[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6213224B2 - Drainage device for internal combustion engine - Google Patents

Drainage device for internal combustion engine Download PDF

Info

Publication number
JP6213224B2
JP6213224B2 JP2013265980A JP2013265980A JP6213224B2 JP 6213224 B2 JP6213224 B2 JP 6213224B2 JP 2013265980 A JP2013265980 A JP 2013265980A JP 2013265980 A JP2013265980 A JP 2013265980A JP 6213224 B2 JP6213224 B2 JP 6213224B2
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
combustion engine
passage
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265980A
Other languages
Japanese (ja)
Other versions
JP2015121169A (en
Inventor
雄輔 磯部
雄輔 磯部
洋之 木村
洋之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013265980A priority Critical patent/JP6213224B2/en
Publication of JP2015121169A publication Critical patent/JP2015121169A/en
Application granted granted Critical
Publication of JP6213224B2 publication Critical patent/JP6213224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は車両の内燃機関に関し、詳しくは吸排気中から水分を排水する排水装置に関する。   The present invention relates to an internal combustion engine of a vehicle, and more particularly to a drainage device that drains moisture from intake and exhaust.

ディーゼルエンジンの排気ガス浄化方法として、NOxトラップ触媒を用いたものが知られている。NOxトラップ触媒は、排気中のNOxを酸化雰囲気中で捕捉し、捕捉したNOxを還元雰囲気中で放出してN等に還元することでNOxの排出濃度を低減している。また、ディーゼルエンジン搭載車には、排気中の粒子状物質(PM)を除去するフィルタ装置が設けられており、NOxトラップ触媒はその耐熱性や配置スペースの観点から、一般的にフィルタ装置の下流側に配置されている。 As an exhaust gas purification method for a diesel engine, a method using a NOx trap catalyst is known. The NOx trap catalyst captures NOx in exhaust gas in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere, and reduces it to N 2 or the like, thereby reducing the NOx emission concentration. In addition, a diesel engine-equipped vehicle is provided with a filter device that removes particulate matter (PM) in the exhaust. The NOx trap catalyst is generally downstream of the filter device from the viewpoint of heat resistance and arrangement space. Arranged on the side.

さらに、排気の一部を吸気側に戻すことで燃焼室の燃焼温度を下げ、排気中のNOxを低減させる排気再循環(EGR)方式が知られている。EGR方式には、過給機のタービン上流側排気通路からコンプレッサ下流側吸気通路に排気を戻す高圧EGR方式と、タービン下流側で酸化触媒及びフィルタ装置下流側の排気通路からコンプレッサ上流側吸気通路に排気を戻す低圧EGR方式とがある。ここで、低圧EGR装置及びインタークーラ等の冷却手段を備えた内燃機関では、排気を含む吸気が冷却手段を通過して冷却される際に結露して凝縮水が発生する。この凝縮水が吸気と共に吸気通路から燃焼室に送られると、ウォーターハンマを引き起こしてしまう虞がある。   Furthermore, an exhaust gas recirculation (EGR) system is known in which part of the exhaust gas is returned to the intake side to lower the combustion temperature of the combustion chamber and reduce NOx in the exhaust gas. The EGR system includes a high-pressure EGR system for returning exhaust gas from the turbine upstream exhaust passage of the turbocharger to the compressor downstream intake passage, and an oxidation catalyst and filter device downstream exhaust passage downstream from the turbine to the compressor upstream intake passage. There is a low pressure EGR system that returns exhaust gas. Here, in an internal combustion engine provided with cooling means such as a low-pressure EGR device and an intercooler, condensation is generated when the intake air including exhaust gas passes through the cooling means and is cooled. If this condensed water is sent together with the intake air from the intake passage to the combustion chamber, there is a risk of causing a water hammer.

上述の問題を解決する内燃機関の排気浄化装置の一例が「特許文献1」に開示されている。この排気浄化装置では、インタークーラで発生した凝縮水を貯留する貯留タンクと、凝縮水を加熱して水蒸気とする加熱装置と、貯留タンクと触媒上流側の排気通路とに接続された水蒸気供給路とを有し、凝縮水を水蒸気に変えて触媒の上流側排気通路に供給している。   An example of an exhaust emission control device for an internal combustion engine that solves the above-described problem is disclosed in “Patent Document 1”. In this exhaust purification device, a storage tank that stores condensed water generated by the intercooler, a heating device that heats the condensed water to form steam, and a water vapor supply path that is connected to the storage tank and an exhaust passage on the upstream side of the catalyst And the condensed water is converted into water vapor and supplied to the upstream exhaust passage of the catalyst.

特開2013−180757号公報JP 2013-180757 A

上述の技術では、凝縮水が燃焼室に送られてウォーターハンマを引き起こすことが防止されているが、凝縮水を加熱して水蒸気とする加熱装置が必要となり、同装置の装着によりコスト増、スペース確保等の問題が生じ易い。そこで、インタークーラで発生した凝縮水をNOxトラップ触媒のような排気後処理手段の上流側排気管へ排出するために凝縮水排出通路を設置するという構成を採ることが考えられる。
この場合、凝縮水排出通路の出口より排出された凝縮水がその下流に配備のNOxトラップ触媒のような排気後処理手段に流動して、その凝縮水により触媒が急冷されると、熱応力により担体割れが生じ易くなり、排ガスが悪化するという問題がある。
In the above-described technology, it is prevented that condensed water is sent to the combustion chamber and causes water hammer. However, a heating device that heats the condensed water to form steam is necessary, and the installation of this device increases costs and space. Problems such as securing are likely to occur. Therefore, it is conceivable to adopt a configuration in which a condensed water discharge passage is installed in order to discharge condensed water generated in the intercooler to the upstream exhaust pipe of the exhaust aftertreatment means such as a NOx trap catalyst.
In this case, if the condensed water discharged from the outlet of the condensed water discharge passage flows to the exhaust aftertreatment means such as a NOx trap catalyst provided downstream thereof, and the catalyst is rapidly cooled by the condensed water, There is a problem that the carrier is easily cracked and the exhaust gas is deteriorated.

更に、エンジンの運転域が低負荷域にあって排気ガス温度が低下した状態が続くような場合、凝縮水排出通路の出口より排出された凝縮水の加熱や気化が十分進まない。このような状態が継続すると、凝縮水が液体のままNOxトラップ触媒のような排気後処理手段の担体内部の気流通路に侵入し、目詰まりの領域が増加してしまうという問題が生じ易い。そこで、凝縮水の加熱や気化を促進するために、排気路構成部材である排気管や拡径部を成す触媒コンバーターの容器本体を加熱源として利用できるような構成を採ることが望まれている。   Furthermore, when the engine operating region is in the low load region and the exhaust gas temperature continues to be lowered, the condensed water discharged from the outlet of the condensed water discharge passage is not sufficiently heated and vaporized. If such a state continues, the condensed water tends to enter the airflow passage inside the carrier of the exhaust aftertreatment means such as the NOx trap catalyst in a liquid state, and the clogging area is likely to increase. Therefore, in order to promote heating and vaporization of the condensed water, it is desired to adopt a configuration in which the exhaust pipe constituting member of the exhaust passage and the container body of the catalytic converter forming the enlarged diameter portion can be used as a heating source. .

本発明は上述の問題を解決するもので目的とするのは、凝縮水排出通路より排出された凝縮水の加熱や気化を促進して、排気後処理手段の目詰まりあるいは触媒の担体割れのリスクを低減できる内燃機関の排水装置を提供することにある。   An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to promote the heating and vaporization of the condensed water discharged from the condensed water discharge passage, resulting in the risk of clogging of the exhaust aftertreatment means or cracking of the catalyst carrier. An object of the present invention is to provide a drainage device for an internal combustion engine that can reduce the above.

請求項1記載の発明は、内燃機関の排気通路上に配置される排気後処理手段の上流側に形成された拡径部と、前記内燃機関の吸気通路に一端が、前記排気後処理手段の排気通路上流側に他端をそれぞれ接続して吸気通路内の凝縮水を前記排気通路に排出する排水路と、を備え、前記排気後処理手段の上流側排気管の後端部は前記拡径部を介して前記排気後処理手段に接続され、前記拡径部の内壁面には前記凝縮水を滞留させる凹凸部が形成され、前記拡径部は前記上流側排気管後端部より前記排気後処理手段に向けて管径が徐々に増加するコーン形状の傾斜部を有し、前記凹凸部は前記傾斜部の内壁に前記排気通路の径方向内側に突設された突起を有することを特徴とする。 According to the first aspect of the present invention, an enlarged diameter portion formed on the upstream side of the exhaust aftertreatment means disposed on the exhaust passage of the internal combustion engine, and one end of the intake passage of the internal combustion engine are connected to the exhaust aftertreatment means. A drainage passage for connecting the other end to the upstream side of the exhaust passage and discharging condensed water in the intake passage to the exhaust passage, and a rear end portion of the upstream side exhaust pipe of the exhaust aftertreatment means has the diameter-expanded A concavity and convexity portion for retaining the condensed water is formed on the inner wall surface of the enlarged diameter portion, and the enlarged diameter portion is formed from the rear end portion of the upstream exhaust pipe. It has a cone-shaped inclined portion whose pipe diameter gradually increases toward the exhaust aftertreatment means, and the uneven portion has a protrusion projecting radially inward of the exhaust passage on the inner wall of the inclined portion. Features.

請求項2記載の発明は、請求項1記載の内燃機関の排水装置において、前記拡径部は、前記傾斜部の後端部から延出し前記排気後処理手段を保持する筒部を有し、前記凹凸部は、前記筒部の重力方向下側の平坦部に前記排気通路の径方向内側に凹設された凹部を有する、ことを特徴とする。 According to a second aspect of the present invention, in the drainage device for an internal combustion engine according to the first aspect, the enlarged diameter portion has a cylindrical portion that extends from a rear end portion of the inclined portion and holds the exhaust aftertreatment means. the uneven portion, the front SL has a recessed been recessed radially inward of the exhaust passage to the flat portion in the gravity direction lower side of the cylindrical portion, and wherein the.

請求項記載の発明は、請求項1乃至3の何れか1つに記載の内燃機関の排水装置において、前記突起は排気通路下流に行くほど前記上流側排気管の周方向の長さが長くなる複数の弧状形状を成した、ことを特徴とする。 According to a fourth aspect of the present invention, in the drainage device for an internal combustion engine according to any one of the first to third aspects, the circumferential length of the upstream exhaust pipe increases as the protrusion goes downstream of the exhaust passage. A plurality of arcuate shapes are formed.

請求項記載の発明は、請求項に記載の内燃機関の排水装置において、前記凹部の内壁にはフィンが突設された、ことを特徴とする。 According to a third aspect of the present invention, in the drainage device for an internal combustion engine according to the second aspect , a fin is projected from the inner wall of the recess.

請求項1の発明は、排水路の他端からの水を凹凸部に滞留させるので、凹凸部に滞留する水の昇温や蒸発を促進させることができ、凝縮水が排気後処理手段を通過した後、車外に排出できる。また、排水路から排出される凝縮水の量が急激に増減しても一旦凹凸部で滞留させてから排気通路下流側の排気後処理手段に徐々に流入するので、下流側に配備の排気後処理手段の目詰まりあるいは触媒の担体の割れのリスクを低減できる。   According to the first aspect of the present invention, water from the other end of the drainage channel is retained in the concavo-convex portion, so that the temperature rise and evaporation of the water remaining in the concavo-convex portion can be promoted, and the condensed water passes through the exhaust aftertreatment means. After that, it can be discharged outside the vehicle. In addition, even if the amount of condensed water discharged from the drainage channel suddenly increases or decreases, it once stays in the uneven part and then gradually flows into the exhaust aftertreatment means downstream of the exhaust passage. The risk of clogging of the processing means or cracking of the catalyst carrier can be reduced.

請求項2の発明は、吸気通路の水が排水路の下流端から傾斜内壁の突起や凹部が形成する液溜りやプールに滞留するので、滞留中の水の昇温や蒸発を促進でき、下流側に配備の担体の割れのリスクを低減できる。   According to the second aspect of the present invention, the water in the intake passage stays in the liquid pool or pool formed by the protrusions and recesses of the inclined inner wall from the downstream end of the drainage channel. The risk of cracking the carrier deployed on the side can be reduced.

請求項の発明は、複数の突起が排気路下流に行くほど長くなり、液溜りやプールに滞留する水量が下流ほど多くなるので、排水路から排出される凝縮水の量によらず、万が一上流側の突起で凝縮水を滞留されることが出来ない場合でも、確実に下流側で凝縮水を滞留させることができる。さらに、各突起に確実に凝縮水が滞留するので、滞留中の水の昇温や蒸発を十分に促進できる。
請求項の発明は、複数の突起が排気路下流に行くほど長くなり、液溜りやプールに滞留する水量が下流ほど多くなるので、滞留中の水の昇温や蒸発を十分に促進できる。
In the invention of claim 4 , the plurality of protrusions become longer as it goes downstream of the exhaust passage, and the amount of water staying in the liquid pool or pool becomes larger as it goes downstream. Even when the condensed water cannot be retained by the upstream protrusion, the condensed water can be reliably retained on the downstream side. Furthermore, since the condensed water stays in each protrusion with certainty, the temperature rise and evaporation of the staying water can be sufficiently promoted.
In the invention of claim 4 , since the plurality of protrusions become longer as they go downstream of the exhaust passage, and the amount of water staying in the liquid pool or pool becomes larger as it goes downstream, it is possible to sufficiently promote the temperature rise and evaporation of the staying water.

請求項の発明は、フィンにより凹部か形成するプール内の水の昇温や蒸発をさらに促
進できる。
The invention of claim 3 can further promote the temperature rise and evaporation of the water in the pool formed by the fin from the recess.

本発明の一実施形態の内燃機関の排水装置を搭載する車載用ディーゼルエンジンの吸排気系の全体構成図である。1 is an overall configuration diagram of an intake / exhaust system of a vehicle-mounted diesel engine equipped with a drainage device for an internal combustion engine according to an embodiment of the present invention. 図1の内燃機関の排水装置で用いる触媒コンバーターの前部の拡大部分切欠断面図である。FIG. 2 is an enlarged partial cutaway sectional view of a front portion of a catalytic converter used in the internal combustion engine drainage device of FIG. 1. 図2の触媒コンバーターの前部を示し、(a)は図2のA−A線断面図、(b)は(a)の領域A1の拡大図である。The front part of the catalytic converter of FIG. 2 is shown, (a) is the sectional view on the AA line of FIG. 2, (b) is the enlarged view of area | region A1 of (a). 図2の触媒コンバーターの筒部の前部の拡大部分切欠平面図である。FIG. 3 is an enlarged partial cutaway plan view of a front portion of a cylindrical portion of the catalytic converter of FIG. 2. 本発明の他の実施形態で用いる触媒コンバーターの前部の排気管の要部断面図である。It is principal part sectional drawing of the exhaust pipe of the front part of the catalytic converter used by other embodiment of this invention.

本発明を適用した内燃機関の排水装置徴について、以下の図面を用いて解説する。
本発明は、要するに、吸気通路に生じた凝縮水を排気通路の触媒装置の上流側に排水させる際に、予め凝縮水の加熱や気化を促進して触媒装置が破損することを防止することを特徴とする。
ここでは、本発明の内燃機関の排水装置を車載用ディーゼルエンジンの給排気系に適用した場合を実施形態1として説明する。
A drainage device for an internal combustion engine to which the present invention is applied will be described with reference to the following drawings.
In short, the present invention is intended to prevent the catalytic device from being damaged by previously promoting the heating and vaporization of the condensed water when draining the condensed water generated in the intake passage to the upstream side of the catalytic device in the exhaust passage. Features.
Here, the case where the drainage device for an internal combustion engine of the present invention is applied to an air supply / exhaust system of a vehicle-mounted diesel engine will be described as a first embodiment.

実施形態1の内燃機関の排水装置が搭載された車載用ディーゼルエンジン(以下エンジンという)1は本体中央部を成すシリンダブロック2を備え、その上部にシリンダヘッド3を設ける。シリンダヘッド3の吸気側には吸気通路IRを構成する吸気管4が、排気側には排気通路ERを構成する排気管5がそれぞれ接続されている。シリンダヘッド3には、コモンレール13を介して燃料噴射ポンプ14が接続されている。更に、シリンダヘッド3には、一端をエアフィルタ6よりも下流側の吸気管4に接続されたブローバイガスを排出するブローバイガス通路21の他端が接続されている。   A vehicle-mounted diesel engine (hereinafter referred to as an engine) 1 on which a drainage device for an internal combustion engine according to the first embodiment is mounted includes a cylinder block 2 that forms a central portion of a main body, and a cylinder head 3 is provided on the cylinder block 2. An intake pipe 4 constituting an intake passage IR is connected to the intake side of the cylinder head 3 and an exhaust pipe 5 constituting an exhaust passage ER is connected to the exhaust side. A fuel injection pump 14 is connected to the cylinder head 3 via a common rail 13. Further, the cylinder head 3 is connected to the other end of a blow-by gas passage 21 for discharging blow-by gas having one end connected to the intake pipe 4 on the downstream side of the air filter 6.

吸気管4には、吸気通路IRの上流側からエアフィルタ6、低圧スロットル弁7、低圧EGRバルブ8、過給機であるターボチャージャ9の図示しないコンプレッサ、インタークーラ10、高圧スロットル弁11、高圧EGRバルブ12等が設けられている。
排気管5には、シリンダブロック2側である排気通路ERの上流側からターボチャージャ9の図示しないタービン、酸化触媒15及びフィルタ装置16が設けられている。
The intake pipe 4 includes an air filter 6, a low pressure throttle valve 7, a low pressure EGR valve 8, a turbocharger 9 (not shown), an intercooler 10, a high pressure throttle valve 11, a high pressure from the upstream side of the intake passage IR. An EGR valve 12 and the like are provided.
The exhaust pipe 5 is provided with a turbine, an oxidation catalyst 15, and a filter device 16 (not shown) of the turbocharger 9 from the upstream side of the exhaust passage ER on the cylinder block 2 side.

酸化触媒15は、例えば白金のような貴金属触媒を担持しており、排気中のNOをNOに転換する作用と、排気中のHCやCO等の有害成分を酸化させる作用とを有している。NOはNOよりも酸化作用が強く、NOによってフィルタ装置16に捕獲された粒子状物質(ディーゼル・パティキュレート)の酸化反応が促進される。また、このNOは後述するNOxトラップ触媒18で還元除去される。フィルタ装置16は排気中の粒子状物質を捕獲するフィルタ装置(ディーゼル・パティキュレート・フィルタ)であり、捕獲された粒子状物質はNOの強力な酸化作用で燃焼除去される。 The oxidation catalyst 15 carries a noble metal catalyst such as platinum, and has an action of converting NO in the exhaust into NO 2 and an action of oxidizing harmful components such as HC and CO in the exhaust. Yes. NO 2 has a stronger oxidizing action than NO, and the oxidation reaction of particulate matter (diesel particulates) captured by the filter device 16 by NO 2 is promoted. The NO 2 is reduced and removed by a NOx trap catalyst 18 described later. The filter device 16 is a filter device (diesel particulate filter) that captures particulate matter in exhaust gas, and the captured particulate matter is burned and removed by the strong oxidizing action of NO 2 .

フィルタ装置16の下流側には、排気中の酸素濃度量を検知する酸素濃度センサ(LAFS)17が設けられており、その下流側に触媒であるNOxトラップ触媒18を容器本体に内蔵した触媒コンバーター19が、さらにその下流側に酸素濃度センサ20が設けられている。排気通路上に配置される排気後処理手段であるNOxトラップ触媒18は、酸化雰囲気においてNOxを捕捉し、捕捉したNOxを例えばHCやCO等を含む還元雰囲気中で放出して窒素(N)に還元する機能を有する浄化装置である。つまり、酸化触媒15で生成されたNO及び酸化触媒15で酸化されずに排気ガス中に残存するNOを捕捉し、窒素(N)に還元して放出する。 An oxygen concentration sensor (LAFS) 17 for detecting the amount of oxygen concentration in the exhaust gas is provided on the downstream side of the filter device 16, and a catalytic converter in which a NOx trap catalyst 18 as a catalyst is incorporated in the container body on the downstream side. 19, an oxygen concentration sensor 20 is further provided on the downstream side. The NOx trap catalyst 18, which is an exhaust aftertreatment means disposed on the exhaust passage, captures NOx in an oxidizing atmosphere, releases the captured NOx in a reducing atmosphere containing, for example, HC, CO, etc., and nitrogen (N 2 ). It is the purification apparatus which has the function to reduce to. That is, NO 2 generated by the oxidation catalyst 15 and NO remaining in the exhaust gas without being oxidized by the oxidation catalyst 15 are captured, reduced to nitrogen (N 2 ), and released.

高圧EGRバルブ12の下方には、高圧EGR管23と高圧EGRクーラ24とを有する高圧EGR装置22が配設されている。高圧EGR管23は、その一端を高圧スロットル弁11とシリンダヘッド3との間の吸気管4に、その他端をシリンダヘッド3とターボチャージャ9のタービンとの間の排気管5にそれぞれ接続しており、その途中には高圧EGRクーラ24が設けられている。高圧EGR管23の一端は、高圧EGRバルブ12によって開閉される。   A high pressure EGR device 22 having a high pressure EGR pipe 23 and a high pressure EGR cooler 24 is disposed below the high pressure EGR valve 12. The high pressure EGR pipe 23 has one end connected to the intake pipe 4 between the high pressure throttle valve 11 and the cylinder head 3 and the other end connected to the exhaust pipe 5 between the cylinder head 3 and the turbine of the turbocharger 9. A high-pressure EGR cooler 24 is provided in the middle. One end of the high pressure EGR pipe 23 is opened and closed by the high pressure EGR valve 12.

低圧EGRバルブ8の下方には、低圧EGR管26と低圧EGRクーラ27とを有する排気再循環装置としての低圧EGR装置25が配設されている。低圧EGR管26は、その一端を低圧スロットル弁7とターボチャージャ9のコンプレッサとの間の吸気管4に、その他端をフィルタ装置16とNOxトラップ触媒18との間の排気管5にそれぞれ接続しており、その途中に低圧EGRクーラ27が設けられている。低圧EGR管26の一端は、低圧EGRバルブ8によって開閉される。   Below the low pressure EGR valve 8, a low pressure EGR device 25 is disposed as an exhaust gas recirculation device having a low pressure EGR pipe 26 and a low pressure EGR cooler 27. One end of the low pressure EGR pipe 26 is connected to the intake pipe 4 between the low pressure throttle valve 7 and the compressor of the turbocharger 9, and the other end is connected to the exhaust pipe 5 between the filter device 16 and the NOx trap catalyst 18. A low pressure EGR cooler 27 is provided in the middle. One end of the low pressure EGR pipe 26 is opened and closed by the low pressure EGR valve 8.

次に、吸気通路IR内に生じた凝縮水を排水路wrを成す排水管28を通して排気通路ER内に流出させる本発明の実施形態1に係る内燃機関の排水装置Mを説明する。
ここでの排水路wrはその一端の流入口281がインタークーラ下流側であってインタークーラ10と高圧スロットル弁11との間の吸気管4に接続され、排気後処理手段であるNOxトラップ触媒18の排気通路上流側に他端の排水口282が接続される。
排水管28の途中には開閉弁29が配設され、開閉弁29にはこの開閉弁の開閉制御を行なう制御手段30が接続される。
Next, a drainage device M for an internal combustion engine according to Embodiment 1 of the present invention that causes condensed water generated in the intake passage IR to flow into the exhaust passage ER through the drain pipe 28 that forms the drain passage wr will be described.
In this drainage channel wr, an inlet 281 at one end is downstream of the intercooler and is connected to the intake pipe 4 between the intercooler 10 and the high-pressure throttle valve 11, and the NOx trap catalyst 18 as exhaust aftertreatment means. A drain outlet 282 at the other end is connected to the upstream side of the exhaust passage.
An opening / closing valve 29 is provided in the middle of the drain pipe 28, and a control means 30 for controlling opening / closing of the opening / closing valve is connected to the opening / closing valve 29.

制御手段30は、上述したように、排水管28内に貯留された凝縮水の量が一定量に達したり、エンジン1の運転時間や走行距離が一定値に達した場合に開閉弁29を開弁し、排水管28内の凝縮水を触媒コンバーター19を介して車外に排出する機能を備える。更に、制御手段30は排水管28から凝縮水が抜けて酸素濃度センサ20が排水管28を通じて漏出する吸気ガス内の酸素濃度を検出して、これがリーン側の所定値に達すると、排水管28から凝縮水が完全に抜けたと判断し、開閉弁29を閉弁させる機能を備える。この制御手段30の制御により排水管28からの凝縮水排出が完了後に吸気ガスが該排水管から排出され、エンジン1のトルク低下や出力低下を引き起こしてしまうことを防止している。   As described above, the control means 30 opens the on-off valve 29 when the amount of condensed water stored in the drain pipe 28 reaches a certain amount, or when the operation time or travel distance of the engine 1 reaches a certain value. And has a function of discharging the condensed water in the drain pipe 28 through the catalytic converter 19 to the outside of the vehicle. Further, the control means 30 detects the oxygen concentration in the intake gas leaked from the drain pipe 28 and the oxygen concentration sensor 20 leaks through the drain pipe 28, and when this reaches a predetermined value on the lean side, the drain pipe 28. Therefore, it is determined that the condensed water has been completely removed from the valve, and the on-off valve 29 is closed. The control of the control means 30 prevents the intake gas from being discharged from the drain pipe after the drain of the condensed water from the drain pipe 28 is completed, thereby causing a decrease in torque and output of the engine 1.

次に、図1に示すように、排気通路ERを成す上流側排気管501は拡径前部192との接合位置より排気路方向Xで上流側に間隔Le離れた位置の外壁の上部にボス31を溶着している。このボス31に設けた貫通孔の上端側には排水管28の他端である排水側が接続されている。ボス31の貫通孔の下端側は上流側排気管501を貫通して排気路ERの内部に向けて排水口282を形成している。
この上流側排気管501の後端に排気後処理手段としてのNOxトラップ触媒(排気後処理手段)18を有する触媒コンバーター19が接続される。
触媒コンバーター19は、排気通路ERの拡径部を成し、筒状の容器本体(シエル)を備える。筒状の容器本体はNOxトラップ触媒18を収容保持する筒状の主部191と、主部191に連続形成された排気通路前側の拡径部である拡径前部192と、排気通路後側の拡径後部193とを有する。
Next, as shown in FIG. 1, the upstream side exhaust pipe 501 forming the exhaust passage ER has a boss on the upper part of the outer wall at a position Le apart upstream in the exhaust passage direction X from the joint position with the enlarged diameter front part 192. 31 is welded. The drain side which is the other end of the drain pipe 28 is connected to the upper end side of the through hole provided in the boss 31. A lower end side of the through hole of the boss 31 penetrates the upstream exhaust pipe 501 and forms a drain outlet 282 toward the inside of the exhaust path ER.
A catalytic converter 19 having a NOx trap catalyst (exhaust aftertreatment means) 18 as exhaust aftertreatment means is connected to the rear end of the upstream side exhaust pipe 501.
The catalytic converter 19 forms an enlarged diameter portion of the exhaust passage ER, and includes a cylindrical container body (shell). The cylindrical container body includes a cylindrical main portion 191 that accommodates and holds the NOx trap catalyst 18, an enlarged diameter front portion 192 that is an enlarged diameter portion on the front side of the exhaust passage formed continuously with the main portion 191, and a rear side of the exhaust passage. And an enlarged diameter rear portion 193.

より具体的には、触媒コンバーター19は、上流側排気管501の排気管後端部よりNOxトラップ触媒(排気後処理手段)18に向けて管径が徐々に増加するコーン形状の拡径前部192(傾斜部の一部)と、拡径前部192の後端部から延出しNOxトラップ触媒(排気後処理手段)18を保持する筒部としての主部191とを有する。
このように拡径前部192はその前端が排気通路上流側の上流側排気管501に重なり互い溶着され、拡径後部193は下流に向けて排気路径を徐々に縮小するコーン形状の傾斜部を成し、その排気通路下流側の排気管後端部である下流側排気管502に溶着される。
More specifically, the catalytic converter 19 has a cone-shaped enlarged front portion in which the pipe diameter gradually increases from the exhaust pipe rear end portion of the upstream side exhaust pipe 501 toward the NOx trap catalyst (exhaust aftertreatment means) 18. 192 (a part of the inclined portion) and a main portion 191 as a cylindrical portion that extends from the rear end portion of the enlarged diameter front portion 192 and holds the NOx trap catalyst (exhaust aftertreatment means) 18.
As described above, the front end of the enlarged diameter portion 192 overlaps and welds the upstream exhaust pipe 501 upstream of the exhaust passage, and the enlarged diameter rear portion 193 has a cone-shaped inclined portion that gradually reduces the exhaust passage diameter toward the downstream. And is welded to the downstream side exhaust pipe 502 which is the rear end portion of the exhaust pipe on the downstream side of the exhaust passage.

図2に示すように、管径が徐々に増加するコーン形状の拡径前部192は接合位置より排気路方向Xで下流側に向けて前端より後端は拡径され、前端より後端の重力方向gで最下部側が、前端より後端に向けて降下する傾斜面f2を形成している。
図2に示すように、傾斜部である拡径前部192の傾斜部内壁の傾斜面f2と、それに続く筒状の主部191の重力方向下側の平坦部f3には凝縮水を滞留させ液溜りD1を生じさせる凹凸部が形成される。ここで、拡径前部192の傾斜部内壁の傾斜面f2には排気通路ERの径方向内側に突設された凹凸部を成す突起41が形成され、主部191の重力方向下側の平坦部f3には排気通路ERの径方向内側に対して凹設された凹凸部を成す凹部であるプール42が形成され、それぞれ液溜りD1を生じさせている。
As shown in FIG. 2, the cone-shaped enlarged front part 192 whose pipe diameter gradually increases has its rear end enlarged toward the downstream side in the exhaust passage direction X from the joining position, and its rear end is enlarged from the front end. The lowermost side in the gravitational direction g forms an inclined surface f2 that descends from the front end toward the rear end.
As shown in FIG. 2, condensed water is retained in the inclined surface f2 of the inner wall of the inclined portion of the enlarged diameter front portion 192 that is an inclined portion and the flat portion f3 on the lower side in the gravity direction of the cylindrical main portion 191 that follows. Concave and convex portions that cause the liquid pool D1 are formed. Here, on the inclined surface f2 of the inner wall of the inclined portion of the enlarged diameter front portion 192, a protrusion 41 that forms an uneven portion protruding radially inward of the exhaust passage ER is formed, and the flat portion below the main portion 191 in the gravity direction is formed. In the portion f3, a pool 42 is formed as a concave portion that forms a concave and convex portion that is recessed with respect to the radially inner side of the exhaust passage ER, and each generates a liquid pool D1.

より具体的には、図3(a)、(b)に示すように、ここで、傾斜面f2には複数の互いに並列状の突起41が突設されている。このため、各突起41と内壁の傾斜面f2とが周方向に長い液溜りD1を形成している。ここで、各突起41及び液溜りD1は、排気路方向Xで下流側(図3(b)では正面視て下側)に行くほど拡径前部192の内壁の傾斜面f2の周方向(図中の符号R方向)の長さが中心線CLに沿って下側ほど長くなる複数の弧状形状を成している。
一方、図2に示すように、主部191の前端側でNOxトラップ触媒(排気後処理手段)18の担持体前面f1の前方側であって、重力方向g下側の平坦部f3に凹凸部を成すプール42(容量の大きな液溜りD1を有する)が形成される。このプール42は傾斜面f2を流動してきた凝縮水を滞留させ、ここで主部191が保持する熱及び流動する排気ガスの熱により凝縮水の加熱と蒸発を促進する。ここでのプール42は、図4に示すように、その室内に平面視で複数のフィン43を格子状に組んで組み付けており、この複数のフィン43により排気ガスの熱伝導を高めて凝縮水の加熱と蒸発を促進している。
More specifically, as shown in FIGS. 3A and 3B, here, a plurality of parallel protrusions 41 protrude from the inclined surface f2. For this reason, each protrusion 41 and the inclined surface f2 of the inner wall form a liquid pool D1 that is long in the circumferential direction. Here, each protrusion 41 and the liquid reservoir D1 are arranged in the circumferential direction of the inclined surface f2 of the inner wall of the diameter-expanded front portion 192 as it goes downstream in the exhaust passage direction X (lower side when viewed from the front in FIG. 3B). A plurality of arcuate shapes in which the length in the direction of reference sign R in the figure becomes longer along the center line CL toward the lower side.
On the other hand, as shown in FIG. 2, an uneven portion is formed on the front portion f1 of the NOx trap catalyst (exhaust aftertreatment means) 18 on the front end side of the main portion 191 and on the flat portion f3 below the gravity direction g. A pool 42 (having a large-capacity liquid reservoir D1) is formed. The pool 42 retains the condensed water that has flowed through the inclined surface f2, and promotes the heating and evaporation of the condensed water by the heat held by the main portion 191 and the heat of the flowing exhaust gas. As shown in FIG. 4, the pool 42 has a plurality of fins 43 assembled in a lattice shape in a plan view in the room, and the plurality of fins 43 enhance the heat conduction of the exhaust gas to condense water. Promotes heating and evaporation.

このような内燃機関の排水装置M1の作動を説明する。
エンジン1の運転中、特に低圧EGR装置25の使用時にはインタークーラ10の出口部に多量の凝縮水が発生する。発生した凝縮水は、排水路wrを通ってNOxトラップ触媒18の上流側排気管501に送られ、下流の触媒コンバーター19を介して車外に排出される。この場合、排水路wrを成す排水管28の途中に設けられた開閉弁29が閉じられているときには排水管28内に貯留される。開閉弁29は排水管28内に設けられた図示しない水位センサによって貯留された凝縮水の量が一定量に達したとき、あるいはエンジン1の運転時間や走行距離が一定値に達したときに制御手段30に開弁駆動される。
The operation of such a drainage device M1 for an internal combustion engine will be described.
During operation of the engine 1, particularly when the low pressure EGR device 25 is used, a large amount of condensed water is generated at the outlet of the intercooler 10. The generated condensed water is sent to the upstream side exhaust pipe 501 of the NOx trap catalyst 18 through the drainage channel wr, and is discharged outside the vehicle through the downstream catalytic converter 19. In this case, when the on-off valve 29 provided in the middle of the drain pipe 28 that forms the drain channel wr is closed, it is stored in the drain pipe 28. The on-off valve 29 is controlled when the amount of condensed water stored by a water level sensor (not shown) provided in the drain pipe 28 reaches a certain amount, or when the operation time or travel distance of the engine 1 reaches a certain value. The means 30 is driven to open the valve.

エンジン1の運転中に排気通路ERを流動してきた排気は排気管5を通過し、容器本体(シエル)190内に流入して、そこで、NOxトラップ触媒18を保持する担持体前面f1に拡散して流入している。その際、上流側排気管501には排水口282が開口し、同位置の排気流速が大きく、上流側排気管内圧Perが比較的小さい。このため、ベンチュリー効果により排水管28を通してインタークーラ10の出口部の凝縮水が圧力差により排水口282より図2に示すように吸い出され、上流側排気管501の距離Le部分を経て拡径前部192内に流動する。   Exhaust gas flowing through the exhaust passage ER during the operation of the engine 1 passes through the exhaust pipe 5 and flows into the container body (shell) 190, where it diffuses to the carrier front surface f1 holding the NOx trap catalyst 18. Inflow. At that time, a drain outlet 282 is opened in the upstream exhaust pipe 501, the exhaust flow velocity at the same position is large, and the upstream exhaust pipe internal pressure Per is relatively small. For this reason, the condensed water at the outlet portion of the intercooler 10 is sucked out from the drain port 282 as shown in FIG. 2 due to the pressure difference through the drain pipe 28 due to the venturi effect, and the diameter is expanded through the distance Le portion of the upstream side exhaust pipe 501. Flows into the front 192.

この際、図2に示すように、排水口282から流出した凝縮水が上流側排気管501の距離Le部分で重力方向gで下側に偏向されつつ流動し、排気ガスと内壁面により加熱される。更に、図3(b)に示すように、上流側排気管501より拡径前部192に流動した凝縮水は傾斜面f2の複数の並列状の突起41に流動を規制され、各突起41が形成する周方向に長い液溜りD1に一時的に滞留して加熱され、下流側に順次流動するに応じて、各突起41が形成する液溜りD1で凝縮水は排気ガスと拡径前部192の内壁の傾斜面f2の熱を受けて気化し、蒸発する。   At this time, as shown in FIG. 2, the condensed water flowing out from the drain port 282 flows while being deflected downward in the gravity direction g at the distance Le portion of the upstream side exhaust pipe 501, and is heated by the exhaust gas and the inner wall surface. The Further, as shown in FIG. 3B, the condensed water that has flowed from the upstream side exhaust pipe 501 to the diameter-expanded front portion 192 is restricted in flow by a plurality of parallel protrusions 41 on the inclined surface f2, and each protrusion 41 is In the liquid pool D1 formed by the protrusions 41, the condensed water becomes exhaust gas and the diameter-expanded front part 192 as it temporarily stays in the circumferentially long liquid pool D1 to be formed and heated and sequentially flows downstream. It is vaporized by receiving heat from the inclined surface f2 of the inner wall of the inner wall and evaporated.

この後、拡径前部192を通過した凝縮水は、重力方向g下側の平坦部f3のプール42に流入し、ここでも凝縮水は排気ガスとプール42の内壁や複数の格子状のフィン43の熱を受けて気化し、蒸発する。
この後、高温化した凝縮水は、排気ガスや気化した凝縮水と合流して、触媒コンバーター19(排気後処理装置)に導入されるので、該触媒コンバーター19の目詰まりあるいは触媒の担体割れのリスクを低減できる。
このように、実施形態1の内燃機関の排水装置M1では、排水口282から流出した凝縮水が上流側排気管501の距離Le部分で、排気ガスと内壁面により加熱され、その上で拡径前部192の複数の突起41が形成する周方向に長い液溜りD1、平坦部f3のプール42の内壁や複数の格子状のフィン43の熱、同時に排気ガスによりさらに効率よく加熱できる。
Thereafter, the condensed water that has passed through the diameter expansion front portion 192 flows into the pool 42 of the flat portion f3 below the gravity direction g, and here also the condensed water is exhaust gas, the inner wall of the pool 42, and a plurality of lattice fins. It vaporizes in response to the heat of 43 and evaporates.
Thereafter, the condensed water having a high temperature joins with the exhaust gas or the vaporized condensed water and is introduced into the catalytic converter 19 (exhaust aftertreatment device), so that the catalytic converter 19 is clogged or the catalyst carrier cracks. Risk can be reduced.
As described above, in the drainage device M1 of the internal combustion engine of the first embodiment, the condensed water flowing out from the drain outlet 282 is heated by the exhaust gas and the inner wall surface at the distance Le portion of the upstream side exhaust pipe 501, and then the diameter is expanded. The liquid pool D1 which is long in the circumferential direction formed by the plurality of protrusions 41 of the front portion 192, the heat of the inner wall of the pool 42 and the plurality of lattice-like fins 43 of the flat portion f3, and at the same time, can be further efficiently heated.

特に、複数の突起41が排気路下流に行くほど長くなり、液溜りD1やプール42に滞留する水量が下流ほど多くなるので、排水路から排出される凝縮水の量によらず、万が一上流側の突起で凝縮水を滞留されることが出来ない場合でも、確実に下流側で凝縮水を滞留させることができる。さらに、各突起41に確実に凝縮水が滞留するので、滞留中の水の昇温や蒸発を十分に促進できる。このように気化した凝縮水が排気後処理装置に導入されるので、目詰まりあるいは触媒の担体割れのリスクを低減できる。   In particular, since the plurality of protrusions 41 become longer as they go downstream of the exhaust passage, and the amount of water staying in the liquid pool D1 or the pool 42 increases as it goes downstream, it should be upstream regardless of the amount of condensed water discharged from the drainage passage. Even if the condensed water cannot be retained by the protrusions, the condensed water can be reliably retained on the downstream side. Furthermore, since the condensed water stays in each protrusion 41 reliably, the temperature rise and evaporation of the staying water can be sufficiently promoted. Since the vaporized condensed water is introduced into the exhaust gas aftertreatment device, the risk of clogging or catalyst carrier cracking can be reduced.

上述の実施形態1の内燃機関の排水装置M1では、排水口282から流出した凝縮水が上流側排気管501の距離Le部分で、排気ガスと内壁面により加熱されていたが、これに代えて、図5に示すような実施形態2に係る内燃機関の排水装置M2を次に説明する。
実施形態2に係る内燃機関の排水装置M2は上流側排気管501の距離Le部分を蛇腹管44とした点でのみ実施形態1の構成と相違するので、その他の重複説明を略す。
In the drainage device M1 of the internal combustion engine of the first embodiment described above, the condensed water flowing out from the drain port 282 is heated by the exhaust gas and the inner wall surface at the distance Le portion of the upstream side exhaust pipe 501. Next, a drainage device M2 for an internal combustion engine according to Embodiment 2 as shown in FIG. 5 will be described.
Since the drainage device M2 for the internal combustion engine according to the second embodiment is different from the configuration of the first embodiment only in that the distance Le portion of the upstream exhaust pipe 501 is the bellows pipe 44, other redundant description is omitted.

この場合、排水口282から流出した凝縮水が上流側排気管501の距離Le部分の蛇腹管44の内壁部分の複数の液溜りD1で排気ガスと内壁面により加熱され、その上で拡径前部192の突起41が形成する液溜りD1、平坦部f3の容量の大きな液溜りを成すプール42で排気ガスと内壁面により加熱される。この場合、特に、距離Le部分の蛇腹管44による加熱が加わり、凝縮水はより加熱が進み、凝縮水の気化が促進され、排気後処理装置に導入されるので、目詰まりあるいは触媒の担体割れのリスクをより低減できる。
上述のところにおいて、内燃機関の排水装置は車載用ディーゼルエンジンに搭載されるとしたが、場合により定置式ディーゼルエンジンに搭載されてもよく、更に、ガソリンエンジンに搭載されてもよく、これらの場合もほぼ同様の効果が得られる。
In this case, the condensed water flowing out from the drain outlet 282 is heated by the exhaust gas and the inner wall surface in the plurality of liquid reservoirs D1 on the inner wall portion of the bellows tube 44 at the distance Le portion of the upstream exhaust pipe 501, and then before the diameter expansion. Heat is generated by the exhaust gas and the inner wall surface in the pool 42 formed by the protrusion 41 of the portion 192 and the pool 42 having a large volume of the flat portion f3. In this case, in particular, heating by the bellows tube 44 at a distance Le is added, and the condensed water is further heated, the vaporization of the condensed water is promoted, and introduced into the exhaust aftertreatment device. Risk can be further reduced.
In the above description, the drainage device of the internal combustion engine is mounted on the on-board diesel engine. However, it may be mounted on a stationary diesel engine depending on the case, and may be further mounted on a gasoline engine. Almost the same effect can be obtained.

1 内燃機関(エンジン)
4 吸気通路(吸気管)
5 排気通路(排気管)
501 上流側排気管
9 過給機(ターボチャージャ)
10 インタークーラ
18 触媒(NOxトラップ触媒)
19 触媒コンバーター
191 主部(筒部)
192 拡径前部(拡径部)
25 排気再循環装置(低圧EGR装置)
28 排水路(排水管)
41 突起(凹凸部)
42 プール(凹凸部)
f2 傾斜面
D1 液溜り
ER 排気通路
M1〜M2 内燃機関の排水装置
X 排気路方向
1 Internal combustion engine
4 Intake passage (intake pipe)
5 Exhaust passage (exhaust pipe)
501 Upstream exhaust pipe 9 Turbocharger (turbocharger)
10 Intercooler 18 Catalyst (NOx trap catalyst)
19 Catalytic converter 191 Main part (cylinder part)
192 Expanded front (expanded portion)
25 Exhaust gas recirculation device (low pressure EGR device)
28 Drainage channel (drainage pipe)
41 Protrusion (concave / convex)
42 pool
f2 Inclined surface D1 Liquid reservoir ER Exhaust passage M1-M2 Drainage device for internal combustion engine X Exhaust passage direction

Claims (4)

内燃機関の排気通路上に配置される排気後処理手段の上流側に形成された拡径部と、
前記内燃機関の吸気通路に一端が、前記排気後処理手段の排気通路上流側に他端をそれぞれ接続して吸気通路内の凝縮水を前記排気通路に排出する排水路と、
を備え、
前記排気後処理手段の上流側排気管の後端部は前記拡径部を介して前記排気後処理手段に接続され、
前記拡径部の内壁面には前記凝縮水を滞留させる凹凸部が形成され、
前記拡径部は前記上流側排気管後端部より前記排気後処理手段に向けて管径が徐々に増加するコーン形状の傾斜部を有し、
前記凹凸部は前記傾斜部の内壁に前記排気通路の径方向内側に突設された突起を有する、
ことを特徴とする内燃機関の排水装置。
An enlarged diameter portion formed on the upstream side of the exhaust aftertreatment means disposed on the exhaust passage of the internal combustion engine;
A drainage passage for connecting one end to the intake passage of the internal combustion engine and connecting the other end to the upstream side of the exhaust passage of the exhaust aftertreatment means to discharge condensed water in the intake passage to the exhaust passage;
With
The rear end portion of the upstream exhaust pipe of the exhaust aftertreatment means is connected to the exhaust aftertreatment means via the enlarged diameter portion,
An uneven portion for retaining the condensed water is formed on the inner wall surface of the enlarged diameter portion ,
The expanded diameter portion has a cone-shaped inclined portion in which the tube diameter gradually increases from the rear end portion of the upstream exhaust pipe toward the exhaust aftertreatment means,
The concavo-convex part has a protrusion projecting radially inward of the exhaust passage on the inner wall of the inclined part,
A drainage device for an internal combustion engine.
前記拡径部は、前記傾斜部の後端部から延出し前記排気後処理手段を保持する筒部を有し、
前記凹凸部は、前記筒部の重力方向下側の平坦部に前記排気通路の径方向内側に凹設された凹部を有する、
ことを特徴とする請求項1に記載の内燃機関の排水装置。
The diameter-expanding portion has a cylindrical portion that extends from a rear end portion of the inclined portion and holds the exhaust aftertreatment means,
The uneven portion, the have a radially inwardly recessed by a recess in the exhaust passage to the flat portion in the gravity direction lower side of the front Symbol cylindrical portion,
Drainage device of the internal combustion engine as set forth in claim 1, characterized in that.
前記凹部の内壁にはフィンが突設された、
ことを特徴とする請求項2に記載の内燃機関の排水装置。
Fins protruded from the inner wall of the recess,
3. The drainage device for an internal combustion engine according to claim 2, wherein the drainage device is an internal combustion engine.
前記突起は排気通路下流に行くほど前記排気管の周方向の長さが長くなる複数の弧状形状を成した、
ことを特徴とする請求項1乃至3の何れか1つに記載の内燃機関の排水装置。
The protrusion has a plurality of arcuate shapes in which the length in the circumferential direction of the exhaust pipe becomes longer as it goes downstream of the exhaust passage.
The drainage device for an internal combustion engine according to any one of claims 1 to 3, wherein the drainage device is an internal combustion engine.
JP2013265980A 2013-12-24 2013-12-24 Drainage device for internal combustion engine Active JP6213224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265980A JP6213224B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265980A JP6213224B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015121169A JP2015121169A (en) 2015-07-02
JP6213224B2 true JP6213224B2 (en) 2017-10-18

Family

ID=53532996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265980A Active JP6213224B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6213224B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191322U (en) * 1982-06-14 1983-12-19 日産自動車株式会社 catalyst device
JP4152902B2 (en) * 2004-02-02 2008-09-17 日産ディーゼル工業株式会社 Engine exhaust purification system
JP5494528B2 (en) * 2011-02-28 2014-05-14 三菱自動車工業株式会社 Condensate drain device
JP2013127208A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Exhaust purification device for internal combustion engine
JP2013127228A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Exhaust purification device

Also Published As

Publication number Publication date
JP2015121169A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5494528B2 (en) Condensate drain device
US9255504B2 (en) Exhaust gas mixer and system
KR102048779B1 (en) Exhaust system for an internal combustion engine, and method for operating such an exhaust system
WO2015045952A1 (en) Condensation water separation device
JP2008208787A (en) Turbocharger for internal combustion engine
JP4905415B2 (en) Exhaust gas purification system for internal combustion engine
JP2009041551A (en) Exhaust gas recirculation device for internal combustion engine
WO2015075944A1 (en) Control device for internal combustion engine
CN105888798B (en) System for sensing particulate matter
JP6252076B2 (en) Condensate separator
JP2011144747A (en) Exhaust emission control device of diesel engine
JP2008303836A (en) Exhaust emission control device for internal combustion engine
JP6213224B2 (en) Drainage device for internal combustion engine
JP6201737B2 (en) Drainage device for internal combustion engine
JP2017040224A (en) Exhaust emission control device for internal combustion engine
JP6201738B2 (en) Drainage device for internal combustion engine
JP6241265B2 (en) Drainage device for internal combustion engine
JP4332900B2 (en) Intake module
JP6201739B2 (en) Drainage device for internal combustion engine
JP6201740B2 (en) Drainage device for internal combustion engine
JP6187243B2 (en) Drainage device for internal combustion engine
JP5800607B2 (en) EGR gas passage structure
US11208971B2 (en) Methods and systems for mitigating condensate formation
JP2009074425A (en) Exhaust emission control device of internal combustion engine
JP6237158B2 (en) Drainage control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R151 Written notification of patent or utility model registration

Ref document number: 6213224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350