[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6245380B2 - Light emitting device and method for manufacturing light emitting device - Google Patents

Light emitting device and method for manufacturing light emitting device Download PDF

Info

Publication number
JP6245380B2
JP6245380B2 JP2016557446A JP2016557446A JP6245380B2 JP 6245380 B2 JP6245380 B2 JP 6245380B2 JP 2016557446 A JP2016557446 A JP 2016557446A JP 2016557446 A JP2016557446 A JP 2016557446A JP 6245380 B2 JP6245380 B2 JP 6245380B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor layer
acid
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016557446A
Other languages
Japanese (ja)
Other versions
JPWO2016072050A1 (en
Inventor
石崎 順也
順也 石崎
翔吾 古屋
翔吾 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Publication of JPWO2016072050A1 publication Critical patent/JPWO2016072050A1/en
Application granted granted Critical
Publication of JP6245380B2 publication Critical patent/JP6245380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Description

本発明は、発光素子、及び発光素子の製造方法に関し、特に基板上にエピタキシャル成長によって第一半導体層、活性層、第二半導体層、窓層兼支持基板を形成し、基板を除去した後に電極を形成した発光素子基板へ粗面処理を施す際の構造及び製造方法に関する。   The present invention relates to a light-emitting element and a method for manufacturing the light-emitting element, and in particular, a first semiconductor layer, an active layer, a second semiconductor layer, and a window layer / support substrate are formed on a substrate by epitaxial growth. The present invention relates to a structure and a manufacturing method for performing a rough surface treatment on a formed light emitting element substrate.

近年、発光ダイオード(LED)の高効率化が進み、照明器具への適用が進んでいる。従来の照明器具はInGaN系の青色LEDと蛍光剤を組み合わせた器具がほとんどであった。しかし、蛍光剤を使用した際には原理的にストークスロスの発生が避けられず、蛍光剤が受光した全ての光を別の波長に変換はできない問題があった。特に青色より相対的に長波長の黄色や赤色といった領域でこの問題が顕著である。   In recent years, the efficiency of light emitting diodes (LEDs) has increased, and the application to lighting fixtures has progressed. Most conventional lighting fixtures are a combination of an InGaN blue LED and a fluorescent agent. However, when a fluorescent agent is used, the occurrence of Stokes loss is unavoidable in principle, and there is a problem that it is impossible to convert all the light received by the fluorescent agent into another wavelength. In particular, this problem is remarkable in a region such as yellow or red having a longer wavelength than blue.

この問題を解決するために、黄色や赤色LEDと青色LEDを組み合わせる技術が近年採用されている。その際、COB(chip on board)型のように一方の面に光を取り出すのではなく、ボードの上にLEDを並べてフィラメント型で発光させる電球タイプの照明器具が普及しつつある。このタイプの器具に適用するLED素子は、フィラメント全面にわたって光を取り出す必要があるため、素子の一方に光を取り出すタイプは適しておらず、チップ全球に光を取り出す配光を有する素子が理想的である。   In order to solve this problem, a technique of combining a yellow or red LED and a blue LED has recently been adopted. At that time, instead of taking out light on one surface as in the case of COB (chip on board) type, a light bulb type luminaire in which LEDs are arranged on a board to emit light in a filament type is becoming widespread. Since the LED element applied to this type of device needs to extract light over the entire surface of the filament, the type that extracts light to one of the elements is not suitable, and an element having a light distribution that extracts light to the entire chip is ideal. It is.

青色LEDであるInGaN系LEDはサファイア基板を用いるのが一般的であり、サファイア基板は発光波長に対して透明であるため、前述の照明器具に対しては理想的な形態になっている。しかし、黄色や赤色のLEDにおいては、発光波長に対して光吸収基板となるGaAsやGeを出発基板にしており、前記の用途には適さない。   The InGaN-based LED, which is a blue LED, generally uses a sapphire substrate, and the sapphire substrate is transparent to the emission wavelength, and thus is an ideal form for the above-described lighting fixture. However, in yellow and red LEDs, GaAs or Ge serving as a light-absorbing substrate with respect to the emission wavelength is used as a starting substrate, which is not suitable for the above-described use.

この問題を解決するために、特許文献1に示すように発光部に透明基板を接合する方法や、特許文献2に示すように支持基板に用いられるような厚さまで窓層を成長し、光吸収基板である出発基板を除去してLEDにする技術が開示されている。   In order to solve this problem, a window layer is grown to a thickness that can be used for a support substrate as shown in Patent Document 1 or a method of bonding a transparent substrate to a light emitting portion as shown in Patent Document 2, and absorbs light. A technique for removing a starting substrate, which is a substrate, to make an LED is disclosed.

特許文献1で開示される方法では、必要な厚さ以上の透明基板を接合する必要があり、接合後に基板を所定の厚さまで削る必要があるため、コストアップの要因となる。また、通常、接合に用いられる基板は200μm以上の厚さがある。LED素子に要求される膜厚は、配光特性及び他の素子とのアセンブリ性を考慮すると、せいぜい100μm前後であるため、この程度の厚さまで薄膜化加工する必要がある。薄膜化加工にあたり、加工を行うことによる工数の増加、及び、ウェーハが割れるリスクも増大し、コストアップ及び歩留まり低下要因となる。   In the method disclosed in Patent Document 1, it is necessary to join a transparent substrate having a thickness greater than a necessary thickness, and it is necessary to cut the substrate to a predetermined thickness after joining. This causes an increase in cost. In general, the substrate used for bonding has a thickness of 200 μm or more. The film thickness required for the LED element is at most about 100 μm in consideration of the light distribution characteristic and the assemblability with other elements. Therefore, it is necessary to thin the film to such a thickness. In thinning processing, the number of man-hours due to processing and the risk of wafer breakage also increase, leading to increased costs and reduced yield.

一方、特許文献2に開示される支持基板に用いることができる厚さまで結晶成長により成長した窓層を支持基板として利用する方法では、所望の厚さまで窓層を成長すればよく、薄膜化加工や基板接合・接着の工程が不要のため、低コストでの形成が可能であり、優れた方法である。   On the other hand, in the method of using a window layer grown by crystal growth to a thickness that can be used for the support substrate disclosed in Patent Document 2 as the support substrate, the window layer may be grown to a desired thickness. Since the step of bonding and bonding the substrates is not necessary, it can be formed at a low cost and is an excellent method.

また、前述のような透明支持基板を有する発光素子においては、発光素子内部での多重反射を防止し、光吸収を抑制することで発光効率を上げる手法が取られるのが一般的である。特許文献3では、厚い窓層兼電流拡散層と厚い窓層兼支持基板が発光部を挟む構造において、窓層兼電流拡散層及び窓層兼支持基板に粗面をかけ、発光部には粗面をかけない方法が提案されている。ただ、この方法は窓層兼電流拡散層部を貫通する深いトレンチを形成する必要があり、コストがかかるだけでなく、上部と下部の電極の高低差が大きすぎるため、ワイヤーボンディングを行うことが難しい。フリップチップ型に適用するに際しても、厚い絶縁膜と非常に長い金属ビアを形成する必要があり、コストアップ要因となる。従って、上部電極部である窓層兼電流拡散層部が薄いことが望まれる。   In addition, in a light emitting device having a transparent support substrate as described above, it is common to take a method of increasing luminous efficiency by preventing multiple reflections inside the light emitting device and suppressing light absorption. In Patent Document 3, in a structure in which a thick window layer / current diffusion layer and a thick window layer / support substrate sandwich a light emitting portion, the window layer / current diffusion layer and the window layer / support substrate are roughened, and the light emitting portion is rough. A method that does not face the surface has been proposed. However, this method requires the formation of a deep trench that penetrates the window / current diffusion layer portion, which is not only costly, but the height difference between the upper and lower electrodes is too large, so that wire bonding can be performed. difficult. Even when applied to the flip chip type, it is necessary to form a thick insulating film and a very long metal via, which causes an increase in cost. Therefore, it is desirable that the window layer / current diffusion layer portion which is the upper electrode portion is thin.

窓層兼電流拡散層の厚さが薄く、上部電極部と下部電極部の高低差が少なく、かつ、光取り出し部もしくは光反射部に粗面を有する開示技術として、特許文献4及び5が挙げられる。特許文献4では、光取り出し面側と反対側のn型半導体層表面に粗面を形成しているが、フリップチップ型への技術開示であり、電極側から窓層側への効率的な光反射を目的としている。また、窓層兼支持基板と発光部両者へ粗面をかけることの難しさが開示されている。   Patent Documents 4 and 5 are disclosed as disclosure techniques in which the window layer / current diffusion layer is thin, the height difference between the upper electrode part and the lower electrode part is small, and the light extraction part or the light reflection part has a rough surface. It is done. In Patent Document 4, a rough surface is formed on the surface of the n-type semiconductor layer on the side opposite to the light extraction surface side, but this is a technical disclosure of a flip-chip type, and efficient light from the electrode side to the window layer side. The purpose is reflection. Further, it is disclosed that it is difficult to apply a rough surface to both the window layer / support substrate and the light emitting portion.

特許文献5では、発光部表面に粗面が施されており、発光部側面に異なる角度のメサ形状あるいは単純なメサ形状を有する技術が開示されている。この場合、基板には粗面を必要としない反射型の構造が採用されている。また、発光部表面はフォトリソグラフィーにより2μm周期等の凹凸を形成する技術が開示されている。   Patent Document 5 discloses a technique in which a light emitting portion surface has a rough surface and the light emitting portion side surface has a mesa shape with a different angle or a simple mesa shape. In this case, the substrate has a reflective structure that does not require a rough surface. Further, a technique is disclosed in which the surface of the light emitting part is formed with irregularities having a period of 2 μm by photolithography.

一方、窓層兼支持基板をエピタキシャル成長で形成した場合、格子不整に起因して基板は大きく反っており、たとえ密着露光法を採用したとしてもフォトリソグラフィー法では発光部表面に2μm以下のピッチの均一パターンを形成することが極めて困難である。従って、窓層兼支持基板をエピタキシャル成長で形成した場合、発光部表面の粗面化は、粗面液を利用して行うことになる。   On the other hand, when the window layer / support substrate is formed by epitaxial growth, the substrate is greatly warped due to lattice irregularity, and even if the contact exposure method is adopted, the photolithography method has a uniform pitch of 2 μm or less on the light emitting portion surface. It is very difficult to form a pattern. Therefore, when the window layer / supporting substrate is formed by epitaxial growth, the surface of the light emitting portion is roughened by using a rough surface liquid.

特許第5427585号公報Japanese Patent No. 5427585 特許第4569858号公報Japanese Patent No. 4569858 特許第4715370号公報Japanese Patent No. 4715370 特開2007−059518号公報JP 2007-059518 A 特開2011−198992号公報JP 2011-198992 A

しかしながら、発光部表面の粗面化を粗面液で行った後、素子分離を実施した場合、素子分離した発光部の側面の形状は、粗面化を行った発光部表面の凹凸を反映した形状になる。これは、素子分離において、凹部は薄いため発光部のエッチングが早く終了して窓層兼支持基板部に達するのに対し、凸部は厚いため窓層兼支持基板部に遅く達する。そのため、凸部をエッチングする間に、凹部で発光部をオーバーエッチングし、発光部の側面にエッチング方向の投影視において凹凸を形成するためである。このように、発光部の表面を粗面液によって粗面化した後に、素子分離を行う場合、素子分離した発光部の側面の形状における凸部に電界が集中しやすく、リーク不良やESD(静電気放電)不良を発生する問題があった。   However, when the element separation is performed after roughening the surface of the light emitting portion with a rough surface liquid, the shape of the side surface of the light emitting portion after the element separation reflects the unevenness of the surface of the light emitting portion that has been roughened. Become a shape. In the element isolation, the recesses are thin, so that the etching of the light emitting portion is completed early and reaches the window layer / support substrate portion, whereas the protrusions are thick, so that they reach the window layer / support substrate portion later. Therefore, during etching of the convex portion, the light emitting portion is over-etched with the concave portion, and unevenness is formed on the side surface of the light emitting portion in a projection view in the etching direction. Thus, when element isolation is performed after the surface of the light emitting portion is roughened with a rough surface liquid, the electric field tends to concentrate on the convex portions in the shape of the side surface of the light emitting portion that has been element-isolated, leading to leakage defects and ESD (electrostatic discharge). There was a problem of generating a discharge.

本発明は上記問題に鑑みてなされたものであって、窓層兼支持基板と発光部を有し、発光部を粗面液で粗面化した後、素子分離を行う発光素子において、リーク不良やESD不良の発生が抑えられた発光素子及び発光素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has a window layer / supporting substrate and a light emitting part, and after the light emitting part is roughened with a rough surface liquid, the light emitting element is subjected to element separation and has a leakage defect. Another object of the present invention is to provide a light-emitting element in which the occurrence of ESD defects and the production of the light-emitting element are suppressed.

上記目的を達成するために、本発明によれば、窓層兼支持基板と、前記窓層兼支持基板上に設けられ、第二導電型の第二半導体層と、活性層と、第一導電型の第一半導体層とをこの順に含む発光部とを有する発光素子において、
前記発光素子は、前記発光部が除去された除去部と、前記除去部以外の非除去部と、該非除去部の前記第一半導体層上に設けられた第一オーミック電極と、前記除去部の前記窓層兼支持基板上に設けられた第二オーミック電極とを有し、
前記第一半導体層表面及び前記発光部の側面の少なくとも一部は絶縁保護膜で被覆され、前記第一半導体層の外周部を除く表面及び前記窓層兼支持基板の表面が粗面化され、且つ、前記発光部側面のRが2μm未満であることを特徴とする発光素子を提供する。
To achieve the above object, according to the present invention, a window layer / support substrate, a second conductivity type second semiconductor layer, an active layer, and a first conductivity layer provided on the window layer / support substrate. In a light emitting device having a light emitting part including a first semiconductor layer of the type in this order,
The light emitting element includes: a removed portion from which the light emitting portion has been removed; a non-removed portion other than the removed portion; a first ohmic electrode provided on the first semiconductor layer of the non-removed portion; A second ohmic electrode provided on the window layer and supporting substrate;
At least a part of the surface of the first semiconductor layer and the side surface of the light emitting portion is covered with an insulating protective film, the surface excluding the outer peripheral portion of the first semiconductor layer and the surface of the window layer and supporting substrate are roughened, And the Rz of the side surface of the said light emission part is less than 2 micrometers, The light emitting element characterized by the above-mentioned is provided.

このような発光素子であれば、粗面化により発光効率を向上させるとともに、発光部側面の凹凸形状に依存するリーク不良及びESD不良の発生が抑えられた発光素子となる。   With such a light emitting device, the light emitting efficiency is improved by roughening the surface, and the light emitting device in which the occurrence of leakage failure and ESD failure depending on the uneven shape on the side surface of the light emitting portion is suppressed.

このとき、前記窓層兼支持基板はGaP、GaAsP、AlGaAs、サファイア(Al)、石英(SiO)、SiCのいずれかからなり、前記第一半導体層、前記活性層、前記第二半導体層がAlGaInPまたはAlGaAsからなるものであることが好ましい。
このように、窓層兼支持基板、第一半導体層、活性層、第二半導体層として、上記のような材料を好適に用いることができる。
At this time, the window layer / support substrate is made of any one of GaP, GaAsP, AlGaAs, sapphire (Al 2 O 3 ), quartz (SiO 2 ), and SiC, and includes the first semiconductor layer, the active layer, and the second layer. The semiconductor layer is preferably made of AlGaInP or AlGaAs.
Thus, the above materials can be suitably used as the window layer / support substrate, the first semiconductor layer, the active layer, and the second semiconductor layer.

また、本発明によれば、基板上に、該基板と格子整合系の材料で第一半導体層、活性層、第二半導体層を順次エピタキシャル成長により成長させて発光部を形成する工程と、該発光部の上に前記基板に対して非格子整合系の材料で窓層兼支持基板をエピタキシャル成長により形成する工程と、前記基板を除去する工程と、前記第一半導体層の表面に第一オーミック電極を形成する工程と、前記第一半導体層の表面に粗面処理を行う第一粗面処理工程と、前記発光部の一部を除去する除去部と、それ以外の非除去部を形成する素子分離工程と、前記発光部が除去された窓層兼支持基板上に第二オーミック電極を形成する工程と、前記第一半導体層表面及び前記発光部の側面の少なくとも一部を絶縁保護膜で被覆する工程、前記窓層兼支持基板の表面及び側面を粗面化する第二粗面処理工程からなり、
前記第一粗面処理工程において、第一オーミック電極周辺及び、その後の前記素子分離工程で前記非除去部の前記第一半導体層表面の外周部となる領域については粗面化しないことを特徴とする発光素子の製造方法を提供する。
In addition, according to the present invention, a step of forming a light emitting portion by sequentially growing a first semiconductor layer, an active layer, and a second semiconductor layer on a substrate with a lattice-matching material with the substrate, and the light emission Forming a window layer / support substrate by epitaxial growth on the substrate with a non-lattice-matched material, removing the substrate, and providing a first ohmic electrode on the surface of the first semiconductor layer. A step of forming, a first rough surface treatment step of performing a rough surface treatment on the surface of the first semiconductor layer, a removal portion for removing a part of the light emitting portion, and an element separation for forming other non-removal portions A step of forming a second ohmic electrode on the window layer / support substrate from which the light emitting portion has been removed, and covering at least a part of the surface of the first semiconductor layer and the side surface of the light emitting portion with an insulating protective film. Process of the window layer and supporting substrate Made from the second surface roughening step of roughening the surface and side surfaces,
In the first rough surface treatment step, the first ohmic electrode periphery and the region that becomes the outer peripheral portion of the surface of the first semiconductor layer of the non-removed portion in the subsequent element isolation step are not roughened. A method for manufacturing a light emitting device is provided.

このような製造方法であれば、粗面化により発光効率を向上させるとともに、発光部側面の凹凸形状に依存するリーク不良及びESD不良の発生が抑えられた発光素子を製造することができる。   With such a manufacturing method, it is possible to manufacture a light emitting element in which the light emission efficiency is improved by roughening, and the occurrence of leakage failure and ESD failure depending on the uneven shape on the side surface of the light emitting portion is suppressed.

このとき、前記基板をGaAsまたはGeとし、前記窓層兼支持基板をGaPGaAsP、AlGaAs、サファイア(Al )、石英(SiO )、SiCのいずれかとし、前記第一半導体層、前記活性層、前記第二半導体層をAlGaInPまたはAlGaAsとすることが好ましい。
このように、基板、窓層兼支持基板、第一半導体層、活性層、第二半導体層として、上記のような材料を好適に用いることができる。
At this time, the substrate is GaAs or Ge , and the window layer / support substrate is any one of GaP , GaAsP , AlGaAs, sapphire (Al 2 O 3 ), quartz (SiO 2 ), SiC , the first semiconductor layer, The active layer and the second semiconductor layer are preferably made of AlGaInP or AlGaAs.
Thus, the above materials can be suitably used for the substrate, the window / support substrate, the first semiconductor layer, the active layer, and the second semiconductor layer.

このとき、前記第一粗面処理工程は、
有機酸と無機酸の混合液が用いられ、前記有機酸は、クエン酸・マロン酸・蟻酸・酢酸・酒石酸のいずれか一種類以上含有し、前記無機酸は塩酸・硫酸・硝酸・弗酸のいずれか一種類以上を含有する溶液を用いて行い、
前記第二粗面処理工程は、
クエン酸・マロン酸・蟻酸・酢酸・酒石酸の有機酸からいずれか1種類以上を含み、かつ、塩酸、硫酸、硝酸、弗酸の無機酸のいずれか1種類以上を含み、かつ、沃素を含む溶液を用いて行うことが好ましい。
At this time, the first rough surface treatment step,
A mixed solution of an organic acid and an inorganic acid is used, and the organic acid contains at least one of citric acid, malonic acid, formic acid, acetic acid, and tartaric acid, and the inorganic acid includes hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid. Using a solution containing any one or more of them,
The second rough surface treatment step includes
Contains at least one organic acid such as citric acid, malonic acid, formic acid, acetic acid, and tartaric acid, and contains one or more inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, and contains iodine. It is preferable to use a solution.

このようにすれば、確実に表面を粗面化することができる。   In this way, the surface can be reliably roughened.

このとき、前記素子分離工程は、
塩酸を含有するウェットエッチング液によるウェットエッチング法により行い、前記第一粗面処理工程において粗面化させない領域に非Al含有層を残留させ、エッチングマスクとして使用することができる。
このようにすれば、素子分離を行った発光部の側面に明瞭なメサ形状を得ることができる。
At this time, the element isolation step includes:
It can be performed by a wet etching method using a wet etching solution containing hydrochloric acid, and a non-Al-containing layer can be left in a region that is not roughened in the first roughening treatment step, and can be used as an etching mask.
In this way, it is possible to obtain a clear mesa shape on the side surface of the light emitting portion where element isolation has been performed.

このとき、前記非Al含有層は、GaAs、InGaP、InGaAs、Geのいずれか1層以上含み、前記ウェットエッチング後に前記非Al含有層を除去する工程を行うことが好ましい。
このようにすれば、素子分離を行った発光部の側面に明瞭なメサ形状をより確実に得ることができる。
At this time, it is preferable that the non-Al-containing layer includes at least one of GaAs, InGaP, InGaAs, and Ge, and a step of removing the non-Al-containing layer after the wet etching is performed.
In this way, a clear mesa shape can be more reliably obtained on the side surface of the light emitting part that has been subjected to element isolation.

また、前記素子分離工程は、
塩化水素を含有するガスによるドライエッチング法により行うことができる。
このようにすれば、素子分離を行った発光部の側面にくびれのない形状を得ることができる。
The element isolation step includes
It can be performed by a dry etching method using a gas containing hydrogen chloride.
In this way, it is possible to obtain a shape with no constriction on the side surface of the light emitting portion from which element isolation has been performed.

本発明の発光素子、及び発光素子の製造方法は、粗面化により発光効率を向上させるとともに、発光部側面の凹凸形状に依存するリーク不良及びESD不良の発生が抑えられた発光素子を得ることができる。   The light-emitting element and the method for manufacturing the light-emitting element of the present invention provide a light-emitting element in which light emission efficiency is improved by roughening and the occurrence of leakage failure and ESD failure depending on the uneven shape on the side surface of the light-emitting portion is suppressed. Can do.

本発明の発光素子の一例を示した概略図である。It is the schematic which showed an example of the light emitting element of this invention. 本発明の発光素子の製造方法の一例を示した工程図である。It is process drawing which showed an example of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程における基板上に発光部と窓層兼支持基板を成長させたエピタキシャル基板を示す概略図である。It is the schematic which shows the epitaxial substrate which grew the light emission part and the window layer and support substrate on the board | substrate in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程におけるエピタキシャル基板から基板を除去した発光素子基板を示す概略図である。It is the schematic which shows the light emitting element substrate which removed the board | substrate from the epitaxial substrate in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程における第一オーミック電極が形成された発光素子基板の概略図である。It is the schematic of the light emitting element substrate in which the 1st ohmic electrode in the manufacturing process of the manufacturing method of the light emitting element of this invention was formed. 本発明の発光素子の製造方法の製造過程における第一粗面処理が行われた発光素子基板の概略図である。It is the schematic of the light emitting element substrate in which the 1st roughening process in the manufacture process of the manufacturing method of the light emitting element of this invention was performed. 本発明の発光素子の製造方法の製造過程における素子分離工程を行った発光素子基板の概略図である。It is the schematic of the light emitting element substrate which performed the element separation process in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程における第二オーミック電極を形成し、絶縁保護膜を形成した発光素子基板の概略図である。It is the schematic of the light emitting element substrate which formed the 2nd ohmic electrode in the manufacture process of the manufacturing method of the light emitting element of this invention, and formed the insulating protective film. 実施例1の発光素子の概略図である。1 is a schematic view of a light emitting device of Example 1. FIG. 実施例2の発光素子の概略図である。6 is a schematic view of a light emitting device of Example 2. FIG. 実施例1における素子分離端部の写真である。2 is a photograph of an element isolation end in Example 1. FIG. 比較例における素子分離端部の写真である。It is a photograph of an element isolation end in a comparative example. 実施例及び比較例における発光素子の逆方向電圧(VR)の頻度を示した図である。It is the figure which showed the frequency of the reverse voltage (VR) of the light emitting element in an Example and a comparative example. 実施例及び比較例における発光素子のESD電圧とESD不良率の関係を示した図である。It is the figure which showed the relationship between the ESD voltage and ESD defect rate of the light emitting element in an Example and a comparative example. 実験における発光部の側面のRとVR不良率との関係を示した図である。It is the figure which showed the relationship between Rz of the side surface of the light emission part in an experiment, and VR defect rate.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
前述のように、発光部の表面を粗面液によって一様に粗面化した後に、素子分離を行う場合、リーク不良やESD不良が発生する問題があった。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
As described above, when element separation is performed after the surface of the light-emitting portion is uniformly roughened with a rough surface liquid, there is a problem in that leakage failure and ESD failure occur.

そこで、本発明者らはこのような問題を解決すべく鋭意検討を重ねた。その結果、発光部表面を粗面化する際に、その後の素子分離で第一半導体層表面の外周部となる領域については粗面化をしないことで、発光部側面のRを2μm未満とすることができ、これによって、リーク不良及びESD不良を抑えることができることに想到した。そして、これらを実施するための最良の形態について精査し、本発明を完成させた。Therefore, the present inventors have intensively studied to solve such problems. As a result, when the surface of the light emitting portion is roughened, the region that becomes the outer peripheral portion of the surface of the first semiconductor layer in the subsequent element separation is not roughened, so that the R z on the side surface of the light emitting portion is less than 2 μm. Thus, the inventors have conceived that leakage defects and ESD defects can be suppressed. And the best form for implementing these was scrutinized and the present invention was completed.

まず、本発明の発光素子について図1を参照して説明する。
図1に示すように、本発明の発光素子1は、窓層兼支持基板107と、窓層兼支持基板107上に設けられ、第二導電型の第二半導体層105と、活性層104と、第一導電型の第一半導体層103とをこの順に含む発光部108とを有している。
First, the light-emitting element of the present invention will be described with reference to FIG.
As shown in FIG. 1, the light emitting device 1 of the present invention is provided on a window layer / support substrate 107, a window layer / support substrate 107, a second conductivity type second semiconductor layer 105, an active layer 104, The light emitting unit 108 includes the first conductivity type first semiconductor layer 103 in this order.

窓層兼支持基板107はGaP、GaAsP、AlGaAs、サファイア(Al)、石英(SiO)、SiC等からなり、第一半導体層103、活性層104、第二半導体層105がAlGaInPまたはAlGaAsからなるものとすることができる。The window layer / support substrate 107 is made of GaP, GaAsP, AlGaAs, sapphire (Al 2 O 3 ), quartz (SiO 2 ), SiC, etc., and the first semiconductor layer 103, the active layer 104, and the second semiconductor layer 105 are made of AlGaInP or It can consist of AlGaAs.

発光素子1は、発光部108の少なくとも第一半導体層103と活性層104が除去された除去部170と、除去部170以外の非除去部180と、該非除去部180の第一半導体層103上に設けられた第一オーミック電極121と、除去部170の窓層兼支持基板107上に設けられた第二オーミック電極122とを有している。   The light emitting element 1 includes a removal unit 170 from which at least the first semiconductor layer 103 and the active layer 104 of the light emitting unit 108 are removed, a non-removal unit 180 other than the removal unit 170, and the first semiconductor layer 103 of the non-removal unit 180. And a second ohmic electrode 122 provided on the window layer / supporting substrate 107 of the removing portion 170.

第一半導体層103表面及び発光部108の側面の少なくとも一部は絶縁保護膜150で被覆され、第一半導体層103の外周部(第二領域131)を除く表面及び窓層兼支持基板107の表面が粗面化され、且つ、発光部108側面のRが2μm未満である。
なお、本願におけるRは表面の十点平均粗さ(JIS B0601−1994)を示すものとする。
At least a part of the surface of the first semiconductor layer 103 and the side surface of the light emitting unit 108 is covered with an insulating protective film 150, and the surface of the first semiconductor layer 103 excluding the outer peripheral part (second region 131) and the window layer / supporting substrate 107. The surface is roughened, and the R z on the side surface of the light emitting unit 108 is less than 2 μm.
In addition, Rz in this application shall show the 10-point average roughness (JIS B0601-1994) of the surface.

このような本発明の発光素子1であれば、粗面化により発光効率を向上させるとともに、発光部108側面のRが2μm未満であるので、凹凸形状に依存するリーク不良及びESD不良の発生が抑えられた発光素子となる。With such a light emitting device 1 of the present invention, the light emission efficiency is improved by roughening the surface, and the Rz on the side surface of the light emitting unit 108 is less than 2 μm. Thus, the light emitting element is suppressed.

次に、本発明の発光素子の製造方法について図2―図8を参照して説明する。
まず、図3に示すように出発基板として、基板101を用意する(図2のSP1)。
Next, a method for manufacturing a light emitting device of the present invention will be described with reference to FIGS.
First, as shown in FIG. 3, a substrate 101 is prepared as a starting substrate (SP1 in FIG. 2).

基板101としては、GaAsまたはGeを好適に用いることができる。
このようにすれば、後述する活性層104の材料を格子整合系でエピタキシャル成長を行うことができるため、活性層104の品質を向上させやすく、輝度上昇や寿命特性の向上が得られる。
As the substrate 101, GaAs or Ge can be preferably used.
In this way, since the material of the active layer 104 to be described later can be epitaxially grown in a lattice matching system, the quality of the active layer 104 can be easily improved, and the luminance can be increased and the life characteristics can be improved.

次に、基板101上に、基板101と格子定数が異なる第一導電型の第一半導体層103、活性層104、第二導電型の第二半導体層105を順次エピタキシャル成長により成長させて発光部108を形成する(図2のSP2)。
なお、図示しないが、基板101と第一半導体層103の間には、後述する基板101を除去する工程のために、基板除去選択エッチング層が挿入されることが好ましい。
Next, a first conductive type first semiconductor layer 103 having a lattice constant different from that of the substrate 101, an active layer 104, and a second conductive type second semiconductor layer 105 are sequentially grown on the substrate 101 by epitaxial growth, so that the light emitting unit 108 is obtained. (SP2 in FIG. 2).
Although not shown, it is preferable that a substrate removal selective etching layer is inserted between the substrate 101 and the first semiconductor layer 103 for the step of removing the substrate 101 described later.

次に、発光部108の上に基板101に対して非格子整合系の材料で窓層兼支持基板107をエピタキシャル成長により形成して、エピタキシャル基板109を作製する(図2のSP3)。   Next, the window layer / support substrate 107 is formed by epitaxial growth on the light emitting portion 108 with a material of a non-lattice matching system with respect to the substrate 101 to produce the epitaxial substrate 109 (SP3 in FIG. 2).

上記SP2、3において、具体的には、図3に示すように、基板101上に例えばMOVPE法(有機金属気相成長法)やMBE(分子線エピタキシー法)、CBE(化学線エピタキシー法)により第一導電型の第一半導体層103、活性層104、第二導電型の第二半導体層105からなる発光部108上に、緩衝層106、窓層兼支持基板107をこの順にエピタキシャル成長したエピタキシャル基板109を作製することができる。
なお、窓層兼支持基板107は、HVPE法(ハイドライド気相成長法)により形成してもよい。
In SP2 and SP3, specifically, as shown in FIG. 3, on the substrate 101, for example, by MOVPE (metal organic chemical vapor deposition), MBE (molecular beam epitaxy), or CBE (chemical beam epitaxy). An epitaxial substrate in which a buffer layer 106 and a window layer / support substrate 107 are epitaxially grown in this order on a light emitting portion 108 including a first semiconductor layer 103 of the first conductivity type, an active layer 104, and a second semiconductor layer 105 of the second conductivity type. 109 can be produced.
Note that the window layer / support substrate 107 may be formed by HVPE (hydride vapor phase epitaxy).

活性層104は発光波長に応じて(AlGa1−xIn1−yP(0≦x≦1、0.4≦y≦0.6)またはAlGa1―zAs(0≦z≦0.45)で形成される。可視光照明に適用する場合、AlGaInPを選択するのが好適であり、赤外照明に適用する場合、AlGaAsを選択するのが好適である。ただし、活性層104の設計に関しては、超格子等の利用により波長は材料組成に起因する波長以外に調整可能であるため、上記の材料に限られない。The active layer 104 has (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6) or Al z Ga 1-z As (0 ≦ z ≦ 0.45). When applying to visible light illumination, it is preferable to select AlGaInP, and when applying to infrared illumination, it is preferable to select AlGaAs. However, the design of the active layer 104 is not limited to the above materials because the wavelength can be adjusted by using a superlattice or the like other than the wavelength resulting from the material composition.

第一半導体層103、第二半導体層105はAlGaInPもしくはAlGaAsが選択され、その選択は活性層104と必ずしも同一の材料でなくともよい。   AlGaInP or AlGaAs is selected for the first semiconductor layer 103 and the second semiconductor layer 105, and the selection may not necessarily be made of the same material as that of the active layer 104.

本実施形態においては、最も単純な構造である第一半導体層103、活性層104、第二半導体層105が同一材料であるAlGaInPの場合を例示するが、第一半導体層103あるいは第二半導体層105は特性向上のため、各層内には複数層が含まれるのが一般的であり、第一半導体層103あるいは第二半導体層105が単一層であることに限定されない。   In the present embodiment, the first semiconductor layer 103, the active layer 104, and the second semiconductor layer 105 having the simplest structure are exemplified by AlGaInP, which is the same material, but the first semiconductor layer 103 or the second semiconductor layer is exemplified. 105 generally includes a plurality of layers in order to improve characteristics, and the first semiconductor layer 103 or the second semiconductor layer 105 is not limited to a single layer.

窓層兼支持基板107としては、GaP、GaAsP、AlGaAs、サファイア(Al)、石英(SiO)、SiC等を好適に用いることができる。窓層兼支持基板107をGaAsPまたはGaPで形成した場合、緩衝層106はInGaPで形成するのが最も好適である。
また、窓層兼支持基板107は格子整合系の材料であるAlGaAsで形成することも可能である。また、窓層兼支持基板107として、GaAsPを選択すると、耐候性が良好である。
しかし、GaAsPと、AlGaInP系材料またはAlGaAs系材料との間には大きな格子不整が存在するため、GaAsPには高密度のひずみや貫通転位が入る。その結果、エピタキシャル基板109は大きな反りを有する。
As the window layer / supporting substrate 107, GaP, GaAsP, AlGaAs, sapphire (Al 2 O 3 ), quartz (SiO 2 ), SiC, or the like can be suitably used. When the window layer / support substrate 107 is formed of GaAsP or GaP, the buffer layer 106 is most preferably formed of InGaP.
The window layer / support substrate 107 can also be formed of AlGaAs, which is a lattice matching material. Further, when GaAsP is selected as the window layer / supporting substrate 107, the weather resistance is good.
However, since there is a large lattice mismatch between GaAsP and an AlGaInP-based material or AlGaAs-based material, high-density strain and threading dislocations enter GaAsP. As a result, the epitaxial substrate 109 has a large warp.

ここで、自然超格子の形成による波長シフトを防止するため、発光部108は、成長面に対して結晶学的に12度以上傾斜して成長が行われることが好ましい。この傾斜方向は、どの方向に選択することも可能だが、スクライブ・ブレーキング工程で素子を分離する工程を採用する場合、スクライブ線の一方には結晶軸が傾斜せず直交する方向を選択し、スクライブ線の他方には結晶軸が傾斜する方向を選択すれば、素子側面が素子表面及び裏面に対して傾斜する面を少なくできる。従って、通常はスクライブ線の一方は傾斜しない方向が選択されるが、20度程度の素子側面の傾斜は、アセンブリ上は大きな問題にならない。従って、上記直交方向は、厳密に一致する必要はなく、直交方向より±20度程度の角度範囲は直交方向に概念的に含まれる。   Here, in order to prevent a wavelength shift due to the formation of the natural superlattice, the light emitting portion 108 is preferably grown with a crystallographic inclination of 12 degrees or more with respect to the growth surface. This tilt direction can be selected in any direction, but when adopting the process of separating the elements in the scribe and braking process, select the direction in which the crystal axis does not tilt and is orthogonal to one of the scribe lines, If the direction in which the crystal axis is inclined is selected for the other of the scribe lines, it is possible to reduce the number of elements whose side surfaces are inclined with respect to the element surface and the back surface. Therefore, a direction in which one of the scribe lines is not inclined is usually selected, but the inclination of the element side surface of about 20 degrees is not a big problem on the assembly. Therefore, the orthogonal directions do not have to coincide exactly, and an angular range of about ± 20 degrees from the orthogonal directions is conceptually included in the orthogonal directions.

次に、エピタキシャル基板109から基板101を除去して、図4に示すように発光素子基板110を作製する(図2のSP4)。
具体的には、エピタキシャル基板109から基板101をウェットエッチング法により除去し、発光素子基板110とすることができる。
Next, the substrate 101 is removed from the epitaxial substrate 109, and the light emitting element substrate 110 is manufactured as shown in FIG. 4 (SP4 in FIG. 2).
Specifically, the light emitting element substrate 110 can be obtained by removing the substrate 101 from the epitaxial substrate 109 by wet etching.

次に、図5に示すように、発光素子基板110の第一半導体層103の基板除去面120上に、発光素子へ電位を供給するための第一オーミック電極121を形成する(図2のSP5)。   Next, as shown in FIG. 5, a first ohmic electrode 121 for supplying a potential to the light emitting element is formed on the substrate removal surface 120 of the first semiconductor layer 103 of the light emitting element substrate 110 (SP5 in FIG. 2). ).

次に、図6に示すように第一半導体層103の表面に粗面処理を行う第一粗面処理工程を行う(図2のSP6)。第一粗面処理工程では、第一オーミック電極121周辺の第三領域130及び、第一半導体層103の表面の一部の第二領域131については粗面化を行わないようにする。   Next, as shown in FIG. 6, a first rough surface treatment step is performed to roughen the surface of the first semiconductor layer 103 (SP6 in FIG. 2). In the first rough surface treatment step, the third region 130 around the first ohmic electrode 121 and the second region 131 on the surface of the first semiconductor layer 103 are not roughened.

第一粗面処理工程は、有機酸と無機酸の混合液が用いられ、前記有機酸としてカルボン酸、特には、クエン酸・マロン酸・蟻酸・酢酸・酒石酸のいずれか一種類以上含有し、前記無機酸は塩酸・硫酸・硝酸・弗酸のいずれか一種類以上を含有する溶液を用いて行うことができる。
このようにすれば、確実に表面を粗面化することができる。
In the first rough surface treatment step, a mixed solution of an organic acid and an inorganic acid is used, and the organic acid contains carboxylic acid, in particular, any one or more of citric acid, malonic acid, formic acid, acetic acid, tartaric acid, The inorganic acid can be used using a solution containing one or more of hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid.
In this way, the surface can be reliably roughened.

第三領域130は第一粗面処理工程でのオーバーエッチングを抑止し、第一オーミック電極121の電極剥離の抑制の効果がある。一方、第三領域130の幅は粗面化の効果による反射防止効果が少なくならないように、広すぎない適切な幅に設定する必要がある。反射防止効果の減少が少なく、電極剥離の抑制に効果が得られる幅として、第一粗面処理により粗面化される深さの0.5〜15倍程度の幅を有することが好適である。粗面の凹凸高さは発光波長の1/2の整数倍であることが好ましい。   The third region 130 has an effect of suppressing over-etching in the first rough surface treatment step and suppressing electrode peeling of the first ohmic electrode 121. On the other hand, the width of the third region 130 needs to be set to an appropriate width that is not too wide so that the antireflection effect due to the roughening effect is not reduced. It is preferable to have a width of about 0.5 to 15 times the depth roughened by the first roughening treatment as a width that has a small decrease in the antireflection effect and is effective in suppressing electrode peeling. . The uneven height of the rough surface is preferably an integral multiple of 1/2 of the emission wavelength.

第二領域131の幅は、第一粗面処理により粗面化される深さの0.5〜15倍程度の幅を有することが好適である。
ここで、前述の基板除去選択エッチング層を第一半導体層103の上に設けた場合に、該基板除去選択エッチング層と第一半導体層103との間に第一粗面処理選択エッチング層(不図示)を設けることが好ましく、これにより基板除去後に第一粗面処理選択エッチング層を第二領域131に残留させて、第一粗面処理を行うと良い。このようにすれば、第一粗面処理工程におけるフォトレジストパターン下へのオーバーエッチングを低減することができる。
The width of the second region 131 is preferably about 0.5 to 15 times the depth roughened by the first roughening process.
Here, when the above-described substrate removal selective etching layer is provided on the first semiconductor layer 103, a first rough surface treatment selective etching layer (non-etching layer) is provided between the substrate removal selective etching layer and the first semiconductor layer 103. It is preferable to provide the first rough surface treatment by leaving the first rough surface treatment selective etching layer in the second region 131 after removing the substrate. In this way, over-etching under the photoresist pattern in the first rough surface treatment step can be reduced.

第一粗面液は非Al含有材料から成る層に対して選択エッチング性を有するため、第一粗面処理選択エッチング層をGaAs、InGaP、InGaAs、Geで構成することが好ましい。このようにすれば、第一粗面処理選択エッチング層端部を起点としてファセットが形成され、パターン下へのオーバーエッチングを抑止することができる。ただし、第一粗面処理選択エッチング層を用いた場合、非Al含有材料は発光波長に対して光を吸収するため、第一粗面処理後、SPM等の過酸化水素水含有液で第一粗面処理選択エッチング層を選択的に除去する工程を加えることが好ましい。   Since the first rough surface liquid has a selective etching property with respect to the layer made of the non-Al-containing material, the first rough surface treatment selective etching layer is preferably composed of GaAs, InGaP, InGaAs, or Ge. In this way, facets are formed starting from the edge portion of the first rough surface treatment selective etching layer, and over-etching under the pattern can be suppressed. However, when the first rough surface treatment selective etching layer is used, the non-Al-containing material absorbs light with respect to the emission wavelength. Therefore, after the first rough surface treatment, the first surface is treated with a hydrogen peroxide solution containing SPM or the like. It is preferable to add a step of selectively removing the rough surface treatment selective etching layer.

第二領域131の幅は第一粗面処理により粗面化される深さだけでなく、フォトリソグラフィーのアライメント精度によっても制約がある。アライメント精度が高いアライナーもしくはステッパーを使用すればアライメント精度を見越した付加幅は少なくてすみ、一方、アライメント精度が低いアライナーを用いる場合は、精度を見越して付加幅を多くすることが好ましい。   The width of the second region 131 is limited not only by the depth roughened by the first roughening process but also by the alignment accuracy of photolithography. If an aligner or stepper with high alignment accuracy is used, the additional width in anticipation of alignment accuracy can be reduced. On the other hand, when an aligner with low alignment accuracy is used, it is preferable to increase the additional width in anticipation of accuracy.

以上の工程を行うことにより、第一半導体層103表面に、粗面化していない平坦な第二領域131を得ることができる。これにより、後述する素子分離工程において素子分離した発光部108の側面の凹凸発生を抑えることができる。   By performing the above steps, a flat second region 131 that is not roughened can be obtained on the surface of the first semiconductor layer 103. As a result, it is possible to suppress the occurrence of unevenness on the side surface of the light emitting unit 108 that has been subjected to element isolation in the element isolation step described later.

次に、図7に示すように、発光部108の一部を除去する除去部170と、それ以外の非除去部180を形成する素子分離工程を行う(図2のSP7)。   Next, as shown in FIG. 7, an element isolation process is performed to form a removal unit 170 that removes a part of the light emitting unit 108 and a non-removal unit 180 other than that (SP7 in FIG. 2).

素子分離工程は、例えば、フォトリソグラフィー法により、レジストで第一半導体層103上の所定の領域(図6における第二オーミック電極形成領域140、スクライブ領域141)を開口させたパターンを形成し、このレジストをエッチングマスクとして用いてエッチングすることによって行うことができる。
上記エッチングは、塩酸を含有するウェットエッチング液によるウェットエッチング法により、第二半導体層105、緩衝層106もしくは窓層兼支持基板107を露出させた除去部170と、除去部170以外の非除去部180を形成することができる。
In the element isolation step, for example, a pattern in which predetermined regions (second ohmic electrode formation region 140 and scribe region 141 in FIG. 6) are opened with a resist by a photolithography method is formed. This can be performed by etching using a resist as an etching mask.
The etching is performed by a wet etching method using a wet etching solution containing hydrochloric acid to remove the second semiconductor layer 105, the buffer layer 106, or the window layer / support substrate 107, and a non-removed portion other than the removed portion 170. 180 can be formed.

このとき、上記の第一粗面処理工程において粗面化させない第二領域131に非Al含有層(不図示)を残留させ、エッチングマスクとして使用することができる。
非Al含有層は、GaAs、InGaP、InGaAs、Geのいずれか1層以上含むものとすることができる。非Al含有層は、塩酸を含有したエッチング液ではエッチングされないため、非Al含有層端部を起点としてファセットが形成されるので、素子分離を行った発光部108の側面に明瞭なメサ形状を得ることができる。ただし、非Al含有層を用いた場合、素子分離工程後、非Al含有層を硫酸過水等の過酸化水素水含有液で選択的に非Al含有層を除去する工程を行うことが好ましい。
At this time, a non-Al-containing layer (not shown) can remain in the second region 131 that is not roughened in the first rough surface treatment step, and can be used as an etching mask.
The non-Al-containing layer may include one or more of GaAs, InGaP, InGaAs, and Ge. Since the non-Al-containing layer is not etched with an etching solution containing hydrochloric acid, facets are formed starting from the end of the non-Al-containing layer, so that a clear mesa shape is obtained on the side surface of the light-emitting portion 108 where element isolation has been performed. be able to. However, when the non-Al-containing layer is used, it is preferable to perform a step of selectively removing the non-Al-containing layer with a hydrogen peroxide solution-containing liquid such as sulfuric acid / hydrogen peroxide after the element isolation step.

また、素子分離工程は、上記のウェットエッチング法の他、ハロゲンガス、好ましくは塩化水素を含有するガスを用いる方法により、ドライエッチング法にて行うこともできる。
このようにすれば、素子分離を行った発光部の側面にくびれ(オーバーエッチング)のない形状を得ることができる。
In addition to the wet etching method described above, the element isolation step can also be performed by a dry etching method by a method using a halogen gas, preferably a gas containing hydrogen chloride.
By doing so, it is possible to obtain a shape without constriction (over-etching) on the side surface of the light-emitting portion from which element isolation has been performed.

次に、図8に示すように、発光部108が除去された窓層兼支持基板107上の除去部170上に第二オーミック電極122を形成する(図2のSP8)。   Next, as shown in FIG. 8, the second ohmic electrode 122 is formed on the removal portion 170 on the window layer / support substrate 107 from which the light emitting portion 108 has been removed (SP8 in FIG. 2).

次に、図8に示すように、第一半導体層103表面及び発光部108の側面の少なくとも一部を絶縁保護膜150で被覆する(図2のSP9)。
絶縁保護膜150は透明で絶縁性を有する材料であれば、どのような材料でも可能である。絶縁保護膜150としては、例えばSiOもしくはSiNを用いることが好適である。このようなものであれば、フォトリソグラフィー法と弗酸を含有したエッチング液によって、第一オーミック電極121及び第二オーミック電極122の上部を開口する加工を容易に行うことができる。
Next, as shown in FIG. 8, at least a part of the surface of the first semiconductor layer 103 and the side surface of the light emitting unit 108 is covered with an insulating protective film 150 (SP9 in FIG. 2).
The insulating protective film 150 can be any material as long as it is transparent and has insulating properties. As the insulating protective film 150, for example, SiO 2 or SiN x is preferably used. If it is such, the process which opens the upper part of the 1st ohmic electrode 121 and the 2nd ohmic electrode 122 with the photolithographic method and the etching liquid containing a hydrofluoric acid can be performed easily.

次に、図1に示すように、窓層兼支持基板107の表面及び側面を粗面化する第二粗面処理工程を行う(図2のSP10)。   Next, as shown in FIG. 1, a second rough surface treatment step is performed to roughen the surface and side surfaces of the window layer / support substrate 107 (SP10 in FIG. 2).

第二粗面処理を行う前に、まず、除去部170に沿ってスクライブ線をけがき、ブレーキングを行うことで発光素子を分離して、発光素子ダイスを形成することが好ましい。発光素子ダイス形成後、窓層兼支持基板107が上面になるように発光素子ダイスを保持テープに転写してから、下記の第二粗面処理を行うことが好ましい。   Before performing the second rough surface treatment, it is preferable to first scribe lines along the removal portion 170 and perform braking to separate the light emitting elements to form a light emitting element die. After forming the light emitting element die, it is preferable to transfer the light emitting element die to the holding tape so that the window layer / supporting substrate 107 is on the upper surface, and then perform the following second roughening treatment.

第二粗面処理工程は、クエン酸・マロン酸・蟻酸・酢酸・酒石酸の有機酸からいずれか1種類以上を含み、かつ、塩酸、硫酸、硝酸、弗酸の無機酸のいずれか1種類以上を含み、かつ、沃素を含む溶液を用いて行うことができる。   The second rough surface treatment step includes one or more organic acids such as citric acid, malonic acid, formic acid, acetic acid, and tartaric acid, and one or more inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid. And a solution containing iodine.

上述した第一粗面処理工程で用いた第一半導体層103に施す第一粗面液と、第二粗面処理工程で窓層兼支持基板107に施す第二粗面液とは液組成が異なる。そのため、エッチング特性が異なるため、必然的に第一半導体層103と窓層兼支持基板107が有する粗面の形状及びR(算術平均粗さ)は異なったものとなる。The first rough surface liquid applied to the first semiconductor layer 103 used in the first rough surface treatment step described above and the second rough surface liquid applied to the window layer / support substrate 107 in the second rough surface treatment step have liquid compositions. Different. Therefore, since the etching characteristics are different, the shape of the rough surface and R a (arithmetic average roughness) of the first semiconductor layer 103 and the window layer / support substrate 107 inevitably differ.

上記で説明した本発明の発光素子の製造方法であれば、第一半導体層103表面に粗面化しない第二領域131を設けることで、素子分離工程において、発光部108にオーバーエッチングが生じることが抑制されるため、素子分離した発光部108の側面の形状は第二領域131の形状に略一致する。そのため、素子分離した発光部108の側面のRを2μm未満とすることができるので、素子分離した発光部108の側面の形状における凸部に電界集中が発生することを抑止することができる。これにより、粗面化により発光効率を向上させるとともに、発光部側面の凹凸形状に依存するリーク不良及びESD不良の発生が抑えられた発光素子を製造することができる。In the method for manufacturing a light emitting device of the present invention described above, overetching occurs in the light emitting portion 108 in the device isolation process by providing the second region 131 that is not roughened on the surface of the first semiconductor layer 103. Therefore, the shape of the side surface of the light emitting unit 108 separated from the element substantially matches the shape of the second region 131. Therefore, Rz on the side surface of the light-emitting portion 108 separated from the element can be less than 2 μm, and thus it is possible to prevent electric field concentration from occurring in the convex portion in the shape of the side surface of the light-emitting portion 108 separated from the element. As a result, it is possible to manufacture a light emitting device in which the luminous efficiency is improved by roughening and the occurrence of leakage defects and ESD defects depending on the uneven shape on the side surface of the light emitting part is suppressed.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例1)
結晶軸が[001]方向より[110]方向に15°傾斜した厚さ280μmのn型GaAs基板101上にn型GaAsバッファ層(不図示)を0.5μm、n型AlInP基板除去選択エッチング層(不図示)を1μm成長させた後、MOVPE法でAlGaInPから成るn型クラッド層(第一半導体層103)、活性層104、p型クラッド層(第二半導体層105)で構成される発光部108を6.5μm形成し、更にp型InGaPからなる緩衝層106を0.3μm形成し、GaP窓層兼支持基板107の一部としてp型GaPからなる層を1μm形成した。次に、HVPE炉に移してp型GaPからなる窓層兼支持基板107を120μm成長させ、エピタキシャル基板109を得た(図3参照)。
Example 1
An n-type AlInP substrate removal selective etching layer is formed on an n-type GaAs buffer layer (not shown) of 0.5 μm on a 280 μm thick n-type GaAs substrate 101 whose crystal axis is inclined by 15 ° in the [110] direction from the [001] direction. After growing 1 μm (not shown), a light-emitting unit composed of an n-type cladding layer (first semiconductor layer 103), an active layer 104, and a p-type cladding layer (second semiconductor layer 105) made of AlGaInP by the MOVPE method. 108 μm was formed, a buffer layer 106 made of p-type InGaP was formed 0.3 μm, and a p-type GaP layer 1 μm was formed as a part of the GaP window layer / support substrate 107. Next, the substrate was transferred to an HVPE furnace, and a window layer / support substrate 107 made of p-type GaP was grown by 120 μm to obtain an epitaxial substrate 109 (see FIG. 3).

次に、GaAs基板101、GaAsバッファ層およびn型AlInP基板除去選択エッチング層を除去して発光素子基板110を作製した(図4参照)。   Next, the GaAs substrate 101, the GaAs buffer layer, and the n-type AlInP substrate removal selective etching layer were removed to produce a light emitting element substrate 110 (see FIG. 4).

次に、発光素子基板110の第一半導体層103の基板除去面120上へ第一オーミック電極121を形成し(図5参照)、フォトリソグラフィー法により第三領域130及び第二領域131をレジストで被覆するパターンを形成した。図9に示すように、第三領域130は第一オーミック電極に沿って、第二領域131は素子分離予定線160に沿って設けた。第三領域130の幅はエッチング深さの4倍の2μmとした。また、第二領域131の幅は6μmとした。   Next, a first ohmic electrode 121 is formed on the substrate removal surface 120 of the first semiconductor layer 103 of the light emitting element substrate 110 (see FIG. 5), and the third region 130 and the second region 131 are formed of a resist by photolithography. A pattern to be coated was formed. As shown in FIG. 9, the third region 130 is provided along the first ohmic electrode, and the second region 131 is provided along the element isolation planned line 160. The width of the third region 130 was 2 μm, which is four times the etching depth. The width of the second region 131 was 6 μm.

次に第一半導体層103表面に第一粗面処理工程を施した(図6参照)。第一粗面液は酢酸と塩酸の混合液を作製し、常温で1分エッチングすることで粗面処理を実現した。   Next, a first rough surface treatment step was performed on the surface of the first semiconductor layer 103 (see FIG. 6). As the first rough surface liquid, a mixed liquid of acetic acid and hydrochloric acid was prepared, and the rough surface treatment was realized by etching at room temperature for 1 minute.

次に、フォトリソグラフィー法により、第二オーミック電極形成領域140及びスクライブ領域141(図6参照)以外をレジストで被覆し、塩酸を含有するウェットエッチング液によるウェットエッチング法で素子分離工程を実施し、発光部108を除去して窓層兼支持基板107が露出した除去部170と、それ以外の非除去部180を形成した(図7参照)。   Next, by a photolithography method, a region other than the second ohmic electrode formation region 140 and the scribe region 141 (see FIG. 6) is covered with a resist, and an element isolation step is performed by a wet etching method using a wet etching solution containing hydrochloric acid. The light emitting portion 108 was removed to form a removal portion 170 where the window layer / support substrate 107 was exposed, and other non-removal portions 180 (see FIG. 7).

以上の工程を行った結果、素子分離を行った発光部の側面のRはフォトレジストパターン精度に応じた0.5μm程度を示した。As a result of performing the above steps, the R z on the side surface of the light emitting portion from which the element was isolated showed about 0.5 μm corresponding to the photoresist pattern accuracy.

次に、除去部170に第二オーミック電極122を形成した(図8参照)。次に、SiOからなる絶縁保護膜150を積層し、第一半導体層103表面及び発光部108の側面を絶縁保護膜150で被覆した。そして、第一オーミック電極121及び第二オーミック電極122部分をフォトリソグラフィー法と弗酸エッチングにより、絶縁保護膜150に開口部を形成した。Next, the 2nd ohmic electrode 122 was formed in the removal part 170 (refer FIG. 8). Next, an insulating protective film 150 made of SiO 2 was laminated, and the surface of the first semiconductor layer 103 and the side surfaces of the light emitting unit 108 were covered with the insulating protective film 150. Then, openings were formed in the insulating protective film 150 at the first ohmic electrode 121 and the second ohmic electrode 122 by photolithography and hydrofluoric acid etching.

次に、露出させた除去部170に沿ってスクライブ線をけがき、スクライブ線に沿ってクラック線を伸ばし、その後、ブレーキングを行うことで素子を分離し、発光素子ダイスを形成した。   Next, the scribe line was scribed along the exposed removal part 170, the crack line was extended along the scribe line, and then the elements were separated by braking to form a light emitting element die.

発光素子ダイス形成後、第一オーミック電極が設けられている面がテープ面側になるように保持テープに発光素子ダイスを転写し、その後、第二粗面処理工程を実施した。第二粗面処理工程で窓層兼支持基板の粗面化を行う際に用いる粗面液は、酢酸と弗酸、沃素の混合液を作製した。そして、常温で1分エッチングすることで第二粗面処理を行った。   After the light emitting element die was formed, the light emitting element die was transferred to the holding tape so that the surface on which the first ohmic electrode was provided was on the tape surface side, and then the second rough surface treatment step was performed. As a rough surface solution used for roughening the window layer / supporting substrate in the second rough surface treatment step, a mixed solution of acetic acid, hydrofluoric acid and iodine was prepared. And the 2nd roughening process was performed by etching for 1 minute at normal temperature.

以上のようにして図9に示すような発光素子を製造した。   A light emitting device as shown in FIG. 9 was manufactured as described above.

図11には実施例1における素子分離部の端部の写真を示した。図11では、第二領域131の端部を直線で形成した状態を示していることがわかる。   FIG. 11 shows a photograph of the end of the element isolation portion in Example 1. FIG. 11 shows that the end portion of the second region 131 is formed in a straight line.

上記のようにして作製した発光素子でランプを作製し、測定及び評価を行った。   A lamp was manufactured with the light emitting element manufactured as described above, and measurement and evaluation were performed.

実施例1で製造した発光素子で作製したランプの逆方向印加電流値10μA時における逆方向電圧(VR)の結果を図13に示す。なお、図13には後述する実施例2及び比較例の結果も併せて示した。
その結果、図13に示すように、実施例1及び後述する実施例2で作製したランプは、逆方向印加電流値が10μAの場合、VRは30V以上必要で、VR値30V未満を示すランプは発生しなかった。一方、後述する比較例で作製したランプの約半数のVR値が30V未満を示した。このように、本発明の発光素子は、第二領域の存在によって逆方向電圧の特性が優れたものとなることが分かった。
FIG. 13 shows the results of reverse voltage (VR) when the reverse direction applied current value of the lamp manufactured by the light emitting element manufactured in Example 1 is 10 μA. FIG. 13 also shows the results of Example 2 and Comparative Example described later.
As a result, as shown in FIG. 13, in the lamps manufactured in Example 1 and Example 2 described later, when the reverse direction applied current value is 10 μA, VR is required to be 30V or more, and the lamp showing VR value of less than 30V is Did not occur. On the other hand, the VR value of about half of the lamps produced in the comparative examples described later was less than 30V. Thus, it was found that the light emitting device of the present invention has excellent reverse voltage characteristics due to the presence of the second region.

次に、実施例1で製造した発光素子で作製したランプを用いて、ESD試験を行った結果を図14に示す。ESD実施条件はHBM(HumanBody Model)で行った。なお、図14には後述する実施例2及び比較例の結果も併せて示した。
その結果、図14に示すように、実施例1及び後述する実施例2で作製したランプでは、2000VまでのESD試験において、ESD破壊が発生しなかった。一方後述する比較例においては100V程度のESD電圧でESD破壊が発生し、600Vまでには試験投入した全ての素子がESD破壊された。
Next, FIG. 14 shows the results of an ESD test using a lamp manufactured using the light-emitting element manufactured in Example 1. The ESD execution conditions were HBM (Human Body Model). FIG. 14 also shows the results of Example 2 and Comparative Example described later.
As a result, as shown in FIG. 14, in the lamps manufactured in Example 1 and Example 2 described later, ESD breakdown did not occur in the ESD test up to 2000V. On the other hand, in a comparative example to be described later, an ESD breakdown occurred at an ESD voltage of about 100V, and by 600V, all the elements that were put into the test were destroyed.

(実施例2)
まず、実施例1と同様にして、第一粗面処理工程まで行った。
(Example 2)
First, it carried out similarly to Example 1 to the 1st roughening process process.

次に、ドライエッチング法を行うために、第一半導体層、第一オーミック電極を被覆するようにSiO膜を300nm被覆し、フォトリソグラフィー法により、素子分離予定形状のレジストパターンを形成した。次に、弗酸によりパターン開口部をエッチングした。
そして、開口パターンを有するSiO膜をエッチングマスクとして、ドライエッチング法を実施した。ドライエッチングに際しては塩素含有ガスを導入したRIE法もしくはICP法によって素子分離を実施し、発光部を除去して、窓層兼支持基板を露出させた除去部を形成した。
Next, in order to perform the dry etching method, a SiO 2 film was coated with a thickness of 300 nm so as to cover the first semiconductor layer and the first ohmic electrode, and a resist pattern having an element isolation shape was formed by a photolithography method. Next, the pattern opening was etched with hydrofluoric acid.
Then, a dry etching method was performed using an SiO 2 film having an opening pattern as an etching mask. In dry etching, element isolation was performed by the RIE method or ICP method in which a chlorine-containing gas was introduced, and the light emitting portion was removed to form a removed portion exposing the window layer / support substrate.

以上の工程を行った結果、素子分離を行った発光部の側面のRはSiOマスクのパターン精度に応じた0.5μm程度を示した。As a result of performing the above steps, the R z on the side surface of the light emitting portion from which element isolation was performed showed about 0.5 μm corresponding to the pattern accuracy of the SiO 2 mask.

その後、実施例1と同様にして、第二オーミック電極の形成から第二粗面処理工程までを行い、図10に示すような発光素子を製造した。   Then, it carried out similarly to Example 1, and formed from the formation of the 2nd ohmic electrode to the 2nd roughening process process, and manufactured the light emitting element as shown in FIG.

上記のようにして作製した発光素子でランプを作製し、測定及び評価を行った。   A lamp was manufactured with the light emitting element manufactured as described above, and measurement and evaluation were performed.

実施例2で製造した発光素子で作製したランプの逆方向印加電流値10μA時における逆方向電圧(VR)の結果を図13に示した。
その結果、図13に示すように、実施例2で作製したランプは、逆方向印加電流値が10μAの場合、VRは30V以上必要で、VR値30V未満を示すランプは発生しなかった。本発明の発光素子は、第二領域の存在によって逆方向電圧の特性が優れたものとなることが分かった。
FIG. 13 shows the results of reverse voltage (VR) when the reverse direction applied current value of the lamp manufactured by the light emitting device manufactured in Example 2 is 10 μA.
As a result, as shown in FIG. 13, in the lamp manufactured in Example 2, when the reverse direction applied current value was 10 μA, VR was required to be 30 V or more, and a lamp showing a VR value of less than 30 V was not generated. It has been found that the light emitting device of the present invention has excellent reverse voltage characteristics due to the presence of the second region.

次に、実施例2で製造した発光素子で作製したランプを用いて、ESD試験を行った結果を図14に示した。ESD実施条件はHBM(HumanBody Model)で行った。
その結果、図14に示すように、実施例2で作製したランプでは、2000VまでのESD試験において、ESD破壊が発生しなかった。
Next, FIG. 14 shows a result of an ESD test using a lamp manufactured using the light-emitting element manufactured in Example 2. The ESD execution conditions were HBM (Human Body Model).
As a result, as shown in FIG. 14, in the lamp manufactured in Example 2, ESD breakdown did not occur in the ESD test up to 2000V.

(比較例)
第一粗面処理工程において、第二領域を設けなかったこと以外は、実施例1同様にして発光素子の製造を行った。
その結果、比較例では第一粗面処理によって生じた凹凸(第一半導体層表面のR=0.6μm前後)が素子分離工程によって増大し、素子分離を行った発光部の側面のRは3〜4μmに達した。
図12に比較例における素子分離部端部の写真を示した。
(Comparative example)
In the first rough surface treatment step, a light emitting device was manufactured in the same manner as in Example 1 except that the second region was not provided.
As a result, in the comparative example, the unevenness (R z = 0.6 μm on the surface of the first semiconductor layer) generated by the first rough surface treatment is increased by the element isolation process, and the R z on the side surface of the light emitting part that has performed element isolation is increased. Reached 3-4 μm.
FIG. 12 shows a photograph of the end portion of the element isolation portion in the comparative example.

上記のようにして作製した発光素子でランプを作製し、測定及び評価を行った。   A lamp was manufactured with the light emitting element manufactured as described above, and measurement and evaluation were performed.

比較例で製造した発光素子で作製したランプの逆方向印加電流値10μA時における逆方向電圧(VR)の結果を図13に示した。
その結果、図13に示すように、比較例で作製したランプの約半数のVR値が30V未満を示した。
FIG. 13 shows the results of reverse voltage (VR) when the reverse direction applied current value of the lamp manufactured with the light emitting device manufactured in the comparative example is 10 μA.
As a result, as shown in FIG. 13, the VR value of about half of the lamps produced in the comparative example was less than 30V.

次に、比較例で製造した発光素子で作製したランプを用いて、ESD試験を行った結果を図14に示す。ESD実施条件はHBM(HumanBody Model)で行った。
その結果、図14に示すように、比較例で作製したランプでは、100V程度のESD電圧でESD破壊が発生し、600Vまでには試験投入した全ての素子がESD破壊された。
Next, FIG. 14 shows the results of an ESD test using a lamp manufactured using the light-emitting element manufactured in the comparative example. The ESD execution conditions were HBM (Human Body Model).
As a result, as shown in FIG. 14, in the lamp manufactured in the comparative example, ESD breakdown occurred at an ESD voltage of about 100V, and all the devices that were put into the test were ESD destroyed by 600V.

(実験)
素子分離工程形成時のマスクパターンを変化させ、発光部の側面のRを変化させたこと以外は、実施例1の方法で製造した発光素子でランプ複数を製作した(実験1)。
素子分離工程形成時のマスクパターンを変化させ、発光部の側面のRを変化させたこと以外は、実施例2の方法で製造した発光素子でランプ複数を製作した(実験2)。
(Experiment)
A plurality of lamps were manufactured using the light-emitting element manufactured by the method of Example 1 except that the mask pattern at the time of forming the element separation process was changed and the Rz on the side surface of the light-emitting portion was changed (Experiment 1).
A plurality of lamps were manufactured using the light emitting device manufactured by the method of Example 2 except that the mask pattern at the time of forming the device isolation process was changed and the Rz on the side surface of the light emitting portion was changed (Experiment 2).

そして、上記の実験1、2のランプの逆方向印加電流値10μA時におけるVR不良率の測定を行った結果を図15に示した。なお、逆方向印加電流10μA時のVR値が30V未満のものをVR不良として測定を行った。   FIG. 15 shows the result of measurement of the VR defect rate when the reverse applied current value of the lamps in Experiments 1 and 2 was 10 μA. In addition, the VR value at the time of reverse direction applied current of 10 μA was measured as VR failure when it was less than 30V.

その結果、図15に示したように、実験1、2共にRが2μm未満までにおいて、VR不良はほとんど発生しないが、Rが2μm以上の場合には、実験1、2共にVR不良が増加し始めることが分かる。As a result, as shown in FIG. 15, VR failure hardly occurs when Rz is less than 2 μm in both experiments 1 and 2, but when Rz is 2 μm or more, VR failure is found in both experiments 1 and 2. You can see that it starts to increase.

素子分離を行った発光部側面の形状は、素子分離工程における第一半導体層の外周部の形状をほぼ踏襲するため、素子分離工程時の第一半導体層の外周部の凹凸が大きい程、VR不良が発生しやすいことを図15は示している。
従って、発光部側面のRは2μm未満であることが必要である。図15ではVR不良についてのみ示したが、逆バイアスを印加した際のリーク電流値を示すIR特性に関しても同様の傾向であった。
Since the shape of the side surface of the light emitting portion after the element isolation substantially follows the shape of the outer periphery of the first semiconductor layer in the element isolation process, the larger the irregularity of the outer periphery of the first semiconductor layer during the element isolation process, the greater the VR. FIG. 15 shows that defects are likely to occur.
Therefore, the Rz on the side surface of the light emitting unit needs to be less than 2 μm. In FIG. 15, only the VR failure is shown, but the same tendency was observed with respect to the IR characteristic indicating the leakage current value when the reverse bias was applied.

また、発光部側面の凹凸が発光部側面上で均一ではなく、発光素子側面の一部の凹凸量を半分にしたパターンを準備し、測定を行ったが、VR不良発生の傾向は、同一の凹凸量で構成されたパターンの場合と同様であった。従って、発光部側面の凹凸とVR不良率発生の関係は、発光部側面のRが2μm以上であればVR不良率が増加することを示していることが分かる。従って、リーク不良あるいはESD不良を抑止するためには、発光部側面のRが2μm未満であることが必要である。Further, the unevenness on the side surface of the light emitting unit was not uniform on the side surface of the light emitting unit, and a pattern was prepared by halving the amount of unevenness on the side surface of the light emitting element, and the measurement was performed. It was the same as the case of the pattern comprised by the unevenness | corrugation amount. Therefore, it can be seen that the relationship between the unevenness on the side surface of the light emitting part and the occurrence of the VR defect rate indicates that the VR defect rate increases when Rz on the side surface of the light emitting part is 2 μm or more. Therefore, in order to suppress leakage failure or ESD failure, it is necessary that Rz on the side surface of the light emitting portion is less than 2 μm.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (8)

窓層兼支持基板と、前記窓層兼支持基板上に設けられ、第二導電型の第二半導体層と、活性層と、第一導電型の第一半導体層とをこの順に含む発光部とを有する発光素子において、
前記発光素子は、前記発光部が除去された除去部と、前記除去部以外の非除去部と、該非除去部の前記第一半導体層上に設けられた第一オーミック電極と、前記除去部の前記窓層兼支持基板上に設けられた第二オーミック電極とを有し、
前記第一半導体層表面及び前記発光部の側面の少なくとも一部は絶縁保護膜で被覆され、前記第一半導体層の外周部を除く表面及び前記窓層兼支持基板の表面が粗面化され、且つ、前記発光部側面のRが2μm未満であることを特徴とする発光素子。
A window layer / supporting substrate; a light emitting unit provided on the window layer / supporting substrate, including a second conductive type second semiconductor layer, an active layer, and a first conductive type first semiconductor layer in this order; In a light emitting device having
The light emitting element includes: a removed portion from which the light emitting portion has been removed; a non-removed portion other than the removed portion; a first ohmic electrode provided on the first semiconductor layer of the non-removed portion; A second ohmic electrode provided on the window layer and supporting substrate;
At least a part of the surface of the first semiconductor layer and the side surface of the light emitting portion is covered with an insulating protective film, the surface excluding the outer peripheral portion of the first semiconductor layer and the surface of the window layer and supporting substrate are roughened, In addition, the light-emitting element, wherein R z on the side surface of the light-emitting portion is less than 2 μm.
前記窓層兼支持基板はGaP、GaAsP、AlGaAs、サファイア(Al)、石英(SiO)、SiCのいずれかからなり、前記第一半導体層、前記活性層、前記第二半導体層がAlGaInPまたはAlGaAsからなるものであることを特徴とする請求項1に記載の発光素子。The window layer / support substrate is made of any one of GaP, GaAsP, AlGaAs, sapphire (Al 2 O 3 ), quartz (SiO 2 ), and SiC, and the first semiconductor layer, the active layer, and the second semiconductor layer include 2. The light emitting device according to claim 1, wherein the light emitting device is made of AlGaInP or AlGaAs. 基板上に、該基板と格子整合系の材料で第一半導体層、活性層、第二半導体層を順次エピタキシャル成長により成長させて発光部を形成する工程と、該発光部の上に前記基板に対して非格子整合系の材料で窓層兼支持基板をエピタキシャル成長により形成する工程と、前記基板を除去する工程と、前記第一半導体層の表面に第一オーミック電極を形成する工程と、前記第一半導体層の表面に粗面処理を行う第一粗面処理工程と、前記発光部の一部を除去する除去部と、それ以外の非除去部を形成する素子分離工程と、前記発光部が除去された窓層兼支持基板上に第二オーミック電極を形成する工程と、前記第一半導体層表面及び前記発光部の側面の少なくとも一部を絶縁保護膜で被覆する工程、前記窓層兼支持基板の表面及び側面を粗面化する第二粗面処理工程からなり、
前記第一粗面処理工程において、第一オーミック電極周辺及び、その後の前記素子分離工程で前記非除去部の前記第一半導体層表面の外周部となる領域については粗面化しないことを特徴とする発光素子の製造方法。
Forming a light emitting portion on the substrate by sequentially growing a first semiconductor layer, an active layer, and a second semiconductor layer using a lattice-matching material with the substrate by epitaxial growth; and Forming a window layer and supporting substrate by epitaxial growth using a non-lattice matching material, removing the substrate, forming a first ohmic electrode on the surface of the first semiconductor layer, and the first A first rough surface treatment step for performing a rough surface treatment on the surface of the semiconductor layer; a removal portion for removing a part of the light emitting portion; an element separation step for forming other non-removed portions; and the light emitting portion removed. A step of forming a second ohmic electrode on the window / cumulative substrate thus formed; a step of covering at least part of the surface of the first semiconductor layer and the side surface of the light emitting portion with an insulating protective film; Roughen the surface and side of Made from the second surface roughening step,
In the first rough surface treatment step, the first ohmic electrode periphery and the region that becomes the outer peripheral portion of the surface of the first semiconductor layer of the non-removed portion in the subsequent element isolation step are not roughened. A method for manufacturing a light emitting device.
前記基板をGaAsまたはGeとし、前記窓層兼支持基板をGaP、GaAsP、AlGaAs、サファイア(Al)、石英(SiO)、SiCのいずれかとし、前記第一半導体層、前記活性層、前記第二半導体層をAlGaInPまたはAlGaAsとすることを特徴とする請求項3に記載の発光素子の製造方法。The substrate is GaAs or Ge, the window layer / support substrate is one of GaP, GaAsP, AlGaAs, sapphire (Al 2 O 3 ), quartz (SiO 2 ), SiC, the first semiconductor layer, the active layer The method for manufacturing a light emitting device according to claim 3, wherein the second semiconductor layer is made of AlGaInP or AlGaAs. 前記第一粗面処理工程は、
有機酸と無機酸の混合液が用いられ、前記有機酸は、クエン酸・マロン酸・蟻酸・酢酸・酒石酸のいずれか一種類以上含有し、前記無機酸は塩酸・硫酸・硝酸・弗酸のいずれか一種類以上を含有する溶液を用いて行い、
前記第二粗面処理工程は、
クエン酸・マロン酸・蟻酸・酢酸・酒石酸の有機酸からいずれか1種類以上を含み、かつ、塩酸、硫酸、硝酸、弗酸の無機酸のいずれか1種類以上を含み、かつ、沃素を含む溶液を用いて行うことを特徴とする請求項4に記載の発光素子の製造方法。
The first rough surface treatment step includes
A mixed solution of an organic acid and an inorganic acid is used, and the organic acid contains at least one of citric acid, malonic acid, formic acid, acetic acid, and tartaric acid, and the inorganic acid includes hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid. Using a solution containing any one or more of them,
The second rough surface treatment step includes
Contains at least one organic acid such as citric acid, malonic acid, formic acid, acetic acid, and tartaric acid, and contains one or more inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, and contains iodine. The method for producing a light-emitting element according to claim 4, wherein the method is performed using a solution.
前記素子分離工程は、
塩酸を含有するウェットエッチング液によるウェットエッチング法により行い、前記第一粗面処理工程において粗面化させない領域に非Al含有層を残留させ、エッチングマスクとして使用することを特徴とする請求項3から請求項5のいずれか一項に記載の発光素子の製造方法。
The element isolation step includes
The wet etching method using a wet etching solution containing hydrochloric acid is used, and a non-Al-containing layer is left in a region that is not roughened in the first roughening treatment step, and is used as an etching mask. The manufacturing method of the light emitting element as described in any one of Claims 5.
前記非Al含有層は、GaAs、InGaP、InGaAs、Geのいずれか1層以上含み、前記ウェットエッチング後に前記非Al含有層を除去する工程を行うことを特徴とする請求項6に記載の発光素子の製造方法。   The light emitting device according to claim 6, wherein the non-Al-containing layer includes at least one of GaAs, InGaP, InGaAs, and Ge, and the non-Al-containing layer is removed after the wet etching. Manufacturing method. 前記素子分離工程は、
塩化水素を含有するガスによるドライエッチング法により行うことを特徴とする請求項3から請求項5のいずれか一項に記載の発光素子の製造方法。
The element isolation step includes
The method for manufacturing a light-emitting element according to claim 3, wherein the method is performed by a dry etching method using a gas containing hydrogen chloride.
JP2016557446A 2014-11-07 2015-10-15 Light emitting device and method for manufacturing light emitting device Active JP6245380B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014227158 2014-11-07
JP2014227158 2014-11-07
PCT/JP2015/005211 WO2016072050A1 (en) 2014-11-07 2015-10-15 Light-emitting element and method for manufacturing light-emitting element

Publications (2)

Publication Number Publication Date
JPWO2016072050A1 JPWO2016072050A1 (en) 2017-08-17
JP6245380B2 true JP6245380B2 (en) 2017-12-13

Family

ID=55908798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016557446A Active JP6245380B2 (en) 2014-11-07 2015-10-15 Light emitting device and method for manufacturing light emitting device

Country Status (6)

Country Link
JP (1) JP6245380B2 (en)
KR (1) KR102143987B1 (en)
CN (1) CN107078187B (en)
DE (1) DE112015004661B4 (en)
TW (1) TWI628810B (en)
WO (1) WO2016072050A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623973B2 (en) * 2016-08-19 2019-12-25 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
JP2019036662A (en) * 2017-08-18 2019-03-07 信越半導体株式会社 Manufacturing method for light-emitting element
CN117438515B (en) * 2023-12-21 2024-03-29 江西乾照半导体科技有限公司 LED chip roughening method and LED chip

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4715370Y1 (en) 1968-04-19 1972-05-31
JPS5427585B1 (en) 1970-12-02 1979-09-11
US8063557B2 (en) * 2003-07-04 2011-11-22 Epistar Corporation Light-emitting device having wavelength-converting materials therewithin
JP4569858B2 (en) 2003-11-19 2010-10-27 信越半導体株式会社 Method for manufacturing light emitting device
JP4715370B2 (en) 2005-07-29 2011-07-06 信越半導体株式会社 Light emitting device and manufacturing method thereof
JP2007059518A (en) 2005-08-23 2007-03-08 Showa Denko Kk Semiconductor light emitting element
KR100975659B1 (en) * 2007-12-18 2010-08-17 포항공과대학교 산학협력단 Light emitting device and method of manufactiuring the same
JP5056799B2 (en) * 2009-06-24 2012-10-24 豊田合成株式会社 Group III nitride semiconductor light emitting device and method of manufacturing the same
JP2011035017A (en) 2009-07-30 2011-02-17 Hitachi Cable Ltd Light-emitting device
JP5427585B2 (en) 2009-12-18 2014-02-26 昭和電工株式会社 Flip chip type light emitting diode and method for manufacturing the same
TWI762930B (en) 2010-02-09 2022-05-01 晶元光電股份有限公司 Optoelectronic device
KR101020995B1 (en) * 2010-02-18 2011-03-09 엘지이노텍 주식회사 Light emitting device, method of fabricating the light emitting device and light emitting device package
JP2011198992A (en) 2010-03-19 2011-10-06 Hitachi Cable Ltd Semiconductor light emitting element
JP2012142508A (en) * 2011-01-06 2012-07-26 Hitachi Cable Ltd Semiconductor element wafer
JP5912442B2 (en) * 2011-11-17 2016-04-27 スタンレー電気株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5592904B2 (en) * 2012-01-12 2014-09-17 株式会社東芝 Semiconductor light emitting device
CN102593301A (en) * 2012-03-02 2012-07-18 中国科学院半导体研究所 Light emitting diode with coarsened side surface and manufacturing method thereof
KR101988405B1 (en) * 2013-01-30 2019-09-30 엘지이노텍 주식회사 Light emitting device
CN103715324B (en) * 2014-01-02 2017-02-22 厦门乾照光电股份有限公司 Light-emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
WO2016072050A1 (en) 2016-05-12
JPWO2016072050A1 (en) 2017-08-17
TW201618330A (en) 2016-05-16
DE112015004661B4 (en) 2022-10-27
TWI628810B (en) 2018-07-01
KR102143987B1 (en) 2020-08-12
DE112015004661T5 (en) 2017-07-06
CN107078187A (en) 2017-08-18
CN107078187B (en) 2019-10-25
KR20170084064A (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6197799B2 (en) Light emitting device and method for manufacturing light emitting device
US8618565B2 (en) High efficiency light emitting diode
JP2007103951A (en) Nitride semiconductor light-emitting element and method for manufacture it
JP2010219310A (en) Optical device and optical device structure
JP2009117744A (en) METHOD OF MANUFACTURING ZnO-BASED SEMICONDUCTOR DEVICE
TWI774759B (en) Light-emitting device and manufacturing method thereof
JP2012500479A (en) Method for manufacturing a semiconductor light-emitting device with double-sided passivation
JP6519593B2 (en) Light emitting element and method of manufacturing light emitting element
TWI506814B (en) Semiconductor light emitting device and method of manufacturing the same
US20080265272A1 (en) Light Emitting Device Having Zener Diode Therein And Method Of Fabricating The Same
JP6245380B2 (en) Light emitting device and method for manufacturing light emitting device
JP2009140976A (en) Semiconductor light-emitting element and lighting device employing it and manufacturing process of semiconductor light-emitting element
KR20130098760A (en) High efficiency light emitting diode and method of fabricating the same
KR100716648B1 (en) Light emitting diode having plurality of light emitting cells and method of fabricating the same
TWI422061B (en) Light emitting diode and fabricating method thereof
JP6708270B2 (en) Light emitting element
TWI702735B (en) Light emitting element and manufacturing method of light emitting element
JP2010532916A (en) Method for obtaining high quality boundaries for semiconductor devices fabricated on partitioned substrates
JP2009016367A (en) Method for fabricating light-emitting diode
TWI455358B (en) Method for manufacturing light emitting chip
TW202427820A (en) Light-emitting device
TW202034538A (en) Light-emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6245380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250