[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6270244B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP6270244B2
JP6270244B2 JP2016041075A JP2016041075A JP6270244B2 JP 6270244 B2 JP6270244 B2 JP 6270244B2 JP 2016041075 A JP2016041075 A JP 2016041075A JP 2016041075 A JP2016041075 A JP 2016041075A JP 6270244 B2 JP6270244 B2 JP 6270244B2
Authority
JP
Japan
Prior art keywords
engine
cylinder
torque
torque reduction
reduction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016041075A
Other languages
English (en)
Other versions
JP2017155677A (ja
Inventor
千華子 大久
千華子 大久
修 砂原
修 砂原
大輔 梅津
大輔 梅津
平野 拓男
拓男 平野
邦裕 四島
邦裕 四島
孝博 川村
孝博 川村
康典 高原
康典 高原
大策 小川
大策 小川
剛豊 伊藤
剛豊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2016041075A priority Critical patent/JP6270244B2/ja
Priority to US15/446,420 priority patent/US10024257B2/en
Priority to DE102017001980.0A priority patent/DE102017001980A1/de
Priority to CN201710117822.1A priority patent/CN107152343B/zh
Publication of JP2017155677A publication Critical patent/JP2017155677A/ja
Application granted granted Critical
Publication of JP6270244B2 publication Critical patent/JP6270244B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/02Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by hand, foot, or like operator controlled initiation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/002Controlling intake air by simultaneous control of throttle and variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、エンジンの制御装置に係わり、特に、複数の気筒と、目標トルクに応じて気筒への吸入空気量を制御する空気量制御手段と、各気筒に設けられた点火装置による点火時期を制御する点火装置制御手段とを有し、全ての気筒内で混合気の燃焼が実施される全筒運転と、複数の気筒のうち一部の気筒内で混合気の燃焼が停止される減筒運転との間で運転モードを切替可能なエンジンを、車両の運転状態に基づき制御するエンジンの制御装置に関する。
従来、スリップ等により車両の挙動が不安定になった場合に安全方向に車両の挙動を制御するもの(横滑り防止装置等)が知られている。具体的には、車両のコーナリング時等に、車両にアンダーステアやオーバーステアの挙動が生じたことを検出し、それらを抑制するように車輪に適切な減速度を付与するようにしたものが知られている。
一方、上述したような車両の挙動が不安定になるような走行状態における安全性向上のための制御とは異なり、通常の走行状態にある車両のコーナリング時におけるドライバによる一連の操作(ブレーキング、ステアリングの切り込み、加速、及び、ステアリングの戻し等)が自然で安定したものとなるように、コーナリング時に減速度を調整して操舵輪である前輪に加わる荷重を調整するようにした車両運動制御装置が知られている(例えば、特許文献1参照)。
更に、ドライバのステアリング操作に対応するヨーレート関連量(例えばヨー加速度)に応じて車両の駆動力を低減させることにより、ドライバがステアリング操作を開始したときに減速度を迅速に車両に生じさせ、十分な荷重を操舵輪である前輪に迅速に加えるようにした車両用挙動制御装置が提案されている(例えば、特許文献2参照)。この車両用挙動制御装置によれば、ステアリング操作の開始時に荷重を前輪に迅速に加えることにより、前輪と路面との間の摩擦力が増加し、前輪のコーナリングフォースが増大するので、カーブ進入初期における車両の回頭性が向上し、ステアリングの切り込み操作に対する応答性が向上する。これにより、ドライバが意図したとおりの車両挙動を実現する。
特開2011−88576号公報 特開2014−166014号公報
ところで、複数の気筒を有する多気筒エンジンにおいては、燃費を向上させるために、車両の運転状態に応じて、全ての気筒内で混合気の燃焼が実施される全筒運転と、複数の気筒のうち一部の気筒内で混合気の燃焼が停止される減筒運転との間で運転モードを切り替える技術が知られている。
全筒運転から減筒運転へ運転モードを切り替える場合には、運転モードの切替前後において同等の出力を維持するために、燃焼が継続される気筒への吸入空気量を増大させる制御が行われる。しかしながら、目標空気量の増大に対応するスロットルバルブや可変吸気バルブ機構の制御が気筒内の空気量に反映されるまでには比較的大きい応答遅れが発生するので、運転モードの切替時において吸入空気量が十分に増大しておらず、エンジン出力が低下してショックが生じる場合がある。
そこで、本発明者らは、鋭意研究することにより、全筒運転から減筒運転へ運転モードを切り替える前に、予め燃焼が継続される気筒への吸入空気量を増大させると共に、この吸入空気量の増大によるトルク上昇を打ち消すように、各気筒における点火装置の点火時期を遅角させる準備制御を行うことにより、運転モードの切替時に十分な吸入空気量を得られることを見出した。
上記のような多気筒エンジンにおいて、上述した特許文献2に記載の車両用挙動制御装置により、ドライバのステアリング操作に応じてトルクを瞬間的に低減させたことによって、全筒運転から減筒運転への運転モードの切替が発生した場合、車両用挙動制御装置によるトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われる場合があり、意図しない失火が生じる可能性がある。
本発明は、上述した従来技術の問題点を解決するためになされたものであり、全筒運転から減筒運転への運転モードの切替と、ステアリング操作に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる、エンジンの制御装置を提供することを目的とする。
上記の目的を達成するために、本発明のエンジンの制御装置は、複数の気筒と、目標トルクに応じて気筒への吸入空気量を制御する空気量制御手段と、各気筒に設けられた点火装置による点火時期を制御する点火装置制御手段とを有し、全ての気筒内で混合気の燃焼が実施される全筒運転と、複数の気筒のうち一部の気筒内で混合気の燃焼が停止される減筒運転との間で運転モードを切替可能なエンジンを、車両の運転状態に基づき制御するエンジンの制御装置であって、アクセルペダルの操作を含む車両の運転状態に基づき基本目標トルクを決定する基本目標トルク決定手段と、アクセルペダルの操作以外の車両の運転状態に基づきトルク低減量を決定するトルク低減量決定手段と、基本目標トルクとトルク低減量とに基づき最終目標トルクを決定する最終目標トルク決定手段と、エンジンの運転状態が予め定めた減筒運転領域にある場合、エンジンの運転モードを減筒運転に設定し、エンジンの運転状態が予め定めた全筒運転領域にある場合、エンジンの運転モードを全筒運転に設定し、設定した運転モードにおいて最終目標トルクを出力させるようにエンジンを制御するエンジン制御手段と、を有し、エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化した場合、点火装置による点火時期を遅角させる制御を実行し、トルク低減量の増大に応じて点火装置による点火時期を遅角させるトルク低減点火時期遅角化制御を実行し、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、点火時期の遅角化と、トルク低減点火時期遅角化制御による点火時期の遅角化とが、同時に行われることを禁止することを特徴とする。
このように構成された本発明においては、エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化した場合、点火装置による点火時期を遅角させる制御を実行し、トルク低減量の増大に応じて点火装置による点火時期を遅角させるトルク低減点火時期遅角化制御を実行し、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、点火時期の遅角化と、トルク低減点火時期遅角化制御による点火時期の遅角化とが、同時に行われることを禁止するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを防止でき、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる。
また、本発明において、好ましくは、トルク低減量決定手段は、車両のステアリング操作に応じてトルク低減量を決定する。
このように構成された本発明においては、ステアリング操作に基づき決定されたトルク低減量の時間変化を最終目標トルクの時間変化に反映することができ、これにより、ドライバのステアリング操作に応じた減速度を車両に迅速に付加して荷重を前輪に加え、コーナリングフォースを迅速に増大させることによりステアリング操作に対する応答性を向上させることができ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる。
また、本発明において、好ましくは、エンジン制御手段は、トルク低減量に応じたエンジンの制御により、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、エンジンの運転モードを全筒運転のまま保持する。
このように構成された本発明においては、エンジン制御手段は、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減の要求がある場合にはエンジンの運転モードを全筒運転のまま保持するので、エンジンの運転モードの切替と、トルク低減量に応じたエンジンの制御とが、同時に行われることを確実に防止し、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを防止でき、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる。
また、本発明において、好ましくは、エンジン制御手段は、トルク低減量に応じたエンジンの制御により、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に応じたエンジンの制御を制限する。
このように構成された本発明においては、エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合には、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減要求に応じたエンジンの制御を制限するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角量が過大となることを防止することができ、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる。
特に、本発明において、好ましくは、エンジン制御手段は、トルク低減量に応じたエンジンの制御により、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に応じたエンジンの制御を禁止する。
このように構成された本発明においては、エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合には、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減要求に応じたエンジンの制御を禁止するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを確実に防止でき、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる。
また、本発明において、好ましくは、エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化した場合、各気筒への吸入空気量を増大させるように空気量制御手段を動作させ、且つ、点火装置による点火時期を遅角させる準備制御を実行し、その準備制御中においてはトルク低減量に応じたエンジンの制御を制限する。
このように構成された本発明においては、エンジン制御手段は、減筒運転の準備制御中においてはトルク低減量に応じたエンジンの制御を制限するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを確実に防止できる。
本発明によるエンジンの制御装置によれば、全筒運転から減筒運転への運転モードの切替と、ステアリング操作に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジンを制御することができる。
本発明の実施形態によるエンジンの制御装置が適用されたエンジンシステムの概略構成図である。 本発明の実施形態によるエンジンの概略平面図である。 本発明の実施形態によるエンジンの制御装置の電気的構成を示すブロック図である。 本発明の第1実施形態によるエンジンの制御装置がエンジンを制御するエンジン制御処理のフローチャートである。 本発明の実施形態によるエンジンの制御装置がトルク低減量を決定するトルク低減量決定処理のフローチャートである。 本発明の実施形態によるエンジンの制御装置が決定する目標付加減速度と操舵速度との関係を示したマップである。 本発明の実施形態によるエンジンの制御装置が運転モードを切り替えるエンジンの運転領域を概念的に示したマップである。 本発明の実施形態によるエンジンの制御装置がエンジンの運転モードを減筒運転に切り替える減筒運転切替制御処理のフローチャートである。 本発明の実施形態によるエンジンの制御装置がエンジンの運転モードを減筒運転に切り替える場合における、エンジンの制御装置によるエンジン制御に関するパラメータの時間変化を示す線図である。 本発明の実施形態によるエンジンの制御装置を搭載した車両が旋回を行う場合における、エンジンの制御装置によるエンジン制御に関するパラメータの時間変化を示す線図であり、図10(a)は右旋回を行う車両を概略的に示す平面図、図10(b)は図10(a)に示したように右旋回を行う車両の操舵角の変化を示す線図、図10(c)は図10(b)に示したように右旋回を行う車両の操舵速度の変化を示す線図、図10(d)は、図10(c)に示した操舵速度に基づき決定された付加減速度の変化を示す線図、図10(e)は図10(d)に示した付加減速度に基づいて決定されたトルク低減量の変化を示す線図、図10(f)は基本目標トルクの変化を示す線図、図10(g)は基本目標トルクとトルク低減量とに基づき決定された最終目標トルクの変化を示す線図、図10(h)は最終目標トルクに基づき決定された目標空気量と実際の空気量との変化を示す線図、図10(i)は最終目標トルクと実際の空気量とに基づき決定されたトルク低減点火時期を、基本点火時期を基準として表した線図、図10(j)は(h)及び(i)に示したように吸入空気量と点火時期の制御を行った場合に車両に発生するヨーレート(実ヨーレート)の変化と、トルク低減量決定部が決定したトルク低減量に基づく制御を行わなかった場合の実ヨーレートの変化とを示す線図である。 本発明の第2実施形態によるエンジンの制御装置がエンジンを制御するエンジン制御処理のフローチャートである。
以下、添付図面を参照して、本発明の実施形態によるエンジンの制御装置を説明する。
まず、図1乃至図3により、本発明の実施形態によるエンジンの制御装置が適用されたエンジンシステムについて説明する。図1は、本発明の実施形態によるエンジンの制御装置が適用されたエンジンシステムの概略構成図であり、図2は、本発明の実施形態によるエンジンの制御装置の電気的構成を示すブロック図であり、図3は、本発明の実施形態によるエンジンの制御装置の電気的構成を示すブロック図である。
図1及び図3に示すように、エンジンシステム100は、主に、外部から導入された吸気(空気)が通過する吸気通路1と、この吸気通路1から供給された吸気と、後述する燃料噴射弁13から供給された燃料との混合気を燃焼させて車両の動力を発生するエンジン10(具体的にはガソリンエンジン)と、このエンジン10内の燃焼により発生した排気ガスを排出する排気通路25と、エンジンシステム100に関する各種の状態を検出するセンサ30〜40と、エンジンシステム100全体を制御するPCM50(エンジンの制御装置)とを有する。
吸気通路1には、上流側から順に、外部から導入された吸気を浄化するエアクリーナ3と、通過する吸気の量(吸入空気量)を調整するスロットルバルブ5と、エンジン10に供給する吸気を一時的に蓄えるサージタンク7と、が設けられている。
本実施形態のエンジン10は、図2に示すように、直線状に並ぶ4つの気筒2A〜2Dを備えた直列4気筒型のエンジンである。このエンジン10は、主に、吸気通路1から供給された吸気を燃焼室11内に導入する吸気バルブ12と、燃焼室11に向けて燃料を噴射する燃料噴射弁13と、燃焼室11内に供給された吸気と燃料との混合気に点火する点火プラグ14と、燃焼室11内での混合気の燃焼により往復運動するピストン15と、ピストン15の往復運動により回転されるクランクシャフト16と、燃焼室11内での混合気の燃焼により発生した排気ガスを排気通路25へ排出する排気バルブ17と、を有する。
気筒2A〜2Dに設けられた各ピストン15は、クランク角において180°(180°CA)の位相差をもって往復動する。これに対応して、各気筒2A〜2Dにおける点火時期は、180°CAずつ位相をずらしたタイミングに設定される。
本実施形態のエンジン10は、4つの気筒2A〜2Dのうちの2つを休止させ、残りの2つの気筒を稼動させる運転、つまり減筒運転が可能な気筒休止エンジンである。
具体的には、図2の左側から順に、気筒2Aを第1気筒、気筒2Bを第2気筒、気筒2Cを第3気筒、気筒2Dを第4気筒とすると、4つの気筒2A〜2Dの全てを稼働させる全筒運転時には、第1気筒2A→第3気筒2C→第4気筒2D→第2気筒2Bの順に点火が行われる。
また、減筒運転時には、点火順序が連続しない2つの気筒(本実施形態では第1気筒2Aおよび第4気筒2D)において点火プラグ14の点火動作が禁止され、残りの2つの気筒(即ち第3気筒2C及び第2気筒2B)において交互に点火が行われる。
また、エンジン10は、吸気バルブ12及び排気バルブ17のそれぞれの動作タイミング(バルブの位相に相当する)を、可変バルブタイミング機構(Variable Valve Timing Mechanism)としての可変吸気バルブ機構18及び可変排気バルブ機構19によって可変に構成されている。可変吸気バルブ機構18及び可変排気バルブ機構19としては、公知の種々の形式を適用可能であるが、例えば電磁式又は油圧式に構成された機構を用いて、吸気バルブ12及び排気バルブ17の動作タイミングを変化させることができる。
更に、エンジン10は、減筒運転時に第1気筒2Aおよび第4気筒2Dの吸気バルブ12及び排気バルブ17の開閉動作を停止させるバルブ停止機構20を有している。このバルブ停止機構20は、例えば、カムとバルブとの間に介在し、カムの駆動力がバルブに伝達されるのを有効又は無効にするいわゆるロストモーション機構を含んで構成されている。あるいは、バルブ停止機構20は、バルブを開閉動作させるカム山を有する第1カムと、バルブの開閉動作を停止させる第2カムとの、カムプロフィールの異なる2種類のカム、及び、その第1及び第2カムのいずれか一方のカムの作動状態を選択的にバルブに伝達するいわゆるカムシフティング機構を含んで構成されてもよい。
排気通路25には、主に、例えばNOx触媒や三元触媒や酸化触媒などの、排気ガスの浄化機能を有する排気浄化触媒26a、26bが設けられている。以下では、排気浄化触媒26a、26bを区別しないで用いる場合には、単に「排気浄化触媒26」と表記する。
また、エンジンシステム100には、当該エンジンシステム100に関する各種の状態を検出するセンサ30〜40が設けられている。これらセンサ30〜40は、具体的には以下の通りである。アクセル開度センサ30は、アクセルペダルの開度(ドライバがアクセルペダルを踏み込んだ量に相当する)であるアクセル開度を検出する。エアフローセンサ31は、吸気通路1を通過する吸気の流量に相当する吸入空気量を検出する。スロットル開度センサ32は、スロットルバルブ5の開度であるスロットル開度を検出する。圧力センサ33は、エンジン10に供給される吸気の圧力に相当するインマニ圧(インテークマニホールドの圧力)を検出する。クランク角センサ34は、クランクシャフト16におけるクランク角を検出する。水温センサ35は、エンジン10を冷却する冷却水の温度である水温を検出する。温度センサ36は、エンジン10の気筒2内の温度である筒内温度を検出する。カム角センサ37、38は、それぞれ、吸気バルブ12及び排気バルブ17の閉弁時期を含む動作タイミングを検出する。車速センサ39は、車両の速度(車速)を検出する。操舵角センサ40は、ステアリングホイールの回転角度を検出する。これらの各種センサ30〜40は、それぞれ、検出したパラメータに対応する検出信号S130〜S140をPCM50に出力する。
PCM50は、上述した各種センサ30〜40から入力された検出信号S130〜S140に基づいて、エンジンシステム100内の構成要素に対する制御を行う。具体的には、図2に示すように、PCM50は、スロットルバルブ5に制御信号S105を供給して、スロットルバルブ5の開閉時期やスロットル開度を制御し、燃料噴射弁13に制御信号S113を供給して、燃料噴射量や燃料噴射タイミングを制御し、点火プラグ14に制御信号S114を供給して、点火時期を制御し、可変吸気バルブ機構18及び可変排気バルブ機構19のそれぞれに制御信号S118、S119を供給して、吸気バルブ12及び排気バルブ17の動作タイミングを制御し、バルブ停止機構20に制御信号S120を供給して、第1気筒2Aおよび第4気筒2Dの吸気バルブ12及び排気バルブ17の開閉動作の停止/作動を制御する。
また、PCM50は、アクセルペダルの操作を含む車両の運転状態に基づき基本目標トルクを決定する基本目標トルク決定部51と、アクセルペダルの操作を含まない車両の運転状態に基づきトルク低減量を決定するトルク低減量決定部53と、基本目標トルクとトルク低減量とに基づき最終目標トルクを決定する最終目標トルク決定部55と、最終目標トルクを出力させるようにエンジン10を制御するエンジン制御部57と、を有する。
これらのPCM50の各構成要素は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリを備えるコンピュータにより構成される。
次に、図4乃至図9により、本発明の第1実施形態によるエンジンの制御装置が行う処理について説明する。
図4は、本発明の第1実施形態によるエンジンの制御装置がエンジンを制御するエンジン制御処理のフローチャートであり、図5は、本発明の実施形態によるエンジンの制御装置がトルク低減量を決定するトルク低減量決定処理のフローチャートであり、図6は、本発明の実施形態によるエンジンの制御装置が決定する目標付加減速度と操舵速度との関係を示したマップであり、図7は、本発明の実施形態によるエンジンの制御装置が運転モードを切り替えるエンジンの運転領域を概念的に示したマップであり、図8は、本発明の実施形態によるエンジンの制御装置がエンジンの運転モードを減筒運転に切り替える減筒運転切替制御処理のフローチャートであり、図9は、本発明の実施形態によるエンジンの制御装置がエンジンの運転モードを減筒運転に切り替える場合における、エンジンの制御装置によるエンジン制御に関するパラメータの時間変化を示す線図である。
図4のエンジン制御処理は、車両のイグニッションがオンにされ、エンジンの制御装置に電源が投入された場合に起動され、繰り返し実行される。
エンジン制御処理が開始されると、図4に示すように、ステップS1において、PCM50は車両の運転状態を取得する。具体的には、PCM50は、アクセル開度センサ30が検出したアクセル開度、車速センサ39が検出した車速、操舵角センサ40が検出した操舵角、車両の変速機に現在設定されているギヤ段等を含む、上述した各種センサ30〜40が出力した検出信号S130〜S140を運転状態として取得する。
次に、ステップS2において、PCM50の基本目標トルク決定部51は、ステップS1において取得されたアクセルペダルの操作を含む車両の運転状態に基づき、目標加速度を設定する。具体的には、基本目標トルク決定部51は、種々の車速及び種々のギヤ段について規定された加速度特性マップ(予め作成されてメモリなどに記憶されている)の中から、現在の車速及びギヤ段に対応する加速度特性マップを選択し、選択した加速度特性マップを参照して現在のアクセル開度に対応する目標加速度を決定する。
次に、ステップS3において、基本目標トルク決定部51は、ステップS2において決定した目標加速度を実現するためのエンジン10の基本目標トルクを決定する。この場合、基本目標トルク決定部51は、現在の車速、ギヤ段、路面勾配、路面μなどに基づき、エンジン10が出力可能なトルクの範囲内で、基本目標トルクを決定する。
また、ステップS2〜S3の処理と並行して、ステップS4において、トルク低減量決定部53は、アクセルペダルの操作以外の車両の運転状態に基づきトルク低減量を決定するためのトルク低減量決定処理を実行する。このトルク低減量決定処理について、図5を参照して説明する。
図5に示すように、トルク低減量決定処理が開始されると、ステップS21において、トルク低減量決定部53は、ステップS1において取得した操舵角の絶対値が増大中か否かを判定する。その結果、操舵角の絶対値が増大中である場合、ステップS22に進み、トルク低減量決定部53は、ステップS1において取得した操舵角に基づき操舵速度を算出する。
次に、ステップS23において、トルク低減量決定部53は、操舵速度の絶対値が減少しているか否かを判定する。
その結果、操舵速度の絶対値が減少していない場合、即ち操舵速度の絶対値が増大している又は操舵速度の絶対値が変化していない場合、ステップS24に進み、トルク低減量決定部53は、操舵速度に基づき目標付加減速度を取得する。この目標付加減速度は、ドライバの意図した車両挙動を正確に実現するために、ステアリング操作に応じて車両に付加すべき減速度である。
具体的には、トルク低減量決定部53は、図6のマップに示した目標付加減速度と操舵速度との関係に基づき、ステップS22において算出した操舵速度に対応する目標付加減速度を取得する。
図6における横軸は操舵速度を示し、縦軸は目標付加減速度を示す。図6に示すように、操舵速度が閾値TS(例えば10deg/s)未満の場合、対応する目標付加減速度は0である。即ち、操舵速度が閾値TS未満の場合には、ステアリング操作に応じて車両に減速度を付加する制御が行われない。
一方、操舵速度が閾値TS以上の場合には、操舵速度が増大するに従って、この操舵速度に対応する目標付加減速度は、所定の上限値Dmax(例えば1m/s2)に漸近する。即ち、操舵速度が増大するほど目標付加減速度は増大し、且つ、その増大量の増加割合は小さくなる。
次に、ステップS25において、トルク低減量決定部53は、付加減速度の増大率が閾値Rmax(例えば0.5m/s3)以下となる範囲で今回の処理における付加減速度を決定する。
具体的には、トルク低減量決定部53は、前回の処理において決定した付加減速度から今回の処理のステップS24において決定した目標付加減速度への増大率がRmax以下である場合、ステップS24において決定した目標付加減速度を今回の処理における付加減速度として決定する。
一方、前回の処理において決定した付加減速度から今回の処理のステップS24において決定した目標付加減速度への変化率がRmaxより大きい場合、トルク低減量決定部53は、前回の処理において決定した付加減速度から今回の処理時まで増大率Rmaxにより増大させた値を今回の処理における付加減速度として決定する。
また、ステップS23において、操舵速度の絶対値が減少している場合、ステップS26に進み、トルク低減量決定部53は、前回の処理において決定した付加減速度を今回の処理における付加減速度として決定する。即ち、操舵速度の絶対値が減少している場合、操舵速度の最大時における付加減速度(即ち付加減速度の最大値)が保持される。
また、ステップS21において、操舵角の絶対値が増大中ではない(一定又は減少中である)場合、ステップS27に進み、トルク低減量決定部53は、前回の処理において決定した付加減速度を今回の処理において減少させる量(減速度減少量)を取得する。この減速度減少量は、例えば、予めメモリ等に記憶されている一定の減少率(例えば0.3m/s3)に基づき算出される。あるいは、ステップS1において取得された車両の運転状態やステップS22において算出した操舵速度に応じて決定された減少率に基づき算出される。
そして、ステップS28において、トルク低減量決定部53は、前回の処理において決定した付加減速度からステップS27において取得した減速度減少量を減算することにより、今回の処理における付加減速度を決定する。
ステップS25、S26、又はS28の後、ステップS29において、トルク低減量決定部53は、ステップS25、S26、又はS28において決定した今回の付加減速度に基づき、トルク低減量を決定する。具体的には、トルク低減量決定部53は、今回の付加減速度を実現するために必要となるトルク低減量を、ステップS1において取得された現在の車速、ギヤ段、路面勾配等に基づき決定する。このステップS29の後、トルク低減量決定部53はトルク低減量決定処理を終了し、メインルーチンに戻る。
図4に戻り、ステップS2〜S3の処理及びステップS4のトルク低減量決定処理を行った後、ステップS5において、最終目標トルク決定部55は、ステップS3において決定した基本目標トルクから、ステップS4のトルク低減量決定処理において決定したトルク低減量を減算することにより、最終目標トルクを決定する。
次に、ステップS6において、エンジン制御部57は、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化するか否かを判定する。
具体的には、エンジン制御部57は、前回の燃焼サイクルにおけるエンジン10の運転状態(具体的にはエンジン10の最終目標トルクとエンジン回転数)が全筒運転領域に含まれており、且つ、今回の燃焼サイクルにおけるエンジン10の運転状態が減筒運転領域に含まれるか否かを判定する。
ここで、図7を参照して、エンジンの運転状態と運転モードとの関係を説明する。図7の燃焼モードマップにおいて、横軸はエンジン回転数、縦軸はエンジン負荷(本実施形態では最終目標トルク)を表している。この図7に示すように、相対的にエンジン回転数が低く且つ負荷が低い範囲に減筒運転領域Aが設定されており、その減筒運転領域を除く範囲に全筒運転領域Bが設定されている。
即ち、ステップS6において、エンジン制御部57は、今回の燃焼サイクルにおけるエンジン10の運転状態が、低回転且つ低負荷の減筒運転領域(図7における領域A)に含まれているか否かを判定する。その結果、今回の燃焼サイクルにおけるエンジン10の運転状態が減筒運転領域に含まれている場合、ステップS7に進み、エンジン制御部57は、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減の要求の有無を判定する。具体的には、エンジン制御部57は、ステップS4のトルク低減量決定処理において決定されたトルク低減量が0である場合、トルク低減の要求がないと判定し、トルク低減量が0より大きい場合、トルク低減の要求があると判定する。
その結果、トルク低減の要求がない場合、ステップS8に進み、エンジン制御部57は、エンジン10の運転モードを減筒運転に切り替える減筒運転切替制御処理を実行する。
この減筒運転切替制御処理について、図8及び図9を参照して説明する。
図8に示すように、トルク低減量決定処理が開始されると、ステップS31において、エンジン制御部57は、スロットルバルブ5の開度を増大させる。
次に、ステップS32において、エンジン制御部57は、点火プラグ14の点火時期を遅角させる。具体的には、ステップS31においてスロットルバルブ5の開度を増大させたことによる吸入空気量の増加に対応した分だけ遅角させた時期と、予め設定されたリタード限界との内、進角側の時期まで点火時期を遅角させる。
次に、ステップS33において、エンジン制御部57は、吸入空気量が、減筒運転時の吸入空気量に到達したか否かを判定する。その結果、吸入空気量が減筒運転時の吸入空気量に到達した場合、ステップS34に進み、エンジン制御部57は、減筒運転を開始する。
具体的には、エンジン制御部57は、休止気筒(第1気筒2A及び第4気筒2D)の点火及び燃料噴射を停止するように点火プラグ14及び燃料噴射弁13を制御すると共に、バルブ停止機構20により、吸気バルブ12及び排気バルブ17を閉弁状態に保持させる。また、エンジン制御部57は、稼働気筒(第2気筒2B及び第3気筒2C)の点火時期の遅角制御を終了する。
一方、ステップS33において、吸入空気量が減筒運転時の吸入空気量に到達していない場合、ステップS35に進み、エンジン制御部57は、点火時期をリタード限界まで遅角した状態で所定時間経過したか否かを判定する。その結果、点火時期がリタード限界まで遅角した状態で所定時間経過していない場合、ステップS31に戻る。以降、ステップS33において吸入空気量が減筒運転時の吸入空気量に到達するか、ステップS35において点火時期がリタード限界まで遅角した状態で所定時間経過するまで、ステップS31及びS32の処理(減筒運転開始前の準備制御)を繰り返す。
一方、点火時期がリタード限界まで遅角した状態で所定時間経過した場合、ステップS34に進み、エンジン制御部57は、減筒運転を開始する。
ステップS34の後、エンジン制御部57は減筒運転切替制御処理を終了し、メインルーチンに戻る。
上記の減筒運転切替制御処理によれば、図9に示すように、エンジン10の運転領域が時刻t1において全筒運転領域から減筒運転領域に入ったとき、エンジン制御部57は、直ちに休止気筒(第1気筒2A、第4気筒2D)の燃焼を停止せず、スロットルバルブ5の開度を増大させて吸入吸気量(即ち1気筒あたりの吸気量、充填効率)を減筒運転時の吸入空気量まで増加させると共に、この吸入空気量の増大によるトルク上昇を打ち消すように、点火時期を遅角させる準備制御を行う。これにより、エンジン10の出力を維持しながら吸入空気量を予め増大させ、全筒運転から減筒運転への運転モード切替時においてエンジントルクをほぼ一定に維持することができ、運転モード切替時のショックの発生を回避することができる。
図4に戻り、ステップS8において減筒運転切替処理を実行した後、ステップS9に進み、エンジン制御部57は、ステップS5において決定した最終目標トルクをエンジン10により出力させるための目標空気量及び目標燃料量を決定する。ここで、「空気量」とは、エンジン10の燃焼室11内に導入される空気の量である。なお、この空気量を無次元化した充填効率を用いてもよい。
具体的には、エンジン制御部57は、運転モードが減筒運転であるエンジン10を前提として、最終目標トルクにフリクションロスやポンピングロスによる損失トルクを加味した目標図示トルクを算出し、この目標図示トルクを稼働気筒により発生させるために必要な目標燃料量を算出し、この目標燃料量と目標当量比とに基づき、目標空気量を決定する。
また、ステップS6において、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化しない場合、即ち、今回の燃焼サイクルにおけるエンジン10の運転状態が減筒運転領域に含まれていない場合には、エンジン制御部57は、ステップS8の減筒運転切替処理を実行することなく、ステップS9において目標空気量及び目標燃料量を決定する。この場合、エンジン制御部57は、運転モードが全筒運転であるエンジン10を前提として目標図示トルクを算出し、この目標図示トルクを全ての気筒2により発生させるために必要な目標燃料量を算出し、この目標燃料量と目標当量比とに基づき、目標空気量を決定する。
また、ステップS7において、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減の要求がある場合、エンジン制御部57は、ステップS8の減筒運転切替処理を実行することなく、ステップS9において目標空気量及び目標燃料量を決定する。この場合、エンジン制御部57は、運転モードが全筒運転であるエンジン10を前提として目標図示トルクを算出し、この目標図示トルクを全ての気筒2により発生させるために必要な目標燃料量を算出し、この目標燃料量と目標当量比とに基づき、目標空気量を決定する。
即ち、エンジン制御部57は、トルク低減の要求がある場合には、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化したことにかかわらず、エンジン10の運転モードを全筒運転のまま保持し、エンジン10の運転モードの切替と、トルク低減量に応じたエンジン10の制御とが、同時に行われることを禁止する。より具体的には、少なくとも減筒運転切替処理のステップS31及びS32の処理(減筒運転開始前の準備制御)の実行中においては、トルク低減量に応じたエンジン10の制御が制限される。
ステップS9において目標空気量及び目標燃料量を決定した後、ステップS10に進み、エンジン制御部57は、ステップS9において決定した目標空気量の空気がエンジン10に導入されるように、エアフローセンサ31が検出した空気量を考慮して、スロットルバルブ5の開度と、可変吸気バルブ機構18を介した吸気バルブ12の開閉時期とを決定する。
次に、ステップS11において、エンジン制御部57は、ステップS10において設定したスロットル開度及び吸気バルブ12の開閉時期に基づき、スロットルバルブ5及び可変吸気バルブ機構18を制御するとともに、ステップS9において決定した目標燃料量に基づき燃料噴射弁13を制御する。
次に、ステップS12において、エンジン制御部57は、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減の要求の有無を判定する。その結果、トルク低減の要求がある場合、ステップS13に進み、エンジン制御部57は、ステップS5において決定した最終目標トルクと、ステップS11におけるスロットルバルブ5及び可変吸気バルブ機構18の制御により実際に燃焼室11に導入された実空気量とに基づき、最終目標トルクをエンジン10により出力させるためのトルク低減点火時期を決定する。
具体的には、エンジン制御部57は、エアフローセンサ31の検出信号S131等に基づき、実空気量を推定する。そして、種々の空気量及び種々のエンジン回転数について点火時期と図示トルクとの関係を規定した点火進角マップ(予め作成されてメモリなどに記憶されている)の中から、推定した実空気量及びエンジン回転数に対応する点火進角マップを選択し、選択した点火進角マップを参照して、ステップS9において算出した目標図示トルクに対応する点火時期をトルク低減点火時期として決定する。
点火進角マップは、横軸を点火時期、縦軸を図示トルクとした場合、点火時期がMBT(Minimum Advance for Best Torque)であるときの図示トルクを極大値として、点火時期が進角又は遅角するほど図示トルクが減少するような上に凸の曲線で表される。
トルク低減要求に対応した目標空気量の減少に対して、実空気量の応答が遅れ、実空気量が目標空気量に対して過剰になっている場合、実空気量に対応する点火進角マップのMBTにおける図示トルクは、目標空気量に対応する点火進角マップのMBTにおける図示トルクよりも大きい。言い換えると、実空気量に対応する点火進角マップの目標図示トルクに対応する点火時期(即ちトルク低減点火時期)は、目標空気量に対応する点火進角マップの目標図示トルクに対応する点火時期に対して遅角している。トルク低減点火時期は、目標空気量に対して実空気量が過剰になるほど遅角側にシフトする。
次に、ステップS12において、エンジン制御部57は、ステップS11において決定したトルク低減点火時期に点火が行われるように、点火プラグ14を制御する。上記のように、トルク低減の要求がある場合には、エンジン10の運転モードの切替と、トルク低減量に応じたエンジン10の制御とが、同時に行われることが禁止されているので、このステップS12における点火時期の遅角化と、減筒運転切替処理の準備制御における点火時期の遅角化とが同時に行われることはない。
また、ステップS12において、トルク低減の要求がない場合、ステップS15に進み、エンジン制御部57は、ステップS11におけるスロットルバルブ5及び可変吸気バルブ機構18の制御により実際に燃焼室11に導入された実空気量に対応する最も燃焼効率の良い点火時期(基本点火時期)に点火が行われるように、点火プラグ14を制御する。
具体的には、エンジン制御部57は、実空気量及びエンジン回転数に対応する点火進角マップのMBTと、実空気量及びエンジン回転数に対応するノック限界点火時期の内、遅角側の点火時期を基本点火時期として設定し、点火プラグ14を制御する。
ステップS14又はS15の後、PCM50は、エンジン制御処理を終了する。
次に、図10により、本発明の実施形態によるエンジンの制御装置の作用を説明する。図10は、本発明の実施形態によるエンジンの制御装置を搭載した車両が旋回を行う場合における、エンジンの制御装置によるエンジン制御に関するパラメータの時間変化を示す線図である。
図10(a)は、右旋回を行う車両を概略的に示す平面図である。この図10(a)に示すように、車両は、位置Aから右旋回を開始し、位置Bから位置Cまで操舵角一定で右旋回を継続する。
図10(b)は、図10(a)に示したように右旋回を行う車両の操舵角の変化を示す線図である。図10(b)における横軸は時間を示し、縦軸は操舵角を示す。
この図10(b)に示すように、位置Aにおいて右向きの操舵が開始され、ステアリングの切り足し操作が行われることにより右向きの操舵角が徐々に増大し、位置Bにおいて右向きの操舵角が最大となる。その後、位置Cまで操舵角が一定に保たれる(操舵保持)。
図10(c)は、図10(b)に示したように右旋回を行う車両の操舵速度の変化を示す線図である。図10(b)における横軸は時間を示し、縦軸は操舵速度を示す。
車両の操舵速度は、車両の操舵角の時間微分により表される。即ち、図10(c)に示すように、位置Aにおいて右向きの操舵が開始された場合、右向きの操舵速度が生じ、位置Aと位置Bとの間において操舵速度がほぼ一定に保たれる。その後、右向きの操舵速度は減少し、位置Bにおいて右向きの操舵角が最大になると、操舵速度は0になる。更に、位置Bから位置Cまで右向きの操舵角が保持される間、操舵速度は0のままである。
図10(d)は、図10(c)に示した操舵速度に基づき決定された付加減速度の変化を示す線図である。図10(d)における横軸は時間を示し、縦軸は付加減速度を示す。また、図10(d)における実線は、図5のトルク低減量決定処理において決定された付加減速度の変化を示し、一点鎖線は、操舵速度に基づく目標付加減速度の変化を示す。この一点鎖線により示す目標付加減速度は、図10(c)に示した操舵速度の変化と同様に、位置Aから増大し始め、位置Aと位置Bとの間においてほぼ一定に保たれ、その後減少して位置Bにおいて0になる。
図5を参照して説明したように、トルク低減量決定部53は、ステップS23において操舵速度の絶対値が減少していない場合、即ち操舵速度の絶対値が増大している又は操舵速度の絶対値が変化していない場合、ステップS24において操舵速度に基づき目標付加減速度を取得する。続いて、ステップS25において、トルク低減量決定部53は、付加減速度の増大率が閾値Rmax以下となる範囲で各処理サイクルにおける付加減速度を決定する。
図10(d)では、位置Aから増大を開始した目標付加減速度の増大率が閾値Rmaxを上回っている場合を示している。この場合、トルク低減量決定部53は、増大率=Rmaxとなるように(即ち一点鎖線で示した目標付加減速度よりも緩やかな増大率で)付加減速度を増大させる。また、位置Aと位置Bとの間において目標付加減速度がほぼ一定に保たれている場合、トルク低減量決定部53は、付加減速度=目標付加減速度として決定する。
また、上述したように、図5のステップS23において操舵速度の絶対値が減少している場合、トルク低減量決定部53は、操舵速度の最大時における付加減速度を保持する。図10(d)では、位置Bに向かって操舵速度が減少している場合、それに伴って一点鎖線により示す目標付加減速度も減少するが、実線により示す付加減速度は最大値を位置Bまで維持する。
更に、上述したように、図5のステップS21において、操舵角の絶対値が一定又は減少中である場合、トルク低減量決定部53は、ステップS27において減速度減少量を取得し、その減速度減少量により付加減速度を減少させる。図10(d)では、トルク低減量決定部53は、付加減速度の減少率が徐々に小さくなるように、即ち付加減速度の変化を示す実線の傾きが徐々に緩やかになるように、付加減速度を減少させる。
図10(e)は、図10(d)に示した付加減速度に基づき決定されたトルク低減量の変化を示す線図である。図10(e)における横軸は時間を示し、縦軸はトルク低減量を示す。
上述したように、トルク低減量決定部53は、付加減速度を実現するために必要となるトルク低減量を、現在の車速、ギヤ段、路面勾配等のパラメータに基づき決定する。従って、これらのパラメータが一定である場合、トルク低減量は、図10(d)に示した付加減速度の変化と同様に変化するように決定される。
図10(f)は基本目標トルクの変化を示す線図である。図10(f)における横軸は時間を示し、縦軸はトルクを示す。
図10(f)の例では、アクセル開度、車速、ギヤ段等に基づき設定された目標加速度を実現するように決定された基本目標トルクは、一定となっている。
図10(g)は基本目標トルクとトルク低減量とに基づき決定された最終目標トルクの変化を示す線図である。図10(g)における横軸は時間を示し、縦軸はトルクを示す。また、図10(g)における点線は図10(f)に示した基本目標トルクを示し、実線は最終目標トルクを示す。
図4を参照して説明したように、最終目標トルク決定部55は、ステップS3において決定した基本目標トルクから、ステップS4のトルク低減量決定処理において決定したトルク低減量を減算することにより、最終目標トルクを決定する。これにより、図10(g)に実線で示すように、トルク低減量の変化が最終目標トルクの変化に反映される。
図10(h)は最終目標トルクに基づき決定された目標空気量と実空気量との変化を示す線図である。図10(h)における横軸は時間を示し、縦軸は空気量を示す。また、図10(h)における一点鎖線は図10(g)に示した最終目標トルクに対応する目標空気量を示し、実線は最終目標トルクに応じたスロットルバルブ5及び可変吸気バルブ機構18の制御により実際に燃焼室11に導入された実空気量を示す。
図10(h)に示すように、目標空気量が最終目標トルクの時間変化に同期して変化するが、目標空気量の変化に対して実空気量の応答に遅れが生じている。即ち、目標空気量が低下するときには実空気量が過剰となっている。
図10(i)は最終目標トルクと実際の空気量とに基づき決定されたトルク低減点火時期を、基本点火時期を基準として表した線図である。図10(i)における横軸は時間を示し、縦軸は基本点火時期を基準とした点火時期(進角が正、遅角が負)を示す。
図10(h)に示したように、最終目標トルクの低下に応じて目標空気量が低下する場合、実空気量の応答に遅れが生じ、目標空気量に対して実空気量が過剰となるので、実空気量の減少分だけでは最終目標トルクの低下を実現できない。そこで、最終目標トルクと実空気量とに基づいてトルク低減点火時期を基本点火時期よりも遅角側に設定することにより、最終目標トルクの低下を実現するようにしている。
図10(j)は、図10(b)に示したように操舵が行われる車両において、図10(g)に示した最終目標トルクを実現するようにエンジン10の制御を行った場合に車両に発生するヨーレート(実ヨーレート)の変化と、図10(e)に示したトルク低減量に対応する制御を行わなかった場合(即ち図10(g)に点線で示した基本目標トルクを実現するようにエンジン10の制御を行った場合)の実ヨーレートの変化とを示す線図である。図10(j)における横軸は時間を示し、縦軸はヨーレートを示す。また、図10(j)における実線は、最終目標トルクを実現するようにエンジン10の制御を行った場合の実ヨーレートの変化を示し、点線は、トルク低減量に対応する制御を行わなかった場合の実ヨーレートの変化を示す。
位置Aにおいて右向きの操舵が開始され、右向きの操舵速度が増大するにつれて図10(e)に示したようにトルク低減量を増大させると、車両の操舵輪である前輪の荷重が増加する。その結果、前輪と路面との間の摩擦力が増加し、前輪のコーナリングフォースが増大するため、車両の回頭性が向上する。即ち、図10(j)に示すように、位置Aと位置Bとの間において、トルク低減量に対応する制御を行わなかった場合(点線)よりも、トルク低減量を反映した最終目標トルクを実現するようにエンジン10の制御を行った場合(実線)の方が、車両に発生する時計回り(CW)のヨーレートが大きくなる。
また、図10(d)、(e)に示したように、位置Bに向かって操舵速度が減少するとき目標付加減速度も減少するが、トルク低減量を最大値のまま維持しているので、操舵の切り込みが継続されている間は前輪に付加した荷重が維持され、車両の回頭性が保たれる。
更に、位置Bから位置Cにおいて操舵角の絶対値が一定である場合、トルク低減量を滑らかに減少させるので、操舵の切り込みの終了に応じて徐々に前輪に付加した荷重を低減し、前輪のコーナリングフォースを減少させることにより車体を安定させつつ、エンジン10の出力トルクを回復させる。
次に、図11を参照して、本発明の第2実施形態によるエンジンの制御装置により実行されるエンジン制御処理を説明する。図12は、本発明の第2実施形態によるエンジンの制御装置がエンジンを制御するエンジン制御処理のフローチャートである。
なお、この図12の制御におけるステップS41〜S45及びS50〜S56の各処理は、図4を参照して説明した第1実施形態のエンジン制御処理におけるステップS1〜S5及びS9〜S15の各処理と同様であるので、説明を省略する。
図11に示した第2実施形態によるエンジン制御処理では、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に応じたエンジン10の制御を禁止するようにしている。
即ち、ステップS45において、基本目標トルクからトルク低減量を減算することにより最終目標トルクを決定した後、ステップS46において、エンジン制御部57は、ステップS45において設定した最終目標トルクに基づき、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化するか否かを判定する。
その結果、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、即ち、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、ステップS47に進み、最終目標トルク決定部55は、ステップ45において最終目標トルクを決定するときに用いたトルク低減量を0に設定する。即ち、トルク低減の要求がないものとし、ステップS43において決定した基本目標トルクを最終目標トルクとして設定する。
次に、ステップS48において、エンジン制御部57は、ステップS47においてトルク低減量を0とした場合の最終目標トルク(即ち基本目標トルク)に基づき、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化するか否かを判定する。
その結果、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、即ち、基本目標トルクの変化に対応する最終目標トルクの変化により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、ステップS49に進み、エンジン制御部57は、エンジン10の運転モードを減筒運転に切り替える減筒運転切替制御処理を実行する。
ステップS49において減筒運転切替処理を実行した後、ステップS50に進み、エンジン制御部57は、ステップS47においてトルク低減量を0とした場合の最終目標トルク(即ち基本目標トルク)をエンジン10により出力させるための目標空気量及び目標燃料量を決定する。即ち、エンジン制御部57は、ステップS46において、トルク低減量に応じたエンジン10の制御によりエンジン10の運転状態が全筒運転領域から減筒運転領域に変化すると判定した場合には、トルク低減量に応じたエンジン10の制御を禁止し、基本目標トルクの変化に対応する最終目標トルクの変化に応じてエンジン10を制御する。
また、ステップS46において、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化しない場合、又は、ステップS48において、基本目標トルクの変化に対応する最終目標トルクの変化により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化しない場合には、エンジン制御部57は、ステップS49の減筒運転切替処理を実行することなく、ステップS50において目標空気量及び目標燃料量を決定する。
なお、ステップS46において、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化すると判定され、ステップS47においてトルク低減量を0に設定した場合、エンジン制御部57は、ステップS53においてトルク低減の要求がないと判定し、ステップS56において、基本点火時期に点火が行われるように、点火プラグ14を制御する。即ち、エンジン制御部57は、トルク低減量に応じたエンジン10の制御によりエンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合には、トルク低減量に応じたエンジン10の制御を禁止するので、減筒運転切替処理の準備制御における点火時期の遅角化と同時に、トルク低減点火時期への遅角化が行われることはない。
次に、本発明の実施形態のさらなる変形例を説明する。
上述した実施形態においては、トルク低減量決定部53は、操舵速度に基づき目標付加減速度を取得し、この目標付加減速度に基づいてトルク低減量を決定すると説明したが、アクセルペダルの操作以外の車両の運転状態(操舵角、ヨーレート、スリップ率等)に基づきトルク低減量を決定するようにしてもよい。
例えば、トルク低減量決定部53は、操舵角及び車速から算出した目標ヨーレートや、ヨーレートセンサから入力されたヨーレートに基づき、車両に発生させるべき目標ヨー加速度を算出し、その目標ヨー加速度に基づき目標付加減速度を取得して、トルク低減量を決定するようにしてもよい。あるいは、加速度センサにより、車両の旋回に伴って発生する横加速度を検出し、この横加速度に基づきトルク低減量を決定するようにしてもよい。あるいは、トルク低減量決定部53は、目標付加減速度とは異なる要求(例えば、加減速時のパワートレインの振動を打ち消すために必要なトルク)に基づきトルク低減量を決定するようにしてもよい。
また、上述した第2実施形態においては、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に応じたエンジン10の制御を禁止すると説明したが、トルク低減量に応じたエンジン10の制御を禁止するのではなく、制限するようにしてもよい。
具体的には、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に1未満の係数を乗じた値を基本目標トルクから減算することにより、最終目標トルクを決定してもよい。これにより、トルク低減のための点火時期の遅角量が過大となることを防止し、失火の発生を抑制することができる。
次に、上述した本発明の実施形態及び本発明の実施形態の変形例によるエンジンの制御装置の効果を説明する。
まず、エンジン制御部57は、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、エンジン10の運転モードの切替と、トルク低減量に応じたエンジンの制御とが、同時に行われることを禁止するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを防止でき、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジン10を制御することができる。
特に、トルク低減量決定部53は、車両のステアリング操作に応じてトルク低減量を決定するので、ステアリング操作に基づき決定されたトルク低減量の時間変化を最終目標トルクの時間変化に反映することができ、これにより、ドライバのステアリング操作に応じた減速度を車両に迅速に付加して荷重を前輪に加え、コーナリングフォースを迅速に増大させることによりステアリング操作に対する応答性を向上させることができ、ドライバの意図した車両挙動を正確に実現するようにエンジン10を制御することができる。
また、エンジン制御部57は、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、エンジン10の運転モードを全筒運転のまま保持するので、エンジン10の運転モードの切替と、トルク低減量に応じたエンジン10の制御とが、同時に行われることを確実に防止し、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを防止でき、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジン10を制御することができる。
また、エンジン制御部57は、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に応じたエンジン10の制御を制限するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角量が過大となることを防止することができ、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジン10を制御することができる。
特に、エンジン制御部57は、トルク低減量に応じたエンジン10の制御により、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化する場合、トルク低減量に応じたエンジン10の制御を禁止するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを防止でき、これにより、全筒運転から減筒運転への運転モードの切替と、アクセルペダルの操作以外の車両の運転状態に基づくトルクの低下とを両立させ、失火の発生を抑制しつつ、ドライバの意図した車両挙動を正確に実現するようにエンジン10を制御することができる。
また、エンジン制御部57は、エンジン10の運転状態が全筒運転領域から減筒運転領域に変化した場合、各気筒2への吸入空気量を増大させるようにスロットルバルブ5を動作させ、且つ、点火プラグ14による点火時期を遅角させる準備制御を実行し、その準備制御中においてはトルク低減量に応じたエンジン10の制御を制限するので、アクセルペダルの操作以外の車両の運転状態に基づくトルク低減のための点火時期の遅角化と、全筒運転から減筒運転への運転モード切替前の準備制御による点火時期の遅角化とが同時に行われることを確実に防止できる。
2 気筒
5 スロットルバルブ
10 エンジン
13 燃料噴射弁
14 点火プラグ
18 可変吸気バルブ機構
20 バルブ停止機構
30 アクセル開度センサ
39 車速センサ
50 PCM
51 基本目標トルク決定部
53 トルク低減量決定部
55 最終目標トルク決定部
57 エンジン制御部
100 エンジンシステム

Claims (7)

  1. 複数の気筒と、目標トルクに応じて上記気筒への吸入空気量を制御する空気量制御手段と、上記各気筒に設けられた点火装置による点火時期を制御する点火装置制御手段とを有し、全ての上記気筒内で混合気の燃焼が実施される全筒運転と、上記複数の気筒のうち一部の気筒内で混合気の燃焼が停止される減筒運転との間で運転モードを切替可能なエンジンを、車両の運転状態に基づき制御するエンジンの制御装置であって、
    アクセルペダルの操作を含む車両の運転状態に基づき基本目標トルクを決定する基本目標トルク決定手段と、
    上記アクセルペダルの操作以外の車両の運転状態に基づきトルク低減量を決定するトルク低減量決定手段と、
    上記基本目標トルクと上記トルク低減量とに基づき最終目標トルクを決定する最終目標トルク決定手段と、
    エンジンの運転状態が予め定めた減筒運転領域にある場合、エンジンの運転モードを減筒運転に設定し、エンジンの運転状態が予め定めた全筒運転領域にある場合、エンジンの運転モードを全筒運転に設定し、設定した運転モードにおいて上記最終目標トルクを出力させるようにエンジンを制御するエンジン制御手段と、を有し、
    上記エンジン制御手段は、
    エンジンの運転状態が全筒運転領域から減筒運転領域に変化した場合、上記点火装置による点火時期を遅角させる制御を実行し、
    上記トルク低減量の増大に応じて上記点火装置による点火時期を遅角させるトルク低減点火時期遅角化制御を実行し、
    エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、上記点火時期の遅角化と、上記トルク低減点火時期遅角化制御による点火時期の遅角化とが、同時に行われることを禁止することを特徴とするエンジンの制御装置。
  2. 上記トルク低減量決定手段は、車両のステアリング操作に応じて上記トルク低減量を決定する、請求項1に記載のエンジンの制御装置。
  3. 上記エンジン制御手段は、上記トルク低減量に応じたエンジンの制御により、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、エンジンの運転モードを全筒運転のまま保持する請求項1又は2に記載のエンジンの制御装置。
  4. 上記エンジン制御手段は、上記トルク低減量に応じたエンジンの制御により、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、上記トルク低減量に応じたエンジンの制御を制限する請求項1又は2に記載のエンジンの制御装置。
  5. 上記エンジン制御手段は、上記トルク低減量に応じたエンジンの制御により、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、上記トルク低減量に応じたエンジンの制御を禁止する請求項4に記載のエンジンの制御装置。
  6. 上記エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化した場合、上記各気筒への吸入空気量を増大させるように空気量制御手段を動作させ、且つ、上記点火装置による点火時期を遅角させる準備制御を実行し、その準備制御中においては上記トルク低減量に応じたエンジンの制御を制限する請求項1乃至5の何れか1項に記載のエンジンの制御装置。
  7. 複数の気筒と、目標トルクに応じて上記気筒への吸入空気量を制御する空気量制御手段と、上記各気筒に設けられた点火装置による点火時期を制御する点火装置制御手段とを有し、全ての上記気筒内で混合気の燃焼が実施される全筒運転と、上記複数の気筒のうち一部の気筒内で混合気の燃焼が停止される減筒運転との間で運転モードを切替可能なエンジンを、車両の運転状態に基づき制御するエンジンの制御装置であって、
    アクセルペダルの操作を含む車両の運転状態に基づき基本目標トルクを決定する基本目標トルク決定手段と、
    上記アクセルペダルの操作以外の車両の運転状態に基づきトルク低減量を決定するトルク低減量決定手段と、
    上記基本目標トルクと上記トルク低減量とに基づき最終目標トルクを決定する最終目標トルク決定手段と、
    エンジンの運転状態が予め定めた減筒運転領域にある場合、エンジンの運転モードを減筒運転に設定し、エンジンの運転状態が予め定めた全筒運転領域にある場合、エンジンの運転モードを全筒運転に設定し、設定した運転モードにおいて上記最終目標トルクを出力させるようにエンジンを制御するエンジン制御手段と、を有し、
    上記エンジン制御手段は、エンジンの運転状態が全筒運転領域から減筒運転領域に変化する場合、上記トルク低減量に応じたエンジンの制御を制限することを特徴とするエンジンの制御装置。
JP2016041075A 2016-03-03 2016-03-03 エンジンの制御装置 Active JP6270244B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016041075A JP6270244B2 (ja) 2016-03-03 2016-03-03 エンジンの制御装置
US15/446,420 US10024257B2 (en) 2016-03-03 2017-03-01 Engine control device
DE102017001980.0A DE102017001980A1 (de) 2016-03-03 2017-03-01 Motorsteuervorrichtung
CN201710117822.1A CN107152343B (zh) 2016-03-03 2017-03-01 发动机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041075A JP6270244B2 (ja) 2016-03-03 2016-03-03 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2017155677A JP2017155677A (ja) 2017-09-07
JP6270244B2 true JP6270244B2 (ja) 2018-01-31

Family

ID=59650919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041075A Active JP6270244B2 (ja) 2016-03-03 2016-03-03 エンジンの制御装置

Country Status (4)

Country Link
US (1) US10024257B2 (ja)
JP (1) JP6270244B2 (ja)
CN (1) CN107152343B (ja)
DE (1) DE102017001980A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198181B2 (ja) * 2015-11-06 2017-09-20 マツダ株式会社 車両用挙動制御装置
JP6168484B2 (ja) * 2015-11-20 2017-07-26 マツダ株式会社 エンジンの制御装置
KR20170111540A (ko) * 2016-03-28 2017-10-12 현대자동차주식회사 Cda 전환 제어 방법 및 그 제어 방법이 적용된 cda시스템
EP3412899B1 (en) * 2016-09-09 2020-09-02 Mazda Motor Corporation Vehicle control device
JP6642516B2 (ja) * 2017-05-12 2020-02-05 トヨタ自動車株式会社 車両の制御装置
DE102017216978B4 (de) * 2017-09-25 2021-03-04 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
JP7035557B2 (ja) 2018-01-23 2022-03-15 マツダ株式会社 エンジンの制御方法及びエンジンシステム
JP6973111B2 (ja) * 2018-01-23 2021-11-24 マツダ株式会社 エンジンの制御方法及びエンジンシステム
JP7006303B2 (ja) * 2018-01-23 2022-01-24 マツダ株式会社 エンジンの制御方法及びエンジンシステム
JP6973112B2 (ja) 2018-01-23 2021-11-24 マツダ株式会社 エンジンの制御方法及びエンジンシステム
JP2020016193A (ja) * 2018-07-26 2020-01-30 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2020051374A (ja) * 2018-09-28 2020-04-02 本田技研工業株式会社 気筒休止切換装置
US11920530B2 (en) * 2019-08-05 2024-03-05 Cummins Inc. Delaying cylinder reactivation
JP7540360B2 (ja) * 2021-02-17 2024-08-27 マツダ株式会社 車両の制御システム
JP2022149906A (ja) * 2021-03-25 2022-10-07 本田技研工業株式会社 車両制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673325B2 (ja) * 1991-11-13 1997-11-05 本田技研工業株式会社 内燃エンジンの制御装置
JP3201111B2 (ja) * 1993-11-22 2001-08-20 トヨタ自動車株式会社 エンジンおよび自動変速機の総合制御装置
JPH07166906A (ja) * 1993-12-14 1995-06-27 Nissan Motor Co Ltd 燃料カットと点火時期変更による加速スリップ制御装置
JP3506517B2 (ja) * 1995-01-24 2004-03-15 トヨタ自動車株式会社 エンジンおよび動力分配装置の制御装置
JPH08310276A (ja) * 1995-05-22 1996-11-26 Toyota Motor Corp 車両用エンジンおよび自動変速機の制御装置
JPH11324748A (ja) * 1998-05-20 1999-11-26 Toyota Motor Corp 内燃機関の制御装置
JP2003159964A (ja) * 2001-11-22 2003-06-03 Mazda Motor Corp 車両の制御装置
JP4573047B2 (ja) * 2006-04-06 2010-11-04 株式会社デンソー 内燃機関の制御装置
JP2011012610A (ja) * 2009-07-02 2011-01-20 Toyota Motor Corp 可変気筒内燃機関の制御装置
JP5414454B2 (ja) 2009-10-23 2014-02-12 日立オートモティブシステムズ株式会社 車両運動制御装置
JP5999360B2 (ja) 2013-02-25 2016-09-28 マツダ株式会社 車両用挙動制御装置
JP6123575B2 (ja) * 2013-08-22 2017-05-10 マツダ株式会社 多気筒エンジンの制御装置
US9970361B2 (en) * 2014-08-29 2018-05-15 Mazda Motor Corporation Engine control apparatus
JP6079798B2 (ja) * 2015-02-18 2017-02-15 マツダ株式会社 エンジンの制御装置
JP6108294B2 (ja) * 2015-09-07 2017-04-05 マツダ株式会社 車両用挙動制御装置
JP6332255B2 (ja) * 2015-12-10 2018-05-30 トヨタ自動車株式会社 内燃機関の制御装置
JP6252994B2 (ja) * 2015-12-22 2017-12-27 マツダ株式会社 車両用挙動制御装置

Also Published As

Publication number Publication date
JP2017155677A (ja) 2017-09-07
DE102017001980A1 (de) 2017-09-07
CN107152343A (zh) 2017-09-12
US20170254278A1 (en) 2017-09-07
US10024257B2 (en) 2018-07-17
CN107152343B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6270244B2 (ja) エンジンの制御装置
JP6194942B2 (ja) エンジンの制御装置
JP6443828B2 (ja) 車両の制御装置
JP6194972B2 (ja) エンジンの制御装置
JP2017096142A (ja) エンジンの制御装置
JP6399475B2 (ja) 車両の制御装置
JP6611090B2 (ja) 車両の制御装置
CN108025744B (zh) 车辆的控制装置
JP6399476B2 (ja) 車両の制御装置
CN108025745B (zh) 车辆的控制装置
JP6611088B2 (ja) 車両の制御装置
JP6443829B2 (ja) 車両の制御装置
JP6399477B2 (ja) 車両の制御装置
JP6611089B2 (ja) 車両の制御装置
JP6611087B2 (ja) 車両の制御装置
JP6252998B1 (ja) 車両の制御装置
JP6252999B1 (ja) 車両の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6270244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171224