[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6066954B2 - 印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム - Google Patents

印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム Download PDF

Info

Publication number
JP6066954B2
JP6066954B2 JP2014066006A JP2014066006A JP6066954B2 JP 6066954 B2 JP6066954 B2 JP 6066954B2 JP 2014066006 A JP2014066006 A JP 2014066006A JP 2014066006 A JP2014066006 A JP 2014066006A JP 6066954 B2 JP6066954 B2 JP 6066954B2
Authority
JP
Japan
Prior art keywords
halftone
image
printing
processing
dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014066006A
Other languages
English (en)
Other versions
JP2015192182A5 (ja
JP2015192182A (ja
Inventor
公人 勝山
公人 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014066006A priority Critical patent/JP6066954B2/ja
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to EP20207479.5A priority patent/EP3799410B1/en
Priority to PCT/JP2015/059347 priority patent/WO2015147151A1/ja
Priority to EP18198029.3A priority patent/EP3445030B1/en
Priority to EP15769136.1A priority patent/EP3125522B1/en
Publication of JP2015192182A publication Critical patent/JP2015192182A/ja
Publication of JP2015192182A5 publication Critical patent/JP2015192182A5/ja
Priority to US15/276,286 priority patent/US9860423B2/en
Application granted granted Critical
Publication of JP6066954B2 publication Critical patent/JP6066954B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Color, Gradation (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

本発明は印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラムに係り、特に連続調画像から印刷用のハーフトーン画像を生成する画像処理技術に関する。
インクジェット印刷装置やオフセット印刷装置などの印刷装置により画像形成を行う印刷システムでは、多階調により表現された連続調画像のデータに対してハーフトーン処理を施すことにより、印刷装置の画像出力方式に対応したハーフトーン画像のデータが生成される。ハーフトーン画像のデータは、印刷装置によって再現される網点のドット配置や各ドットのサイズが規定されたドットパターンを示す印刷用のドット画像データとして用いられる。印刷装置はハーフトーン画像のデータに基づいて画像形成を行う。
ハーフトーン処理の手法には、ディザ法、誤差拡散法、ダイレクトバイナリーサーチ(DBS;Direct Binary Search)法など、各種の手法がある。例えば、ディザ法は、ディザマスクと呼ばれる閾値マトリクスを用い、処理対象画素の画素値と閾値との大小関係を比較して、画素値が閾値以上の場合にはドットのオンを割り当て、画素値が閾値未満の場合にはドットのオフを割り当てることで、多値の連続調画像のデータを二値のドットデータに変換する。
特許文献1では、印刷物の生産適性を勘案して印刷物に適したハーフトーン処理を選択することができる印刷システムが提案されている。特許文献1に記載の印刷システムは、ドットの分布特性が異なる複数のハーフトーン処理の信号処理条件から一つの信号処理条件を選択し、選択に係る信号処理条件を用いてハーフトーン処理を実行することができる。
特開2012−222433号公報
特許文献1に記載されているとおり、印刷システムにおいて、どのようなハーフトーン処理を採用するかという点は、印刷物の画質、生産コスト、所要時間などと密接に関連している。すなわち、ハーフトーン処理に求められる要求項目として、例えば、画質、コスト、ハーフトーン生成時間、ハーフトーン処理時間など、複数の異なる要求項目がある。
また、「画質」の要求項目に注目した場合、単に「粒状性」の良否という観点だけでなく、システム誤差に対する耐性という要求もある。システム誤差に対する耐性とは、印刷装置における印刷素子の記録性能のばらつきや、印刷媒体の搬送誤差など、印刷システムにおいて様々な誤差要因が加わった場合でも印刷画像の粒状性の悪化やスジの発生などの画質低下が発生しにくいというロバスト性を意味する。システム誤差に対する耐性は、多数枚の印刷物を安定した画像品質で生産することが求められる場合などに要求される。
システム誤差には、印刷装置の機種や各機器に特有の特性として再現性のある誤差に限らず、経時的に発生する誤差や、偶発的に発生する誤差などもあり得る。また、例えば、温度や湿度の影響によってインクの濃度やインクの広がり量が変動するため、このような環境変動に対する画像品質の耐性という要求項目もある。
上述したようなハーフトーン処理に求められる複数の要求項目のそれぞれはトレードオフ関係にあり、すべての要求項目をどれも高いレベルで満足させることはできない。また、各要求項目に対するハーフトーン性能は印刷システムの特性によって変わるため、印刷システムにおける最適なハーフトーン処理を一意に決定することは非常に困難である。
本発明はこのような事情に鑑みてなされたものであり、ユーザーが求めるハーフトーン性能を満たし、印刷システムの特性に適した最適なハーフトーン処理を決定することができる印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラムを提供することを目的とする。
前記目的を達成するために、次の発明態様を提供する。
第1態様に係る印刷システムは、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートを出力するハーフトーン選択用チャート出力手段と、ハーフトーン選択用チャート出力手段により出力されたハーフトーン選択用チャートに用いられた2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作手段と、を備える印刷システムである。
第1態様によれば、ハーフトーン選択用チャートの印刷結果から、2種類以上のハーフトーン処理のそれぞれの処理結果を確認することができる。ユーザーはハーフトーン選択用チャートの印刷結果を基に、当該印刷システムにおける各ハーフトーン処理の品質を確認した上で、所望のハーフトーン処理を選択する操作を行うことができる。
第2態様として、第1態様の印刷システムにおいて、ハーフトーン選択用チャートは、2種類以上のハーフトーン処理のそれぞれの処理結果を示すハーフトーン処理の種類毎の比較評価用画像領域を1枚の印刷媒体の中に併置した構成を有するものとすることができる。
第2態様によれば、2種類以上のハーフトーン処理の処理結果を1枚の印刷物で容易に比較することができる。これにより、各処理結果を見比べて、良否の判断や評価を容易に行うことができる。
第3態様として、第1態様又は第2態様の印刷システムにおいて、ハーフトーン処理の画質、コスト、ハーフトーン生成時間、及び、ハーフトーン処理時間のうち少なくとも一つの項目を定量評価する評価値を算出する評価値算出手段を備え、ハーフトーン選択用チャート出力手段は、評価値の情報をハーフトーン選択用チャートに付して出力する構成とすることができる。
第3態様によれば、ハーフトーン処理の処理結果の評価や判断に際して定量的な評価値の情報を判断材料の一つとして利用することができる。
第4態様として、第1態様から第3態様のいずれか1態様の印刷システムにおいて、ハーフトーン選択用チャート出力手段は、同じハーフトーン処理結果の画像を、異なる印刷タイミングで複数回出力する構成とすることができる。
第4態様によれば、時間の経過に依存する印刷システムの不安定性を示す経時的なシステム誤差に関する情報を取得することができる。また、第4態様によれば、経時的なシステム誤差に対するハーフトーン処理の品質の耐性を確認することができる。
第5態様として、第1態様から第4態様のいずれか1態様の印刷システムにおいて、ハーフトーン選択用チャート出力手段は、同じハーフトーン処理結果の画像を、印刷媒体上の異なる位置に複数出力する構成とすることができる。
第5態様によれば、印刷媒体上の位置(場所)に依存する印刷システムの不安定性を示す空間的なシステム誤差の情報を取得することができる。また、第5態様によれば、印刷位置に依存するシステム誤差に対するハーフトーン処理の品質の耐性を確認することができる。
第6態様として、第1態様から第5態様のいずれか1態様の印刷システムにおいて、2種類以上のハーフトーン処理のそれぞれの処理内容を規定するハーフトーン処理規則は、当該印刷システムの特性に関する特性パラメータに基づいて生成される構成とすることができる。
第6態様の印刷システムは、印刷システムの特性に関する特性パラメータを取得する特性パラメータ取得手段と、特性パラメータ取得手段によって取得された特性パラメータに基づき、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理のそれぞれの処理内容を規定するハーフトーン処理規則を生成するハーフトーン処理生成手段と、を備える構成とすることができる。
第7態様として、第6態様の印刷システムにおいて、ハーフトーン処理規則は、ハーフトーンアルゴリズムとハーフトーンパラメータとの組み合わせによって特定され、2種類以上のハーフトーン処理のそれぞれは互いに、ハーフトーンアルゴリズム、及び、ハーフトーンパラメータのうち少なくとも一方が異なるものである構成とすることができる。
第8態様として、第7態様の印刷システムにおいて、ハーフトーンアルゴリズムには、ディザ法、誤差拡散法、及び、ダイレクトバイナリーサーチ法のうち少なくとも一つの手法が含まれる構成とすることができる。
第9態様として、第7態様又は第8態様の印刷システムにおいて、ハーフトーンパラメータには、ディザ法におけるディザマスクのサイズ及び閾値、誤差拡散法における誤差拡散マトリクスのサイズ及び拡散係数及び各誤差拡散マトリクスの適用階調区間の設定、ダイレクトバイナリーサーチ法における画素の更新回数及び交換画素範囲、システム誤差耐性の評価用パラメータのうち少なくとも一つのパラメータが含まれる構成とすることができる。
第10態様として、第6態様から第9態様のいずれか1態様の印刷システムにおいて、印刷システムは、印刷媒体に対するドットの形成を担う複数の印刷素子を有する画像形成部を有し、印刷システムの特性は、複数の印刷素子の個別の記録特性、及び、複数の印刷素子に共通の特性のうち少なくとも一つを含む特性である構成とすることができる。
第11態様として、第10態様の印刷システムにおいて、記録特性は、ドット濃度、ドット径、ドット形状、ドットの記録位置誤差、及び、記録不能異常のうち少なくとも一つを含む特性である構成とすることができる。
第12態様として、第10態様又は第11態様の印刷システムにおいて、共通の特性は、平均ドット濃度、平均ドット径、平均ドット形状、及び、着弾干渉のうち少なくとも一つを含む特性である構成とすることができる。
第13態様として、第1態様から第12態様のいずれか1態様の印刷システムにおいて、複数の要求項目には、画質、コスト、ハーフトーン生成時間、ハーフトーン処理時間、及び、システム誤差に対する耐性、環境変動に対する耐性のうち少なくとも二つの項目が含まれる構成とすることができる。
第14態様に係るハーフトーン処理決定方法は、ハーフトーン画像の生成に用いるハーフトーン処理の種類を決定するハーフトーン処理決定方法であって、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートを出力するハーフトーン選択用チャート出力工程と、ハーフトーン選択用チャート出力工程により出力されたハーフトーン選択用チャートに用いられた2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作工程と、を含むハーフトーン処理決定方法である。
第14態様において、第2態様から第13態様で特定した事項と同様の事項を適宜組み合わせることができる。その場合、印刷システムにおいて特定される処理や機能を担う手段としての処理部や機能部(手段)は、これに対応する処理や動作の「工程(ステップ)」の要素として把握することができる。
第15態様に係る画像処理装置は、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートのチャートデータを生成するハーフトーン選択用チャート生成手段と、チャートデータに基づいて印刷されたハーフトーン選択用チャートに用いられた2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作手段と、を備える画像処理装置である。
第15態様によれば、画像処理装置で生成されたハーフトーン選択用チャートのチャートデータに基づき印刷システムによってハーフトーン選択用チャートが出力される。ハーフトーン選択用チャートの印刷結果から、2種類以上のハーフトーン処理のそれぞれの処理結果を確認することができる。ユーザーはハーフトーン選択用チャートの印刷結果を基に、当該印刷システムにおける各ハーフトーン処理の品質を確認した上で、所望のハーフトーン処理を選択する操作を行うことができる。
第15態様において、第2態様から第13態様で特定した事項と同様の事項を適宜組み合わせることができる。
第16態様に係るプログラムは、コンピュータを、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートのチャートデータを生成するハーフトーン選択用チャート生成手段と、チャートデータに基づいて印刷されたハーフトーン選択用チャートに用いられた2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作手段として機能させるためプログラムである。
第16態様において、第2態様から第13態様で特定した事項と同様の事項を適宜組み合わせることができる。その場合、印刷システムにおいて特定される処理や機能を担う手段としての処理部や機能部(手段)は、これに対応する処理や動作の手段を実現するプログラムの要素として把握することができる。
本発明によれば、印刷システムの特性に適合し、かつユーザーが求めるハーフトーン性能を満たす最適なハーフトーン処理を決定することができる。
図1は本発明の実施形態に係る画像処理装置が適用される印刷システムの構成例を示したブロック図である。 図2は画像処理装置のハードウェア構成例を示すブロック図である。 図3は画像処理装置の機能を説明するためのブロック図である。 図4は本実施形態におけるハーフトーン処理規則の決定方法の一例を示すフローチャートである。 図5は特性パラメータ取得用チャートの一例を示す図である。 図6は図5の特性パラメータ取得用チャートの描画に用いたシリアルスキャン型のインクジェット印刷装置の平面模式図である。 図7は着弾干渉に関する特性パラメータの説明図である。 図8はドット間距離の関数として表される着弾干渉のパラメータの例を示す図である。 図9は複数の要求項目に対する各種ハーフトーンアルゴリズムの得失を示す図表である。 図10はハーフトーンパラメータの生成処理に関するフローチャートである。 図11はシミュレーション画像の概念図である。 図12(A)は8回の走査パスで描画を行う作画モードにおける打滴の順番をパスの番号で示したものであり、図12(B)は図12(A)で示した作画モードで描画を行う場合の第1パスの画素のドットに所定量の誤差を付加する場合の概念図である。 図13は図12(A)で示した作画モードで描画を行う場合の第3パスに属する画素のドットについてドット径が所定量だけ小さくなる誤差を付与する場合の説明図である。 図14はボイドアンドクラスタ法(Void-and-Cluster法)を用いてディザマスクを作成する例のフローチャートである。 図15はハーフトーン選択用チャートの例を示す模式図である。 図16はDBS法によるハーフトーン選択用チャートのハーフトーン画像を生成する手順を示したフローチャートである。 図17は各種ハーフトーン処理規則の定性的な傾向を示したグラフである。 図18はシステムの不安定性に対する耐性と粒状性との関係を示したグラである。
以下、添付図面に従って本発明の実施形態について詳細に説明する。
図1は本発明の実施形態に係る印刷システムの構成例を示したブロック図である。この印刷システム10は、DTP(Desk Top Publishing)装置12と、データベースサーバ14と、管理用コンピュータ16と、画像処理装置20と、印刷制御装置22と、印刷装置24と、画像読取装置26と、を備える。画像処理装置20は、電気通信回線28を通じて、DTP装置12、データベースサーバ14、管理用コンピュータ16、印刷制御装置22、及び画像読取装置26と接続されている。
電気通信回線28は、ローカルエリアネットワーク(LAN;local area network)であってもよいし、ワイドエリアネットワーク(WAN;wide area network)であってもよく、これらの組み合わせであってもよい。電気通信回線28は、有線通信回線に限らず、一部又は全部を無線通信回線とすることができる。また、本明細書において、信号の受け渡しが可能な機器同士の「接続」という表記については、有線接続に限らず、無線接続も含む。
DTP装置12は、印刷しようとする画像内容を示す原稿画像のデータを生成する装置である。DTP装置12は、コンピュータのハードウェアとソフトウェアの組み合わせによって実現される。ソフトウェアという用語はプログラムと同義である。DTP装置12は、印刷しようとする文字、図形、絵柄、イラスト、写真画像などの様々な種類の画像部品を編集し、印刷面上にレイアウトする作業を行うために用いられる。
DTP装置12による編集作業等によって印刷元画像データとしての原稿画像データが生成される。DTP装置12は、ページ記述言語(PDL;page description language)による電子原稿を生成する。DTP装置12によって生成された原稿画像データは、データベースサーバ14や画像処理装置20に転送される。なお、原稿画像データを生成する手段については、DTP装置12で作成する形態に限らず、図示せぬ他のコンピュータや画像作成/編集装置等によって作成する態様も可能である。原稿画像データは、電気通信回線28を通じて、或いはメモリカードなどのリムーバブルメディア(外部記憶媒体)を用いて、データベースサーバ14や画像処理装置20、印刷制御装置22等に入力することができる。
データベースサーバ14は、電子原稿のジョブチケット、色見本データ、ターゲットプロファイル、印刷装置24と用紙の組み合わせに適したデバイスプロファイル等の各種データ管理を行う装置である。なお、ジョブチケットは、例えば、JDF(Job Definition Format)ファイルの形式とすることができる。
管理用コンピュータ16は、印刷システム10における各種管理を行う。例えば、画像管理、印刷ジョブの管理、一台又は複数台の印刷装置24の稼働状況の管理などを行う。
画像処理装置20は、DTP装置12等で生成された印刷用の原稿画像データ(例えば、ページ記述言語で記述されたデータ)をラスタライズ処理する手段として機能する。ラスタライズ処理は、RIP(Raster Image Processor)処理と呼ばれる。画像処理装置20は、RIP装置の一機能として実現することができる。
画像処理装置20は、連続調画像である印刷用の原稿画像データから印刷装置24による出力に適した色別のドットパターンのデータに変換するための色変換処理機能及びハーフトーン処理機能を備える。また、本例の画像処理装置20は、ハーフトーン処理機能に関して、印刷システム10における印刷装置24の特性パラメータに基づき、2種類以上のハーフトーン処理規則を生成する機能を備える。つまり、画像処理装置20は、ハーフトーン処理規則を生成するハーフトーン処理生成機能と、生成したハーフトーン処理規則を用いて連続調画像にハーフトーン処理を実施するハーフトーン処理機能と、を備えている。画像処理装置20は、コンピュータのハードウェアとソフトウェアの組み合わせによって実現することができる。
ハーフトーン処理規則とは、連続調画像のデータからドットパターンのデータであるハーフトーン画像のデータに変換するハーフトーン処理を実施するための処理ルールである。ハーフトーン処理規則は、ハーフトーンアルゴリズムと、ハーフトーンパラメータとの組み合わせによって規定される。ハーフトーン処理規則は、ハーフトーン処理の具体的な演算の仕組みを意味しており、ハーフトーン処理の内容を特定するものである。
ハーフトーンアルゴリズムの種類としては、例えば、ディザ法、誤差拡散法、ダイレクトバイナリーサーチ法などがある。ハーフトーンパラメータとは、ハーフトーンアルゴリズムに従った演算処理に用いる具体的なパラメータである。ハーフトーンパラメータは、ハーフトーンアルゴリズム毎に定められる。例えば、ディザ法の場合のハーフトーンパラメータとして、ディザマトリクスのサイズ及び閾値が定められる。誤差拡散法におけるハーフトーンパラメータとして、誤差拡散マトリクスのマトリクスサイズ、誤差拡散係数、及び各誤差拡散マトリクスの適用階調区間の設定がある。ダイレクトバイナリーサーチ法におけるハーフトーンパラメータとして、画素の入れ替え(交換)を行う処理回数を示す画素更新回数、画素の入れ替え行う画素の範囲を示す交換画素範囲、がある。また、各ハーフトーンアルゴリズムに対して、システム誤差に対する耐性の評価用パラメータをハーフトーンパラメータに加えることができる。ハーフトーン処理規則を生成する際には、上記に例示の複数のパラメータのうち、少なくとも一つのパラメータがハーフトーンパラメータとして特定される。
画像処理装置20における処理機能の具体的内容については後述する。画像処理装置20で生成されたハーフトーン画像のデータを印刷制御装置22に与えることにより、印刷装置24によって対象画像の印刷が行われる。
印刷制御装置22は、画像処理装置20により生成された印刷画像データに基づき印刷装置24による印刷動作を制御する。印刷装置24は、印刷制御装置22の制御にしたがい印刷を実行する画像形成手段である。印刷装置24における印刷方式や使用する色材の種類については特に限定されない。印刷装置24として、例えば、インクジェット印刷機、電子写真プリンタ、レーザープリンタ、オフセット印刷機、フレキソ印刷機など、各種の印刷装置を採用できる。「印刷装置」という用語は、印刷機、プリンタ、画像記録装置、画像形成装置、画像出力装置などの用語と同義のものとして理解される。色材には、印刷装置24の種類に応じて、インクやトナー等を使用することができる。
ここでは、印刷装置24として、無版式のデジタル印刷機の一例であるインクジェット印刷機を用いる例を説明する。本実施形態の印刷システム10では、印刷装置24の一例として、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の4色のインクを用いてカラー画像の形成が可能なインクジェット印刷機を用いる。ただし、インクの色数やその組み合わせはこの例に限らない。例えば、CMYK4色の他に、ライトシアン(LC)、ライトマゼンタ(LM)などの淡色インクを加える態様や、赤、緑などの特色のインクを用いる態様なども可能である。
図1では、印刷制御装置22と印刷装置24とを別々のブロックで示し、両者の間で有線又は無線の通信接続により信号の受け渡しを行う態様としているが、このような構成に限らず、印刷制御装置22と印刷装置24とが一体的に組み合わせされた印刷装置を構成することも可能である。
また、印刷装置24として印刷版を用いる有版式の印刷機を採用する場合は、印刷制御装置22に加えて、画像データから印刷版を作るプレートレコーダ等の製版装置(不図示)を具備するシステム構成となる。この場合、プレートレコーダ等の製版装置とそのコントローラ、並びに、その製版装置で作成される印刷版を使用して印刷を行う印刷機などが電気通信回線28に接続される。有版式の印刷機の場合、印刷制御装置22と製版装置(不図示)と印刷装置24とを組み合わせた構成を全体として「印刷装置」と把握することができる。印刷装置24は「画像形成部」の一形態に相当する。
画像読取装置26は、印刷装置24によって印刷されたプリント物(印刷物)の画像を読み取り、その読取画像を示す電子画像データを生成する手段である。画像読取装置26は、プリント物の画像を撮像して、その画像情報を電気信号に変換する撮像素子(光電変換素子)と、撮像素子から得られる信号を処理してデジタル画像データを生成する信号処理回路とを含む。
画像読取装置26としては、印刷装置24と別体のスキャナ(例えば、フラットベット型のスキャナなど、いわゆるオフラインで利用可能なオフラインスキャナ)を用いることができる。また、画像読取装置26は、印刷装置24に組み込まれたものであってもよい。例えば、印刷装置24の用紙搬送経路に画像読取用のラインセンサ(撮像ユニット)が設置され、画像形成後のプリント物を搬送しながらラインセンサによってプリント画像を読み取る構成であってもよい。印刷装置24における用紙搬送経路に設置される画像読取用のラインセンサを「インラインスキャナ」又は「インラインセンサ」という用語で呼ばれる場合がある。画像読取装置26は「画像読取手段」の一形態に相当する。
画像読取装置26で生成されたプリント画像の読取画像データは画像処理装置20に入力される。画像処理装置20は、画像読取装置26から得られる読取画像データを解析する機能を備える。
<システム構成のバリエーションについて>
DTP装置12、データベースサーバ14、管理用コンピュータ16、画像処理装置20、印刷制御装置22の機能を1台のコンピュータで実現することも可能であるし、複数台のコンピュータで実現することも可能である。また、コンピュータごとの役割や機能の分担については、様々な形態があり得る。例えば、DTP装置12と画像処理装置20とを統合して1台のコンピュータでこれらの機能を実現してもよいし、或いはまた、管理用コンピュータ16内に画像処理装置20の機能を搭載してもよい。また、画像処理装置20の機能と印刷制御装置22の機能を1台のコンピュータで実現する形態も可能である。さらに、画像処理装置20の機能を複数台のコンピュータで分担して実現する構成も可能である。
本システムに含まれるDTP装置12、データベースサーバ14、管理用コンピュータ16、画像処理装置20、印刷制御装置22、印刷装置24、画像読取装置26、製版装置等の台数は特に限定されない。
また、本例ではDTP装置12、データベースサーバ14、管理用コンピュータ16、画像処理装置20、印刷制御装置22等が電気通信回線28に接続されているネットワークシステムの形態を例示しているが、本発明の実施に際しては、各要素が必ずしも通信ネットワークに接続されていなくてもよい。
<画像処理装置20のハードウェア構成>
図2は画像処理装置20のハードウェア構成例を示すブロック図である。本例の画像処理装置20は、パーソナルコンピュータ(PC)を用いて実現されている。すなわち、画像処理装置20は、PC本体30と表示装置32と入力装置34とを備える。「PC」という表記はパーソナルコンピュータを表しており、デスクトップ型、ノート型、タブレット型など、各種形態のコンピュータが含まれる。PC本体30は、中央演算処理装置(CPU;Central Processing Unit)41と、メモリ42と、各種プログラムやデータ等を記憶保存する記憶装置としてのハードディスク装置(HDD;Hard Disk Drive)43と、入力インターフェース部44と、ネットワーク接続用の通信インターフェース部45と、表示制御部46と、周辺機器用インターフェース部47とを備える。
図1で説明した画像読取装置26は、図2の周辺機器用インターフェース部47を介して画像処理装置20に接続することもできる。
表示装置32は、例えば、液晶ディスプレイや有機EL(Organic Electro-Luminescence)ディスプレイなどを用いることができる。表示装置32は表示制御部46に接続される。入力装置34は、キーボード、マウス、タッチパネル、トラックボールなど、各種の手段を採用することができ、これらの適宜の組み合わせであってもよい。本例では入力装置34として、キーボードとマウスが用いられる。入力装置34は入力インターフェース部44に接続される。表示装置32と入力装置34はユーザーインターフェース(UI;User Interface)として機能する。オペレータ(ユーザー)は、表示装置32の画面に表示される内容を見ながら入力装置34を使って各種情報の入力を行うことができ、画像処理装置20や印刷装置24等を操作することができる。また、表示装置32を通じてシステムの状態等を把握(確認)することが可能である。
ハードディスク装置43には、画像処理に必要な各種プログラムやデータ等が格納されている。例えば、特性パラメータ取得用チャートのチャートデータ、特性パラメータ生成用の演算プログラム、ハーフトーン処理規則の生成処理を含む画像処理プログラム、ハーフトーン選択用チャートの生成プログラムなどが記憶される。ハードディスク装置43に格納されているプログラムがメモリ42にロードされ、これをCPU41が実行することにより、プログラムで規定される各種の手段として機能する。
なお、図2に示したPC本体30と表示装置32と入力装置34と同様のハードウェア構成を図1で説明したDTP装置12、データベースサーバ14、管理用コンピュータ16、印刷制御装置22などのハードウェア構成として採用することができる。
<画像処理装置20の機能に関する説明>
図3は本実施形態に係る画像処理装置20の機能を説明するためのブロック図である。画像処理装置20は、制御部50と、特性パラメータ取得部52と、特性パラメータ記憶部54と、優先度パラメータ保持部56と、ハーフトーン処理生成部58と、ハーフトーン処理規則記憶部60とを備える。
制御部50は、画像処理装置20における各部の動作を制御する。特性パラメータ取得部52は、図1で説明した印刷装置24を含む印刷システム10の特性に関する特性パラメータを取得する手段である。印刷システムの特性に関する特性パラメータには、例えば、解像度、ノズル数、インク種、平均ドット濃度、平均ドット径、平均ドット形状、各印刷素子のドット濃度、ドット径、ドット形状、吐出曲り、不吐、着弾干渉などがある。ここに例示したパラメータの少なくとも一つ、好ましくは複数のパラメータに関する情報が特性パラメータ取得部52を通じて取得される。特性パラメータ取得部52は「特性パラメータ取得手段」の一形態に相当する。
印刷素子とは、印刷装置24においてドットの記録を担う記録素子のことをいう。インクジェット印刷装置の場合、インクジェットヘッドにおけるインク吐出用のノズルが「印刷素子」に相当する。凸版を用いる印刷装置の場合、版における網点の凸部のレリーフが「印刷素子」に相当する。
印刷システムの特性には、複数の印刷素子の個別の記録特性、及び、複数の印刷素子に共通の特性、のうち少なくとも一つが含まれる。印刷素子の個別の記録特性には、ドット濃度、ドット径、ドット形状、ドットの記録位置誤差、及び、記録不能異常のうち少なくとも一つが含まれる。インクジェット印刷装置の場合、ドットの記録位置誤差とは「吐出曲がり」に対応し、記録不能異常とは「不吐」に対応する。
複数の印刷素子に「共通の特性」には、平均ドット濃度、平均ドット径、平均ドット形状、及び、着弾干渉のうち少なくとも一つが含まれる。
特性パラメータの取得方法は、ユーザーインターフェースを通じてユーザーが各パラメータを入力してもよいし、印刷装置24によって特性パラメータ取得用チャートを出力し、インラインスキャナやオフラインスキャナ等の画像読取装置26(図1参照)によって特性パラメータ取得用チャートを読み取り、その読取画像を解析して各パラメータを取得してもよい。
特性パラメータとして例示した解像度、ノズル数、インク種、平均ドット濃度、平均ドット径、平均ドット形状、各印刷素子のドット濃度、ドット径、ドット形状、吐出曲り、不吐、着弾干渉などの項目のうち、解像度、ノズル数、インク種は、システム仕様に関する特性パラメータである。
したがって、これらシステム仕様に関する特性パラメータについては、予めシステム内にパラメータを保持しておくことが好ましい。そして、これらシステム仕様に関する特性パラメータである解像度、ノズル数、インク種に基づいて、システム個別の特性に関するパラメータを取得するための特性パラメータ取得用チャートのデータを生成し、当該印刷システム10の印刷装置24によって特性パラメータ取得用チャートを出力し、画像読取装置26(図1参照)から特性パラメータ取得用チャートを読み取り、印刷装置24に固有の特性に関する各種の特性パラメータを取得する構成が好ましい。
すなわち、上記に例示した様々な特性パラメータのうち、各印刷素子のドット濃度、ドット径、ドット形状、着弾干渉のパラメータは、使用するインクや印刷媒体、記録ヘッドの特性の組み合わせに応じて変わり、また、吐出曲がりや不吐についても記録ヘッドの状態によって変わる。なお、記録ヘッドの特性には、インクを吐出させる際に記録ヘッドに印加される駆動信号の波形や周波数などが含まれ、記録ヘッドの状態とは例えば、記録ヘッドの傾きや曲がり、印刷媒体との距離や各印刷素子の状態を示す。このように、使用するインクや印刷媒体、記録ヘッドの特性の組み合わせ、さらに、記録ヘッドの状態などに依存する各種のパラメータについては、適応的に適切な値を設定することが必要となるが、このような各種のパラメータについて、ユーザーが適切な値を入力することは作業負荷が多大となることも想定される。
したがって、特性パラメータの取得に関するユーザーの作業負荷を軽減するために、特性パラメータ取得用チャートを出力し、そのチャート出力結果を読み取って、各種の特性パラメータを自動的に取得する構成とすることが好ましい。
本例の画像処理装置20は、印刷システム10の特性に関する特性パラメータを自動的に取得するための手段として、特性パラメータ取得用チャート生成部62と画像解析部64とを備えている。
特性パラメータ取得用チャート生成部62は、印刷システムの特性に関する特性パラメータのチャートデータを発生させる処理部である。特性パラメータ取得用チャート生成部62で生成されたチャートデータはデータ出力部66を通じて、印刷制御装置22(図1参照)に送られ、印刷装置24により特性パラメータ取得用チャートが印刷される。
特性パラメータ取得用チャート生成部62と、特性パラメータ取得用チャート生成部62によって生成されたチャートデータに基づいて印刷装置24(図1参照)により特性パラメータ取得用チャートを出力する構成との組み合わせが「特性パラメータ取得用チャート出力手段」の一形態に相当する。
特性パラメータ取得用チャートの例について詳細は後述するが、特性パラメータ取得用チャートとしては、例えば、インクの各色のヘッドによる各印刷素子の単一ドットパターンとすることができる。単一ドットパターンは、各ドットを他のドットと重ねることなく、それぞれ孤立させて、個々に単独のドットとして打滴したパターンである。このような単一ドットパターンのチャートを読み取ることにより、各印刷素子のドット濃度、ドット径、ドット形状、吐出曲り、及び、不吐に関するパラメータを読み取ることができる。
また、特性パラメータ取得用チャートには、単一ドットパターンに加えて、複数ドットの重なった連続ドットパターンを含めることができる。連続ドットパターンとして二つのドットのドット間距離を変えて、互いにドットの一部が重なるように打滴した連続ドットパターンを含めることができる。このような連続ドットパターンは、着弾干渉によるドット変形量のパラメータを取得するために利用される。
本印刷システム10の滴種が1種類の場合、1種類のドットを単独で打滴して単一ドットパターンとし、複数重ねて打滴して連続ドットパターンとすればよい。滴種が複数有る場合は、各々の種類のドットを単独で打滴して単一ドットパターンとし、各々の種類のドットの組み合わせで複数重ねて打滴して連続ドットパターンとする。
特性パラメータ取得用チャートの出力に際しては、同一印刷素子の単一ドットを複数回印刷し、それらのドット濃度、ドット径、ドット形状、吐出曲りの平均値を、該印刷素子のドット濃度、ドット径 、ドット形状、吐出曲りとしてもよい。また、さらに、各印刷素子のドット濃度、ドット径、ドット形状を平均化して平均ドット濃度、平均ドット径、平均ドット形状を取得してもよい。
システム誤差に対する耐性設計をする場合には、特性パラメータ取得用チャートの読み取りによって得られた測定値の平均値からのばらつきを示す分散σを計算し、この分散σの平方根である標準偏差σの値を、後ほど使用する誤差の所定量としてもよい。
印刷装置24によって印刷された特性パラメータ取得用チャートの印刷結果は画像読取装置26によって読み取られ、特性パラメータ取得用チャートの読取画像のデータが得られる。
画像解析部64は、画像読取装置26によって読み取られた読取画像を解析して、特性パラメータの情報を生成する特性パラメータ生成処理部として機能する。画像解析部64によって、特性パラメータ取得用チャートから自動的に特性パラメータの情報が得られる。画像解析部64は「画像解析手段」の一形態に相当する。
また、本例の画像処理装置20は、入力装置34を用いてユーザーが印刷システム10の特性に関する特性パラメータを直接的に入力することができる。すなわち、画像処理装置20における特性パラメータ取得部52の態様は、入力装置34を用いてユーザーが印刷システム10の特性に関する特性パラメータを直接的に入力する構成であってもよいし、特性パラメータ取得用チャートの測定結果から自動的に特性パラメータを取得する構成であってもよく、これらの組み合わせであってもよい。
特性パラメータ取得部52を通じて取得された特性パラメータの情報は特性パラメータ記憶部54に記憶される。なお、特性パラメータ記憶部54には、システム仕様に関する特性パラメータを予め保持しておくことができる。
ハーフトーン処理生成部58は、特性パラメータに基づき、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理のそれぞれの処理内容を規定するハーフトーン処理規則を生成する。画像処理装置20は、シミュレーション画像生成部68と評価値演算部70とを含んだ画質評価処理部74を備えており、ハーフトーン処理生成部58は画質評価処理部74と連携して2種類以上のハーフトーン処理規則を生成する。ハーフトーン処理生成部58は「ハーフトーン処理生成手段」の一形態に相当する。評価値演算部70は「評価値算出手段」の一形態に相当する。
画質評価処理部74は、シミュレーション画像の生成とシミュレーション画像に対する画像品質の評価値の計算を繰り返しながら、評価値が改善される最適化探索の処理を行う。画質評価処理部74による処理により、ハーフトーンパラメータが決定される。
ハーフトーン処理生成部58により生成された複数種類のハーフトーン処理規則は、ハーフトーン処理規則記憶部60に登録される。図3では、図示の便宜上、2種類の異なるハーフトーン処理規則1,2が生成され、これらハーフトーン処理規則1,2がハーフトーン処理規則記憶部60に記憶保存される様子を示したが、Kを2以上の整数とした場合に、K以上の複数種類のハーフトーン処理規則が生成され得る。そして、生成されたK種類のハーフトーン処理規則1,2,…Kのすべて又は一部をハーフトーン処理規則記憶部60にラインアップとして登録することができる。ハーフトーン処理規則記憶部60はハーフトーン登録手段の一形態に相当する。ハーフトーン処理規則記憶部60には、印刷システム10で使用可能なハーフトーン処理の候補としての複数種類のハーフトーン処理規則を登録しておくことができる。
こうしてハーフトーン処理生成部58にて生成された複数のハーフトーン処理規則の中から、実際の印刷に使用するハーフトーン処理規則が決定される。
本例の画像処理装置20では、複数のハーフトーン処理規則の中からいずれか一つのハーフトーン処理規則を選ぶための選択支援手段として、ハーフトーン選択用チャート生成部76を備えている。
ハーフトーン選択用チャート生成部76では、2種類以上のハーフトーン処理規則のそれぞれによって得られるハーフトーン画像の印刷結果を対比可能に並べたハーフトーン選択用チャートのチャートデータを生成する。ハーフトーン選択用チャート生成部76で生成されたチャートデータはデータ出力部66を通じて、印刷制御装置22(図1参照)に送られ、印刷装置24によりハーフトーン選択用チャートが印刷される。ハーフトーン選択用チャート生成部76と印刷装置24との組み合わせが「ハーフトーン選択用チャート出力手段」の一形態に相当する。また、ハーフトーン選択用チャート生成部76が「ハーフトーン選択用チャート生成手段」の一形態に相当する。
ユーザーはハーフトーン選択用チャートの出力結果を見て、所望のハーフトーン処理規則を選択することができる。ユーザーによるハーフトーン処理規則の選択操作は入力装置34を用いて行われる。入力装置34はユーザーが所望のハーフトーン処理規則を選択する操作を行うための「ハーフトーン選択操作手段」として機能する。すなわち、入力装置34は、ハーフトーン選択用チャートの生成に用いられた2種類以上のハーフトーン処理の中からユーザーがいずれかのハーフトーン処理の種類を選択するためのユーザーの操作を受け付けるハーフトーン選択操作手段として機能する。
また、このようなユーザーによるハーフトーン処理規則の選択機能のみならず、システムが自動的に一つのハーフトーン処理規則を選択する機能を備えていてもよい。この場合、ハーフトーン処理に対する複数の要求項目の優先度に関する優先度パラメータを予め保持しておくことが必要である。優先度パラメータ保持部56には、複数の要求項目に関する優先度のバランスを指定した優先度パラメータが記憶されている。優先度パラメータ保持部56は優先度パラメータ保持手段の一形態に相当する。
優先度パラメータは入力装置34を通じてユーザーが自由に入力し、優先度のバランスの設定、並びに、設定内容の変更を行うことができる。或いはまた、優先度パラメータは、システム上、予め一種類又は複数種類の選択候補が用意されていてもよい。優先度パラメータの設定に関する選択候補が複数種類用意されている場合、ユーザーは印刷目的や用途、生産性などを考慮して、入力装置34を通じていずれかの選択候補を選択することができる。
優先度パラメータによって要求項目に対する優先度のバランスを指定しておくことにより、この優先度パラメータ保持部56で特定される優先度パラメータにしたがい、システム上で推奨される最適な一つのハーフトーン処理規則が一意に決定される構成とすることができる。このような自動選択の機能は制御部50によって実現でき、かかる自動選択の処理を担う制御部50の構成がハーフトーン自動選択手段の一形態に相当する。
入力装置34は、ユーザーが各要求項目に対する優先度に関する設定を入力するための優先度入力部として機能する。ユーザーが設定した優先度に応じて、その優先度の設定に基づくハーフトーン処理規則(すなわち、ハーフトーンアルゴリズムとハーフトーンパラメータの組み合わせ)と、そのユーザー設定に係る優先度のバランスと対称的な優先度のバランスとなるハーフトーン処理規則とを生成して、両者の比較を行うという態様があり得る。
また、ユーザーが設定した優先度を基準にして、その優先度のバランスをわずかに振って、複数設定した優先度のバランスに基づき、複数のハーフトーン処理規則を生成するという態様があり得る。
画像処理装置20は、生成したハーフトーン処理規則にしたがって、連続調画像のデータをハーフトーン処理する機能を有する。すなわち、画像処理装置20は、画像入力部77と、色変換処理部78と、ハーフトーン処理部80とを備える。
画像入力部77は、原稿画像のデータを取り込む入力インターフェース部であり、画像データ取得部として機能する。画像入力部77は、外部又は装置内の他の信号処理部から原稿画像データを取り込むデータ入力端子で構成することができる。画像入力部77として、有線又は無線の通信インターフェース部を採用してもよいし、メモリカードなどの外部記憶媒体(リムーバブルディスク)の読み書きを行うメディアインターフェース部を採用してもよく、若しくは、これら態様の適宜の組み合わせであってもよい。
色変換処理部78は、インターナショナル・カラー・コンソーシアム (ICC;International Color Consortium)によるICCプロファイルの形式に則したカラープロファイルを用いて、原稿画像データの色変換処理を行い、印刷装置24による出力に適したカラー画像信号を生成する。印刷装置24においてCMYKの4色のインクを用いる場合には、色変換処理部78によりCMYKの画像信号が生成される。また、CMYKに加え、ライトマゼンタ(LM)及びライトシアン(LC)を含む6色のインクを用いる場合には、色変換処理部78によりCMYKとLM、LCの各色成分を含む画像信号が生成される。
ハーフトーン処理部80は、ハーフトーン処理生成部58によって生成されたハーフトーン処理規則を用いて、各色の連続調画像に対してハーフトーン処理を行い、ハーフトーン画像を生成する。ハーフトーン処理部80にて生成されたハーフトーン画像のデータはデータ出力部66を通じて、印刷制御装置22(図1参照)に送られ、印刷装置24により印刷が行われる。
また、画像処理装置20の画質評価処理部74はハーフトーン処理部80と連携して、印刷用ハーフトーン画像の評価値を算出することができる。ハーフトーン処理部80によって生成されるハーフトーン画像に関する評価値の情報は、表示装置32の画面上に表示させることができ、また、データ出力部66を通じて外部に提供することができる。
<印刷システムにおけるハーフトーン処理規則の決定手順>
本実施形態の印刷システム10におけるハーフトーン処理規則の定め方について詳説する。図4は本実施形態におけるハーフトーン処理決定方法としてのハーフトーン処理規則の決定方法の一例を示すフローチャートである。
まず、印刷システムの特性に関する特性パラメータを取得する(ステップS12)。特性パラメータの取得に際しては、ユーザーインターフェースによる入力も可能であるが、特性パラメータ取得用チャートの読取画像を解析して特性パラメータを自動取得する形態が好ましい。ステップS12は特性パラメータ取得工程の一形態である。
次に、ハーフトーン処理に対する要求項目の優先度の異なる2種類以上のハーフトーン処理規則を生成する(ステップS14)。ハーフトーン処理規則の生成に際しては、優先度パラメータと特性パラメータとに基づき、複数種類のハーフトーン処理規則が生成される。ステップS14はハーフトーン処理生成工程の一形態である。
そして、生成された各ハーフトーン処理規則を用いてハーフトーン選択用チャートを出力する(ステップS16)。ステップS16は「ハーフトーン選択用チャート出力工程」の一形態である。
ユーザーはハーフトーン選択用チャートの出力結果を見て、いずれか一つのハーフトーン処理規則を選ぶことができる。ユーザーの選択操作に基づき、印刷に用いるハーフトーン処理規則が決定される(ステップS18)。すなわち、ステップS18はハーフトーン選択用チャートの生成に用いられた2種類以上のハーフトーン処理の中からユーザーがいずれかのハーフトーン処理の種類を選択するためのユーザーの操作を受け付け、ユーザーによる選択操作に基づいてハーフトーン処理規則が決定される。ステップS18は「ハーフトーン選択操作工程」の一形態である。
<特性パラメータ取得用チャートの例>
図4のステップS12で説明した特性パラメータ取得工程で用いられる特性パラメータ取得用チャートの具体例について説明する。
図5は特性パラメータ取得用チャート100の一例を示す図である。ここでは、シアン、マゼンタ、イエロー、ブラックの各色の記録ヘッドにおける印刷素子であるノズルによって、印刷媒体101上に、単一ドットパターン102C、102M、102Y、102Kと、第1の連続ドットパターン104C、104M、104Y、104Kと、第2の連続ドットパターン106C、106M、106Y、106Kとが打滴されたものが示されている。単一ドットパターン102C、102M、102Y、102Kは、単一ドットが他のドットと分離された孤立状態で離散的に記録される離散ドットのパターンである。第1の連続ドットパターン104C、104M、104Y、104Kと、第2の連続ドットパターン106C、106M、106Y、106Kは、二つ以上のドットを接触させて記録される連続ドットのパターンである。
図6は図5の特性パラメータ取得用チャートの描画に用いたシリアルスキャン型のインクジェット印刷装置の平面模式図である。図6では、図示の便宜上、各色の記録ヘッドのノズル数を減じて各色4ノズルのみを示した。ノズル数やノズルの配列形態、ノズル密度については、様々な設計が可能である。
図6に示したように、シリアルスキャン型のインクジェット印刷装置におけるヘッドユニット110は、シアンインクを吐出するシアン記録ヘッド112Cと、マゼンタインクを吐出するマゼンタ記録ヘッド112Mと、イエローインクを吐出するイエロー記録ヘッド112Yと、ブラックインクを吐出するブラック記録ヘッド112Kと、がキャリッジ114に搭載され、図6のX方向に沿って往復移動可能に構成されている。X方向に直交するY方向が印刷媒体101の搬送方向である。X方向は「主走査方向」に相当し、Y方向は「副走査方向」に相当する。印刷媒体101を搬送する手段(媒体搬送手段)については、ドラム搬送方式、ベルト搬送方式、ニップ搬送方式、チェーン搬送方式、パレット搬送方式など、各種形態を採用することができ、これら方式を適宜組み合わせることができる。
シアン記録ヘッド112C、マゼンタ記録ヘッド112M、イエロー記録ヘッド112Y、ブラック記録ヘッド112Kの各記録ヘッドの詳細な構造は図示しないが、それぞれのインクジェット方式の記録ヘッドは、各ノズルに対応してインク吐出に必要な吐出エネルギーを発生させる吐出エネルギー発生素子(例えば、圧電素子や発熱素子)を備えている。各記録ヘッド(112C,112M,112Y,112K)は、印刷制御装置22(図1参照)から与えられる駆動信号及び吐出制御信号に従い、オンデマンドでインク液滴を吐出する。
図6のキャリッジ114をX方向に移動させつつ、適宜のタイミングでシアン記録ヘッド112Cの各ノズル118Cから打滴を行うことにより、図5の符号102Cで示す単一ドットパターンを形成することができる。シアンインクによる単一ドットパターン102Cを描画した後、印刷媒体101をY方向に搬送し、印刷媒体101における記録領域を変えてから、キャリッジ114をX方向に移動させつつ、適宜のタイミングでシアン記録ヘッド112Cの各ノズル118Cから打滴を行うことにより、図5の符号104Cで示す第1の連続ドットパターンを形成することができる。また、シアンインクによる第1の連続ドットパターン104Cを描画した後、印刷媒体101をY方向に搬送し、印刷媒体101における記録領域を変えてから、キャリッジ114をX方向に移動させつつ、シアン記録ヘッド112Cの各ノズル118Cから適宜のタイミングで打滴を行うことにより、図5の符号106Cで示す第2の連続ドットパターンを形成することができる。
第1の連続ドットパターン104Cと第2の連続ドットパターン106Cとでは、重なり合うドット同士のドット間距離の設定が異なっている。ドット間距離を変えて複数種類の連続ドットパターンを記録することにより、ドット間距離dと着弾干渉の影響による変化量との関係に関する特性パラメータを把握することが可能になる。
なお、図5では、ドット間距離を異ならせた2種類の連続ドットパターン(104C,106C)を例示しているが、ドット間距離を変えて3種類以上の連続ドットパターンを形成してもよい。
シアンインクによるドットパターン(102C,104C,106C)の記録に続けて、以下同様に、マゼンタ記録ヘッド112Mの各ノズル118Mによる打滴、イエロー記録ヘッド112Yの各ノズル118Yによる打滴、ブラック記録ヘッド112Kの各ノズル118Kによる打滴を、順次に行うことで、図5に示す特性パラメータ取得用チャート100が生成される。
各色の単一ドットパターン102C、102M、102Y、102Kから、各色の印刷素子ごとのドット濃度、ドット径、ドット形状、吐出曲り、不吐、に関する情報を得ることができる。また、多数の単一ドットの測定結果を統計処理することにより、平均ドット濃度、平均ドット径、平均ドット形状、並びに、それぞれの標準偏差σ(分散σの平方根)を得ることができる。各印刷素子のドット濃度、ドット径、ドット形状、吐出曲り、のうち少なくとも一つの項目について算出される標準偏差σ又は分散σは、ドットのばらつきに関する分散情報の一形態に相当する。分散情報に基づき、システムの不安定性に対する耐性設計を行う際の演算において付加する誤差の量(後述する「付加誤差の所定量」に相当)を定めることができる。
また、各色の第1の連続ドットパターン104C、104M、104Y、104Kと、第2の連続ドットパターン106C、106M、106Y、106Kから、着弾干渉に関する特性パラメータの情報を得ることができる。着弾干渉に関する特性パラメータとは、重なり合うドット同士の相互作用である着弾干渉の影響によるドット間距離の変化、ドット濃度の変化、ドット形状の変化などに関する情報をいう。
<着弾干渉に関する特性パラメータについて>
図7及び図8は着弾干渉に関する特性パラメータの説明図である。図7の左欄は、二つのドットを部分的にオーバーラップさせて連続打滴する際の2ドットのドット間距離の設定値をd1,d2,d3と3段階に異ならせた様子が示されており、図7の右欄は、ドット間距離d1,d2,d3のそれぞれの設定で打滴を行った場合に着弾干渉の影響によってドット間距離が変化した様子を示している。なお、ここでのドット間距離とは、ドットの中心間距離を意味している。
図示のように、設定値としてのドット間距離d1、d2、d3(d1>d2>d3)に対して、それぞれ実際のドット間距離はu1、u2、u3(u1>u2>u3)となる。着弾干渉によって、ドットが引き寄せられることから、d1>u1、d2>u2、d3>u3となる。
ドット間距離の設定を変えて、着弾干渉の影響によるドット間距離の変化のデータを取得することで、図8に示すような着弾干渉データを得ることができる。図8中の横軸はドット間距離の設定値であり、「R」はドットの半径を示す。図8の縦軸は着弾干渉の影響によってドット間距離が変化する変化量を示しており、図7における|di−ui|の絶対値を示している(i=1,2,3)。図8の横軸が「2R」は、2ドットが外接する位置を示している。ドット間距離が2Rよりも大きいとドットは重ならないため、着弾干渉の影響は受けない。ドット間距離の設定が2Rよりも小さい場合に、ドット同士がオーバーラップして着弾干渉によりドットが引き寄せられ、ドット間距離が変化する。
図8では「ドット間距離の変化量」として説明しているが、着弾干渉の影響は、ドット濃度の変化やドット形状の変化としても測定することができる。
図5で説明した特性パラメータ取得用チャート100における第1の連続ドットパターン104C、104M、104Y、104K及び第2の連続ドットパターン106C、106M、106Y、106Kの読取結果から、ドット間距離dの関数としてパラメータ化された着弾干渉データを得ることができる。
このような着弾干渉に関するパラメータを印刷素子毎(ここではノズル毎)に求めて平均化する。色毎に平均化した値を色別に保持してもよいし、全色を平均化した値を共通のパラメータとして保持してもよい。
図5ではCMYK各色について滴種を1種類と仮定した場合の単一ドットパターン及び連続ドットパターンを例示したが、滴種が複数有る場合は、各々の種類のドットを単独で打滴して単一ドットパターンとし、各々の種類のドットの組み合わせで複数重ねて打滴して連続ドットパターンとする。そして各滴種の組み合わせについて着弾干渉に関するパラメータを取得することとなる。また、CMYK各色のドットの組み合わせで複数重ねて打滴して連続ドットパターンを形成し、かつ、各色のドットの組み合わせについて着弾干渉に関するパラメータを取得してもよい。
<ハーフトーン処理に対する要求項目について>
ハーフトーン処理に要求される要求項目には、例えば、以下のようなものがある。すなわち、要求項目の第1分類(a)として、画質、システムコスト 、ハーフトーン生成時間、ハーフトーン処理時間がある。要求項目の第2分類(b)として、画質に関して、さらに、「粒状性」と「システム誤差に対する耐性」とがある。これら複数の要求項目は、トレードオフの関係にある。また、システム誤差に対する耐性の中には、「環境変動に対する耐性」がある。環境変動に対する耐性とは、例えば、温度や湿度の影響によってインクの濃度とドットの広がり量が変動するので、その影響をシミュレーションしてハーフトーン処理規則を設計することが考えられる。
本実施形態では、ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理のハーフトーン処理規則が生成されるが、「複数の要求項目」としては、上記に例示した、画質、システムコスト、ハーフトーン生成時間、ハーフトーン処理時間、システム誤差に対する耐性、及び、環境変動に対する耐性のうち少なくとも二つの項目が含まれる。
<ハーフトーンアルゴリズムと各要求項目に対する得失>
第1分類(a)における画質、システムコスト、ハーフトーン生成時間、ハーフトーン処理時間の各要求項目に対する各種ハーフトーンアルゴリズムの得失は、図9の図表に示すとおりである。ここでは、ハーフトーンアルゴリズムとして、ディザ法、誤差拡散法、ダイレクトバイナリーサーチ(DBS)法の3種類を比較した。
システムコストとは、ハーフトーン処理の機能を実現するために必要なCPU(Central Processing Unit)性能、メモリ容量その他のシステム仕様に関するコストが含まれる。ハーフトーン生成時間は、ハーフトーン処理規則を生成するために要する時間であり、例えば、ハーフトーンパラメータを決定するための演算に要する時間が含まれる。ハーフトーン処理時間は、生成されたハーフトーン処理規則を用いて連続調画像のデータからハーフトーン画像のデータに変換するための処理に要する時間である。
ディザ法、誤差拡散法、DBS法の3種類のハーフトーンアルゴリズムを比べると、画質に関して、ディザ法は相対的に画質が低く、DBS法は相対的に画質が高画質であり、誤差拡散法は両者の中間的な画質となる。システムコストに関して、ディザ法は相対的にコストが低く、DBS法は相対的にコストが高い。誤差拡散法のシステムコストは、ディザ法とDBS法の中間レベルである。ハーフトーン生成時間とハーフトーン処理時間に関して、ディザ法は相対的に短時間であり、DBS法は相対的にもっと時間がかかる。誤差拡散法は、ディザ法とDBS法の中間のレベルである。
また、図9に示したハーフトーンアルゴリズムの種類による相対的な得失のみならず、同じハーフトーンアルゴリズムにおいてもハーフトーンパラメータの設定によって、各要求項目に対する得失が変化する。例えば、ハーフトーンアルゴリズムがディザ法の場合、ディザマスクサイズが大きい程、画質は高くなるが、その反面、システムコストが高くなり、かつ、ハーフトーン生成時間やハーフトーン処理時間が長いものになる。
ハーフトーンアルゴリズムが誤差拡散法の場合、誤差拡散マトリクスサイズが大きい程、また、誤差拡散マトリクスを適用する階調区間の区分けが多い程、画質は高いものとなるが、他の要求項目に対してはシステムコストが高くなり、かつ、ハーフトーン生成時間やハーフトーン処理時間が長いものになる。
ハーフトーンアルゴリズムがDBS法の場合、画素の更新回数が多い程、また、交換画素範囲が広い程、画質は高いものになるが、他の要求項目に対してはシステムコストが高くなり、かつ、ハーフトーン生成時間やハーフトーン処理時間が長いものになる。
要求項目の第2分類(b)に関しては、印刷順番、作画のパスや打滴のタイミングなどによってドット濃度、ドット径、ドット形状 、吐出曲り、不吐などの特性パラメータに誤差を生ずることに対して、粒状性低下やスジ発生を抑えるように、システム誤差に対する耐性設計が可能であるが、この耐性設計によって誤差の無い状態での粒状性は低下することとなる。つまり、粒状性とシステム誤差に対する耐性はトレードオフの関係にある。
システム誤差の要因となり得る印刷順番とは、例えば、インクの色の重ね順である。また、印刷順番には、シリアルスキャン方式のヘッド走査における往路パスと復路パスの順序を含めることができる。パスとは、シリアルスキャン方式のインクジェットヘッドでマルチパスにより描画を完成させる作画モードの場合のパスの順番である。シングルパスプリンタの場合は、主走査方向の一列が「パス」に相当する。タイミングとは、例えば、印刷媒体を送りながら打滴を行う場合に、印刷媒体の搬送の誤差などの影響で打滴のタイミングによって着弾位置やドット形状などに誤差が発生するような場合を想定したものである。
システム誤差としては、他に、印刷素子の経時的な状態変化によってドット濃度、ドット径、ドット形状、吐出曲り、不吐などの特性パラメータが変化するため、これも誤差と見做される。また、着弾干渉の影響によるドット濃度、形状や位置の変化に関して図5の様な特性パラメータ取得用チャートのみから正確にパラメータ化してシミュレーション再現することは困難であり、この現実との乖離もシステム誤差と見做される。
つまりシステムの経時的な状態変化、特性パラメータ取得用チャートや画像読取装置26の制約、シミュレーションモデルの限界などによって生ずるシミュレーション画像と現実との乖離がシステム誤差と見做され、乖離の無い状態での粒状性を最適化し、かつ、これらの乖離が有っても現実の画像の粒状性低下やスジ発生を抑えるように耐性を持たせる設計を行うことになる。
また、ディザ法や誤差拡散法の場合、例えば、シングルパスプリンタのように各印刷素子が印刷媒体の幅方向の広い範囲に独立に存在する印刷システムの場合、各印刷素子のドット濃度、ドット径、ドット形状、吐出曲り、或いは不吐といった特性を直接的に反映して粒状性を最適なものとするハーフトーン設計を行うことが困難である。
したがって、この場合もインク種毎に平均的なドット濃度、ドット径、ドット形状の情報に基づいて粒状性を最適化し、かつ、複数の印刷素子の個別の特性によるドット濃度、ドット径、ドット形状、吐出曲り、或いは不吐などの誤差に対して、耐性を持たせる設計を行うことになる。
<具体例による説明>
本例の画像処理装置20では、上述した各要求項目に対する得失に基づき、各要求項目の優先度に応じて2種類以上のハーフトーン処理規則を設定する。ハーフトーン処理規則は、ハーフトーンアルゴリズムとハーフトーンパラメータとの組み合わせによって特定される。
[設定例1]優先度の設定例として、例えば、第1分類(a)に関しては画質重視、かつ、第2分類(b)に関しては粒状性重視の設定とした場合に、この優先度の設定(設定例1)に対応したハーフトーン処理規則として、次のハーフトーン処理規則を定めることができる。
・ハーフトーンアルゴリズム:DBS法
・ハーフトーンパラメータ:画素の更新回数=大、かつ 交換画素範囲=大
・システム誤差に対する耐性設計:無し
なお、ハーフトーンパラメータに関する画素の更新回数を特定する具体的数値や、交換画素範囲を特定する具体的数値については、システム上で選択できる複数の数値候補の中から相対的に大きな値に属する適宜の数値がセットされる。
DBS法に関しては、ハーフトーンパラメータとして、画素の更新回数と、交換画素範囲を指定するだけで、ハーフトーン処理規則を確定したことになる。
[設定例2] 優先度の他の設定例として、例えば、第1分類(a)に関してはハーフトーン処理時間重視、かつ、第2分類(b)に関してはシステム誤差耐性重視の設定とした場合に、この優先度の設定(設定例2)に対応したハーフトーン処理規則として、次のハーフトーン処理規則を定めることができる。
・ハーフトーンアルゴリズム:ディザ法
・ハーフトーンパラメータ:ディザマスクサイズ=小
・システム誤差耐性設計:±1画素の誤差を付加、かつ「スジ」の耐性も考慮する
粒状性評価用パラメータα=1、かつ、スジ評価用パラメータβ=1に設定。
なお、ハーフトーンパラメータに関するディザマスクサイズを特定する具体的数値については、システム上で選択できる複数の数値候補の中から相対的に小さな値に属する適宜の数値がセットされる。上記例示の設定例2において、第2分類(b)に関してはシステム誤差の程度が分からない場合があり、またそのシステム誤差が現実の画像の粒状性やスジ品質にどの程度の影響を及ぼすのか未だ分からないため、システム誤差耐性の優先度に応じて複数設定してもよい。例えば、誤差量を「±1」、「±2」…と複数設定してもよい。着弾干渉のシミュレーションに関して、「実施しない設定」、「実施する設定」、「実施する際に着弾干渉によるドット移動のみをシミュレーションする設定」、「ドット移動のみでなくドット濃度や形状の変化もシミュレーションする設定」など複数設定してもよい。着弾干渉によるドット移動、濃度や形状の変化の設定に関して、特性パラメータ取得用チャートから取得したパラメータを基準に変更して複数設定してもよい。
上記例示の設定例1,2に限らず、様々な優先度の設定に対応したハーフトーン処理規則を生成することができる。
ハーフトーンアルゴリズムとして、ディザ法又は誤差拡散法が選ばれた場合には、さらに図10に示すフローチャートによって、各ハーフトーンアルゴリズムに対応したハーフトーンパラメータを生成する処理が行われる。
図10はハーフトーンパラメータの生成処理に関するフローチャートである。図10のフローチャートは、ディザ法と誤差拡散法の両方について共通のフローチャートである。ここでは、ディザ法を例に説明する。
まず、ハーフトーンパラメータを仮設定する(ステップS22)。ディザ法の場合、ディザマスクのマトリクスサイズ(つまりディザマスクサイズ)と各閾値を定めることがハーフトーンパラメータを定めることに相当する。ディザマスクサイズについては32×32、64×64、128×128、256×256など、様々なサイズがあり得る。ディザマスクサイズが指定された場合のハーフトーンパラメータとはディザマスクの閾値を示し、図10のフローチャートを閾値0から最大値まで繰り返すことになる。
ステップS22でハーフトーンパラメータを仮設定した後、次に、その仮設定したハーフトーンパラメータを用いてハーフトーン処理を行う(ステップS24)。ディザ法の場合、このステップS24は、閾値「0」から現閾値までのドットON画素を求めることに相当する。つまり、現閾値の階調を持つ単一階調の入力画像について、ディザマスクを適用したハーフトーン処理後のハーフトーン画像(ドット配置)を求めること相当する。
次いで、ステップS24で得られたハーフトーン画像に対し、さらに、印刷システムの特性に関する特性パラメータを用いて、印刷画像のシミュレーション画像を生成する(ステップS26)。ステップS26では、ハーフトーン画像が示すドットパターンのデータに対して、各印刷素子のドット濃度、ドット形状、ドット径、吐出曲がり、不吐出、などに関する特性パラメータを反映させたドットを、ハーフトーン画像の画素に重ねて配置することにより、印刷画像のシミュレーション画像が生成される。
図11はシミュレーション画像の概念図である。図11では、格子状の各セルが画像データの画素を表している。ハーフトーン画像のデータにおいて「ドットON」の画素のセルがスクリーントーンのパターンで表示されており、「ドットOFF」の画素は白抜きで表されている。
シミュレーション画像の生成に際しては、ドットON画素の記録を担う各印刷素子のドット濃度、ドット径、形状、吐出曲がり、不吐などの記録特性を反映したドットを、当該ドットON画素の位置に配置してゆく。
このとき、周囲ドットを含めた配置状態又はドットを重ねた後の配置状態に基づき、既に取得した着弾干渉によるドット形状の変形パラメータから着弾干渉後のドット形状を算出して再配置してもよい。例えば、印刷媒体搬送方向と平行な方向である「副走査方向」(図11のY方向)のドット間距離yaによる着弾干渉の影響によりY方向にf(ya)の関数で表されるドット移動が発生し、かつ、印刷媒体搬送方向に垂直な方向である「主走査方向」(図11のX方向)のドット間距離xbによる着弾干渉の影響によりX方向にf(xb)の関数で表されるドット移動が発生するものとすると、このような着弾干渉の影響により、f(ya)+f(xb)のドット移動に伴うドット形状の変化が発生するとして、ドットの再配置が行われる。
着弾干渉する周囲ドットは「副走査方向」や「主走査方向」のみでなく斜め方向にも存在し、その影響も受けるため、「副走査方向」や「主走査方向」のみでなく任意の方向の周囲ドットnとのドット間距離cによる着弾干渉の影響により該ドットの方向にf(c)の関数で表されるドット移動が発生するものとして、f(ya)+f(xb)+f(c1)+f(c2)+・・・+f(c)だけドット移動させて再配置してもよい。勿論、着弾干渉の影響は滴種によって異なるため、周囲ドット種によって関数f(*)は異なる。「*」は変数を表す。着弾干渉により、ドット移動だけでなくドット濃度やドット形状の変化も発生するとして、ドットを再配置してもよい。
図10のステップS26におけるシミュレーション画像の生成に際して、印刷装置24がシングルパスプリンタのように、各印刷素子が印刷媒体の幅方向の広い範囲にわたって独立に存在する印刷システムの場合、印刷素子毎に個別のドット濃度、ドット径、ドット形状の情報を用いるのではなく、インク種毎に各印刷素子のドット濃度、ドット径、ドット形状として、それぞれの平均値を用いる。
次いで、ステップS26で生成したシミュレーション画像に対して画質評価を行う(図10のステップS28)。
画質評価は、シミュレーション画像にガウシアンフィルタなどのローパスフィルタや、人の視覚感度を表す視覚伝達関数(VTF:Visual Transfer Function)をかけた上で、周波数変換して積分した値、RMS粒状度(Root Mean Square granularity)、入力画像との誤差や標準偏差などのうち少なくとも一つの評価値を算出して行われる。ステップS28の画質評価工程で算出された値は「画質評価値」としてメモリに記憶される。
ここで、システム誤差耐性の設計を実施する場合、ハーフトーン処理結果の現閾値に該当するドットON画素と印刷順番、パス、タイミングのうち少なくとも一つの条件が同じ条件に属する画素のドットに対し、所定のドット濃度、ドット径、ドット形状、吐出曲がり、不吐のうち少なくとも一つの誤差を付加して、上記と同様にシミュレーション画像の生成(ステップS26)と画質評価値の算出(ステップS28)を実施する。
さらに、システム誤差への耐性として粒状性の低下のみではなく、スジの発生も抑えるように耐性設計する場合には、スジ評価値として、シミュレーション画像に、上記の誤差を付加して、ローパスフィルタやVTFをかけた上で主走査方向に積分し、1次元の周波数変換を行って積分した値、入力画像の主走査方向積分値との誤差、標準偏差などが算出される。なお、粒状性やスジの定量評価値を計算する方法としては、特開2006−67423号公報や特開2007−172512号公報などに記載されている公知の方法を用いることができる。
本例では画質評価値は、以下の式で算出され、得られた値が保持される。
画質評価値=粒状性評価値[システム誤差無し]+α×{粒状性評価値[システム誤差有り(+所定量)]+粒状性評価値[システム誤差有り(−所定量)}+β×{スジ評価値[システム誤差有り(+所定量)]+スジ評価値[システム誤差有り(−所定量)]}
この画質評価値の計算式における粒状性評価値[システム誤差無し]とは、システム誤差を付加しないシミュレーション画像から算出される粒状性評価値である。粒状性評価値[システム誤差有り(+所定量)]とは、システム誤差としてプラスの(正の)所定量を付加したシミュレーション画像から算出される粒状性評価値である。粒状性評価値[システム誤差有り(−所定量)]とは、システム誤差としてマイナスの(負の)所定量を付加したシミュレーション画像から算出される粒状性評価値である。スジ評価値[システム誤差有り(+所定量)]とは、システム誤差としてプラスの(正の)所定量を付加したシミュレーション画像から算出されるスジ評価値である。スジ評価値[システム誤差有り(−所定量)]とは、システム誤差としてマイナスの(負の)所定量を付加したシミュレーション画像から算出されるスジ評価値である。係数αとβは評価用パラメータであり、係数αは粒状性評価用パラメータ、係数βはスジ評価用パラメータである。システム誤差に対する耐性を高めようとする場合、αやβはより大きな値に設定される。特に、粒状性だけでなく、「スジ」も目立たなくしようとする場合には、βの値を大きくする。既に説明したシステム誤差耐性の優先度に応じて、付加誤差の所定量、付加誤差の種類(濃度、ドット径、ドット形状、吐出曲がり、不吐、着弾干渉)、評価用パラメータとしての係数α及びβが定められる。
付加誤差の所定量は、特性パラメータ取得用チャートの読み取りによって得られるドット濃度、ドット径、ドット形状、吐出曲がり、などの各項目の標準偏差σを用いることができる。付加誤差の所定量として、ドット濃度の標準偏差、ドット径の標準偏差、ドット形状の標準偏差、吐出曲がりの標準偏差のうち少なくとも一つを用いることができ、これらの適宜の組み合わせとすることもできる。
図10のステップS28にて画質評価値を算出し、画質評価値が改善された場合、ハーフトーンパラメータを更新する(ステップS30)。ステップS32では、ステップS22からステップS30の処理を所定回数繰り返し実施したか否かが判定される。ディザ法の場合のステップS32の「所定回数」とは、閾値の候補の全画素数となる。
ステップS32の判定において、所定回数の繰り返し処理が完了していなければ、ステップS22に戻り、ステップS22からステップS30の処理を繰り返す。ステップS32の判定において、所定回数の繰り返し処理が完了したら処理を終了する。
<誤差拡散法の場合>
図10のフローチャートを誤差拡散法のハーフトーンパラメータの生成に適用する例を説明する。誤差拡散法の場合、ハーフトーンパラメータとは、誤差拡散マトリクスのサイズ、拡散係数、及び、各誤差拡散マトリクスの適用階調区間の設定を示す。ここでは説明を簡単にするために、誤差拡散マトリクスのサイズは1種類の共通サイズとする。
図10のフローチャートをすべての適用階調区間について繰り返すことで、各適用階調区間の誤差拡散マトリクスの拡散係数が定められる。
誤差拡散マトリクスの適用階調区間は、例えば、8ビット階調の場合に、0−50、51−100、101−150、151−200、201−256の5段階に分けることができる。適用階調区間の区切り方は様々な定め方が可能であり、2以上の整数mとしてm段階に均等区分してもよいし、不均等な任意の階調領域に区分けしてもよい。
ある階調区間について、該当階調区間に適用する誤差拡散マトリクスの拡散係数を仮設定し(ステップS22)、当該階調区間における各々の階調の入力画像(単一階調の均一画像)にハーフトーン処理を施し(図10のステップS24)、シミュレーション画像を生成し(ステップS26)、画質評価値の算出(ステップS28)を行い、階調毎の各評価値の平均値を画質評価値とする。
ステップS22におけるハーフトーンパラメータの仮設定に際し、誤差拡散マトリクスの拡散係数の初期値は、1/マトリクスサイズとする。所定回数の繰り返しを行う際の、2回目以降の誤差拡散マトリクス係数の仮設定(ステップS22)においては、それまでの最良の誤差拡散マトリクスの各係数に「±所定範囲の乱数」を付加して、係数総和を「1」に規格化することで、仮設定を実施する。
また、隣接階調区間の誤差拡散マトリクスに関する拡散係数の初期値は、既に最適化した隣接階調区間の誤差拡散マトリクスの拡散係数を用いることが好ましい。
ステップS26のシミュレーション画像の生成は、ディザ法の場合と同様にして実施する。画質評価(ステップS28)もディザ法の場合と同様にして実施する。ただし、システム誤差に対する耐性設計を実施する場合、各々の印刷順番、パスやタイミングに属する画素のドットへの誤差付加を、各々実施して、シミュレーション画像を生成し、粒状性やスジ評価値を算出し、その総和を「評価値」とする。例えば、システム誤差有りの粒状性評価値は、以下の式で表される。
粒状性評価値[システム誤差有り]
=粒状性評価値[システム誤差有り(第1グループに「+所定量」誤差付加)]
+ 粒状性評価値[システム誤差有り(第2グループに「+所定量」誤差付加)] + …
+ 粒状性評価値[システム誤差有り(第1グループに「−所定量」誤差付加)]
+ 粒状性評価値[システム誤差有り(第2グループに「−所定量」誤差付加)] + …
ここで第1グループ、第2グループ、…といったグループ分けは、印刷順番 、パス、タイミングのうち少なくとも一つの条件に関して同じ条件に属する画素群を示す。例えば、往復8パスの描画を完成させる作画モードの場合、第1パスで記録される画素群を第1グループ、第2パスで記録される画素群を第2グループ、と順次にグループ分けし、第8パスで記録される画素群を第8グループとすることができる。
グループ分けされた各グループに属する画素対して、付加する誤差の「所定量」はグループ間で同じ値としてもよいし、グループ毎に異なる値としてもよい。また、「+所定量」と「−所定量」は、絶対値が同じであってもよいし、絶対値が異なる値であってもよい。
図12(A)は8回の走査パスで所定の記録解像度の描画を行う作画モードにおける打滴の順番をパスの番号で示したものである。図12(B)は図12(A)で示した作画モードで描画を行う場合の第1パスの画素のドットに所定量の誤差を付加する場合の概念図である。図12(B)では、第1パスで打滴される各画素群のドットに対して、X方向に吐出曲がりの誤差が付与されている。なお、他のパス番号の画素群に対しても同様に誤差を付与することができる。
図13は図12(A)で示した作画モードで描画を行う場合の第3パスの画素のドットについてドット径が所定量だけ小さくなる誤差が付与されている。図13の破線で示したドット径は誤差の無い平均的なドット径を示している。
<ディザ法における他の例>
ディザ法の場合、図10で説明したフローチャートに限らず、公知のボイドアンドクラスタ法(Void-and-Cluster法)を用いてもよい。図14はそのフローチャートである。
まず、ハーフトーンの初期画像を準備する(ステップS42)。ハーフトーンの初期画像の生成方法は、公知のVoid-and-Cluster法に従う。つまり、ある特定階調のシミュレーション画像にフィルタを畳み込んだエネルギー画像において、エネルギー最大値の画素をドットが密なクラスタ画素と見做し、エネルギー最小画素をドットが疎なボイド画素と見做し、クラスタ画素とボイド画素の交換を繰り返すことにより、初期画像が生成される。特定階調としては、例えば、最大濃度の50%程度の階調値とし、0−256階調で表現される画像データにおける階調値「128」の初期画像を生成する。
次に、印刷システムに関する特性パラメータを用いて、ハーフトーン画像からシミュレーション画像を生成する(ステップS44)。シミュレーション画像の生成に関しては、図11で説明した例と同様である。ステップS44で生成したシミュレーション画像に対して、フィルタを畳み込み、ハーフトーン画像のドット未設定の画素のうち、エネルギー最小画素(すなわち、ボイド画素)に閾値を設定し、ハーフトーン画像の当該ボイド画素にドットを設定する(ステップS46)。フィルタを畳み込む際に用いるフィルタとしては、例えばガウシアンフィルタが用いられる。
ステップS48では、全階調について閾値の設定(つまりドットの設定)が完了したか否かが判定され、未完了であれば、ステップS44に戻り、ステップS44、S46の処理が繰り返される。すなわち、ステップS46で、新たにドットが追加されたハーフトーン画像について、シミュレーション画像が生成され(ステップS44)、このシミュレーション画像に対してフィルタを畳み込んだエネルギー画像が生成され、エネルギー最小画素に閾値が設定される(ステップS46)。
ステップS48において、全階調の処理が完了したら、図14の処理を終了する。
図14に示したフローチャートは、初期画像から閾値を増加させていく方向の処理であるが、初期画像から閾値(すなわち階調値)を降下させる方法についても、公知のボイドアンドクラスタ法に従う。つまり、シミュレーション画像にフィルタを畳み込んだエネルギー画像において、ドットが設定されている画素のうち、エネルギー最大の画素をドットが密なクラスタ画素と見做し、閾値を設定すると共に、当該画素のドットを外し、さらに、シミュレーション画像を生成、フィルタの畳み込み、閾値設定とドット外し、という処理を順次に繰り返す。なお、フィルタを畳み込む際に用いるフィルタとしては、例えばガウシアンフィルタが用いられる。
システム誤差に対する耐性設計を実施する場合、図10で説明した例と同様に、現閾値に該当する画素と印刷順番、パス、タイミングの少なくとも一つの条件が同じ条件に属する画素のドットに対して、所定量のドット濃度の誤差、ドット径の誤差、ドット形状の誤差、吐出曲がりの誤差、不吐の誤差のうち少なくとも1種類の誤差を付加してシミュレーション画像を生成し(ステップS44)、フィルタを畳み込む(ステップS46)。
またさらに、スジ耐性の設計を実施する場合には、スジエネルギーとして、シミュレーション画像に、上記の所定量の誤差を付加し、フィルタを畳み込んだ上で主走査方向に積分した一次元のエネルギー(すなわち、スジエネルギー)を算出する。そして、印刷画像全体のエネルギーとして、スジエネルギーの成分を含んだ以下に示す画像評価値が最小となる画素を探索することとなる。
画像評価値=エネルギー [システム誤差無し] +α×{ エネルギー[システム誤差有り(+所定量)] +エネルギー[システム誤差有り(−所定量)] }+β×{スジエネルギー[システム誤差有り(+所定量)] +スジエネルギー[システム誤差有り(−所定量)] }
図10や図14で説明した方法により、ディザ法や誤差拡散法におけるハーフトーンパラメータが決定され、ハーフトーンアルゴリズムとハーフトーンパラメータの組み合わせで特定されるハーフトーン処理規則が生成される。こうして、複数種類のハーフトーン処理規則が生成される。
<ハーフトーン選択用チャートについて>
本実施形態の印刷システム10では、画像処理装置20にて生成された複数種類のハーフトーン処理規則の中から、印刷に用いる1種類のハーフトーン処理規則を選択する際の判断材料を提供するために、ハーフトーン選択用チャートが出力される(図4のステップS16)。
ハーフトーン選択用チャートは、例えばシアン、マゼンタ、イエロー、ブラックなどの1次色や、レッド、グリーン、ブルーなどの2次色、3次色、4次色を所定の階調ステップで並べた階調別のパッチを含むチャートとすることができる。また、ハーフトーン選択用チャートは、各色について所定の階調ステップで階調値を離散的に変えたパッチに代えて、又はこれと組み合わせて、階調値を連続的に変化させたグラデーション画像を含む構成とすることができる。
さらに、ハーフトーン選択用チャートは、空色やペールオレンジ色などの特別な色による所定階調の均一濃度のパッチやグラデーション画像を含む構成とすることができる。「特別な色」の種類については、様々な色を設定することができる。空色やペールオレンジ色は、印刷物において粒状性が特に問題となりやすい色の例である。このように、印刷物において特に重視される色を「特別な色」として設定し、ハーフトーン選択用チャートの画像に含めることができる。
ハーフトーン選択用チャートは、当該チャートに示されるハーフトーン処理の結果から、ユーザーが各ハーフトーン処理の品質を比較して、適切なハーフトーン処理を選択する際の判断材料として利用することができるものである。
複数種類のハーフトーン処理の品質を対比できるようにするため、1枚の印刷媒体に複数種類のハーフトーン処理の処理結果を併置したハーフトーン選択用チャートを生成することが好ましい。
図15はハーフトーン選択用チャートの例を示す模式図である。図15では、1枚の印刷媒体101に2種類のハーフトーン処理規則のそれぞれの処理結果を並べて印刷したハーフトーン選択用チャート150の例が示されている。
図15の左側に示したチャート領域が第1のハーフトーン処理規則(「ハーフトーン1」と表記)の処理結果を示すチャートであり、右側に示したチャート領域が第2のハーフトーン処理規則(「ハーフトーン2」と表記)の処理結果を示すチャートとなっている。
本例のハーフトーン選択用チャート150では2種類のハーフトーン処理規則のそれぞれのハーフトーン処理に関して、C、M、Y、Kの各1次色について、階調値0から256の階調域を「16」刻みで16段階に分けた合計32個の1次色パッチ151、152が並んでいる。
図15では、図示の便宜上、階調ステップの一部を省略して、パッチ数を減じて描いているが、CMYKの各色について、階調値16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、256の各階調値に対応する1次色パッチ151、152が記録される。符号151は、第1のハーフトーン処理規則の処理結果による1次色パッチを示し、符号152は第2のハーフトーン処理規則の処理結果による1次色パッチを示している。
また、ハーフトーン選択用チャート150には、CMYKの各色の1次色パッチ151、152の配列に加え、各色のグラデーション画像161、162と、空色の所定階調による空色パッチ171、172と、ペールオレンジ色の所定階調によるペールオレンジ色パッチ181、182とが含まれている。符号161は、第1のハーフトーン処理規則の処理結果によるグラデーション画像を示し、符号162は第2のハーフトーン処理規則の処理結果によるグラデーション画像を示している。グラデーション画像161、162は、CMYKの各色の1次色について最小階調値から最大階調値までの階調域の範囲で階調値を連続的に変化させた濃淡画像の画像領域である。
符号171は、第1のハーフトーン処理規則の処理結果による空色パッチを示し、符号172は第2のハーフトーン処理規則の処理結果による空色パッチを示している。符号181は、第1のハーフトーン処理規則の処理結果によるペールオレンジ色パッチを示し、符号182は第2のハーフトーン処理規則の処理結果によるペールオレンジ色パッチを示している。
さらに、ハーフトーン選択用チャート150には、各ハーフトーン処理規則についてのシステムコスト、インクコスト、及び処理時間に関する情報が印字されている。
また、図15には示されていないが、1次色パッチ151、152の一部又はすべてについて、粒状性の評価値及び/又はスジの評価値を示す情報がパッチとの関連付けを有して印字されてもよい。パッチとの関連付けを有して情報を印字する方法としては、例えば、パッチに重ねて情報を印字する態様や、パッチの近くに情報を印字する態様などがある。
同様に、空色パッチ171、172やペールオレンジ色パッチ181、182についても同様に、これらのパッチ(171,172,181,182)の一部又はすべてについて、粒状性の評価値の情報及び/又はスジの評価値の情報がパッチとの関連付けを有して印字されてもよい。
ユーザーは、第1のハーフトーン処理規則による処理結果のチャートと、第2のハーフトーン処理規則による処理結果のチャートとを見比べて、好ましいハーフトーン処理規則を選択することができる。
図15に示したハーフトーン選択用チャート150における1次色パッチ151、152、グラデーション画像161、162、空色パッチ171、172、ペールオレンジ色パッチ181、182のそれぞれは、ハーフトーン処理の品質を比較評価するための画像領域であり、「比較評価用画像領域」の一形態に相当する。
図15に例示したハーフトーン選択用チャート150の形態に限らず、様々なチャートの形態があり得る。図15に例示した1次色のグラデーション画像161、162に代えて、又はこれと組み合わせて、2次色、3次色、4次色など、他の色のグラデーション画像を形成してもよい。比較評価用画像領域としてのパッチやグラデーション画像の色種やレイアウトに関しては様々な形態が可能である。
また、ハーフトーン選択用チャートの出力に際しては、ハーフトーン処理のシステム誤差に対する耐性(粒状性の低下やスジ発生の抑制)も評価するために、印刷媒体の描画可能範囲の全面に同じチャートを並べたり、或いは、同じチャートの内容を複数枚出力したりしてもよい。印刷媒体の描画可能範囲の全面に同じチャートを並べる構成は、描画可能範囲内における印刷位置(印刷場所)に依存するシステム誤差に対する耐性を評価する場合に有益である。また、同じチャートの内容を複数枚出力する構成は、経時的なシステム誤差に対する耐性を評価する場合に有益である。「同じチャートの内容」とは、「同じハーフトーン処理結果の画像」の一形態である。印刷媒体の描画可能範囲の全面に同じチャートを並べて出力する構成は、「同じハーフトーン処理結果の画像を、印刷媒体上の異なる位置に複数出力する」という構成の一形態に相当する。同じチャートの内容を複数枚出力する構成は、「同じハーフトーン処理の画像を、異なる印刷タイミングで複数回出力する構成」の一形態に相当する。
同じチャートを時間的にずらして複数枚出力する構成において、同じチャートを連続的に出力する際に、ハーフトーン処理を切り替えて、複数種類のハーフトーン処理に関して、連続的なチャート出力を行うことができる。この場合、同じハーフトーン処理の処理結果の印刷場所(印刷媒体上の印刷位置)は固定することが好ましい。同じハーフトーン処理の処理結果のチャートを複数枚出力する場合に、各印刷媒体の同じ場所に、チャートを印刷することにより、場所に依存するシステム誤差の影響を除外することができる。
同じチャートを空間的にずらして複数出力する構成の場合、1枚の印刷媒体上で隣接するハーフトーン処理結果は、互いに異なる種類のハーフトーン処理の処理結果とすることができる。また、同じチャートを空間的にずらして複数出力する構成の場合、同じハーフトーン処理結果を同じ1枚の印刷媒体に収める構成とすることができる。これによって、経時のシステム誤差の影響を除外することができる。
また、図15で説明したように、ユーザーによる判断や選択に有益な情報として、ハーフトーン処理の処理結果を示す画像のみならず、これに加えて、粒状性やスジ の定量評価値、システムコスト、インクコスト、ハーフトーン生成時間、ハーフトーン処理時間などのうち少なくとも一つの情報を、ハーフトーン選択用チャートの印刷物に印字してもよい。「システムコスト」は、例えば、要求されるハーフトーン処理時間に収めるために必要とされるシステム仕様の実現に要する機能強化のための追加的なオプションのコストとして示される。「インクコスト」については、ハーフトーンの種類によってインクの使用量に若干の差が生じるため、同じ画像内容を所定枚数印刷した場合のハーフトーン種類毎のインク使用量からインクコストが計算され、その情報が提示される。システムコストとインクコストのうち少なくとも一方が「コスト」に相当する。
ハーフトーン処理の処理結果に関する粒状性やスジの定量評価値、システムコスト、インクコスト、ハーフトーン生成時間、ハーフトーン処理時間などのうち少なくとも一つの情報は、ハーフトーン選択用チャートの出力時に印字して提示する構成に代えて、又はこれと組み合わせて、ユーザーインターフェースの画面に表示させる構成とすることができる。このような定量評価に関する評価値の情報をハーフトーン選択用チャートとともに印字するための構成や、ユーザーインターフェースの画面に表示させる構成が「情報提示手段」の一形態に相当する。すなわち、画像処理装置20の表示装置32(図2、図3参照)は「情報提示手段」として機能し得る。
粒状性やスジの定量評価値は、ハーフトーン選択用チャートのハーフトーン処理結果から既述した方法でシミュレーション画像を生成して、粒状性評価値やスジ評価値を算出してもよいし、ハーフトーン選択用チャートの出力結果をインラインスキャナ等の画像読取装置26で読み取り、その読取画像から粒状性評価値やスジ評価値を算出してもよい。
なお、ハーフトーン選択用チャートに関するシミュレーション画像の生成には、システム誤差に対する耐性も評価するために、各々の印刷順番、パスやタイミングのうち少なくとも一つの条件が同一の条件に属する画素群のドットへの所定量の誤差の付加を各々実施してシミュレーション画像を生成することを含む。
シミュレーション画像から粒状性やスジの定量評価値を算出する場合には、その算出した値をハーフトーン選択用チャートの印刷物に印字することができる。
一方、ハーフトーン選択用チャートの出力結果を読み取って、その読取画像から粒状性やスジの定量評価値を算出する場合には、その算出結果をユーザーインターフェースの画面に表示させることができる。ユーザーはユーザーインターフェースの画面に表示される定量評価値を参照し、かつ、ハーフトーン選択用チャートの印刷物を確認して、適切なハーフトーン処理を選択することができる。
また、他の方法として、ハーフトーン選択用チャートの出力結果を読み取って、その読取画像から粒状性やスジの定量評価値を算出する場合には、当該読み取りを実施したハーフトーン選択用チャートに対して、その算出結果を追加印字する構成としてもよいし、或いは、読み取りを実施したハーフトーン選択用チャートの出力後に、同じハーフトーン選択用チャートを出力する際に、既に算出してある粒状性やスジの定量評価値を印字する構成としてもよい。
粒状性やスジの定量評価値の情報を提示する場合に、ユーザーに対して、特に、注意を喚起する必要のある評価値の差異や、評価値が変動しているパッチの部分について、画面上や印刷物上で強調表示を行う態様も好ましい。
例えば、時間的に印刷タイミングをずらして複数枚のハーフトーン選択用チャートを出力して、経時変化による変動を確認する場合、ハーフトーン選択用チャートの読取画像から算出される定量評価値の変化が許容範囲を超えて大きいものについて、その旨をユーザーに注意喚起する強調表示を行う態様がある。この場合、定量評価値の履歴をメモリに保存し、定量評価値の変化量が許容範囲を超えた場合に、差別化表示その他の強調表示を行う。
また、経時的なシステム誤差、つまり時間に対するシステムの不安定性についてのハーフトーン選択用チャートによる確認の他、印刷媒体上の印刷位置(場所)に依存するシステム誤差、つまり空間(場所)に対するシステムの不安定性についてハーフトーン選択用チャートによる確認を行うこともできる。この場合も、場所の違いによる定量評価値の差が許容範囲を超えて大きいものについて、その旨をユーザーに注意喚起する強調表示を行う態様がある。
また、ユーザーの選択操作によって、又は、システムの自動選択によって、一つのハーフトーン処理規則が選択された後に、要求項目の第1分類(a)及び第2分類(b)の優先度バランスが、この選択されたハーフトーン処理規則と近い、他のハーフトーン処理規則をさらに複数生成して優先度パラメータに基づいて画質評価値や総合評価値を算出し、又はハーフトーン選択用チャートを出力し、これらを含めてシステム又はユーザーがさらに最適なハーフトーン処理規則を選択できるようにしてもよい。システムが自動的にハーフトーン処理を選択する場合、画質評価値や総合評価値が所定の閾値以上になるまで、ハーフトーン処理規則の生成を繰り返してもよい。
<DBS法によるハーフトーン選択用チャートの生成方法について>
図16はDBS法によるハーフトーン選択用チャートのハーフトーン画像を生成する手順を示したフローチャートである。DBS法の場合、既に決めたハーフトーンパラメータに基づき、ハーフトーン選択用チャートのハーフトーン画像を図16のフローチャートに従い取得する。
まず、ハーフトーンの初期画像を準備する(ステップS52)。ハーフトーンの初期画像は、ハーフトーン選択用チャートに対して、別途、簡易に生成したディザマスク、又は図4のステップS14で生成したディザ法のハーフトーン処理規則によるディザ処理をかけることにより生成される。
次いで、ハーフトーン画像におけるドットを置き換える処理を行う(図16のステップS54)。そして、ドットの置き換え前と、置き換え後のそれぞれに関し、印刷システムの特性に関する特性パラメータを用いてシミュレーション画像を生成する(ステップS56)。生成したシミュレーション画像について画質評価を行い(ステップS58)、置き換えの前後で評価値が改善された場合はハーフトーン画像を更新する(ステップS60)。ステップS58における画質評価に際して算出される画質評価値は、シミュレーション画像にガウシアンフィルタなどのローパスフィルタや人の視覚感度を表す視覚伝達関数(VTF)をかけた上で入力画像との誤差(差分)を算出して得られる。
予め設定されている「画素更新回数」に従い、所定回数のドットの置き換えを行い、ステップS54からステップS60の処理を繰り返す。
ステップS62において、所定回数のドットの置き換えの処理を完了したか否かが判定され、所定回数の処理が未完了の場合は、ステップS54に戻り、ステップS54からステップS60の処理を繰り返す。ステップS62において、所定回数の処理が完了したと判定された場合は、本処理を終了する。
<着弾干渉の影響による画質劣化を補償する手段について>
これまで、図10、図14のフローチャートで表されるディザ法及び誤差拡散法のそれぞれのハーフトーンパラメータ生成、又は、図16のフローチャートで表されるDBS(Direct Binary Search)法のハーフトーン処理において、着弾干渉の影響を加味して良好なハーフトーン処理結果を得るために、着弾干渉まで含めたシミュレーション画像を生成することを前提として説明してきた。しかしながら、着弾干渉のシミュレーションには多大な時間を要し、シミュレーション精度も課題であることから、シミュレーションを実施せずに、簡易な方法で着弾干渉の影響による画質劣化を補償できることが望ましい。かかる観点から、ドット接触時の着弾干渉による画質劣化を補償する手段を備えた構成とすることも望ましい形態の一つである。
例えば着弾干渉の影響による粒状性劣化を補償するために、各画素のドットについて周囲ドットの種類、接触方向や接触量に基づき移動方向や移動量を概算し、該移動方向及び/又は移動量に基づき各ドットを同じ移動方向及び/又は同じ移動量の小グループに分類し、各小グループの粒状性を良好に保ってハーフトーンパラメータ生成、又はハーフトーン処理を行ってもよい。またさらに、ドット径、ドット形状、吐出曲りの誤差が有る場合の着弾干渉によるスジ、ムラ発生および粒状性劣化を補償するために同一の印刷順番、パスやタイミングに属する画素のグループのドットに所定のドット径、ドット形状、吐出曲りのうち少なくとも一つの誤差を付加した上で、該グループの各画素のドットについて周囲ドットの種類、接触方向や接触量に基づき移動方向や移動量を概算し、該移動方向及び/又は移動量に基づき各ドットを同じ移動方向及び/又は同じ移動量の小グループに分類し、各小グループの粒状性を良好に保ってハーフトーンパラメータ生成、又はハーフトーン処理を行ってもよい。
或いはまた、ドット径、ドット形状、吐出曲りのうち少なくとも一つの誤差が有る場合の着弾干渉によるスジ、ムラ発生及び粒状性劣化を補償するために、同一の印刷順番、パスやタイミングに属する画素のグループのドットに所定のドット径、ドット形状、吐出曲りのうち少なくとも一つの誤差を付加しても、該グループのドットの周囲ドットとの接触状態の変化が少なくなるようにハーフトーンパラメータ生成、又はハーフトーン処理を行ってもよい。
<ハーフトーン選択用チャートを出力する意義>
ハーフトーン選択用チャートは、2種類以上のハーフトーン処理規則の処理結果を比較するために出力するという第1の意義と、システムの不安定性を確認するために出力するという第2の意義と、の少なくとも一方の意義を有している。1枚の印刷媒体101に2種類以上のハーフトーン処理規則の処理結果を併置するチャート構成は第1の意義において有益なものである。その一方で、第2の意義に注目する場合には、必ずしも1枚の印刷媒体101に2種類以上のハーフトーン処理規則の処理結果を併置する必要性はない。むしろ、場所に依存するシステムの不安定性を確認する目的や時間に対するシステムの不安定性を確認する目的に対しては、1枚の印刷媒体101において1種類のハーフトーン処理規則の処理結果のみを記録するチャート形態とすることもあり得る。
<2種類以上のハーフトーン処理規則の生成とそれらの処理結果の比較について>
本実施形態では、少なくとも2種類のハーフトーン処理規則を生成するが、より好ましくは2種類よりも多くのハーフトーン処理規則を生成する構成とする。
図17は横軸を画質、縦軸をシステムコスト又はハーフトーン処理時間とした場合の各種ハーフトーン処理規則の定性的な傾向を示したグラフである。ディザ法、誤差拡散法、DBS法のそれぞれのハーフトーンアルゴリズムについて、相対的に比較すると、画質については、ディザ法、誤差拡散法、DBS法の順に高画質化してゆき、システムコストやハーフトーン処理時間に関しては、ディザ法、誤差拡散法、DBS法の順に高コスト化、長時間化してゆく。ただし、ディザ法、誤差拡散法、DBS法のそれぞれのアルゴリズムの中でも、ハーフトーンパラメータの設定次第で、画質やシステムコスト/ハーフトーン処理時間のバランスを変えることができる。
要求項目のバランスが異なる様々な種類のハーフトーン処理の設定が可能であるが、図17に示す例では、ディザ法、誤差拡散法、DBS法のそれぞれについて、「画質」のレベルを低/中/高の3段階に異ならせた合計9種類の設定が行われる様子が示されている。図17におけるD1,D2,D3はディザ法における3種類の設定を示しており、ED1,ED2,ED3は誤差拡散法における3種類の設定を示しており、DBS1,DBS2,DBS3はDBS法における3種類の設定を示している。
また、図17で説明したハーフトーンアルゴリズムに依存した各要求項目に対する得失とは別に、図18に示すように、ハーフトーンアルゴリズムによらず、一つのパラメータで粒状性をよくすると、システムの不安定性に対する耐性が悪くなるという傾向がある。
図18の横軸は粒状性、縦軸はシステムの不安定性に対する耐性を示している。図18では、システムの不安定性に対する耐性としては、粒状性の耐性と、スジの耐性の両方の視点があるが、両者ともに、同じような定性的な傾向がある。図18では粒状性の耐性についてのみ示した。すなわち、図18に示すように、粒状性を高めると、システムの不安定性に対する耐性が悪くなり、スジの耐性も低下するという傾向が見られる。逆に、粒状性を犠牲にすると、システム不安定性に対する耐性が向上し、スジの耐性も向上する、という関係にある。
システムの不安定性に対する耐性の設定例として、例えば、耐性のレベルを高/中/低の3段階に異ならせた3種類の設定を行うことが考えられる。図18のT1,T2,T3はシステムの不安定性に対する耐性についての3種類の設定を示している。
図17及び図18で説明した定性的な傾向を基に、ハーフトーン処理に対する複数の要求項目のバランスが異なる2種類以上のハーフトーン処理規則が生成される。例えば、図17で説明した9種類の設定と図18で説明した粒状性の耐性に関する3種類の設定の組み合わせによる合計27種類のハーフトーン処理規則をデフォルトで生成する構成とすることができる。
27種類のハーフトーン処理規則のそれぞれの処理結果によるハーフトーン選択用チャートを出力して、それらの中からユーザーに一つのハーフトーン処理規則を選択させる構成とすることができる。
また、他の方法として、ユーザーが要求項目に対する優先度の設定を指定し、その優先度の設定に近い、2種類又は数種類のハーフトーン処理規則を生成するなどして、予めユーザーの意向を反映させて、ハーフトーン処理の種類の提示範囲を絞り込んでもよい。
例えば、画質重視の設定が指定されている場合には、DBS法か誤差拡散法に絞られ、画質かつコストバランスを重視する設定の場合には誤差拡散法、コスト重視の設定であればディザ法というように、予めハーフトーンアルゴリズムの種類を制約して、ハーフトーン処理規則を生成してもよい。
また、要求項目のうち、ハーフトーン処理時間やコストについては、ある程度、目標とする定量的な要求値が予め想定されていることが多い。すなわち、ユーザーは、生産性などの要求から、目標とするハーフトーン処理時間やコストについて、目標値を事前に設定することができるケースが多いと考えられる。
したがって、そのようなユーザー側の要求(目標値)を満たす範囲で、27種類の中から複数のハーフトーン処理規則を選び、実際にハーフトーン選択用チャートとして出力する態様も可能である。
<ハーフトーン処理の選択について>
2種類以上のハーフトーン処理規則の中から一つのハーフトーン処理規則を選択する方法として、ハーフトーン選択用チャートのチャート出力を確認して、ユーザーがいずれか1のハーフトーン処理を選択する構成とする形態に限らず、システムが自動的に一つのハーフトーン処理を選択する構成とすることも可能である。
この場合、システムは、複数の要求項目に対する優先度パラメータを予め保持している。例えば、第1分類(a)に関し、画質、システムコスト、ハーフトーン生成時間、第2分類に関して、粒状性、システム誤差に対する耐性、という要求項目があり、システムは以下の優先度パラメータA,B,C,D及びp,q,rを予め保持しており、以下の式によって総合評価値を算出する。
総合評価値=A×画質評価値+B×システムコスト+C×ハーフトーン生成時間+D×ハーフトーン処理時間
画質評価値=p×粒状性評価値[システム誤差無し]+q×{粒状性評価値[システム誤差有り(第1グループに「+所定量」の誤差付加)]+ 粒状性評価値[システム誤差有り(第2グループに「+所定量」の誤差付加)] + …+ 粒状性評価値[システム誤差有り(第1グループに「−所定量」の誤差付加)]+ 粒状性評価値[システム誤差有り(第2グループに「−所定量」の誤差付加)] + …} +r×{スジ評価値[システム誤差有り(第1グループに「+所定量」の誤差付加)]+ スジ評価値[システム誤差有り(第2グループに「+所定量」の誤差付加)] + …+ スジ評価値[システム誤差有り(第1グループに「−所定量」の誤差付加)]+ スジ評価値[システム誤差有り(第2グループに「−所定量」の誤差付加)] + … }
ここで画質評価値を得るために、ハーフトーン選択用チャートのハーフトーン処理結果から、既述した方法でシミュレーション画像を生成して、粒状性評価値やスジ評価値を算出し、適宜、各色、各階調や空色、ペールオレンジ色に関して、評価値の値を平均化する。
各インク種に対しては、粒状性評価値やスジ評価値を平均化してもよいし、しなくてもよい。シミュレーション画像の生成には、システム誤差に対する粒状性やスジ評価値も得るために、各々の印刷順番、パスやタイミングが同一の条件に属する画素群(グループ)のドットへの誤差付加を各々実施してシミュレーション画像を生成することを含む。
また、付加する誤差の所定量(つまり所定誤差量)は、別途、適宜の値を決めておいてもよいし、特性パラメータ取得用チャートの読み取り結果から算出される標準偏差等であってもよい。優先度パラメータA,B,C,D,p,q,rはそれぞれ、優先度を表す実数が設定される。
なお、2種類以上のハーフトーン処理規則を生成するハーフトーン処理生成の際に適用するシミュレーション条件と、2種類以上のハーフトーン処理規則の中から一つのハーフトーン処理規則を自動的に選択するハーフトーン自動選択におけるシミュレーション画質評価の際に適用するシミュレーション条件は必ずしも一致しない。例えば、ハーフトーン処理生成におけるシミュレーションは、ハーフトーン処理規則の生成を速やかに実施するために、着弾干渉のファクターを含めない条件で、又は着弾干渉のファクターのうち「ドット移動」のみを考慮してシミュレーションする条件で実施し、ハーフトーン自動選択におけるシミュレーションは、なるべく現実の画像を忠実に再現するために、着弾干渉によるドット移動、ドット形状及びドット濃度のそれぞれの変化のすべてを含めてシミュレーションを実施してもよい。ここで「ハーフトーン処理生成」とは、ハーフトーンアルゴリズムがディザ法や誤差拡散法の場合にはハーフトーンパラメータの生成を示し、DBS法の場合にはハーフトーン画像の生成を示す。
或いはまた、上記のシミュレーション画像に基づく評価値の算出に代えて、印刷装置24により出力したハーフトーン選択用チャートを画像読取装置26で読み取り、その読取画像から粒状性評価値やスジ評価値を算出して、適宜、各色、各階調、空色、ペールオレンジ色に関して評価値の値を平均化して、以下の式により画質評価値を得てもよい。
画質評価値=p×粒状性評価値+r×スジ評価値
また、画質評価値、システムコスト、ハーフトーン生成時間、ハーフトーン処理時間及び粒状性評価値[システム誤差無し]、粒状性評価値[システム誤差有り]、スジ評価値のそれぞれに対して、各々許容閾値を設定しておき、各値が閾値以上となるハーフトーン処理規則をまず抽出し、その中で上記の総合評価値に基づいて、最適なハーフトーン処理を決定してもよい。
例えば、システムコストがなるべく低いハーフトーン処理を決定したい場合、画質評価値、システムコスト、ハーフトーン生成時間、ハーフトーン処理時間及び粒状性評価値[システム誤差無し]、粒状性評価値[システム誤差有り]、スジ評価値のそれぞれについて、各々の許容閾値以上となるハーフトーン処理をまず抽出した後に、優先度パラメータBを大きい値に設定して総合評価値を得る方法となる。
優先度パラメータの設定に従い、システムによって一つのハーフトーン処理規則を自動的に選択(決定)する構成とした場合であっても、その自動選択によって決定されたハーフトーン処理規則を、その後、ユーザーが適宜変更することができる構成としてもよい。また、ユーザー操作やシステムのプログラムにより、優先度パラメータの設定を変更して、ハーフトーン処理規則を選択し直すことができるように、画像処理装置20にて生成された各種のハーフトーン処理規則をラインアップとして登録しておくことが好ましい。
さらに、それぞれのハーフトーン処理規則に関する粒状性やスジの定量評価値、ハーフトーン生成時間、ハーフトーン処理時間、システムコストなどの情報についても、必要に応じて参照できるように、これらの情報をハーフトーン処理規則と関連付けて保存しておくことが好ましい。
印刷装置24で使用するインクの色毎に、つまり、インク種毎に、画質評価値、システムコスト、ハーフトーン生成時間、ハーフトーン処理時間を算出して、インク種毎に異なるハーフトーンアルゴリズム、ハーフトーンパラメータを選択してもよいし、全色で画質評価値、システムコスト、ハーフトーン生成時間、ハーフトーン処理時間を算出して、全色に同じ共通のハーフトーンアルゴリズム、ハーフトーンパラメータを選択してもよい。
<システム構成のバリエーション>
印刷システムの特性に関する特性パラメータを取得する手段、つまり、ユーザーが特性パラメータを入力するための装置、特性パラメータ取得用チャートを出力するためのチャート出力制御装置とその制御にしたがって特性パラメータ取得用チャートを印刷する印刷装置、さらには、特性パラメータ取得用チャートを読み取ってその読取画像の解析結果を基に特性パラメータを取得する装置、2種類以上のハーフトーン処理規則を生成する装置、ハーフトーン選択用チャートを出力するためのチャート出力制御装置、ハーフトーン選択用チャートのハーフトーン処理結果からシミュレーション画像を生成する装置、ハーフトーン選択用チャートの出力結果を読み取り、そのチャート読取画像から画像評価値を計算する装置、ユーザーがハーフトーン処理規則を選択する操作を行うための装置、など、それぞれの装置は、一体型のシステムで構成されていてもよいし、複数のシステムが組み合わされた、機能分散型の分離型のシステムで構成されていてもよい。
[システム構成の変形例1]例えば、特性パラメータを取得する処理を行う装置と、ハーフトーン処理規則を生成する処理を行う装置とをそれぞれ別々の装置で構成することができる。
[システム構成の変形例2]また、ハーフトーン選択用チャートを出力する処理を行う装置と、ユーザーがハーフトーン処理の選択操作を行うための装置とをそれぞれ別々の装置で構成することができる。
[システム構成の変形例3]また、特性パラメータの取得の処理を行う装置と、優先度パラメータを保持してハーフトーン処理規則を生成する処理を行う装置とをそれぞれ別々の装置で構成することができる。
[システム構成の変形例4]他の構成例として、特性パラメータ取得用チャートを出力する処理を行う装置と、出力された特性パラメータ取得用チャートの読み取りを行う画像読取装置と、特性パラメータ取得用チャートの読取画像から特性パラメータの生成と取得の処理を行う装置と、取得された特性パラメータを用いてハーフトーン処理規則を生成する処理を行う装置と、をそれぞれ別々の装置で構成することができる。
また、例えば、特性パラメータ取得用チャートやハーフトーン選択用チャートの出力と、そのチャートの画像読み取りの処理を、印刷機メーカーの工場や印刷会社の個々のローカルな印刷システムで行い、得られた読取画像を一括して、開発部門や別会社の印刷機メーカーのサーバーに送付した後に、特性パラメータの取得と、ハーフトーン処理規則の生成を、その開発部門や別会社のシステムで実施し、生成したハーフトーン処理規則を、元の個々のローカルな印刷システムに送り返す、という運用形態も可能である。
<コンピュータを画像処理装置として機能させるプログラムについて>
上述の実施形態で説明した画像処理装置として、コンピュータを機能させるためのプログラムをCD−ROM(Compact Disc Read-Only Memory)や磁気ディスクその他のコンピュータ可読媒体(有体物たる非一時的な情報記憶媒体)に記録し、該情報記憶媒体を通じて当該プログラムを提供することが可能である。このような情報記憶媒体にプログラムを記憶させて提供する態様に代えて、インターネットなどの通信ネットワークを利用してプログラム信号をダウンロードサービスとして提供することも可能である。
このプログラムをコンピュータに組み込むことにより、コンピュータに画像処理装置20の機能を実現させることができる。また、本実施形態で説明した画像処理機能を含む印刷制御を実現するためのプログラムの一部又は全部をホストコンピュータなどの上位制御装置に組み込む態様や、印刷装置24側の中央演算処理装置(CPU)の動作プログラムとして適用することも可能である。
<<印刷媒体について>>
「印刷媒体」には、印字媒体、被印刷媒体、被画像形成媒体、受像媒体、被吐出媒体、記録用紙、など様々な用語で呼ばれるものが含まれる。本発明の実施に際して、印刷媒体の材質や形状等は、特に限定されず、連続用紙、カット紙、シール用紙、OHP(overhead projector)シート等の樹脂シート、フィルム、布、不織布、配線パターン等が形成されるプリント基板、ゴムシート、その他材質や形状を問わず、様々なシート体を用いることができる。
<他の実施形態について>
上述の実施形態では、印刷システムの特性パラメータを基に、当該印刷システムにおいて2種類以上のハーフトーン処理規則を生成する構成を説明したが、本発明の実施に際しては、ハーフトーン処理規則の生成機能を具備しないシステム構成の形態も可能である。
すなわち、図1から図14で説明した印刷システム10において、印刷システムの特性に関する特性パラメータを取得するための手段や、複数の要求項目に対する優先度のバランスの異なる2種類以上のハーフトーン処理規則を生成するための手段を省略した構成も可能である。この場合、印刷システムにおいて、予め要求項目の優先度のバランスが異なる2種類以上のハーフトーン処理規則を備えており、当該2種類以上のハーフトーン処理規則を用いてハーフトーン選択用チャートを出力して、ユーザー選択に基づきハーフトーン処理を決定する構成とすることができる。
<実施形態の利点>
本発明の実施形態によれば、印刷システムによってハーフトーン選択用チャートが出力され、当該印刷システムによる2種類以上のハーフトーン処理の処理結果を実際に印刷物として確認することができる。ユーザーはハーフトーン選択用チャートの印刷結果を確認した上で、印刷に使用する一つのハーフトーン処理規則を選択することができる。これにより、印刷システムの特性に適合し、かつユーザーが求めるハーフトーン性能を満たす最適なハーフトーン処理を決定することができる。
以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有するものにより、多くの変形が可能である。
10…印刷システム、20…画像処理装置、24…印刷装置、26…画像読取装置、32…表示装置、34…入力装置、52…特性パラメータ取得部、54…特性パラメータ記憶部、56…優先度パラメータ保持部、58…ハーフトーン処理生成部、60…ハーフトーン処理規則記憶部、62…特性パラメータ取得用チャート生成部、64…画像解析部、70…評価値演算部、74…画質評価処理部、76…ハーフトーン選択用チャート生成部、100…特性パラメータ取得用チャート、101…印刷媒体、150…ハーフトーン選択用チャート、151,152…1次色パッチ

Claims (16)

  1. ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートを出力するハーフトーン選択用チャート出力手段と、
    前記ハーフトーン選択用チャート出力手段により出力された前記ハーフトーン選択用チャートに用いられた前記2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作手段と、
    を備える印刷システム。
  2. 前記ハーフトーン選択用チャートは、前記2種類以上のハーフトーン処理のそれぞれの処理結果を示すハーフトーン処理の種類毎の前記比較評価用画像領域を1枚の印刷媒体の中に併置した構成を有する請求項1に記載の印刷システム。
  3. 前記ハーフトーン処理の画質、コスト、ハーフトーン生成時間、及び、ハーフトーン処理時間のうち少なくとも一つの項目を定量評価する評価値を算出する評価値算出手段を備え、
    前記ハーフトーン選択用チャート出力手段は、前記評価値の情報を前記ハーフトーン選択用チャートに付して出力する請求項1又は2に記載の印刷システム。
  4. 前記ハーフトーン選択用チャート出力手段は、同じハーフトーン処理結果の画像を、異なる印刷タイミングで複数回出力する請求項1から3のいずれか1項に記載の印刷システム。
  5. 前記ハーフトーン選択用チャート出力手段は、同じハーフトーン処理結果の画像を、印刷媒体上の異なる位置に複数出力する請求項1から4のいずれか1項に記載の印刷システム。
  6. 前記2種類以上のハーフトーン処理のそれぞれの処理内容を規定するハーフトーン処理規則は、当該印刷システムの特性に関する特性パラメータに基づいて生成される請求項1から5のいずれか1項に記載の印刷システム。
  7. 前記ハーフトーン処理規則は、ハーフトーンアルゴリズムとハーフトーンパラメータとの組み合わせによって特定され、
    前記2種類以上のハーフトーン処理のそれぞれは互いに、ハーフトーンアルゴリズム、及び、ハーフトーンパラメータのうち少なくとも一方が異なるものである請求項6に記載の印刷システム。
  8. 前記ハーフトーンアルゴリズムには、ディザ法、誤差拡散法、及び、ダイレクトバイナリーサーチ法のうち少なくとも一つの手法が含まれる請求項7に記載の印刷システム。
  9. 前記ハーフトーンパラメータには、ディザ法におけるディザマスクのサイズ及び閾値、誤差拡散法における誤差拡散マトリクスのサイズ及び拡散係数及び各誤差拡散マトリクスの適用階調区間の設定、ダイレクトバイナリーサーチ法における画素の更新回数及び交換画素範囲、システム誤差耐性の評価用パラメータのうち少なくとも一つのパラメータが含まれる請求項7又は8に記載の印刷システム。
  10. 前記印刷システムは、印刷媒体に対するドットの形成を担う複数の印刷素子を有する画像形成部を有し、
    前記印刷システムの特性は、前記複数の印刷素子の個別の記録特性、及び、前記複数の印刷素子に共通の特性のうち少なくとも一つを含む特性である請求項6から9のいずれか1項に記載の印刷システム。
  11. 前記記録特性は、ドット濃度、ドット径、ドット形状、ドットの記録位置誤差、及び、記録不能異常のうち少なくとも一つを含む特性である請求項10に記載の印刷システム。
  12. 前記共通の特性は、平均ドット濃度、平均ドット径、平均ドット形状、及び、着弾干渉のうち少なくとも一つを含む特性である請求項10又は11に記載の印刷システム。
  13. 前記複数の要求項目には、画質、コスト、ハーフトーン生成時間、ハーフトーン処理時間、システム誤差に対する耐性、及び、環境変動に対する耐性のうち少なくとも二つの項目が含まれる請求項1から12のいずれか1項に記載の印刷システム。
  14. ハーフトーン画像の生成に用いるハーフトーン処理の種類を決定するハーフトーン処理決定方法であって、
    ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートを出力するハーフトーン選択用チャート出力工程と、
    前記ハーフトーン選択用チャート出力工程により出力された前記ハーフトーン選択用チャートに用いられた前記2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作工程と、
    を含むハーフトーン処理決定方法。
  15. ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートのチャートデータを生成するハーフトーン選択用チャート生成手段と、
    前記チャートデータに基づいて印刷された前記ハーフトーン選択用チャートに用いられた前記2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作手段と、
    を備える画像処理装置。
  16. コンピュータを、
    ハーフトーン処理に要求される複数の要求項目に対する優先度のバランスが異なる2種類以上のハーフトーン処理を用いて、それぞれのハーフトーン処理の品質の比較評価用画像領域を含むハーフトーン選択用チャートのチャートデータを生成するハーフトーン選択用チャート生成手段と、
    前記チャートデータに基づいて印刷された前記ハーフトーン選択用チャートに用いられた前記2種類以上のハーフトーン処理の中からいずれかのハーフトーン処理の種類を選択するユーザーの操作を受け付けるハーフトーン選択操作手段として機能させるためのプログラム。
JP2014066006A 2014-03-27 2014-03-27 印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム Active JP6066954B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014066006A JP6066954B2 (ja) 2014-03-27 2014-03-27 印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム
PCT/JP2015/059347 WO2015147151A1 (ja) 2014-03-27 2015-03-26 画像処理装置及び方法、印刷システム、ハーフトーン処理決定方法、並びにプログラム
EP18198029.3A EP3445030B1 (en) 2014-03-27 2015-03-26 Image processing device and method, printing system, halftone process determination method, and program
EP15769136.1A EP3125522B1 (en) 2014-03-27 2015-03-26 Image processing device and method, printing system, halftone process determination method, and program
EP20207479.5A EP3799410B1 (en) 2014-03-27 2015-03-26 Image processing device and method, printing system, halftone process determination method, and program
US15/276,286 US9860423B2 (en) 2014-03-27 2016-09-26 Image processing device and method, printing system, halftone process determination method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066006A JP6066954B2 (ja) 2014-03-27 2014-03-27 印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム

Publications (3)

Publication Number Publication Date
JP2015192182A JP2015192182A (ja) 2015-11-02
JP2015192182A5 JP2015192182A5 (ja) 2016-06-23
JP6066954B2 true JP6066954B2 (ja) 2017-01-25

Family

ID=54426404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066006A Active JP6066954B2 (ja) 2014-03-27 2014-03-27 印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム

Country Status (1)

Country Link
JP (1) JP6066954B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673560B2 (ja) * 1995-06-22 2005-07-20 キヤノン株式会社 画像処理方法
JP2001158133A (ja) * 1999-12-02 2001-06-12 Ricoh Co Ltd 画像出力装置のキャリブレーション方法
JP4047097B2 (ja) * 2002-08-09 2008-02-13 株式会社リコー 画像形成装置、画像形成方法およびその方法をコンピュータに実行させる画像形成プログラム
JP4412169B2 (ja) * 2004-12-28 2010-02-10 セイコーエプソン株式会社 画像処理装置、画像処理方法、プログラム、および記録媒体
JP5977526B2 (ja) * 2012-01-30 2016-08-24 オリンパス株式会社 画像処理装置及び画像処理方法

Also Published As

Publication number Publication date
JP2015192182A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6062979B2 (ja) 画像処理装置及び方法、インクジェット印刷システム、並びにプログラム
WO2015147151A1 (ja) 画像処理装置及び方法、印刷システム、ハーフトーン処理決定方法、並びにプログラム
US11338591B1 (en) Defective nozzle correction mechanism
JP2020138541A (ja) インク堆積均一性補償機構
EP2629978B1 (en) Image processing apparatus and image processing method
US11758074B2 (en) Color uniformity compensation mechanism
US11570311B2 (en) Defective nozzle correction mechanism using missing neighbor threshold lowering function
US11636296B1 (en) Print artifact compensation mechanism
US11734536B2 (en) Color uniformity compensation mechanism
JP6527558B2 (ja) 印刷システム、ハーフトーン処理規則の生成方法、画像処理装置及びプログラム
JP6132798B2 (ja) 画像処理装置及び方法、印刷システム並びにプログラム
JP6066954B2 (ja) 印刷システム、ハーフトーン処理決定方法、画像処理装置及びプログラム
JP6261416B2 (ja) 画像処理装置及び方法、印刷システム並びにプログラム
JP6276680B2 (ja) 画像処理装置及び方法、プログラム、並びに印刷システム
JP2016049768A (ja) 印刷システム及び管理装置並びに管理方法
US11734537B1 (en) Print artifact compensation mechanism
US10425558B2 (en) Methods and systems for processing documents using multiple halftone screening techniques
EP3499860B1 (en) Printing system, method of generating halftone processing rule, method of acquiring characteristic parameter, image processing device, image processing method, halftone processing rule, halftone image, method of manufacturing printed material, inkjet printing system, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250