間Ton21とオン時間Ton22とを足し合わせた時間は、オン時間Ton1よりも相対的に小さくなる。
直流電圧Vdcに着目すると、スイッチング回数を切り替えた際、直流電圧Vdcが低下していることがわかる。これは、期間T1と期間T2とが等しく、遅延時間Tdl1と遅延時間Tdl2とが変化しない条件下において、期間T2ではスイッチングが2回行われており、オン時間Ton21とオン時間Ton22とを足し合わせた時間がTon1よりも小さくなり、スイッチング回数が増加した後の直流電圧Vdcは、スイッチング回数が増加する前の直流電圧Vdcよりも低下してしまう。
図5は、電源半周期中のスイッチング回数が1回から2回に増加したときに検出される直流電圧Vdcの変動を示す第2の図である。図5では、スイッチング回数が増加する前後の直流電圧の変動が小さく、等しい値となっている。直流電圧Vdcの変動が小さい理由は、期間T1と期間T2とが同じでも、遅延時間をTdl1からTdl2に大きくしているためである。スイッチングの期間が同じ場合、電源電圧Vsの大きいポイント、すなわち電源電圧のピークにより近い側でスイッチングを行うことで直流電圧の昇圧率を上げることができる。
図4および図5では、スイッチング回数が1回から2回に増加させた例を説明したが、スイッチング回数はこれに限定されるものではない。すなわち、電源半周期中に生成される駆動信号Saは、スイッチング回数を切り替えた後の数が切り替える前の数よりも多ければよい。
図6は、電源半周期中のスイッチング回数が2回から1回に減少したときに検出される直流電圧Vdcの変動を示す第1の図である。
図6では、図4および図5と同様に、2周期分の電源電圧Vsと駆動信号Saの波形を示すと共に、電源電圧の1周期目と2周期目の間のタイミングでスイッチング回数が2回から1回に変化したときにおける直流電圧Vdcと電源電流Isの波形の変化の様子を示している。
図6において、電源電圧の1周期目の正極側半周期と負極側半周期におけるスイッチング回数は、各々2回である。一方、電源電圧の2周期目の正極側半周期と負極側半周期におけるスイッチング回数は各々1回である。
Ton11は、電源電圧の1周期目の正極側半周期内に生成される2つの駆動信号Saの内、1つ目の駆動信号Saのオン時間であり、Ton12は2つ目の駆動信号Saのオン時間である。また、Toffは、1つ目の駆動信号Saがオフになってから2つ目の駆動信号Saがオンになるまでのオフ時間である。T1は、1つ目の駆動信号Saがオンになってから2つ目の駆動信号Saがオフになるまでの期間である。詳細には、期間T1は、1つ目の駆動信号Saがオンになってからオフになるまでの時間と、1つ目の駆動信号Saがオフになってから2つ目の駆動信号Saがオンになるまでの時間と、2つ目の駆動信号Saがオンになってからオフになるまでの時間とを足し合わせたものである。すなわち期間T1は、オン時間Ton11と、オフ時間Toffと、オン時間Ton12とを足し合わせたものに等しい。そしてTdl1は、電源電圧1周期目の電源電圧Vsのゼロクロス点から1つ目の駆動信号Saがオンになるまでの遅延時間である。
Ton2は、電源電圧の2周期目の正極側半周期内に生成される駆動信号Saのオン時間である。T2は、当該駆動信号Saがオンになってからオフになるまでの期間である。オン時間Ton2と期間T2は、同一幅である。そしてTdl2は、電源電圧の2周期目の電源電圧Vsのゼロクロス点から駆動信号Saがオンになるまでの遅延時間である。
図6の動作例では、期間T1と期間T2とが等しく、遅延時間Tdl1と遅延時間Tdl2とが等しいものとする。期間T1と期間T2とが等しい場合、オン時間Ton2は、オン時間Ton11とオン時間Ton12とを足し合わせた時間よりも相対的に大きい。
直流電圧Vdcに着目すると、スイッチング回数を切り替えた際、直流電圧Vdcが上昇していることがわかる。詳細には、期間T2と期間T1が等しく、遅延時間Tdl1と遅延時間Tdl2が変化しない条件下において、期間T1ではスイッチングが2回行われているため、オン時間Ton11とオン時間Ton12とを足し合わせた時間がオン時間Ton2よりも小さくなり、スイッチング回数が減少した後の直流電圧Vdcは、スイッチング回数が減少する前の直流電圧Vdcよりも上昇してしまう。
図7は、電源半周期中のスイッチング回数が2回から1回に減少したときに検出される直流電圧の変動を示す第2の図である。図7では、スイッチング回数が減少する前後の直流電圧Vdcの変動が小さく、等しい値となっている。直流電圧Vdcの変動が小さい理由は、期間T1と期間T2とが同じでも、遅延時間をTdl1からTdl2に小さくしているためである。スイッチングの期間が同じ場合、電源電圧Vsの小さいポイント、すなわち電源電圧のゼロクロス点により近い側でスイッチングを行うことで直流電圧の昇圧率を抑えることができる。
図6および図7では、スイッチング回数を2回から1回に減少させた例を説明したが、これに限定されるものではない。すなわち、電源半周期中に生成される駆動信号Saは、スイッチング回数を切り替えた後の数が切り替える前の数よりも少なければよい。
実施の形態1の電力変換装置100では、負荷条件に対応してスイッチング回数を変化させた際、スイッチング回数の変化の傾向に合わせて遅延時間Tdl1,Tdl2の大きさを適切に制御することで、直流電圧の変動を抑制することができる。そのため、安定性の高いシステムが構築でき、力率を改善、高調波を抑制しつつ、従来のコンバータよりも高い電圧まで昇圧することができる。
また、実施の形態1の電力変換装置100では、スイッチング回数の変化の傾向に合わせて遅延時間Tdl1,Tdl2の大きさを適切に制御することができるため、制御パラメータが少なくて済む。従って、不要なパラメータのチューニングに伴う負荷の増加を抑制することが可能である。
なお、実施の形態1の制御部20は、スイッチング回数を変化させた後の電源電圧ゼロクロス点からスイッチング開始までの遅延時間の大きさを、スイッチング回数切替えのタイミングで制御しているが、電圧の変動を許容できる範囲であれば、複数のタイミングに分けて制御する構成でもよい。
また、実施の形態1の各Tdl、Ton、Toffといった期間および時間は、EEPROMなどの不揮発性メモリにスイッチング回数毎の設定データとして保持する構成でもよい。
また、実施の形態1の時間Ton、Toffが期間T1やT2に占める割合を、EEPROMなどの不揮発性メモリにスイッチング回数毎の設定データとして保持する構成でもよい。
実施の形態1のスイッチング回数は、同じ入力負荷条件下でも電源電圧Vsによって変化させる構成でもよい。
実施の形態2.
以上の実施の形態1では、スイッチング回数が変化する場合に遅延時間Tdlのみを変化させて直流電圧Vdcを安定させるようにしたものであるが、次にスイッチング回数が変化する場合にオン時間Tonと期間Tおよび遅延時間Tdlを変化させた場合の動作について説明する。
図8は、スイッチング回数が1回から2回に増加したときに検出される直流電圧Vdcを示す図である。図8では、図4と異なり、スイッチング回数が増加する前後の直流電圧Vdcの変動が小さく、等しい値となっている。スイッチング回数が増加する前のオン期間T1より、スイッチング回数が増加した後のオン期間T2を大きくすることによって、スイッチング回数が増加した後の直流電圧Vdcの低下を抑えることができ、さらに遅延時間Tdl1よりTdl2を大きくすることで直流電圧Vdcの低下を抑える効果を高めることができるためである。
図9は、スイッチング回数が1回から2回に増加したときに検出される直流電圧Vdcを示す図である。図9では、図4と異なり、スイッチング回数が増加する前後の直流電圧Vdcの変動が小さく、等しい値となっている。スイッチング回数が増加する前のオン期間T1より、スイッチング回数が増加した後のオン期間T2を図8より大幅に大きくすることによって、スイッチング回数が増加した後の直流電圧Vdcは、スイッチング回数増加前よりも高くなる効果を有するが、同時に遅延時間Tdl1よりTdl2を小さくすることで直流電圧Vdcを低下させる効果も得ることができる。すなわち、通電期間T1よりオン時間Ton21とオン時間Ton22の和がかなり大きく直流電圧Vdcが上昇する設定であっても、遅延時間Tdl1よりTdl2を小さくすることで直流電圧Vdcを低下させる効果が得られるため、総合的にスイッチング回数が増加する前後で直流電圧Vdcの変動を小さく、等しい値とすることが可能となる。
図8、図9では、スイッチング回数を1回から2回に増加させた例を説明したが、これに限定されるものではない。すなわち、電源半周期中に生成される駆動信号Saは、スイッチング回数を切り替えた後の数が切り替える前の数よりも多ければよい。
図10は、電源半周期中のスイッチング回数が2回から1回に減少したときに検出される直流電圧Vdcの変動を示す図である。図10では、図6と異なり、スイッチング回数が減少する前後の直流電圧Vdcの変動が小さく、等しい値となっている。スイッチング回数が減少する前のオン期間T1より、スイッチング回数が減少した後のオン期間T2を小さくすることによって、スイッチング回数が減少した後の直流電圧Vdcの上昇を抑えることができ、さらに遅延時間Tdl1よりTdl2を小さくすることで直流電圧Vdcの上昇を抑える効果を高めることができるためである。
図11は、スイッチング回数が2回から1回に減少したときに検出される直流電圧Vdcの変動を示す図である。図11では、図6と異なり、スイッチング回数が減少する前後の直流電圧Vdcの変動が小さく、等しい値となっている。スイッチング回数が減少する前のオン期間T1より、スイッチング回数が減少した後のオン期間T2を図10より大幅に小さくすることによって、スイッチング回数が減少した後の直流電圧Vdcは、スイッチング回数減少前よりも低くなる効果を有するが、同時に遅延時間Tdl1よりTdl2を大きくすることで直流電圧Vdcを上昇させる効果も得ることができる。すなわち、オン時間Ton11とオン時間Ton12の和が通電期間T2よりかなり小さく直流電圧Vdcが低下する設定であっても、遅延時間Tdl1よりTdl2を大きくすることで直流電圧Vdcを上昇させる効果が得られるため、総合的にスイッチング回数が増加する前後で直流電圧Vdcの変動を小さく、等しい値とすることが可能となる。
図12は、スイッチング回数が2回から1回に減少したときに検出される直流電圧Vdcの変動および電源電流Isの変化を示す第1の図である。図12では、図6と異なり、スイッチング回数が減少する前後の直流電圧Vdcの変動が小さく等しい値となっているが、電源電流Is中のピーク値はスイッチング回数が減少する前のピーク値Is1peakよりもスイッチング回数が減少した後のピーク値Is2peakのほうが大きくなっている。スイッチング回数が減少する前のオン期間T1より、スイッチング回数が減少した後のオン期間T2を図10より小さくすることによって、スイッチング回数が減少した後の直流電圧Vdcは、スイッチング回数減少前よりも低くなってしまうが、同時に遅延時間Tdl1よりTdl2を大きくすることで直流電圧Vdcを上昇させる効果も得ることができる。そして、期間T1よりT2のほうが小さいことで電源電流Isピーク値が小さくなる効果があるが、Tdl1よりTdl2が大きいと電源電流Isピーク値は大きくなる効果がある。図12では、総合的に電流がスイッチング回数減少前より減少後のほうが大きくなっている。
図13は、スイッチング回数が2回から1回に減少したときに検出される直流電圧Vdcの変動および電源電流Isの変化を示す第2の図である。図13では、図12と異なり、電源電流Is中のピーク値はスイッチング回数が減少する前のピーク値Is1peakとスイッチング回数が減少した後のピーク値Is2peakの変化が小さく等しい値となっている。これは、図12と図13のスイッチング回数減少後の通電時間Ton2が同じでも、図13の遅延時間Tdl2を図12の遅延時間Tdl2より小さくすることにより、スイッチング回数が減少した後のピーク値Is2peakを低下させる作用を有するためである。電流増加率は、電源電圧Vsの大きさと通電時間Tonによって変化し、電源電圧Vsが大きいほど大きくなり、また、通電時間Tonが長くなるほど大きくなる。また、別の作用としては、図12に対して図13の場合の2周期目の直流電圧Vdcの平均値は低下する。スイッチング回数の切替え時に、通電時間Ton2と遅延時間Tdl2を目的に応じて切り替えることにより、高調波制御、母線電圧の安定化、電源電流ピーク値の低減が実現できる。
前述のように、スイッチング回数を変化させるときにオン時間と期間を変化させる場合、同時に電源電圧のゼロクロス点からスイッチング開始までの遅延時間も制御することで、直流電圧の変動や電源電流の変化を抑制することができる。そのため、安定性の高いシステムが構築でき、力率を改善、高調波を抑制しつつ、従来のコンバータよりも高い電圧まで昇圧することができる。
また、短絡部30を短絡させている、すなわち駆動信号Saを出力している間の電源電流は、交流電源1およびリアクタ2、ダイオードブリッジ31、短絡素子32にその電流が流れている。よって、短絡素子32など部品の定格による電流値の制約が存在する場合でも、前述のようにスイッチング回数を変化させるときにオン時間と期間、そして電源電圧のゼロクロス点からスイッチング開始までの遅延時間を制御することで、電源電流ピーク値を抑制し、部品に必要な定格値を下げることができる。そのため、従来のコンバータよりもコストの低い部品を選定することができる。
また、実施の形態2の電力変換装置100では、スイッチング回数の変化の傾向に合わせて通電期間T1,T2および遅延時間Tdl1,Tdl2の大きさを適切に制御することができるため、制御パラメータが少なくて済む。従って、不要なパラメータのチューニングに伴う負荷の増加を抑制することが可能である。
なお、実施の形態2の制御部20は、スイッチング回数を変化させた後の電源電圧ゼロクロス点からスイッチング開始までの遅延時間の大きさを、スイッチング回数切替えのタイミングで制御しているが、電圧の変動を許容できる範囲であれば、複数のタイミングに分けて制御する構成でもよい。
また、実施の形態2の各Tdl、Ton、Toffといった期間および時間は、EEPROMなどの不揮発性メモリにスイッチング回数毎の設定データとして保持する構成でもよい。
また、実施の形態2の時間Ton、Toffが期間T1やT2に占める割合を、EEPROMなどの不揮発性メモリにスイッチング回数毎の設定データとして保持する構成でもよい。
実施の形態2のスイッチング回数は、同じ入力負荷条件下でも電源電圧Vsによって変化させる構成でもよい。
実施の形態3.
図14は、実施の形態3における電力変換装置100の構成例を示す図である。図14は、図1に示した実施の形態1,2の制御部20における駆動信号波形生成部50の構成をより詳細に示したものである。図14において、制御部20は、直流電圧Vdcおよび電源電圧Vsに基づいて短絡部30の短絡素子32を制御するためのスイッチングパルスである駆動信号Saと基準電圧Vrefとを生成する駆動信号生成部21と、駆動信号生成部21からの駆動信号Saを複数のパルスに分割し、分割後の複数のパルスである駆動信号Sa1をパルス伝達部22に出力するパルス分割部23と、パルス分割部23からの駆動信号Sa1を駆動信号Sa2に変換し短絡部30へ伝達するパルス伝達部22とを有している。これらの駆動信号生成部21、パルス伝達部22およびパルス分割部23によって、実施の形態1,2における駆動信号波形生成部50の機能が実現される。
基準電圧Vrefは、電源電流Isの値を制限する閾値であるヒステリシス基準電圧である。基準電圧Vrefには正極側基準電圧VrefHと負極側基準電圧VrefLとがある。基準電圧Vrefを生成する回路は後述する。なお、電源電流Isを検出する電流検出手段10の出力値は電圧値であるため、図14では、電源電流Isの検出値を電流検出電圧Visとして表記している。
パルス分割部23は、ソフトウェア処理により駆動信号Saを複数のパルスである駆動信号Sa1に分割する第1のパルス分割部23aと、ハードウェア処理により駆動信号Saを複数の駆動信号Sa1に分割する第2のパルス分割部23bと、第1のパルス分割部23aにおける演算に必要なデータを格納するデータ記憶部23cと、第1のパルス分割部23aからの駆動信号Sa1または第2のパルス分割部23bからの駆動信号Sa1を選択してパルス伝達部22に出力する選択部であるセレクタ23dとを有する。
セレクタ23dの入力側には2つの端子があり、内部接点がX側端子に接続されているとき、第1のパルス分割部23aで生成された駆動信号Sa1がパルス伝達部22に出力され、内部接点がY側端子に接続されているとき、第2のパルス分割部23bで生成された駆動信号Sa1がパルス伝達部22に出力される。
パルス伝達部22は、レベルシフト回路で構成され、ゲート駆動が行えるよう電圧レベルシフトを行い、パルス分割部23からの駆動信号Sa1をゲート駆動信号である駆動信号Sa2に変換し短絡部30に出力する。
図15は、パルス制御用基準電圧生成回路の第1の構成図であり、図16は、パルス制御用基準電圧生成回路の第2の構成図である。図15の回路は、駆動信号生成部21のポート出力Sbであるパルス幅変調信号を、ローパスフィルタにより直流値に変換することで基準電圧Vrefを生成する。この場合、パルス幅変調信号のデューティ比を制御することで基準電圧Vrefの値をシームレスに可変することができる。図16の回路は、駆動信号生成部21のポート出力Sbで開閉器TRを駆動することにより、抵抗Rb,Rcの分圧比で基準電圧Vrefの値を段階的に可変する。なお、基準電圧Vrefを生成する回路は図15,16に示す回路に限定されるものではなく、図15,16に示す回路以外の既知の回路で生成してもよいし、制御部20の外部で生成されたこれらの基準電圧Vrefを用いてもよい。
次に第2のパルス分割部23bの構成と動作を説明する。
図17は、第2のパルス分割部23bの構成例を示す図である。第2のパルス分割部23bは、下記の(1)式で算出される正極側上限閾値と、下記の(2)式で算出される正極側下限閾値と正極側基準電圧VrefHとの関係により、正極側の電流制御範囲に対応するヒステリシスを決めて電流検出電圧Visの波形を制御する正極側ヒステリシスコンパレータHCHと、(1)式で算出される負極側上限閾値と(2)式で算出される負極側下限閾値と負極側基準電圧VrefLとの関係により、負極側の電流制御範囲に対応するヒステリシスを決めて電流検出電圧Visの波形を制御する負極側ヒステリシスコンパレータHCLとを有する。また第2のパルス分割部23bは、正極側ヒステリシスコンパレータHCHの出力を反転するNOT論理IC3と、NOT論理IC3の出力と駆動信号SaとのANDをとり正極側駆動信号SaHを出力するAND論理IC2’と、負極側ヒステリシスコンパレータHCLの出力と駆動信号SaとのANDをとり負極側駆動信号SaLを出力するAND論理IC2と、正極側駆動信号SaHと負極側駆動信号SaLとのAND論理をとりAND論理の結果である駆動信号Sa1を出力するAND論理IC4とを有する。電流制御範囲とは、交流電源1の電源電流Isの目標制御範囲であり、上限閾値とは、短絡部30がオンとなったときに流れる短絡電流の上限を規制する閾値であり、下限閾値とは、上限閾値より小さい値に設定された閾値である。なお、(1)式のVは低圧系電源を表し、(2)式のVOLはオペアンプの出力飽和電圧を表す。
Figure 0006403909
Figure 0006403909
図14に示す電流検出部8は、電流検出素子9の出力段に設けられたレベルシフト回路および増幅器を有し、図17に示す低圧系電源Vdの半分の値を0アンペア相当として、電流検出素子9で検出された交流の電流波形を正側のみの電流波形に変換して出力する。これにより第2のパルス分割部23bでは、電流極性によらず駆動信号Sa1を生成することが可能となる。
複数のヒステリシスコンパレータで構成された第2のパルス分割部23bを用いることにより、電流極性によらず駆動信号Sa1を生成することができる。駆動信号Sa1で電源電流Is、すなわち電流検出電圧Visの波形を制御することにより、短絡部30がオンとなったときに流れる短絡電流のピーク値を抑制しつつ、直流電圧Vdcを昇圧することが可能となる。
またヒステリシスコンパレータは、抵抗R1,R1’,R2,R2’,R3,R3’の抵抗値を変化させることにより、ヒステリシスの幅を変更することができる。一例として、抵抗R2または抵抗R2’に、スイッチと抵抗との直列回路を並列接続し、スイッチを開閉させることにより合成抵抗値を切替えることができる。制御部20における処理の一部をヒステリシスコンパレータで行うことにより、制御部20における演算負荷が軽減され、安価なセントラルプロセッシングユニットで電力変換装置100を製作することが可能である。
図18は、正極側半周期および負極側半周期に駆動信号Saを複数のパルスに分割したときの電源電流の波形を示す図である。図18には、駆動信号生成部21で生成される駆動信号Saが示される。実施の形態3では、駆動信号Saが電源半周期中に1回生成されるものとし、駆動信号Saがオンになってからオフになるまでの期間をオン時間Tonとして説明する。
また図18には、第2のパルス分割部23bが分割動作をしたときの正極側駆動信号SaH、負極側駆動信号SaL、正極側上限閾値VTHH(H)、正極側下限閾値VTHH(L)、負極側上限閾値VTHL(H)、負極側下限閾値VTHL(L)が示される。
交流電源1の正極側と負極側でパルス分割動作が行われることで、正極側の電源電流Isのピーク値が正極側基準電圧VrefHを中心値とする電流制御範囲W内に収まり、負極側の電源電流Isのピーク値が負極側基準電圧VrefLを中心値とする電流制御範囲W内に収まる。
なお、スイッチング周波数が比較的高い場合、スイッチングによる損失の増加、放射ノイズ、および雑音端子電圧が問題となる場合がある。このような問題の解決を図る場合、基準電圧Vrefを中心値として電流制御範囲Wを広げることで、駆動信号Sa1のスイッチング回数が低下する。従ってスイッチング周波数が低周波化され、損失の増加、放射ノイズ、および雑音端子電圧を抑制することができる。
一方、スイッチング周波数が比較的低い場合、可聴周波数帯域の騒音が問題となる場合がある。このような問題の解決を図る場合、基準電圧Vrefを中心値として電流制御範囲Wを狭めることで、駆動信号Sa1のスイッチング回数が上昇する。従って、スイッチング周波数を高周波化され、騒音を抑制することができる。
次に第1のパルス分割部23aの構成を説明する。第1のパルス分割部23aを用いて短絡部30のスイッチングを行う場合、短絡部30のオンオフタイミングを定める必要がある。そのためには駆動信号Saの立ち上がり時間Ta、駆動信号Saの立ち下がり時間Tbを特定する必要がある。
図19は、電源半周期中に短絡部30を1回スイッチングする駆動信号を示す図であり、図20は、電源半周期中に短絡部30を複数回スイッチングする駆動信号を示す図である。
ゼロクロス点T0からオン開始時間が経過した時点で駆動信号Saが立ち上がり時間をT1a、駆動信号Saが立ち下がる時間をT1bとする。一例としてゼロクロス点T0からT1aまでの時間と、ゼロクロス点T0からT1bまでの時間とをデータとして保有すれば、短絡部30のオンオフタイミングを特定することができる。これらの時間データを利用することで第1のパルス分割部23aでは図19に示すように電源半周期中に短絡部30を1回スイッチングすることができる。
一方、図20に示すように電源半周期中に短絡部30をN回スイッチングする場合、ゼロクロス点T0からオン開始時間が経過した時点でn番目の駆動信号Saが立ち上がり時間をTna、n番目の駆動信号Saが立ち下がる時間をTnbとする。Nは2以上の整数である。
この場合、短絡部30のオンオフタイミングを特定するためには、nの値に比例したデータ数を保有する必要があり、スイッチング回数の増加に伴い制御パラメータが増加する。直流電圧指令、負荷の大きさ、負荷の種類といった運転条件によっては、制御パラメータの設計が複雑になり、スイッチング回数が増加するとデータの信頼性検証あるいは評価に多大の時間を要することとなる。
ハードウェアで構成された第2のパルス分割部23bを用いた場合、データの信頼性検証あるいは評価が不要になるものの、運転条件に対応させるためにハードウェア構成を変更する必要がある場合、寸法上の制約あるいはコスト上の制約により、構成変更が困難な場合がある。
本願発明者は、電源電流Isのピーク値が電流制御範囲W内に収まるように電源半周期中に生成される複数の駆動信号Sa1のオン時間およびオフ時間の経時的変化の傾向に着目し、制御パラメータの増加を抑制し、信頼性検証あるいは評価に要する時間および負担を軽減し、大幅なコストの増加を招くことなく高効率化を図りながら信頼性の高い電力変換装置100を導き出すに至った。
図21は、第1のパルス分割部23aに利用するデータの作成手順を示すフローチャートである。ここでは図14に示す第2のパルス分割部23bで生成した複数の駆動信号Sa1を用いてデータ記憶部23cに格納するデータを求める例を説明する。
(ステップS1)
図14に示すセレクタ23dの内部接点をY側入力端子に切り替える。これにより駆動信号生成部21で生成された駆動信号Saを用いて自動的に駆動信号Sa1を得ることができる。
(ステップS2)
運転条件を駆動信号生成部21に設定する。
(ステップS3)
電源電流Isの電流制限レベルおよび電流制御範囲Wを調整する。電流制限レベルは、正極側基準電圧VrefHと負極側基準電圧VrefLで定まり、電流制御範囲Wは、図17に示す抵抗R1,R1’,R2,R2’,R3,R3’の抵抗値で定まる。所望の昇圧性能、電源力率、または高調波電流を得ることができるよう、これらの限られたパラメータを用いて電流制限レベルおよび電流制御範囲Wを調整する。
(ステップS4)
ステップS2で設定された運転条件とステップS3で調整されたパラメータにより、駆動信号生成部21で生成される駆動信号Saの立ち上がり時間および立ち下がり時間を収集すると共に、ステップS3のパラメータを用いて第2のパルス分割部23bで生成される複数の駆動信号Sa1の立ち上がり時間および立ち下がり時間を収集する。データ収集は解析または実機で行う。
(ステップS5)
ステップS4で収集したデータを用いて、駆動信号Saのオン時間Ton、各駆動信号Sa1のオン時間Ton、各駆動信号Sa1のオフ時間Toffを計測する。
図22は、駆動信号生成部21で生成される駆動信号Saのオン時間Tonと、パルス分割部23で生成される駆動信号Sa1のオン時間Tonと、パルス分割部23で生成される駆動信号Sa1のオフ時間Toffとを示す図である。
図22には、電源電圧Vsの正極側半周期と負極側半周期で各々1回生成される駆動信号Saと、駆動信号Saのオン時間Ton中に生成されるN個の駆動信号Sa1が示されている。Nは2以上の整数である。
電源電圧Vsが上昇する際のゼロクロス点T0からオン開始時間Tdlが経過した時点で、駆動信号Saと1番目の駆動信号Sa1が共にオンになる。Ton(1)は、正極側半周期内に生成される1番目の駆動信号Sa1のオン時間、すなわち1番目の駆動信号Sa1が立ち上がった時点から立ち下がるまでの時間を表す。Ton(2)は、正極側半周期内に生成される2番目の駆動信号Sa1のオン時間を表し、Ton(N)は、正極側半周期内に生成されるN番目の駆動信号Sa1のオン時間を表す。
同様に電源電圧Vsが下降する際のゼロクロス点からオン開始時間が経過した時点で、駆動信号Saと1番目の駆動信号Sa1が共にオンになる。Toff(1)は、負極側半周期内に生成される1番目の駆動信号Sa1と2番目の駆動信号Sa1との間のオフ時間、すなわち1番目の駆動信号Sa1が立ち下がった時点から2番目の駆動信号Sa1が立ち上がるまでの時間を表す。Toff(2)は、負極側半周期内に生成される2番目の駆動信号Sa1と3番目の駆動信号Sa1との間のオフ時間を表し、Toff(N−1)は、負極側半周期内に生成されるN−1番目の駆動信号Sa1とN番目の駆動信号Sa1との間のオフの時間を表す。
ステップS4で収集された駆動信号Saの立ち上がり時間および立ち下がり時間と、1番目からN番目までの個々の駆動信号Sa1の立ち上がり時間および立ち下がり時間により、図22に示す駆動信号Saのオン時間Tonと、各駆動信号Sa1のオン時間Tonと、各駆動信号Sa1のオフ時間Toffとを求める。さらに、収集された各駆動信号Sa1の順番により、各駆動信号Sa1のパルス番号と、隣接する駆動信号Sa1の間のパルス間番号とを求める。
(ステップS6)
次に、ステップS5で得られた各駆動信号Sa1のオンオフ時間を用いて、駆動信号Saのオン時間Tonに対する各駆動信号Sa1のオン時間Tonのオンデューティと、駆動信号Saのオン時間Tonに対する各駆動信号Sa1のオフ時間Toffのオフデューティとを求める。
前述したように電源半周期中に生成される複数の駆動信号Sa1のオン時間およびオフ時間の経時的変化の傾向に着目すると、オンデューティとオフデューティに規則性を見いだすことができる。以下、具体的に説明する。
オンデューティとオフデューティの算出にあたり以下の関数を定義する。
Figure 0006403909
Figure 0006403909
(3)式は、駆動信号Saのオン時間Tonに対する、電源半周期中のx番目の駆動信号Sa1のオン時間Ton(x)のオンデューティである。Nは電源半周期中に生成される駆動信号Sa1の総数である。
(4)式は、駆動信号Saのオン時間Tonに対する、電源半周期中のx番目の駆動信号Sa1とx−1番目の駆動信号Sa1との間のオフ時間Toff(y)のオフデューティである。Nは電源半周期中に生成される駆動信号Sa1の総数である。
図23は、電源半周期中に生成されるN個の駆動信号Sa1のオンデューティの経時的変化を表す図である。横軸は、電源半周期中に生成されるN個の駆動信号Sa1の内、2番目からN番目までの駆動信号Sa1の番号であるパルス番号xを表し、縦軸は、(3)式で求めた2番目からN番目までの駆動信号Sa1に対するオンデューティを表す。
2番目からN番目の駆動信号Sa1のパルス列に着目すると、図18のように電源電流Isのピーク値が電流制御範囲W内に収まるときのオンデューティは、下に突の放物線を描き、比較的緩やかな勾配を示す特徴があることが分かる。
図24は、電源半周期中に生成されるN個の駆動信号Sa1のオフデューティの経時的変化を表す図である。横軸は、電源半周期中に生成される各駆動信号Sa1の間の番号であるパルス間番号yを表し、縦軸は、(4)式で求めた1番目からN番目までの駆動信号Sa1に対するオフデューティの値である。
1番目からN番目の駆動信号Sa1のパルス列に着目すると、図18のように電源電流Isのピーク値が電流制御範囲W内に収まるときのオフデューティは、上に突の放物線を描き、オンデューティよりも急峻な勾配を示す特徴があることが分かる。
(ステップS7)
このように電源半周期中に生成される複数の駆動信号Sa1のオンデューティとオフデューティは経時的に変化し、かつ、変化の傾向が異なる。本願発明者は、電源半周期に生成される複数の駆動信号Sa1の内、特定領域の駆動信号Sa1のオンデューティおよびオフデューティを、近似式で表す方法を考案した。
オンデューティは、比較的緩やかな勾配を示す特徴がある。そのため(3)式のオンデューティは、(5)式に示す2次式で近似することができる。ただしA1,B1,C1は近似式の各定数を示す。
Figure 0006403909
(4)式のオフデューティは、2次式で近似することもできるが、オフデューティはオンデューティに比べ比較的急峻な勾配を示す特徴がある。実施の形態3では、デューティ設定の自由度を上げるため、(6)式の通り4次式で近似する。ただし、A2,B2,C2,D2,E2は、近似式の各定数を示す。
Figure 0006403909
なお、特定領域以外のパルスである1番目の駆動信号Sa1のオンデューティに関しては(7)式で表すことができる。Nは電源半周期中に生成される駆動信号Sa1の総数である。このように1番目の駆動信号Sa1のオン時間に関しては、オンデューティの設定を行わずに(7)式を用いることで、近似式の誤差も吸収可能である。
Figure 0006403909
このようにして、電源半周期中に生成される複数の駆動信号Sa1の内、特定領域の駆動信号Sa1のオンデューティの近似式と、電源半周期中に生成される複数の駆動信号Sa1のオフデューティの近似式と、特定領域以外の駆動信号Sa1のオンデューティとを求める。
(ステップS8)
ステップS7で求めたオンデューティとパルス番号とを関連づけて関数化し、ステップS7で求めたオフデューティとパルス間番号とを関数化し、関数化したこれらのデータと、近似式の定数データとを、データ記憶部23cに格納する。
第1のパルス分割部23aは、駆動信号生成部21からの駆動信号Saのオン時間Tonを計測し、データ記憶部23cから読み出したオンデューティおよびオフデューティに駆動信号Saのオン時間Tonを乗ずることで、電源半周期中の1番目からN番目までの駆動信号Sa1のオンオフ時間を定める。
ここで、負荷条件によりスイッチング回数を変化させる場合に関して説明する。負荷が軽負荷から重負荷へと遷移する際、スイッチング回数を増加させる必要がある場合には、電流ピークの抑制、力率の改善、および高調波の抑制を図りながら、昇圧を実現するためには、第1のパルス分割部23aおよび第2のパルス分割部23bに入力する駆動信号Saのオン時間Tonを大きくする必要がある。
詳細には、(8)式に示すように駆動信号Saのオン時間Tonに補正係数Kcを乗ずることで実現可能である。Kcは、1以上の整数であり、スイッチング回数の切替条件に対応して設定すればよい。スイッチング回数の切替え時にオン時間Tonに補正係数Kcを乗ずることで、直流電圧Vdcの変動を抑制して安定した直流電圧Vdcを得ることができる。
Figure 0006403909
負荷が重負荷から軽負荷へと遷移する際、スイッチング回数を減少させる必要がある場合には、電流ピークの抑制、力率の改善、および高調波の抑制を図りながら、昇圧を実現するためには、第1のパルス分割部23aおよび第2のパルス分割部23bに入力する駆動信号Saのオン時間Tonを小さくする必要がある。
詳細には、(9)式に示すように駆動信号Saのオン時間Tonに補正係数Kcの逆数を乗ずることで実現可能である。Kcは1以上の整数であり、スイッチング回数の切替条件に対応して設定すればよい。スイッチング回数の切替え時にオン時間Tonに補正係数Kcの逆数を乗ずることで、直流電圧Vdcの変動を抑制して安定した直流電圧Vdcを得ることができる。
Figure 0006403909
以上により、実施の形態3に係る短絡部30のオンオフタイミングが一意に定まり、このオンオフタイミングで駆動信号Saを複数の駆動信号Sa1に分割することができる。
このようにパルス列配置をデューティで表した関数を用いることで、スイッチング回数が増加してもデータ記憶部23cに格納される制御パラメータの増加を招くことなく、短絡部30のオンオフタイミングを特定することができる。
なお、実施の形態3では、駆動信号Sa1を生成するため電源電圧Vs、電源電流Is、および直流電圧Vdcを検出しているが、データ記憶部23cに格納したデータで第1のパルス分割部23aを動作させる際には電源電流Isの検出は必ずしも必要ではなく、電源電流検出の要否は、構築するシステム仕様によって選択すれば良い。
また、実施の形態3では、デューティを関数化する例を示したが、オン時間およびオフ時間を関数化したデータ、あるいはオン時間とオフ時間を2次以上の近似式で表したデータをデータ記憶部23cに格納してパルス分割動作に用いてもよい。
また、実施の形態3では、近似式を用いてパルス生成する一例を示したが、電源半周中に生成する駆動信号Sa1の数が比較的に少ない場合、近似式の代わりに、ステップS6で求めた各デューティのデータを格納し、またはステップS5で求めた各パルスのオン時間とパルス間のオフ時間のデータを格納し、これらのデータを用いて駆動信号Sa1を生成する構成でもよい。このように構成しても第1のパルス分割部23aでパルス分割を行うことが可能であり、制御部20の改良に伴うコストの増加を抑制することができる。
また、第1のパルス分割部23aと第2のパルス分割部23bは、一方のみ使用してもよいし、運転条件により切り替えて使用してもよい。寸法上の制約あるいはコスト上の制約により制御部20の構成変更が困難な場合、セレクタ23dの内部接点をX側端子に接続して第1のパルス分割部23aのみ使用する。コスト上の制約は高くないが様々な仕様環境に用いるため電源電流Isの波形生成の精度を高める必要がある場合、セレクタ23dの内部接点をY側端子に接続して第2のパルス分割部23bのみ使用する。波形生成精度を高めつつ特定の運転条件下においては騒音対策のために電源電流に依らず特定のパルスパターンを出力する必要がある場合、運転条件に対応してセレクタ23dの内部接点をX側端子またはY側端子に切り替えて第1のパルス分割部23aと第2のパルス分割部23bとを併用する。
また、実施の形態3では、第2のパルス分割部23bで生成された駆動信号Sa1を用いてデータ記憶部23cに格納するデータを求める例を説明したが、これに限定されるものではなく、事前の解析において、駆動信号Saのオン時間Ton内に電源電流Isのピーク値が電流制御範囲W内に収まるような各駆動信号Sa1のオンオフ時間に基づき、各駆動信号Sa1のオンデューティとパルス番号とを対応付けた関数と、各駆動信号Sa1のオフデューティとパルス間番号とを対応付けた関数を求め、関数化したこれらのデータと近似式の定数データとをデータ記憶部23cに格納してもよい。
また、実施の形態3では、基準電圧Vrefの値を一定にすることで矩形波状の電源電流Isを生成する動作例を説明したが、基準電圧Vrefを経時的に変化させることで、矩形波以外の形状の電源電流Isを生成する構成でもよい。
また実施の形態3では、電流制御範囲W内に電源電流Isのピーク値が収まるように制御されているが、高調波発生量が問題とならない範囲で、電源電流Isのピーク値が電流制御範囲Wを逸脱したとしても問題はない。具体的には、複数の駆動信号Sa1の中の1つの駆動信号Sa1のパルス幅が大きいため、電源電流Isのピーク値が電流制限レベルを超過するような場合でも問題がない。
なお、実施の形態1〜3では、リアクタ2が交流電源1と整流回路4との間に挿入され、整流回路4がリアクタ2を介して交流電源1に接続されているが、電力変換装置100はリアクタ2を介して電源の短絡と開放を行うことができればよいため、整流回路4、リアクタ2、および短絡部30の位置関係は図示例の構成に限定されるものではない。すなわち、電力変換装置100は、短絡時に交流電源1、リアクタ2、短絡部30、交流電源1の順で電源電流Isが流れる構成であればよく、一例としては交流電源1とリアクタ2との間に整流回路4が挿入され、リアクタ2が整流回路4を介して交流電源1に接続される構成でもよい。
また、実施の形態1〜3は、電源電圧Vsのゼロクロス点を検出し、ゼロクロス点を基点として電源電圧Vsとの同期を図る構成であるが、これに限定されるものではない。一例としては、制御部20は、電源電圧Vsのピーク値を検出し、このピーク値を基点として電源電圧Vsとの同期を図る構成でもよい。
また、実施の形態1〜3における電力変換装置100は、短絡部30の短絡動作の回数を、電源電圧検出部7で検出された電源電圧に同期させて制御しているが、電源電圧検出部7に代えて、交流電源1の交流電圧と同期した同期信号を検出する同期信号検出部を用いて短絡部30の短絡動作の回数を同期信号に同期させて制御する構成でもよい。
以上に説明した、実施の形態1〜3に係る電力変換装置によれば、以下の概念が抽出できる。すなわち、実施の形態1〜3に係る電力変換装置は、交流電源からの交流電力を直流電力に変換する整流器と、リアクタを介して交流電源を短絡する短絡部と、短絡部の短絡動作を制御する制御部とを備え、制御部は、負荷条件に基づいてスイッチング回数、すなわち短絡部における交流電源出力波形の半周期中の短絡動作の回数を変化させ、かつ、短絡動作の回数を変化させた後の交流電源出力波形のゼロクロス点から短絡までの遅延時間を、短絡動作の回数を変化させる前の交流電源出力波形のゼロクロス点から短絡までの遅延時間と異ならせるように制御する。この制御により、まずは、交流電源を短絡する短絡部のスイッチング回数を負荷に対応して変化させる場合でも直流電圧の変動を抑制することができるという効果が得られる。また、この制御により、交流電源を短絡する短絡部のスイッチング回数を負荷に対応して変化させる場合でも電源電流の過剰な増加を抑制することができるという効果も得られる。
なお、交流電源出力波形の半周期中における短絡動作の回数を増加させたとき、短絡動作の回数を増加させた後の遅延時間は、短絡動作の回数を増加させる前の遅延時間よりも大きくしても小さくしても実現可能である。すなわち、交流電源出力波形の半周期中における短絡動作の回数を増加させたとき、短絡動作の回数を増加させた後の遅延時間を、短絡動作の回数を増加させる前の遅延時間から変化させることに本発明の要旨がある。
また、交流電源出力波形の半周期中における短絡動作の回数を減少させたとき、短絡動作の回数を減少させた後の遅延時間は、短絡動作の回数を増加させる前の遅延時間よりも大きくしても小さくしても実現可能である。すなわち、交流電源出力波形の半周期中における短絡動作の回数を減少させたとき、短絡動作の回数を減少させた後の遅延時間を、短絡動作の回数を減少させる前の遅延時間から変化させることも本発明の要旨である。
なお、制御部は、期間の長さに対応した幅のオン信号である駆動信号を生成する駆動信号生成部と、駆動信号を複数のスイッチングパルスに分割するパルス分割部とを有していてもよい。パルス分割部は、複数のスイッチングパルスのオン時間と複数のスイッチングパルスのオフ時間と複数のスイッチングパルスの番号とを対応づけたデータを用いて、駆動信号を複数のスイッチングパルスに分割する。この構成により、駆動信号Saを用いて複数の駆動信号Sa1を生成する際の複雑な演算が不要となり、また制御部に設定するデータの設計負荷の増加を招くことがないという効果が得られる。
また、パルス分割部は、前記駆動信号のオン時間に対する前記複数のスイッチングパルスのオン時間のオンデューティと、駆動信号のオン時間に対する複数のスイッチングパルスのオフ時間のオフデューティとを、複数のスイッチングパルスの番号に基づく関数で表したデータを用いて、複数のスイッチングパルスに分割するようにしてもよい。このようなデータを用いた分割動作により、スイッチング回数が増加しても短絡部のオンオフタイミングを特定することができ、また、データ記憶部に格納される制御パラメータが少なくて済むため高価なメモリを用いる必要がないという効果が得られる。また、データの信頼性検証あるいは評価に要する時間および負担を軽減することができるので、設計または検証に要するコストの増加を抑制することができるという効果が得られる。
また、交流電源と同期した電源電圧を検出する電源電圧検出部を備え、制御部は、電源電圧検出部で取得された電源電圧に同期させて、短絡動作の回数を変化させた後の期間を、短絡動作の回数を変化させる前の期間と異ならせる制御を行ってもよい。電源電圧と同期させて制御することで、短絡部を適切なタイミングでスイッチングさせることが可能となり、効果的に力率の向上と高調波の抑制を図ることができる。また、交流電源電圧の周波数の変動に応じて短絡動作の回数を補正することも可能であり、ロバスト性の高いシステムを構築することができる。
最後に、制御部20のハードウェア構成について説明する。図25は、本実施の形態における制御部20のハードウェア構成を示すブロック図である。本実施の形態に係る制御部20の要部機能をソフトウェアで実現する場合には、図25に示すように、演算を行うCPU(Central Processing Unit:中央処理装置)200、CPU200によって読みとられるプログラムが保存されるメモリ202および信号の入出力を行うインターフェイス204を含む構成とすることができる。なお、CPU200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、またはDSP(Digital Signal Processor)などと称されるものであってもよい。また、メモリ202とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)などが該当する。
具体的には、メモリ202には、制御部20における駆動信号波形生成部50の機能を実行するプログラムが格納されている。CPU200は、図21に示すフローチャートの処理を実行し、また、(1)式〜(9)式に示す演算処理を実行する。CPU200は、インターフェイス204を介し、直流電圧検出部6で検出される直流電圧Vdc、電源電圧検出部7で検出される交流電源1の電源電圧Vsおよび電流検出手段10で検出されるリアクタ2に流れる電源電流Isを受信する。CPU200は、生成した駆動信号Sa2をインターフェイス204を介して短絡部30に出力する。
なお、CPU200およびインターフェイス204の性能も飛躍的な進歩を遂げている昨今の状況に鑑み、ハードウェアで実現するとして説明した第1のパルス分割部23aについてもマイクロコンピュータを使用したソフトウェア処理で実現してもよい。アナログ信号による処理をディジタル信号による処理に置き換えることで実現可能である。
また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 交流電源、2 リアクタ、3 整流器、4 整流回路、5 平滑コンデンサ、6 直流電圧検出部、7 電源電圧検出部、8 電流検出部、9 電流検出素子、10 電流検出手段、11 負荷、20 制御部、21 駆動信号生成部、22 パルス伝達部、23a 第1のパルス分割部、23b 第2のパルス分割部、23c データ記憶部、30 短絡部、31 ダイオードブリッジ、32 短絡素子、50 駆動信号波形生成部、100 電力変換装置、200 CPU、202 メモリ、204 インターフェイス。

Claims (7)

  1. 交流電源からの交流電圧を直流電圧に変換する整流器と、前記整流器の直流出力部に接続される平滑コンデンサと、前記交流電源をリアクタを介して短絡する短絡部と、前記交流電源の半周期中の前記短絡部の短絡動作の回数を変化させることができる制御部とを備えた電力変換装置において
    前記制御部は前記短絡動作の回数を変化させる前後で、前記平滑コンデンサの両端の直流電圧の変動を抑えるように、前記短絡動作の回数を変化させる前の前記交流電源のゼロクロス点から短絡までの遅延時間と、前記短絡動作の回数を変化させた後の前記交流電源のゼロクロス点から短絡までの遅延時間異ならせることを特徴とする電力変換装置。
  2. 前記制御部は、前記交流電源の半周期中における前記短絡動作の回数を増加させたとき、前記短絡動作の回数を増加させる前の前記遅延時間を、前記短絡動作の回数を増加させた後の前記遅延時間から変化させることを特徴とする請求項1に記載の電力変換装置。
  3. 前記制御部は、前記交流電源の半周期中における前記短絡動作の回数を減少させたとき、前記短絡動作の回数を減少させる前の前記遅延時間を、前記短絡動作の回数を減少させた後の前記遅延時間から変化させることを特徴とする請求項1に記載の電力変換装置。
  4. 前記制御部は、前記短絡動作の長さに対応した幅のオン信号である駆動信号を生成する駆動信号生成部と、前記駆動信号を複数のスイッチングパルスに分割するパルス分割部とを有し、前記パルス分割部は、前記複数のスイッチングパルスのオン時間と前記複数のスイッチングパルスのオフ時間と前記複数のスイッチングパルスの番号とを対応づけたデータを用いて、前記駆動信号を複数のスイッチングパルスに分割することを特徴とする請求項1から請求項3の何れか1項に記載の電力変換装置。
  5. 前記制御部は、前記短絡動作の長さに対応した幅のオン信号である駆動信号を生成する駆動信号生成部と、前記駆動信号を複数のスイッチングパルスに分割するパルス分割部とを有し、前記パルス分割部は、前記駆動信号のオン時間に対する前記複数のスイッチングパルスのオン時間のオンデューティと、前記駆動信号のオン時間に対する前記複数のスイッチングパルスのオフ時間のオフデューティとを、前記複数のスイッチングパルスの番号に基づく関数で表したデータを用いて、前記複数のスイッチングパルスに分割することを特徴とする請求項1から請求項3の何れか1項に記載の電力変換装置。
  6. 前記交流電源と同期した電源電圧を検出する電源電圧検出部を備え、前記制御部は、前記電源電圧検出部で取得された前記電源電圧に同期させて、前記短絡動作の回数を変化させる前の前記遅延時間を、前記短絡動作の回数を変化させた後の前記遅延時間と異ならせることを特徴とする請求項1から請求項5の何れか1項に記載の電力変換装置。
  7. 前記制御部は、マイクロコンピュータで構成されていることを特徴とする請求項1から請求項6の何れか1項に記載の電力変換装置。
JP2017563478A 2016-01-28 2016-01-28 電力変換装置 Active JP6403909B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052536 WO2017130357A1 (ja) 2016-01-28 2016-01-28 電力変換装置

Publications (2)

Publication Number Publication Date
JPWO2017130357A1 JPWO2017130357A1 (ja) 2018-04-19
JP6403909B2 true JP6403909B2 (ja) 2018-10-10

Family

ID=59397912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017563478A Active JP6403909B2 (ja) 2016-01-28 2016-01-28 電力変換装置

Country Status (5)

Country Link
US (1) US10468995B2 (ja)
EP (1) EP3410594B1 (ja)
JP (1) JP6403909B2 (ja)
CN (1) CN108604867B (ja)
WO (1) WO2017130357A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11671029B2 (en) * 2018-07-07 2023-06-06 Intelesol, Llc AC to DC converters
JP2020150711A (ja) * 2019-03-14 2020-09-17 東芝ライフスタイル株式会社 洗濯機
TWI726295B (zh) * 2019-03-27 2021-05-01 捷拓科技股份有限公司 負載狀態偵測裝置
US11757358B2 (en) * 2021-06-07 2023-09-12 Texas Instruments Incorporated Pulse width modulation techniques for a multiphase voltage converter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763479B2 (ja) 1992-08-06 1998-06-11 三菱電機株式会社 直流電源装置
JP3550485B2 (ja) * 1997-06-27 2004-08-04 東芝キヤリア株式会社 直流電源装置および空気調和機
JP3485047B2 (ja) 1999-11-24 2004-01-13 三菱電機株式会社 空気調和機
JP3848903B2 (ja) * 2002-08-01 2006-11-22 株式会社日立製作所 電力変換装置
JP2004072958A (ja) * 2002-08-09 2004-03-04 Hitachi Ltd 電力変換装置
JP4784207B2 (ja) * 2004-11-18 2011-10-05 パナソニック株式会社 直流電源装置
JP5272319B2 (ja) * 2007-03-28 2013-08-28 パナソニック株式会社 電力変換装置
CN100547890C (zh) * 2007-04-13 2009-10-07 珠海格力电器股份有限公司 直流电源装置及提高其功率因数的方法
JP5073439B2 (ja) * 2007-10-15 2012-11-14 シャープ株式会社 直流電源装置
JP5228609B2 (ja) * 2008-05-08 2013-07-03 パナソニック株式会社 電源装置
JP4980387B2 (ja) * 2009-03-05 2012-07-18 三菱電機株式会社 直流電源装置、これを備えた直流電源システム及びこれを備えたヒートポンプ式給湯機システム
WO2011048818A1 (ja) * 2009-10-23 2011-04-28 パナソニック株式会社 直流電源装置およびこれを用いた電動機駆動用インバータ装置
JP5481165B2 (ja) * 2009-11-06 2014-04-23 日立アプライアンス株式会社 直流電源装置およびこれを用いた空気調和機
JP6041866B2 (ja) * 2012-04-20 2016-12-14 三菱電機株式会社 電力変換装置、その電力変換装置を備えたモータ駆動制御装置、そのモータ駆動制御装置を備えた送風機および圧縮機、ならびに、その送風機あるいは圧縮機を備えた空気調和機
JP6147209B2 (ja) * 2014-03-05 2017-06-14 三菱電機株式会社 電力変換装置
CN106464150B (zh) * 2014-07-08 2019-04-30 三菱电机株式会社 电力转换装置
WO2016020980A1 (ja) * 2014-08-05 2016-02-11 三菱電機株式会社 電力変換装置
US9866140B2 (en) * 2014-09-30 2018-01-09 Mitsubishi Electric Corporation AC/DC power converting apparatus with AC source shortcircuiting for power factor correction and harmonic suppression
CN107078654B (zh) * 2014-09-30 2019-06-21 三菱电机株式会社 电力转换装置

Also Published As

Publication number Publication date
US10468995B2 (en) 2019-11-05
WO2017130357A1 (ja) 2017-08-03
EP3410594B1 (en) 2023-02-15
CN108604867A (zh) 2018-09-28
EP3410594A4 (en) 2019-01-23
CN108604867B (zh) 2020-07-03
JPWO2017130357A1 (ja) 2018-04-19
EP3410594A1 (en) 2018-12-05
US20180323723A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6410835B2 (ja) 電力変換装置
EP2963798B1 (en) Dc-ac conversion device and control circuit
JP6279080B2 (ja) 電力変換装置
JP6403909B2 (ja) 電力変換装置
JP2015171196A (ja) 電力変換装置
JP6400103B2 (ja) 電力変換装置
JP6410834B2 (ja) 電力変換装置
JP6410832B2 (ja) 電力変換装置
JP6505261B2 (ja) 電力変換装置
JP6598874B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250