[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6201737B2 - Drainage device for internal combustion engine - Google Patents

Drainage device for internal combustion engine Download PDF

Info

Publication number
JP6201737B2
JP6201737B2 JP2013265977A JP2013265977A JP6201737B2 JP 6201737 B2 JP6201737 B2 JP 6201737B2 JP 2013265977 A JP2013265977 A JP 2013265977A JP 2013265977 A JP2013265977 A JP 2013265977A JP 6201737 B2 JP6201737 B2 JP 6201737B2
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
combustion engine
condensed water
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265977A
Other languages
Japanese (ja)
Other versions
JP2015121168A (en
Inventor
雄輔 磯部
雄輔 磯部
洋之 木村
洋之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013265977A priority Critical patent/JP6201737B2/en
Publication of JP2015121168A publication Critical patent/JP2015121168A/en
Application granted granted Critical
Publication of JP6201737B2 publication Critical patent/JP6201737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Description

本発明は車両の内燃機関に関し、詳しくは吸排気中から水分を排水する排水装置に関する。   The present invention relates to an internal combustion engine of a vehicle, and more particularly to a drainage device that drains moisture from intake and exhaust.

ディーゼルエンジンの排気ガス浄化方法として、NOxトラップ触媒を用いたものが知られている。NOxトラップ触媒は、排気中のNOxを酸化雰囲気中で捕捉し、捕捉したNOxを還元雰囲気中で放出してN等に還元することでNOxの排出濃度を低減している。また、ディーゼルエンジン搭載車には、排気中の粒子状物質(PM)を除去するフィルタ装置が設けられており、NOxトラップ触媒はその耐熱性や配置スペースの観点から、一般的にフィルタ装置の下流側に配置されている。 As an exhaust gas purification method for a diesel engine, a method using a NOx trap catalyst is known. The NOx trap catalyst captures NOx in exhaust gas in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere, and reduces it to N 2 or the like, thereby reducing the NOx emission concentration. In addition, a diesel engine-equipped vehicle is provided with a filter device that removes particulate matter (PM) in the exhaust. The NOx trap catalyst is generally downstream of the filter device from the viewpoint of heat resistance and arrangement space. Arranged on the side.

さらに、排気の一部を吸気側に戻すことで燃焼室の燃焼温度を下げ、排気中のNOxを低減させる排気再循環(EGR)方式が知られている。EGR方式には、過給機のタービン上流側排気通路からコンプレッサ下流側吸気通路に排気を戻す高圧EGR方式と、タービン下流側で酸化触媒及びフィルタ装置下流側の排気通路からコンプレッサ上流側吸気通路に排気を戻す低圧EGR方式とがある。ここで、低圧EGR装置及びインタークーラ等の冷却手段を備えた内燃機関では、排気を含む吸気が冷却手段を通過して冷却される際に結露して凝縮水が発生する。この凝縮水が吸気と共に吸気通路から燃焼室に送られると、ウォーターハンマを引き起こしてしまう虞がある。   Furthermore, an exhaust gas recirculation (EGR) system is known in which part of the exhaust gas is returned to the intake side to lower the combustion temperature of the combustion chamber and reduce NOx in the exhaust gas. The EGR system includes a high-pressure EGR system for returning exhaust gas from the turbine upstream exhaust passage of the turbocharger to the compressor downstream intake passage, and an oxidation catalyst and filter device downstream exhaust passage downstream from the turbine to the compressor upstream intake passage. There is a low pressure EGR system that returns exhaust gas. Here, in an internal combustion engine provided with cooling means such as a low-pressure EGR device and an intercooler, condensation is generated when the intake air including exhaust gas passes through the cooling means and is cooled. If this condensed water is sent together with the intake air from the intake passage to the combustion chamber, there is a risk of causing a water hammer.

上述の問題を解決する内燃機関の排気浄化装置の一例が「特許文献1」に開示されている。この排気浄化装置では、インタークーラで発生した凝縮水を貯留する貯留タンクと、凝縮水を加熱して水蒸気とする加熱装置と、貯留タンクと触媒上流側の排気通路とに接続された水蒸気供給路とを有し、凝縮水を水蒸気に変えて触媒の上流側排気通路に供給している。   An example of an exhaust emission control device for an internal combustion engine that solves the above-described problem is disclosed in “Patent Document 1”. In this exhaust purification device, a storage tank that stores condensed water generated by the intercooler, a heating device that heats the condensed water to form steam, and a water vapor supply path that is connected to the storage tank and an exhaust passage on the upstream side of the catalyst And the condensed water is converted into water vapor and supplied to the upstream exhaust passage of the catalyst.

特開2013−180757号公報JP 2013-180757 A

上述の技術では、凝縮水が燃焼室に送られてウォーターハンマを引き起こすことが防止されているが、凝縮水を加熱して水蒸気とする加熱装置が必要となり、同装置の装着によりコスト増、スペース確保等の問題が生じ易い。そこで、インタークーラで発生した凝縮水をNOxトラップ触媒の上流側排気管へ排出するために凝縮水排出通路を設置するという構成を採ることが考えられる。
この場合、凝縮水排出通路の出口より排出された凝縮水がその下流に配備のNOxトラップ触媒に流動して、その凝縮水により触媒が急冷されると、熱応力により担体割れが生じ易くなり、排ガスが悪化するという問題がある。
In the above-described technology, it is prevented that condensed water is sent to the combustion chamber and causes water hammer. However, a heating device that heats the condensed water to form steam is necessary, and the installation of this device increases costs and space. Problems such as securing are likely to occur. Therefore, it is conceivable to adopt a configuration in which a condensed water discharge passage is installed in order to discharge the condensed water generated in the intercooler to the upstream exhaust pipe of the NOx trap catalyst.
In this case, when condensed water discharged from the outlet of the condensed water discharge passage flows to the NOx trap catalyst arranged downstream thereof, and the catalyst is rapidly cooled by the condensed water, carrier cracking is likely to occur due to thermal stress, There is a problem that exhaust gas deteriorates.

更に、エンジンの低負荷域では十分な過給圧が得られないため、凝縮水排出通路を連通させた開弁時に凝縮水が吸気通路側に逆流し、排気通路へ排出できなくなってしまうという問題が生じ易い。そこで、凝縮水の排出を常時可能とするために、凝縮水排出通路の入口、出口の圧力差を増大させるような構成を採ることが望まれている。   Furthermore, since sufficient boost pressure cannot be obtained in the low load region of the engine, the condensate flows backward to the intake passage when the condensate discharge passage is opened and cannot be discharged to the exhaust passage. Is likely to occur. Therefore, it is desired to adopt a configuration that increases the pressure difference between the inlet and outlet of the condensed water discharge passage so that the condensed water can always be discharged.

本発明は上述の問題を解決するもので目的とするのは、凝縮水排出通路より排出された凝縮水がNOxトラップ触媒を急冷しないような構成を採り、凝縮水の排気通路への排出を常時可能とすることができる内燃機関の排水装置の提供することにある。   An object of the present invention is to solve the above-mentioned problems. The object of the present invention is to adopt a configuration in which the condensed water discharged from the condensed water discharge passage does not rapidly cool the NOx trap catalyst, and always discharge the condensed water to the exhaust passage. An object of the present invention is to provide a drainage device for an internal combustion engine that can be made possible.

請求項1記載の発明は、内燃機関の排気通路上に配置される排気後処理手段の上流側に形成された拡径部と、前記内燃機関の吸気通路に一端が、前記排気後処理手段の排気通路上流側に他端がそれぞれ接続されて前記吸気通路内の凝縮水を前記排気通路に排出する排水路と、を備え、前記排気後処理手段の上流側排気管の後端部は前記拡径部の拡径前部内に延長管部として延出し、前記排水路の他端の開口部は前記拡径前部内で前記延長管部と対向するよう、前記延長管部の重力方向で上側に配設したことを特徴とする。 According to the first aspect of the present invention, an enlarged diameter portion formed on the upstream side of the exhaust aftertreatment means disposed on the exhaust passage of the internal combustion engine, and one end of the intake passage of the internal combustion engine are connected to the exhaust aftertreatment means. A drain passage for connecting the other end to the upstream side of the exhaust passage and discharging condensed water in the intake passage to the exhaust passage, and a rear end portion of the upstream exhaust pipe of the exhaust aftertreatment means It extends as an extension pipe part in the diameter expansion front part of the diameter part, and the opening at the other end of the drainage channel is upward in the gravity direction of the extension pipe part so as to face the extension pipe part in the diameter expansion front part. It is characterized by being arranged.

請求項2記載の発明は、請求項1記載の内燃機関の排水装置において、前記延長管部の端部は前記延長管部の径方向外側に延出した延出部が形成される、ことを特徴とする。   According to a second aspect of the present invention, in the drainage device for an internal combustion engine according to the first aspect of the present invention, the end of the extension pipe part is formed with an extension part extending outward in the radial direction of the extension pipe part. Features.

請求項記載の発明は、請求項1または2に記載の内燃機関の排水装置において、前記排気後処理手段の容器本体の拡径前部はコーン形状の傾斜部を成し、前記排水路の他端を前記拡径前部の内部に接続した、ことを特徴とする。 According to a third aspect of the present invention, in the drainage device for an internal combustion engine according to the first or second aspect, the diameter expansion front portion of the container body of the exhaust aftertreatment means forms a cone-shaped inclined portion, and the drainage channel The other end is connected to the inside of the enlarged diameter front part.

請求項記載の発明は、請求項1〜3のいずれか1つに記載の内燃機関の路排水装置において、前記吸気通路に配置されたインタークーラ、を有し、前記排水路の一端が前記インタークーラ下流側の吸気通路に接続される、ことを特徴とする。 The invention of claim 4, wherein, in the road drainage device for an internal combustion engine according to any one of claims 1 to 3, has a intercooler, arranged in the intake passage, one end of the drainage channel is the It is connected to the intake passage on the downstream side of the intercooler.

請求項1の発明は、インタークーラによって結露した凝縮水は排水路を通じて排気後処理手段の上流側の排気通路に排出されるため、排気の熱によって気化し排気後処理手段を通過して車外に排出することができる。また、排水路の他端の開口部と拡径前部内の延長管部とは少なくとも一部が対向して配置されているので、延長管部に当たって凝縮水が拡散されて排気の気化が促進されるとともに、延長管部の熱によって更に気化が促進される。これにより、凝縮水は気化または飛散して微粒化した上で排気後処理手段に導入されるので、目詰まりあるいは触媒の担体割れのリスクを低減できる。さらに、排水路の他端から流出した水が、重力方向で下側に位置する延長管部に当接するように排出でき、排水路からの水を確実に拡散させてから触媒側に飛散させることができる。 In the first aspect of the present invention, the condensed water condensed by the intercooler is discharged to the exhaust passage on the upstream side of the exhaust post-treatment means through the drainage passage, so that it is vaporized by the heat of the exhaust and passes through the exhaust post-treatment means to the outside of the vehicle. Can be discharged. Further, since at least a part of the opening at the other end of the drainage channel and the extension pipe part in the front part of the enlarged diameter face each other, the condensed water is diffused by hitting the extension pipe part, and the vaporization of the exhaust is promoted. At the same time, vaporization is further promoted by the heat of the extension tube. Thereby, the condensed water is vaporized or scattered to be atomized and then introduced into the exhaust aftertreatment means, so that the risk of clogging or catalyst carrier cracking can be reduced. Furthermore, the water that flows out from the other end of the drainage channel can be discharged so as to abut on the extension pipe part located on the lower side in the direction of gravity, and the water from the drainage channel can be diffused and scattered to the catalyst side. Can do.

請求項2の発明は、排水路の他端から延長管部に向けて排出された凝縮水は、更に返しにより液体の凝縮水を排気通路上流側に戻されて拡散するので、延長管部の外周壁および拡径前部の内壁部の熱によって気化を促進させることができる。   In the second aspect of the invention, the condensed water discharged from the other end of the drainage channel toward the extension pipe part is further returned to diffuse the liquid condensed water to the upstream side of the exhaust passage. Vaporization can be promoted by the heat of the outer peripheral wall and the inner wall portion of the front part of the enlarged diameter.

請求項の発明は、コーン形状の傾斜部の内部に延長管部を配置するため、排水路の他端から流出した凝縮水は延長管部の外周壁および拡径部の内壁部の熱によって昇温されながら確実に排気後処理手段側に移動する。これにより、排気後処理手段の目詰まりあるいは触媒の担体割れのリスクをさらに低減できる In the third aspect of the present invention, since the extension pipe part is arranged inside the cone-shaped inclined part, the condensed water flowing out from the other end of the drainage channel is caused by the heat of the outer peripheral wall of the extension pipe part and the inner wall part of the enlarged diameter part. It reliably moves to the exhaust aftertreatment means side while being heated. This further reduces the risk of clogging the exhaust aftertreatment means or cracking of the catalyst carrier.

請求項の発明は、インタークーラ下流に生じた凝縮水を排水路を通して排気通路に流出させるので、エンジンがウオーターハンマを引き起こすことを防止できる。 According to the fourth aspect of the present invention, the condensed water generated downstream of the intercooler is discharged to the exhaust passage through the drainage channel, so that the engine can be prevented from causing water hammer.

本発明の一実施形態の内燃機関の排水装置を搭載する車載用ディーゼルエンジンの吸排気系の全体構成図である。1 is an overall configuration diagram of an intake / exhaust system of a vehicle-mounted diesel engine equipped with a drainage device for an internal combustion engine according to an embodiment of the present invention. 図1の内燃機関の排水装置で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のA−A線断面図である。The catalytic converter used with the drainage device of the internal combustion engine of Drawing 1 is shown, (a) is an expanded partial notch sectional view of the front part, and (b) is an AA line sectional view in (a). 本発明の他の実施形態で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のB−B線断面図である。The catalytic converter used by other embodiment of this invention is shown, (a) is an expanded partial notch sectional drawing of a front part, (b) is a BB sectional drawing in (a). 図3の他の実施形態の変形例で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のC−C線断面図である。The catalytic converter used by the modification of other embodiment of FIG. 3 is shown, (a) is an expanded partial notch sectional drawing of a front part, (b) is CC sectional view taken on the line in (a). 本発明の他の実施形態で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のD−D線断面図である。The catalytic converter used by other embodiment of this invention is shown, (a) is an expanded partial notch sectional drawing of a front part, (b) is the DD sectional view taken on the line in (a). 本発明の他の実施形態で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のE−E線断面図である。The catalytic converter used by other embodiment of this invention is shown, (a) is an expanded partial notch sectional drawing of a front part, (b) is the EE sectional view taken on the line in (a). 図6の他の実施形態の変形例で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のF−F線断面図である。The catalytic converter used by the modification of other embodiment of FIG. 6 is shown, (a) is an expanded partial notch sectional drawing of a front part, (b) is the FF sectional view taken on the line in (a).

本発明を適用した内燃機関の排水装置の特徴について、以下の図面を用いて解説する。
本発明は、要するに、吸気通路に生じた凝縮水を排気通路の触媒装置の上流側に排水させる際に触媒装置が破損することを防止できる排水分散構成を特徴とする。
ここでは、本発明の内燃機関の排水装置を車載用ディーゼルエンジンの給排気系に適用した場合を実施形態1として説明する。
The features of the drainage device for an internal combustion engine to which the present invention is applied will be described with reference to the following drawings.
In short, the present invention is characterized by a drainage dispersion configuration that can prevent the catalytic device from being damaged when draining the condensed water generated in the intake passage to the upstream side of the catalytic device in the exhaust passage.
Here, the case where the drainage device for an internal combustion engine of the present invention is applied to an air supply / exhaust system of a vehicle-mounted diesel engine will be described as a first embodiment.

実施形態1の内燃機関の排水装置が搭載された車載用ディーゼルエンジン(以下エンジンという)1は本体中央部を成すシリンダブロック2を備え、その上部にシリンダヘッド3を設ける。シリンダヘッド3の吸気側には吸気通路IRを構成する吸気管4が、排気側には排気通路ERを構成する排気管5がそれぞれ接続されている。シリンダヘッド3には、コモンレール13を介して燃料噴射ポンプ14が接続されている。更に、シリンダヘッド3には、一端をエアフィルタ6よりも下流側の吸気管4に接続されたブローバイガスを排出するブローバイガス通路21の他端が接続されている。   A vehicle-mounted diesel engine (hereinafter referred to as an engine) 1 on which a drainage device for an internal combustion engine according to the first embodiment is mounted includes a cylinder block 2 that forms a central portion of a main body, and a cylinder head 3 is provided on the cylinder block 2. An intake pipe 4 constituting an intake passage IR is connected to the intake side of the cylinder head 3 and an exhaust pipe 5 constituting an exhaust passage ER is connected to the exhaust side. A fuel injection pump 14 is connected to the cylinder head 3 via a common rail 13. Further, the cylinder head 3 is connected to the other end of a blow-by gas passage 21 for discharging blow-by gas having one end connected to the intake pipe 4 on the downstream side of the air filter 6.

吸気管4には、吸気通路IRの上流側からエアフィルタ6、低圧スロットル弁7、低圧EGRバルブ8、過給機であるターボチャージャ9の図示しないコンプレッサ、インタークーラ10、高圧スロットル弁11、高圧EGRバルブ12等が設けられている。
排気管5には、シリンダブロック2側である排気通路の上流側からターボチャージャ9の図示しないタービン、酸化触媒15及び排気フィルタとしてのフィルタ装置16が設けられている。
The intake pipe 4 includes an air filter 6, a low pressure throttle valve 7, a low pressure EGR valve 8, a turbocharger 9 (not shown), an intercooler 10, a high pressure throttle valve 11, a high pressure from the upstream side of the intake passage IR. An EGR valve 12 and the like are provided.
The exhaust pipe 5 is provided with a turbine (not shown) of the turbocharger 9, an oxidation catalyst 15, and a filter device 16 as an exhaust filter from the upstream side of the exhaust passage on the cylinder block 2 side.

酸化触媒15は、例えば白金のような貴金属触媒を担持しており、排気中のNOをNOに転換する作用と、排気中のHCやCO等の有害成分を酸化させる作用とを有している。NOはNOよりも酸化作用が強く、NOによってフィルタ装置16に捕獲された粒子状物質(ディーゼル・パティキュレート)の酸化反応が促進される。また、このNOは後述するNOxトラップ触媒18で還元除去される。フィルタ装置16は排気中の粒子状物質を捕獲するフィルタ装置(ディーゼル・パティキュレート・フィルタ)であり、捕獲された粒子状物質はNOの強力な酸化作用で燃焼除去される。 The oxidation catalyst 15 carries a noble metal catalyst such as platinum, and has an action of converting NO in the exhaust into NO 2 and an action of oxidizing harmful components such as HC and CO in the exhaust. Yes. NO 2 has a stronger oxidizing action than NO, and the oxidation reaction of particulate matter (diesel particulates) captured by the filter device 16 by NO 2 is promoted. The NO 2 is reduced and removed by a NOx trap catalyst 18 described later. The filter device 16 is a filter device (diesel particulate filter) that captures particulate matter in exhaust gas, and the captured particulate matter is burned and removed by the strong oxidizing action of NO 2 .

フィルタ装置16の下流側には、排気中の酸素濃度量を検知する酸素濃度センサ(LAFS)17が設けられており、その下流側に触媒であるNOxトラップ触媒18を内蔵した触媒コンバーター19が、さらにその下流側に酸素濃度センサ20が設けられている。排気通路ER上に配置される排気後処理手段であるNOxトラップ触媒18は、酸化雰囲気においてNOxを捕捉し、捕捉したNOxを例えばHCやCO等を含む還元雰囲気中で放出して窒素(N)に還元する機能を有する浄化装置である。つまり、酸化触媒15で生成されたNO及び酸化触媒15で酸化されずに排気ガス中に残存するNOを捕捉し、窒素(N)に還元して放出する。 An oxygen concentration sensor (LAFS) 17 that detects the amount of oxygen concentration in the exhaust gas is provided on the downstream side of the filter device 16, and a catalytic converter 19 that incorporates a NOx trap catalyst 18 that is a catalyst on the downstream side thereof, Further, an oxygen concentration sensor 20 is provided on the downstream side. The NOx trap catalyst 18 as exhaust aftertreatment means disposed on the exhaust passage ER captures NOx in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere containing, for example, HC, CO, and the like (N 2 ) Is a purifying device having a function of reducing to. That is, NO 2 generated by the oxidation catalyst 15 and NO remaining in the exhaust gas without being oxidized by the oxidation catalyst 15 are captured, reduced to nitrogen (N 2 ), and released.

高圧EGRバルブ12の下方には、高圧EGR管23と高圧EGRクーラ24とを有する高圧EGR装置22が配設されている。高圧EGR管23は、その一端を高圧スロットル弁11とシリンダヘッド3との間の吸気管4に、その他端をシリンダヘッド3とターボチャージャ9のタービンとの間の排気管5にそれぞれ接続されており、その途中には高圧EGRクーラ24が設けられている。高圧EGR管23の一端は、高圧EGRバルブ12によって開閉される。   A high pressure EGR device 22 having a high pressure EGR pipe 23 and a high pressure EGR cooler 24 is disposed below the high pressure EGR valve 12. One end of the high-pressure EGR pipe 23 is connected to the intake pipe 4 between the high-pressure throttle valve 11 and the cylinder head 3, and the other end is connected to the exhaust pipe 5 between the cylinder head 3 and the turbine of the turbocharger 9. A high-pressure EGR cooler 24 is provided in the middle. One end of the high pressure EGR pipe 23 is opened and closed by the high pressure EGR valve 12.

低圧EGRバルブ8の下方には、低圧EGR管26と低圧EGRクーラ27とを有する排気再循環装置としての低圧EGR装置25が配設されている。低圧EGR管26は、その一端を低圧スロットル弁7とターボチャージャ9のコンプレッサとの間の吸気管4に、その他端をフィルタ装置16とNOxトラップ触媒18との間の排気管5にそれぞれ接続されており、その途中に低圧EGRクーラ27が設けられている。低圧EGR管26の一端は、低圧EGRバルブ8によって開閉される。   Below the low pressure EGR valve 8, a low pressure EGR device 25 is disposed as an exhaust gas recirculation device having a low pressure EGR pipe 26 and a low pressure EGR cooler 27. One end of the low-pressure EGR pipe 26 is connected to the intake pipe 4 between the low-pressure throttle valve 7 and the compressor of the turbocharger 9, and the other end is connected to the exhaust pipe 5 between the filter device 16 and the NOx trap catalyst 18. A low pressure EGR cooler 27 is provided in the middle. One end of the low pressure EGR pipe 26 is opened and closed by the low pressure EGR valve 8.

次に、吸気通路IR内に生じた凝縮水を排水路wrを通して排気通路ER内に流出させる本発明の実施形態1に係る内燃機関の排水装置M1を説明する。
ここでの排水路wrはその一端の開口部である流入口281がインタークーラ下流側であってインタークーラ10と高圧スロットル弁11との間の吸気管4の吸気路IRに接続され、排気後処理手段であるNOxトラップ触媒18の排気路上流側に他端の開口部である排水口282が接続される。
なお、排水路wrの一端の接続位置は、インタークーラ10と高圧スロットル弁11の間の吸気管4に限定されず、例えば、図1に2点鎖線で示すように排水路wrを成す排水管28aの一端の流入口281aをエンジン本体の上流の上流排気管5’に接続させた構成を採ってもよい。これにより、内燃機関のアイドリング中に排気通路EXの内部で発生した凝縮水を排水路wrを通じて排出することができる。
上述の排水管28の途中には開閉弁29が配設され、開閉弁29にはこの開閉弁の開閉制御を行なう開閉弁制御部としての制御手段30が接続される。
Next, a drainage device M1 for an internal combustion engine according to Embodiment 1 of the present invention that causes condensed water generated in the intake passage IR to flow into the exhaust passage ER through the drainage passage wr will be described.
Here, the drain wr is connected to the intake passage IR of the intake pipe 4 between the intercooler 10 and the high-pressure throttle valve 11 at the inlet 281, which is an opening at one end thereof, on the downstream side of the intercooler. A drain port 282 which is an opening at the other end is connected to the upstream side of the exhaust passage of the NOx trap catalyst 18 which is a processing means.
The connection position of one end of the drainage channel wr is not limited to the intake pipe 4 between the intercooler 10 and the high-pressure throttle valve 11. For example, the drainage pipe that forms the drainage channel wr as shown by a two-dot chain line in FIG. A configuration may be adopted in which the inlet 281a at one end of 28a is connected to the upstream exhaust pipe 5 ′ upstream of the engine body. Thereby, the condensed water generated inside the exhaust passage EX during idling of the internal combustion engine can be discharged through the drainage passage wr.
An on-off valve 29 is disposed in the middle of the drain pipe 28, and a control means 30 is connected to the on-off valve 29 as an on-off valve control unit for performing on-off control of the on-off valve.

制御手段30は、上述したように、排水管28内に貯留された凝縮水の量が一定量に達したり、エンジン1の運転時間や走行距離が一定値に達した場合に開閉弁29を開弁し、排水管28内の凝縮水を触媒コンバーター19を介して車外に排出する機能を備える。更に、制御手段30は排水管28から凝縮水が抜けて酸素濃度センサ20が排水管28を通じて漏出する吸気ガス内の酸素濃度を検出して、これがリーン側の所定値に達すると、排水管28から凝縮水が完全に抜けたと判断し、開閉弁29を閉弁させる機能を備える。この制御手段30の制御により排水管28からの凝縮水排出が完了後に吸気ガスが該排水管から排出され、エンジン1のトルク低下や出力低下を引き起こしてしまうことを防止している。   As described above, the control means 30 opens the on-off valve 29 when the amount of condensed water stored in the drain pipe 28 reaches a certain amount, or when the operation time or travel distance of the engine 1 reaches a certain value. And has a function of discharging the condensed water in the drain pipe 28 through the catalytic converter 19 to the outside of the vehicle. Further, the control means 30 detects the oxygen concentration in the intake gas leaked from the drain pipe 28 and the oxygen concentration sensor 20 leaks through the drain pipe 28, and when this reaches a predetermined value on the lean side, the drain pipe 28. Therefore, it is determined that the condensed water has been completely removed from the valve, and the on-off valve 29 is closed. The control of the control means 30 prevents the intake gas from being discharged from the drain pipe after the drain of the condensed water from the drain pipe 28 is completed, thereby causing a decrease in torque and output of the engine 1.

次に、図1に示すように、排気通路ERを成す上流側排気管501の後端にNOxトラップ触媒(排気後処理手段)18を有する触媒コンバーター19が接続される。この触媒コンバーター19は、図2(a)に示すように、排気通路ERの拡径部を成す筒状の容器本体(シエル)を備える。容器本体はNOxトラップ触媒18を収容保持する主部191と、主部191に連続形成された排気通路ER前側の拡径部である拡径前部192と、排気通路ER後側の拡径後部193とを有する。   Next, as shown in FIG. 1, a catalytic converter 19 having a NOx trap catalyst (exhaust aftertreatment means) 18 is connected to the rear end of the upstream side exhaust pipe 501 forming the exhaust passage ER. As shown in FIG. 2A, the catalytic converter 19 includes a cylindrical container body (shell) that forms a diameter-enlarged portion of the exhaust passage ER. The container main body includes a main portion 191 that houses and holds the NOx trap catalyst 18, a diameter expansion front portion 192 that is a diameter expansion portion on the front side of the exhaust passage ER continuously formed in the main portion 191, and a diameter expansion rear portion on the rear side of the exhaust passage ER. 193.

拡径前部192は排気路下流に向けて排気路径を徐々に拡大するコーン形状の傾斜部(フロントコーン)を成し、その前端が排気通路上流側の上流側排気管501に接続される。拡径後部193は下流に向けて排気路径を徐々に縮小するコーン形状の傾斜部を成し、その後端が排気通路下流側の下流側排気管502に接続される。
図2(a)に示すように、上流側排気管501の後端部は拡径前部192の前端に重なり互いに溶着された上で拡径前部192内の中央部近傍まで直管状の延長管部5011として延出形成される。なお、延長管部5011の後端縁はNOxトラップ触媒18を支持する担持体前面f1のほぼ中央域に向けて配備される。
The enlarged diameter front portion 192 forms a cone-shaped inclined portion (front cone) that gradually increases the diameter of the exhaust passage toward the downstream of the exhaust passage, and its front end is connected to the upstream exhaust pipe 501 upstream of the exhaust passage. The enlarged diameter rear portion 193 forms a cone-shaped inclined portion that gradually reduces the exhaust passage diameter toward the downstream, and the rear end thereof is connected to the downstream exhaust pipe 502 on the downstream side of the exhaust passage.
As shown in FIG. 2A, the rear end portion of the upstream side exhaust pipe 501 overlaps with the front end of the enlarged diameter front portion 192 and is welded to each other, and then extends straight to the vicinity of the central portion in the enlarged diameter front portion 192. The tube portion 5011 is extended and formed. Note that the rear end edge of the extension pipe portion 5011 is disposed toward the substantially central region of the carrier front surface f1 that supports the NOx trap catalyst 18.

図2(a)に示すように、傾斜部を成す拡径前部192はその外壁の上部にボス31を溶着し、該ボス31に設けた貫通孔の上端側を排水管28の他端である排水側と接続している。ボス31の貫通孔の下端側は拡径前部192を貫通して拡径前部192の内部に向けて排水口282を形成している。
ここで、図2(b)に示すように、排水路の他端となる排水口282は延長管部5011の重力方向gで上側に配置される。
As shown in FIG. 2 (a), the enlarged diameter front portion 192 that forms an inclined portion has a boss 31 welded to the top of its outer wall, and the upper end side of the through hole provided in the boss 31 is the other end of the drain pipe 28. Connected to a drain side. The lower end side of the through hole of the boss 31 penetrates the enlarged diameter front part 192 and forms a drain outlet 282 toward the inside of the enlarged diameter front part 192.
Here, as shown in FIG. 2 (b), the drainage port 282 which is the other end of the drainage channel is arranged on the upper side in the gravity direction g of the extension pipe part 5011.

このような内燃機関の排水装置M1の作動を説明する。
エンジン1の運転中、特に低圧EGR装置25使用時にはインタークーラ10の出口部に多量の凝縮水が発生する。発生した凝縮水は、排水路を通ってNOxトラップ触媒18の上流側近傍に位置する拡径前部192内に送られ、触媒コンバーター19を介して車外に排出される。この場合、排水路を成す排水管28の途中に設けられた開閉弁29が閉じられているときには排水管28内に貯留される。開閉弁29は、排水管28内に設けられた図示しない水位センサによって貯留された凝縮水の量が一定量に達したとき、あるいはエンジン1の運転時間や走行距離が一定値に達したときに制御手段30に開弁駆動される。
The operation of such a drainage device M1 for an internal combustion engine will be described.
During operation of the engine 1, particularly when the low-pressure EGR device 25 is used, a large amount of condensed water is generated at the outlet of the intercooler 10. The generated condensed water passes through the drainage channel and is sent into the enlarged diameter front portion 192 located in the vicinity of the upstream side of the NOx trap catalyst 18 and is discharged outside the vehicle through the catalytic converter 19. In this case, when the on-off valve 29 provided in the middle of the drainage pipe 28 forming the drainage channel is closed, it is stored in the drainage pipe 28. The on-off valve 29 is used when the amount of condensed water stored by a water level sensor (not shown) provided in the drain pipe 28 reaches a certain amount, or when the operation time or travel distance of the engine 1 reaches a certain value. The control means 30 is driven to open the valve.

エンジン1の運転中に排気通路ERを流動してきた排気は容器本体(シエル)内に流入してから、NOxトラップ触媒18を保持する担持体前面f1に拡散して流入している。その際、図2(a)に示すように、フロントコーンを成す拡径前部192の内空間では排気路下流側(図中右側)ほど拡径しており、上流側内圧Perが比較的小さく、下流側内圧Perが比較的大きくなっている。ここで拡径前部192の前側には排水口282が開口し、ベンチュリー効果により同位置の上流側内圧Perが比較的小さいことよりベンチュリー効果により排水管28を通してインタークーラ10の出口部の凝縮水が圧力差により排水口282より拡径前部192内に排出される。   The exhaust that has flowed through the exhaust passage ER during operation of the engine 1 flows into the container body (shell), and then diffuses and flows into the carrier front surface f1 that holds the NOx trap catalyst 18. At that time, as shown in FIG. 2 (a), in the inner space of the enlarged diameter front portion 192 forming the front cone, the diameter is increased toward the exhaust path downstream side (right side in the figure), and the upstream internal pressure Per is relatively small. The downstream inner pressure Per is relatively large. Here, a drain outlet 282 is opened on the front side of the enlarged diameter front portion 192, and the condensed water at the outlet of the intercooler 10 through the drain pipe 28 due to the venturi effect because the upstream internal pressure Per at the same position is relatively small due to the venturi effect. Is discharged from the drain outlet 282 into the enlarged diameter front portion 192 due to the pressure difference.

この際、図2(b)に示すように、排水口282から流出した凝縮水が重力方向gで下側に位置する延長管部5011に当接するように排出され、2点鎖線の矢印で示すように凝縮水が確実に分散、拡散される。その上で、排気路中心線の方向である排気路方向Xに流動する。この後、凝縮水は排気の熱によって気化し、蒸発して、NOxトラップ触媒18を支持する担持体前面f1に飛散し、触媒コンバーター19を通過して車外に排出される。
このように、排水路の排水口282と拡径前部192内の延長管部5011とは少なくとも一部が対向配備されるので、延長管部5011に当たった凝縮水が拡散されて気化が促進されるとともに、延長管部5011の熱によって更に気化が促進される。これにより、凝縮水は気化または飛散して微粒化した上で触媒コンバーター19(排気後処理手段)に導入されるので、目詰まりあるいは触媒の担体割れのリスクを低減できる。
At this time, as shown in FIG. 2 (b), the condensed water flowing out from the drain port 282 is discharged so as to come into contact with the extension pipe portion 5011 located on the lower side in the gravity direction g, and is indicated by a two-dot chain line arrow. Thus, the condensed water is reliably dispersed and diffused. After that, it flows in the exhaust path direction X which is the direction of the exhaust path center line. Thereafter, the condensed water is vaporized and evaporated by the heat of the exhaust, and is scattered on the front surface f1 of the carrier that supports the NOx trap catalyst 18, passes through the catalytic converter 19, and is discharged outside the vehicle.
In this manner, since the drain outlet 282 of the drainage channel and the extension pipe part 5011 in the diameter expansion front part 192 are at least partially opposed to each other, the condensed water hitting the extension pipe part 5011 is diffused to promote vaporization. At the same time, vaporization is further promoted by the heat of the extension pipe portion 5011. Thereby, the condensed water is vaporized or scattered to be atomized and then introduced into the catalytic converter 19 (exhaust aftertreatment means), so that the risk of clogging or catalyst carrier cracking can be reduced.

上述の実施形態1の内燃機関の排水装置M1では直管状を成した延長管部5011より、排気路方向Xに排気ガスが流出し、この際、排気ガスとその流れに乗った微粒化した凝縮水の混合体が、NOxトラップ触媒18の担持体前面f1に当接して、そのまま流れ込み、あるいは拡径方向に拡散している。
これに代えて、図3(a)、(b)に示すような構成を採る実施形態2に係る内燃機関の排水装置M2を次に説明する。
In the drainage device M1 for the internal combustion engine of the first embodiment described above, the exhaust gas flows out in the exhaust passage direction X from the extension pipe portion 5011 having a straight tube shape. At this time, the exhaust gas and the atomized condensation riding on the flow are provided. The water mixture abuts on the carrier front surface f1 of the NOx trap catalyst 18 and flows as it is or diffuses in the diameter-expanding direction.
Instead of this, a drainage device M2 for an internal combustion engine according to the second embodiment having the configuration as shown in FIGS. 3A and 3B will be described.

実施形態2の内燃機関の排水装置M2は実施形態1の排水装置M1と比べて、延長管部5011aの形状が相違するのみで、その他の構成は同様である。このため、重複部材には同一符号を付し、その説明を略し、相違する延長管部5011aを主にして、図3(a)、(b)を用いて説明する。
図3(a)に示すように、排気通路上にNOxトラップ触媒18を有した触媒コンバーター19aが配備され、その拡径部を成す容器本体が、主部191aと、その前部のコーン形状の拡径前部192aと、その後部のコーン形状の拡径後部193aとを有する。
The drainage device M2 of the internal combustion engine of the second embodiment is different from the drainage device M1 of the first embodiment only in the shape of the extension pipe portion 5011a, and the other configurations are the same. For this reason, overlapping members are denoted by the same reference numerals, description thereof is omitted, and different extension pipe portions 5011a are mainly described with reference to FIGS. 3 (a) and 3 (b).
As shown in FIG. 3 (a), a catalytic converter 19a having a NOx trap catalyst 18 is provided on the exhaust passage, and a container main body forming a diameter-expanded portion thereof has a main portion 191a and a cone-shaped front portion thereof. It has an enlarged diameter front part 192a and a rear cone-shaped enlarged diameter rear part 193a.

図3(a)に示すように、上流側排気管501は拡径前部192aに溶着された上で拡径前部192aの中央部近傍まで排気路方向Xに沿って延長管部5011aとして延出形成される。
ここでの延長管部5011aはその後端部が延長管部5011aの径方向外側に延出した延出部が返し部5012aとして形成されている。
As shown in FIG. 3A, the upstream side exhaust pipe 501 is welded to the enlarged diameter front part 192a and then extends as an extended pipe part 5011a along the exhaust passage direction X to the vicinity of the central part of the enlarged diameter front part 192a. Formed.
The extension pipe part 5011a here has a rear end part formed as a return part 5012a with an extension part extending outward in the radial direction of the extension pipe part 5011a.

この内燃機関の排水装置M2の場合、排水口282からの凝縮水が重力方向gで下側の延長管部5011aに当接して、分散、拡散される。更に、返し5012aにより凝縮水を排気通路上流側に戻して凝縮水を確実に拡散する。この後、凝縮水は排気の熱によって気化し、蒸発して、排気路方向Xに流動し、NOxトラップ触媒18に飛散し、ここを通過して車外に排出される。このように排気管端部に返し5012aを設けると、凝縮水液滴が排気ガス流れ(2点鎖線で示す矢印)に乗りにくくなり、拡散効果がより増し、担体割れ防止の効果が増加する。   In the case of the drainage device M2 for the internal combustion engine, the condensed water from the drainage port 282 comes into contact with the lower extension pipe portion 5011a in the gravitational direction g and is dispersed and diffused. Further, the condensed water is returned to the upstream side of the exhaust passage by the return 5012a, and the condensed water is reliably diffused. Thereafter, the condensed water is vaporized and evaporated by the heat of the exhaust, flows in the exhaust passage direction X, scatters to the NOx trap catalyst 18, passes through here, and is discharged outside the vehicle. When the return pipe 5012a is provided at the end of the exhaust pipe as described above, it becomes difficult for the condensed water droplet to ride on the exhaust gas flow (arrow indicated by a two-dot chain line), the diffusion effect is further increased, and the effect of preventing carrier cracking is increased.

上述の実施形態2の内燃機関の排水装置M2では延長管部5011aがその後端部に返し部5012aを形成していたが、返し部5012aの外径をより拡大させてもよく、内燃機関の排水装置の変形例M2’として次に説明する。
実施形態2の内燃機関の排水装置の変形例M2’では、図4(a)、(b)に示すように、排気通路上にNOxトラップ触媒18を有した触媒コンバーター19bが配備される。ここでの触媒コンバーター19bの拡径前部192bには上流側排気管501が溶着された上で拡径前部192bの中央部近傍まで延長管部5011bが延出形成される。
In the drainage device M2 for the internal combustion engine of the second embodiment described above, the extension pipe portion 5011a forms the return portion 5012a at the rear end portion, but the outer diameter of the return portion 5012a may be further increased. This will be described below as an apparatus modification M2 ′.
In the modification M2 ′ of the drainage device for the internal combustion engine of the second embodiment, as shown in FIGS. 4A and 4B, a catalytic converter 19b having a NOx trap catalyst 18 is provided on the exhaust passage. Here, an upstream exhaust pipe 501 is welded to the enlarged diameter front part 192b of the catalytic converter 19b, and an extended pipe part 5011b is formed to extend to the vicinity of the center of the enlarged diameter front part 192b.

延長管部5011bはその後端部が延長管部5011bの径方向外側に大きく延出した延出部が拡大返し部5012bとして形成されている。拡大返し部5012bはその外周縁部が拡径前部192bの内壁面f2に対して所定の環状隙間trを保って対向して形成される。
実施形態2の内燃機関の排水装置の変形例M2’の場合、内燃機関の排水装置M2と同様に凝縮水が延長管部5011bに当接して、分散、拡散され、排気の熱によって気化し、蒸発してNOxトラップ触媒18を経て、車外に排出される。特に、排水口282から排出された凝縮水の量が多いとする。
The extension pipe part 5011b is formed as an enlarged return part 5012b with an extension part whose rear end part greatly extends outward in the radial direction of the extension pipe part 5011b. The enlarged return portion 5012b is formed so that the outer peripheral edge thereof faces the inner wall surface f2 of the enlarged diameter front portion 192b while maintaining a predetermined annular gap tr.
In the case of the variation M2 ′ of the drainage device for the internal combustion engine of the second embodiment, the condensed water contacts the extension pipe portion 5011b in the same manner as the drainage device M2 for the internal combustion engine, is dispersed and diffused, and is vaporized by the heat of the exhaust, It evaporates and passes through the NOx trap catalyst 18 and is discharged outside the vehicle. In particular, it is assumed that the amount of condensed water discharged from the drain outlet 282 is large.

この場合、排水口282から下側の延長管部5011bに噴出された凝縮水は排気通路上流側や延長管部5011bの全周に拡散し、更に、拡大返し部5012bで拡径方向に分散されて外周縁の環状隙間trより排出されてから排気ガス流れに混入する。このように排気管端部に拡大返し5012bを設けると、多量の凝縮水が流出しても、排気ガス流れ(2点鎖線で示す矢印)に乗りにくくなり、拡散効果が増し、担体割れ防止効果を維持できる。   In this case, the condensed water ejected from the drain port 282 to the lower extension pipe portion 5011b diffuses to the exhaust passage upstream side and the entire circumference of the extension pipe portion 5011b, and is further dispersed in the diameter increasing direction by the enlarged return portion 5012b. After being discharged from the annular gap tr at the outer peripheral edge, it is mixed into the exhaust gas flow. When the enlarged return 5012b is provided at the end of the exhaust pipe in this manner, even if a large amount of condensed water flows out, it becomes difficult to ride the exhaust gas flow (arrow indicated by a two-dot chain line), the diffusion effect is increased, and the carrier cracking prevention effect is achieved. Can be maintained.

上述の実施形態2の内燃機関の排水装置の変形例M2’では延長管部5011aの後端部に拡大返し部5012bを形成したが、この拡大返し部を更に拡経化した上で拡径前部に溶着した構成の実施形態3の内燃機関の排水装置M3を次に説明する。
実施形態3の内燃機関の排水装置M3は実施形態2の変形例の排水装置M2’と比べて、延長管部5011cと拡径前部192cとの結合構成が相違するのみで、その他の構成は同様である。このため、重複部材には同一符号を付し、その説明を略し、相違する延長管部5011cと拡径前部192cを主にして、図5(a)、(b)を用いて説明する。
In the modified example M2 ′ of the drainage device for the internal combustion engine according to the second embodiment described above, the enlarged return portion 5012b is formed at the rear end portion of the extension pipe portion 5011a. Next, a description will be given of a drainage device M3 for an internal combustion engine according to a third embodiment having a structure welded to the portion.
The drainage device M3 of the internal combustion engine of the third embodiment is different from the drainage device M2 ′ of the modified example of the second embodiment only in the coupling configuration of the extension pipe portion 5011c and the enlarged diameter front portion 192c. It is the same. For this reason, the same reference numerals are assigned to the overlapping members, the description thereof is omitted, and the different extension pipe portion 5011c and the enlarged diameter front portion 192c are mainly described with reference to FIGS. 5 (a) and 5 (b).

図5(a)に示すように、排気通路上にNOxトラップ触媒18を有した触媒コンバーター19cが配備される。ここでの触媒コンバーター19cの拡径前部192cには上流側排気管501が溶着された上で拡径前部192cの中央部近傍まで延長管部5011cが延出形成される。
延長管部5011cはその後端部が延長管部5011cの径方向外側に大きく延出した延出部が拡大返し部5012cとして形成されている。拡大返し部5012cはその外周縁部が拡径前部192の内壁面f2に当接し、重力方向最下点付近の一部区間を除いて、互いが環状に長く溶着され、溶着ビードmcが形成される。
As shown in FIG. 5A, a catalytic converter 19c having a NOx trap catalyst 18 is disposed on the exhaust passage. Here, an upstream exhaust pipe 501 is welded to the diameter-expanded front part 192c of the catalytic converter 19c, and an extension pipe part 5011c is extended to the vicinity of the center of the diameter-expanded front part 192c.
The extension pipe part 5011c is formed as an enlarged return part 5012c with an extension part whose rear end part greatly extends outward in the radial direction of the extension pipe part 5011c. The enlarged return portion 5012c has an outer peripheral edge abutted against the inner wall surface f2 of the enlarged diameter front portion 192, and is welded in an annular shape to form a weld bead mc except for a part of the section near the lowest point in the gravity direction. Is done.

ここで、重力方向最下点付近のみが拡大返し部5012cと拡径前部192cの内壁面間に所定隙間tcを成す非溶接区間40cが形成される。ここでは拡大返し部5012cと拡径前部192cの内壁面間に環状空間Ecが形成され、重力方向最下点付近の非溶接区間40cの所定隙間tcを通してのみ拡径前部192c後方の空間に連通している。
実施形態3の内燃機関の排水装置M3の場合、凝縮水が延長管部5011aに当接して、拡散されてから環状空間Ec内に滞留する。その上で、排出された凝縮水の量が少ないと、環状空間Ec内より直ちに重力方向最下点付近の非溶接区間40cの所定隙間tcより拡径前部192c後方の空間に排出される。この非溶接区間40cのからの凝縮水は排気通路の中央側より比較的離れ、排気ガス流に乗りにくい状態にあり、この点で拡散効果が増し、担体割れ防止効果を確実に維持できる。
Here, a non-welded section 40c forming a predetermined gap tc is formed between the inner wall surfaces of the enlarged return portion 5012c and the enlarged diameter front portion 192c only in the vicinity of the lowest point in the gravity direction. Here, an annular space Ec is formed between the inner wall surfaces of the enlarged return portion 5012c and the enlarged diameter front portion 192c, and only in the space behind the enlarged diameter front portion 192c only through the predetermined gap tc in the non-welded section 40c near the lowest point in the gravity direction. Communicate.
In the case of the drainage device M3 for the internal combustion engine of the third embodiment, the condensed water comes into contact with the extension pipe portion 5011a and is diffused and stays in the annular space Ec. In addition, if the amount of the condensed water discharged is small, it is immediately discharged from the annular space Ec into the space behind the enlarged diameter front portion 192c through the predetermined gap tc in the non-welded section 40c near the lowest point in the direction of gravity. The condensed water from the non-welded section 40c is relatively far from the central side of the exhaust passage and is in a state where it is difficult to ride the exhaust gas flow. In this respect, the diffusion effect is increased and the carrier crack prevention effect can be reliably maintained.

一方、排水口282cから多量に凝縮水が排出されると、環状空間Ec内に滞留し、徐々に拡径前部192c後方の空間より排気ガス流に乗りにくい状態で、排出期間が継続されて排出されることと成る。このように、環状空間Ecが一時的に多量に凝縮水が排出されることを抑えるので、経時的に拡散効果が増し、担体割れ防止効果を維持できる。
上述の実施形態3の内燃機関の排水装置M3では環状空間Ecが形成され、溶着ビードmcの重力方向最下点付近に非溶接区間40cを形成した。これに対し、溶着ビードmdの斜め上方に所定隙間tdを有する非溶接区間40dを形成した実施形態4の内燃機関の排水装置M4を次に説明する。
On the other hand, when a large amount of condensed water is discharged from the drain outlet 282c, the discharge period is continued in a state where the condensed water stays in the annular space Ec and gradually gets into the exhaust gas flow from the space behind the enlarged diameter front portion 192c. It will be discharged. As described above, since the annular space Ec is prevented from temporarily discharging a large amount of condensed water, the diffusion effect increases with time, and the carrier cracking prevention effect can be maintained.
In the drainage device M3 for the internal combustion engine of Embodiment 3 described above, the annular space Ec is formed, and the non-welded section 40c is formed near the lowest point in the gravity direction of the weld bead mc. In contrast, a drainage device M4 for an internal combustion engine according to a fourth embodiment in which a non-welded section 40d having a predetermined gap td is formed obliquely above the weld bead md will be described next.

実施形態4の内燃機関の排水装置M4は実施形態3の排水装置M3と比べて、非溶接区間40dが溶着ビードmdの斜め上方に形成された点以外の構成が同様である。このため、重複部材には同一符号を付し、その説明を略し、相違する延長管部5011dと拡径前部192dとを主にして、図6(a)、(b)を用いて説明する。
図6(a)に示すように、排気通路上にNOxトラップ触媒18を有した触媒コンバーター19dが配備される。触媒コンバーター19dの拡径前部192dには上流側排気管501が溶着された上で拡径前部192dの中央部近傍まで延長管部5011dが延出形成される。
The drainage device M4 of the internal combustion engine of the fourth embodiment is the same as the drainage device M3 of the third embodiment except that the non-welded section 40d is formed obliquely above the weld bead md. For this reason, the same reference numerals are assigned to the overlapping members, the description thereof is omitted, and the different extension pipe part 5011d and the enlarged diameter front part 192d are mainly described with reference to FIGS. 6 (a) and 6 (b). .
As shown in FIG. 6A, a catalytic converter 19d having a NOx trap catalyst 18 is provided on the exhaust passage. The upstream exhaust pipe 501 is welded to the enlarged diameter front part 192d of the catalytic converter 19d, and an extended pipe part 5011d is formed to extend to the vicinity of the center of the enlarged diameter front part 192d.

延長管部5011dはその後端部が延長管部5011dの径方向外側に大きく延出した延出部が拡大返し部5012dとして形成されている。拡大返し部5012dはその外周縁部が拡径前部192dの内壁面f2に当接し、重力方向最下点付近の一部区間を除いて、互いが環状に長く溶着され、溶着ビードmdが形成される。ここで、溶着ビードmdの斜め左右上方に2つの非溶接区間40dか形成される。ここでは拡大返し部5012dと拡径前部192dの内壁面間に環状空間Ecが形成され、この環状空間Ecが斜め左右上方に非溶接区間40dの所定隙間tdを通して拡径前部192d後方の空間に連通している。   The extension pipe part 5011d is formed with an extension part 5012d having an extended part whose rear end part greatly extends radially outward of the extension pipe part 5011d. The outer peripheral edge of the enlarged return portion 5012d abuts against the inner wall surface f2 of the enlarged diameter front portion 192d, and is welded in a long annular shape except for a part of the vicinity of the lowest point in the gravitational direction to form a weld bead md. Is done. Here, two non-welded sections 40d are formed diagonally right and left above the weld bead md. Here, an annular space Ec is formed between the inner wall surfaces of the enlarged return portion 5012d and the enlarged diameter front portion 192d. Communicating with

実施形態4の内燃機関の排水装置M4の場合、凝縮水が延長管部5011dに当接して、拡散されてから環状空間Ed内に滞留する。環状空間Edは重力方向下側が溶着ビードmdで閉鎖されるので排出された凝縮水は滞留を続ける。このように、凝縮水を一時的に蓄えて、延長管部5011dや拡径前部192dから伝達される排気の熱によって凝縮水の昇温,蒸発を促進する。これにより、一時的に多量の凝縮水が流入しても、ここからの排出を抑制でき、担体割れ防止効果が増す。しかも、気化した凝縮水が斜め左右上方の非溶接区間40dより排出されても、排気通路の中央側より比較的離れているため、排気ガス流に乗りにくい状態にあり、この点でも拡散効果が増し、担体割れ防止効果を確実に維持できる。   In the case of the drainage device M4 for an internal combustion engine according to the fourth embodiment, the condensed water comes into contact with the extension pipe portion 5011d and is diffused and stays in the annular space Ed. Since the annular space Ed is closed with the weld bead md on the lower side in the direction of gravity, the discharged condensed water continues to stay. In this way, the condensed water is temporarily stored, and the temperature rise and evaporation of the condensed water are promoted by the heat of the exhaust gas transmitted from the extension pipe portion 5011d and the diameter expansion front portion 192d. Thereby, even if a large amount of condensed water flows in temporarily, the discharge | emission from here can be suppressed and the support crack prevention effect increases. In addition, even if the vaporized condensed water is discharged from the non-welded section 40d obliquely left and right, it is relatively far from the center side of the exhaust passage, so that it is difficult to ride the exhaust gas flow. The carrier cracking prevention effect can be reliably maintained.

上述の実施形態4の内燃機関の排水装置M4では溶着ビードmdの斜め左右上方に非溶接区間40dを2つ形成していたが、非溶接区間40dを更に追加形成してもよく、内燃機関の排水装置の変形例M4’として次に説明する。   In the drainage device M4 for the internal combustion engine of the above-described fourth embodiment, two non-welded sections 40d are formed obliquely on the left and right sides of the weld bead md. However, the non-welded sections 40d may be additionally formed. A description will now be given as a modification M4 ′ of the drainage device.

実施形態4の内燃機関の排水装置の変形例M4’では、図7(a)、(b)に示すように、触媒コンバーター19eの拡径前部192eの内壁面f2に、延長管部5011eの後端部の拡大返し部5012eの外周縁部が溶着され、環状空間Eeが設けられる。更に、ここで形成された溶着ビードmeには斜め左右上方と、重力方向最下点付近の3箇所に非溶接区間40e、40edが形成される。なお、最下点付近の非溶接区間40edには凝縮水が環状空間Eeに一時的に留まり、その間に凝縮水の昇温、蒸発を促進できる程度の微小な隙間teが形成される。   In the modification M4 ′ of the drainage device for the internal combustion engine of the fourth embodiment, as shown in FIGS. 7A and 7B, the extension pipe portion 5011e is provided on the inner wall surface f2 of the diameter-expanded front portion 192e of the catalytic converter 19e. The outer peripheral edge portion of the enlarged return portion 5012e at the rear end is welded to provide an annular space Ee. Furthermore, non-welded sections 40e and 40ed are formed in the weld bead me formed here at three positions near the upper left side and the lowermost point in the direction of gravity. In the non-welded section 40ed in the vicinity of the lowest point, the condensed water temporarily stays in the annular space Ee, and a minute gap te that can promote the temperature rise and evaporation of the condensed water is formed therebetween.

実施形態4の内燃機関の排水装置の変形例M4’では、斜め左右上方の2つの非溶接区間40eからは、延長管部5011eや拡径前部192eから伝達される排気の熱により生成された凝縮水の蒸気や飛散状態の液体が排出され、重力方向最下点付近の非溶接区間40edからは排気の熱により加熱された凝縮水が液体状あるいは気化して排出される。これら3箇所の非溶接区間40e、40edの所定隙間teより拡径前部192cの後方の空間に分散して排出された気化あるいは液体状の凝縮水は、排気通路の中央側より比較的離れ、排気ガス流に乗りにくい状態にあり、この点で拡散効果が増し、担体割れ防止効果を維持できる。   In the variation M4 ′ of the drainage device for the internal combustion engine of the fourth embodiment, it is generated by the heat of exhaust gas transmitted from the extension pipe portion 5011e and the enlarged diameter front portion 192e from the two non-welded sections 40e diagonally left and right. Condensed water vapor and scattered liquid are discharged, and condensed water heated by the heat of the exhaust is discharged from the non-welded section 40ed near the lowest point in the direction of gravity. Vaporized or liquid condensed water dispersed and discharged in the space behind the enlarged diameter front part 192c from the predetermined gap te of these three non-welded sections 40e, 40ed is relatively distant from the center side of the exhaust passage, It is difficult to ride the exhaust gas flow. In this respect, the diffusion effect is increased, and the carrier cracking prevention effect can be maintained.

このように、重力方向最下点とそれ以外の一部区間を除いて,拡大返し部5012eの外周と拡径前部192e(フロントコーン)を溶接すれば,排出された凝縮水を一時的に蓄えて排気管と拡径前部192eの熱で凝縮水の昇温,蒸発を促進させつつ、満水になることを防げるため、担体割れ防止効果が増す。
上述のところにおいて、内燃機関の排水装置は車載用ディーゼルエンジンに搭載されるとしたが、場合により定置式ディーゼルエンジンに搭載されてもよく、更に、ガソリンエンジンに搭載されてもよく、これらの場合もほぼ同様の効果が得られる。
Thus, if the outer periphery of the enlarged return portion 5012e and the enlarged diameter front portion 192e (front cone) are welded except for the lowest point in the gravity direction and some other sections, the discharged condensed water is temporarily removed. The effect of preventing cracking of the carrier is increased because the heat of the exhaust pipe and the enlarged diameter front portion 192e can be stored to prevent the water from becoming full while promoting the temperature rise and evaporation of the condensed water.
In the above description, the drainage device of the internal combustion engine is mounted on the on-board diesel engine. However, it may be mounted on a stationary diesel engine depending on the case, and may be further mounted on a gasoline engine. Almost the same effect can be obtained.

1 内燃機関(エンジン)
4 吸気管
5 排気管
501 上流側排気管
5011a〜5011e 延長管部
5012a 返し
5012b〜5012e 拡大返し
9 過給機(ターボチャージャ)
10 インタークーラ
18 NOxトラップ触媒(排気後処理手段)
19 触媒コンバーター
191 主部
192 拡径前部
20 酸素濃度センサ
25 排気再循環装置(低圧EGR装置)
28 排水管
30 制御手段(開閉弁制御部)
wr 排水路
IR 吸気通路
ER 排気通路
M1〜M4 内燃機関の排水装置
X 排気路方向
1 Internal combustion engine
4 Intake pipe 5 Exhaust pipe 501 Upstream exhaust pipe 5011a to 5011e Extension pipe part 5012a Return 5012b to 5012e Expanded return 9 Supercharger (turbocharger)
10 Intercooler 18 NOx trap catalyst (exhaust aftertreatment means)
19 Catalytic converter 191 Main part 192 Diameter expansion front part 20 Oxygen concentration sensor 25 Exhaust gas recirculation device (low pressure EGR device)
28 Drain pipe 30 Control means (open / close valve controller)
wr Drainage channel IR Intake passage ER Exhaust passage M1-M4 Internal combustion engine drainage device X Exhaust passage direction

Claims (4)

内燃機関の排気通路上に配置される排気後処理手段の上流側に形成された拡径部と、
前記内燃機関の吸気通路に一端が、前記排気後処理手段の排気通路上流側に他端がそれぞれ接続されて前記吸気通路内の凝縮水を前記排気通路に排出する排水路と、を備え、
前記排気後処理手段の上流側排気管の後端部は前記拡径部の拡径前部内に延長管部として延出し、
前記排水路の他端の開口部は前記拡径前部内で前記延長管部と対向するよう、前記延長管部の重力方向で上側に配設したことを特徴とする内燃機関の排水装置。
An enlarged diameter portion formed on the upstream side of the exhaust aftertreatment means disposed on the exhaust passage of the internal combustion engine;
A drainage passage that has one end connected to the intake passage of the internal combustion engine and the other end connected to the exhaust passage upstream side of the exhaust aftertreatment means, and discharges condensed water in the intake passage to the exhaust passage,
The rear end portion of the upstream exhaust pipe of the exhaust post-processing means extends as an extension pipe portion in the diameter-expanded front portion of the diameter-expanded portion,
The drainage device for an internal combustion engine, characterized in that an opening at the other end of the drainage channel is arranged on the upper side in the gravity direction of the extension pipe part so as to face the extension pipe part in the diameter-expanded front part.
前記延長管部の端部は前記延長管部の径方向外側に延出した延出部が形成される、
ことを特徴とする請求項1記載の内燃機関の排水装置。
The end of the extension pipe part is formed with an extension part extending outward in the radial direction of the extension pipe part.
2. The drainage device for an internal combustion engine according to claim 1.
前記排気後処理手段の容器本体の拡径前部はコーン形状の傾斜部を成し、
前記排水路の他端を前記拡径前部の内部に接続した、
ことを特徴とする請求項1又は2記載の内燃機関の排水装置。
The diameter expansion front part of the container main body of the exhaust aftertreatment means forms a cone-shaped inclined part,
The other end of the drainage channel was connected to the inside of the enlarged diameter front part,
The drainage device for an internal combustion engine according to claim 1 or 2, characterized in that
前記吸気通路に配置されたインタークーラ、を有し、
前記排水路の一端が前記インタークーラ下流側の吸気通路に接続される
ことを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の排水装置。
An intercooler disposed in the intake passage,
The drainage device for an internal combustion engine according to any one of claims 1 to 3, wherein one end of the drainage channel is connected to an intake passage on the downstream side of the intercooler .
JP2013265977A 2013-12-24 2013-12-24 Drainage device for internal combustion engine Active JP6201737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265977A JP6201737B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265977A JP6201737B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015121168A JP2015121168A (en) 2015-07-02
JP6201737B2 true JP6201737B2 (en) 2017-09-27

Family

ID=53532995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265977A Active JP6201737B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6201737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132259A (en) * 2018-02-02 2019-08-08 いすゞ自動車株式会社 Intake system of internal combustion engine
WO2020194339A1 (en) * 2019-03-25 2020-10-01 Tvs Motor Company Limited A power unit for a motor vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103117U (en) * 1989-02-02 1990-08-16
JP4331826B2 (en) * 1999-06-25 2009-09-16 本田技研工業株式会社 Engine exhaust system
JP3666583B2 (en) * 2001-04-06 2005-06-29 三菱ふそうトラック・バス株式会社 Internal combustion engine with a supercharger
JP5494528B2 (en) * 2011-02-28 2014-05-14 三菱自動車工業株式会社 Condensate drain device
JP5626017B2 (en) * 2011-02-28 2014-11-19 三菱自動車工業株式会社 Condensate drain device
JP5804376B2 (en) * 2011-12-13 2015-11-04 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2015121168A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6084605B2 (en) Burner and filter regeneration device
JP2008128093A (en) Exhaust emission control device for internal combustion engine
JP2010101236A (en) Exhaust emission control device for internal combustion engine
WO2011108024A1 (en) Exhaust emission control device for internal combustion engine
JP6229488B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP2009156071A (en) Exhaust emission control device for internal combustion engine
JP2009019556A (en) Exhaust emission control device
JP6201737B2 (en) Drainage device for internal combustion engine
JP7017479B2 (en) engine
JP5456279B2 (en) Exhaust gas purification system for internal combustion engine
JP5004308B2 (en) Engine exhaust purification system
JP5316796B2 (en) Engine exhaust purification system
JP6201738B2 (en) Drainage device for internal combustion engine
JP5224294B2 (en) Engine exhaust purification system
RU2721389C1 (en) Device and system for distribution of additive into exhaust
JP6241265B2 (en) Drainage device for internal combustion engine
JP2006207395A (en) Exhaust emission control device
JP2008127997A (en) Exhaust emission control device of internal combustion engine
JP6201739B2 (en) Drainage device for internal combustion engine
JP6201740B2 (en) Drainage device for internal combustion engine
JP6187243B2 (en) Drainage device for internal combustion engine
JP4506546B2 (en) Exhaust gas purification system for internal combustion engine
JP6213224B2 (en) Drainage device for internal combustion engine
JP6964046B2 (en) engine
JP2024039217A (en) Exhaust pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350