JP5822077B2 - Continuous annealing method for steel sheet - Google Patents
Continuous annealing method for steel sheet Download PDFInfo
- Publication number
- JP5822077B2 JP5822077B2 JP2012279259A JP2012279259A JP5822077B2 JP 5822077 B2 JP5822077 B2 JP 5822077B2 JP 2012279259 A JP2012279259 A JP 2012279259A JP 2012279259 A JP2012279259 A JP 2012279259A JP 5822077 B2 JP5822077 B2 JP 5822077B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- annealing
- temperature
- steel plate
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 125
- 239000010959 steel Substances 0.000 title claims description 125
- 238000000137 annealing Methods 0.000 title claims description 63
- 238000000034 method Methods 0.000 title claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 38
- 230000006698 induction Effects 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 description 22
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 9
- 238000002791 soaking Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000010793 Steam injection (oil industry) Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
本発明は、鋼板の連続焼鈍方法に関し、具体的には、Siを多量に含有する鋼板を連続焼鈍するのに好適な鋼板の連続焼鈍方法に関するものである。 The present invention relates to a method for continuously annealing a steel sheet, and specifically to a method for continuously annealing a steel sheet suitable for continuously annealing a steel sheet containing a large amount of Si.
近年、高強度鋼板の自動車用鋼板等への適用拡大に伴い、薄鋼板における高強度鋼板の占める割合が増加している。現在、この高強度鋼板は、連続焼鈍プロセスで製造するが主流である。
図1は、従来の連続焼鈍設備の構成例を示したものであり、入側設備のペイオフリール2で巻き戻された鋼板1は、入側ルーパ3を経た後、加熱帯4、均熱帯5、冷却帯6および過時効帯7から構成される焼鈍炉8で熱処理を施された後、出側ルーパ9を経て、出側設備のテンションリール10に巻き取られる構成となっている。なお、上記加熱帯4および均熱帯5は、炉内が還元性雰囲気に保持されているため、還元帯とも称されている。
そして、上記焼鈍炉8においては、鋼板を、加熱帯4で約800℃の温度に加熱し、均熱帯5でその温度に所定時間保持した後、冷却帯6で500℃程度以下の温度まで鋼板を急速冷却して高強度化した後、成形性を向上するため、過時効帯7で焼戻し処理または過時効処理を施す熱処理が施される。
In recent years, with the expansion of application of high-strength steel sheets to automotive steel sheets, the proportion of high-strength steel sheets in thin steel sheets has increased. At present, this high-strength steel sheet is mainly produced by a continuous annealing process.
FIG. 1 shows a configuration example of a conventional continuous annealing facility. A steel sheet 1 rewound by a
In the
ところで、上記のように急冷処理して変態強化する方法以外に、鋼板を高強度化する方法の一つとして固溶強化法があり、Si等の固溶強化元素を適量添加することによって、高強度でかつ加工性に優れる高強度鋼板が得られることが知られている。しかし、Siのような易酸化性元素を多量に含む鋼板を連続焼鈍すると、上記焼鈍炉8の還元帯(加熱帯4および均熱帯5)において、Si等が鋼板表層に濃化して酸化物を形成し、この酸化物が炉内ロール(ハースロール)に付着して、いわゆる「ピックアップ」が起こる。この付着物は、徐々に堆積して成長するため、鋼板表面に押し疵(デンツ)等の表面欠陥を引き起こす原因となる。上記付着した酸化物は、簡単には除去されないため、表面欠陥が発生した場合には、ラインを停止し、ロールに付着した酸化物を除去してやる必要がり、生産性を大きく阻害する。
By the way, there is a solid solution strengthening method as one of the methods for increasing the strength of the steel sheet in addition to the method of quenching and quenching as described above, and by adding an appropriate amount of a solid solution strengthening element such as Si, It is known that a high-strength steel sheet having high strength and excellent workability can be obtained. However, when a steel sheet containing a large amount of an easily oxidizable element such as Si is continuously annealed, in the reduction zone (heating zone 4 and soaking zone 5) of the
上記のようなSi等の易酸化性元素を含む鋼板を連続焼鈍する方法としては、例えば、特許文献1には、Si量と直火炉出側の温度を規定して鋼板表面を酸化し、Siの鋼板表層への濃化を抑えることによって、メッキ性を改善する技術が開示されている。しかし、この技術は、酸化温度が高く、多量の鉄酸化物が生成するため、還元帯においてロールへ酸化物が付着することを避けられない。 As a method of continuously annealing a steel sheet containing an easily oxidizable element such as Si as described above, for example, Patent Document 1 defines the amount of Si and the temperature on the direct furnace exit side to oxidize the steel sheet surface, and Si A technique for improving the plating property by suppressing the concentration of steel on the surface layer of the steel sheet is disclosed. However, this technique has a high oxidation temperature and produces a large amount of iron oxide, so that it is inevitable that the oxide adheres to the roll in the reduction zone.
また、特許文献2には、直火炉の空気比を制御することで、Siの鋼板表層への濃化を抑制する技術が開示されている。この技術は、還元帯での酸化物付着を防止できるという点で有効な手段である。しかし、直火炉であるため、鋼板温度を短時間で自在に変更することが難しく、焼鈍する鋼板の板厚変化や通板速度の変更に対して柔軟に対応することができないため、生産スケジュールに制約が生じてしまう。また、直火炉は、設置スペースが大きいため、設備改造するには難がある。
また、特許文献3には、鋼板表面を、Fe換算で0.05g/m2以上1.0g/m2以下の酸化鉄量になるよう予備酸化することで、Siの表層濃化を抑制し、メッキ性を改善する技術が開示されている。しかし、この技術は、メッキ性改善には有効であるが、炉内のロールへのSi酸化物の付着抑制に対しては、酸化鉄量が多いため、還元帯において酸化鉄が炉内のロールに付着することがある。 Further, Patent Document 3, the steel sheet surface, by preliminary oxidation so as to be 0.05 g / m 2 or more 1.0 g / m 2 or less of iron oxide amount in terms of Fe suppresses the surface enrichment of Si A technique for improving plating properties is disclosed. However, this technique is effective for improving the plating property, but for suppressing the adhesion of Si oxide to the roll in the furnace, since the amount of iron oxide is large, the iron oxide is removed from the roll in the furnace in the reduction zone. May adhere to.
上記のように、従来の技術では、Si等の易酸化性の元素を多量に含む鋼板を連続焼鈍する場合には、Si等が表層に濃化して生成する酸化物が炉内ロールの表面に付着し、表面欠陥が引き起こすという問題に対する防止効果が十分ではない。特に、Al含有量が少ない鋼板では、Alが優先酸化することによって形成される皮膜によるSi等の酸化を抑制する保護効果が得られないので、酸化物付着による鋼板への表面欠陥の発生が著しくなる傾向にある。 As described above, in the conventional technique, when a steel sheet containing a large amount of an easily oxidizable element such as Si is continuously annealed, an oxide generated by concentration of Si or the like on the surface layer is formed on the surface of the in-furnace roll. The effect of preventing the problem of adhesion and surface defects is not sufficient. In particular, a steel sheet with a low Al content does not provide a protective effect that suppresses oxidation of Si or the like by a film formed by preferential oxidation of Al, so that surface defects are significantly generated on the steel sheet due to oxide adhesion. Tend to be.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、Siを多量に含有し、かつ、Al含有量の少ない鋼板を連続焼鈍する際、焼鈍炉の炉内ロールへのSi等の酸化物付着による押し疵等の表面欠陥を防止し、表面品質に優れる鋼板を安定して製造することを可能とする鋼の連続焼鈍方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and the purpose of the present invention is to carry out the annealing of a steel sheet containing a large amount of Si and having a low Al content in an annealing furnace. An object of the present invention is to propose a method for continuous annealing of steel that can prevent surface defects such as squeezing due to adhesion of oxides such as Si to a roll and can stably produce a steel sheet having excellent surface quality.
発明者らは、従来技術が抱える上記問題点を解決するべく、鋼成分と焼鈍炉に鋼板を導入する前の予備加熱条件が、鋼板表面の酸化挙動に及ぼす影響について鋭意検討を重ねた。その結果、Siを多量に含有する鋼板でも、Alの含有量が所定量以下の場合には、従来の予備酸化処理よりも低温かつ短時間で鋼板内部にSi酸化層が形成され、Siの表面濃化が効果的に抑制されることを見出し、本発明を開発するに至った。 In order to solve the above-described problems of the prior art, the inventors have made extensive studies on the influence of the steel components and the preheating conditions before introducing the steel plate into the annealing furnace on the oxidation behavior of the steel plate surface. As a result, even in a steel sheet containing a large amount of Si, when the Al content is less than or equal to a predetermined amount, a Si oxide layer is formed inside the steel sheet at a lower temperature and in a shorter time than conventional pre-oxidation treatment, and the surface of Si It has been found that thickening is effectively suppressed, and the present invention has been developed.
Si:0.3〜1.8mass%およびAl:0.02mass%以下を含有する成分組成を有する鋼板を連続焼鈍する方法において、上記連続焼鈍する焼鈍炉の上流側に、誘導加熱装置または通電加熱装置を用いた予備加熱装置を配設し、さらに、上記予備加熱装置出側から上記焼鈍炉の間を大気または酸化性の雰囲気とし、上記予備加熱装置で、上記鋼板を上記予備加熱装置の出側温度Tが350〜650℃となるよう加熱した後、上記大気中または酸化性の雰囲気中に保持する時間tが、上記温度Tとの積(T*t)が240℃・秒以上となるよう、上記大気中または酸化性の雰囲気中に保持し、その後、上記予備加熱後の鋼板を焼鈍炉内に導入して還元処理し、所定の焼鈍を施すことを特徴とする鋼板の連続焼鈍方法である。
In the method of continuously annealing a steel sheet having a component composition containing Si: 0.3 to 1.8 mass% and Al: 0.02 mass% or less, an induction heating device or electric heating is provided upstream of the annealing furnace for continuous annealing. A preheating device using an apparatus is disposed, and further, the atmosphere between the annealing furnace from the outlet side of the preheating device is set to the atmosphere or an oxidizing atmosphere, and the steel plate is removed from the preheating device by the preheating device. After heating so that the side temperature T becomes 350 to 650 ° C. , the time t held in the atmosphere or the oxidizing atmosphere is a product (T * t) with the temperature T of 240 ° C. · second or more. so as, successively the steel sheet held in an atmosphere of the atmospheric or oxidizing, that after the steel sheet after the preliminary heat reduction treatment by introducing into the annealing furnace, characterized by performing predetermined annealing An annealing method.
また、本発明の鋼板の連続焼鈍方法は、上記誘導加熱装置の出側と焼鈍炉との間に過熱水蒸気噴射装置を配設し、上記誘導加熱装置で加熱した鋼板の表面に、上記温度T以上に過熱した水蒸気を噴射することを特徴とする。 Moreover, the continuous annealing method of the steel plate of this invention arrange | positions the superheated steam injection apparatus between the exit side of the said induction heating apparatus, and an annealing furnace, and the said temperature T is carried out on the surface of the steel plate heated with the said induction heating apparatus. It is characterized by injecting superheated steam as described above.
また、本発明の鋼板の連続焼鈍方法が対象とする上記鋼板は、Siを0.8mass%以上含有することを特徴とする。 Moreover, the said steel plate made into the target of the continuous annealing method of the steel plate of this invention contains Si by 0.8 mass% or more.
本発明によれば、焼鈍炉内に導入される前の鋼板を予備加熱し、Siを鋼板内部で酸化させ、焼鈍炉の還元帯におけるSiの鋼板表層への濃化を防止するので、Si酸化物の炉内ロールへの付着を防止し、押し疵等の表面欠陥の発生を効果的に防止することができ、鋼板の表面品質の向上、生産性の向上に大いに寄与する。 According to the present invention, the steel plate before being introduced into the annealing furnace is preheated, Si is oxidized inside the steel plate, and Si concentration is prevented from being concentrated on the steel sheet surface layer in the reduction zone of the annealing furnace. It is possible to prevent adhesion of objects to the in-furnace roll, and to effectively prevent the occurrence of surface defects such as pushing rods, which greatly contributes to the improvement of the surface quality and productivity of the steel sheet.
先ず、本発明の技術思想について説明する。
前述したように、Siは、鋼を高強度化するのに有効な元素であり、近年における高強度鋼板には多量に添加されるようになってきている。しかし、Siを多量に含有する鋼を素材として連続焼鈍炉で高強度鋼板を製造しようとすると、鋼板表層にSiが濃化してSi酸化物を形成し、これが炉内ロールの表面に付着、堆積して、鋼板に押し疵等の表面欠陥を引き起こしていた。
First, the technical idea of the present invention will be described.
As described above, Si is an element effective for increasing the strength of steel, and has recently been added in a large amount to high-strength steel sheets in recent years. However, when trying to produce a high-strength steel sheet in a continuous annealing furnace using steel containing a large amount of Si as a raw material, Si concentrates on the surface layer of the steel sheet to form Si oxide, which adheres and accumulates on the surface of the roll in the furnace. As a result, surface defects such as creases were caused in the steel sheet.
そこで、従来技術では、Siの鋼板表層への濃化を抑制するため、例えば、直火炉などで、鋼板を700℃以上の温度で数秒以上加熱し、鋼板表面に鉄の酸化物層を形成し、その後、これを還元したり、あるいは、700℃以上の高温で鋼板を予備加熱し、鋼板内部でSiを酸化させ、Siの鋼板表面への移動を抑制したりしていた。しかし、従来の方法は、いずれも加熱温度が700℃以上と高温であるため、鋼板表面に多量の酸化物が形成されることから、炉内ロールへの酸化物の付着に起因した表面欠陥を完全に解消するには至っていない。 Therefore, in the prior art, in order to suppress the concentration of Si on the steel sheet surface layer, the steel sheet is heated at a temperature of 700 ° C. or more for several seconds or more in a direct furnace, for example, to form an iron oxide layer on the steel sheet surface. Thereafter, this was reduced, or the steel plate was preheated at a high temperature of 700 ° C. or higher to oxidize Si inside the steel plate and suppress the movement of Si to the steel plate surface. However, since all of the conventional methods have a heating temperature as high as 700 ° C. or more, a large amount of oxide is formed on the surface of the steel sheet, and therefore surface defects caused by adhesion of oxide to the roll in the furnace are eliminated. It has not been completely resolved.
しかしながら、発明者らの調査によれば、Alの含有量が0.02mass%未満の鋼においては、上記温度よりも低温かつ短時間の加熱でも、Siが鋼板内部で酸化され、Siの表層濃化が抑制されることがわかった。これは、Siより酸化され易いAlの含有量が少ないため、Siが優先的に鋼板内部で酸化されるためであると考えられる。鋼板内部にSiの内部酸化層が形成されると、Siの表層への拡散が抑制されるため、Siの表層濃化、ひいては、Siの酸化物の形成も抑制される。その結果、炉内ロールへの酸化物の付着も抑制されるので、押し疵等の表面欠陥を防止することができる。
本発明は、上記新規な知見に基くものである。
However, according to the inventors' investigation, in steel with an Al content of less than 0.02 mass%, Si is oxidized inside the steel plate even when heated at a temperature lower than the above temperature for a short time, and the surface layer concentration of Si is increased. It was found that crystallization was suppressed. This is presumably because Si is preferentially oxidized inside the steel sheet because the content of Al that is more easily oxidized than Si is small. When the Si internal oxide layer is formed inside the steel plate, the diffusion of Si into the surface layer is suppressed, so that the surface layer concentration of Si, and hence the formation of Si oxide, is also suppressed. As a result, the adhesion of oxides to the in-furnace roll is also suppressed, so that surface defects such as pressing iron can be prevented.
The present invention is based on the above novel findings.
次に、本発明が焼鈍方法を適用する対象となる鋼板について説明する。
本発明が対象とする鋼板は、Siの含有量が0.3mass%以上で、かつ、Alの含有量が0.02mass%以下のものであることが必要である。
Siは、脱酸剤として、あるいは高強度化を図るための固溶強化元素として、または、磁気特性を改善するための元素として添加される。特に、Siは、高強度化する効果が大きい割りに、加工性等の機械的特性劣化が比較的小さい元素であるため、好ましく用いることができる。しかし、0.3mass%未満の添加量では、焼鈍時における鋼板表層への濃化は少なく、本発明を適用する必要がない。よって、Si含有量は0.3mass%以上とする。
Next, the steel plate to which the present invention applies the annealing method will be described.
The steel plate targeted by the present invention is required to have a Si content of 0.3 mass% or more and an Al content of 0.02 mass% or less.
Si is added as a deoxidizer, as a solid solution strengthening element for increasing strength, or as an element for improving magnetic properties. In particular, Si is an element that has a relatively small deterioration in mechanical properties such as workability, although the effect of increasing the strength is large, and thus can be preferably used. However, when the addition amount is less than 0.3 mass%, there is little concentration on the steel sheet surface layer during annealing, and it is not necessary to apply the present invention. Therefore, Si content shall be 0.3 mass% or more.
なお、本発明の上記効果は、特にSiの含有量が0.8mass%以上で特に有効である。しかし、Si含有量がさらに多い場合でも本発明の効果は得られるが、Siの含有量が1.8mass%を超えると、内部酸化のみではSiの表層への拡散を抑えきれず、表層濃化してしまう鋼板の割合が多くなってしまうため、上限は1.8mass%程度とするのが好ましい。なお、本発明を適用する好ましいSiの範囲は0.8〜1.5mass%である。 The above effect of the present invention is particularly effective when the Si content is 0.8 mass% or more. However, the effect of the present invention can be obtained even when the Si content is higher, but if the Si content exceeds 1.8 mass%, the diffusion of Si to the surface layer cannot be suppressed by internal oxidation alone, and the surface layer is concentrated. Therefore, the upper limit is preferably about 1.8 mass%. In addition, the range of preferable Si which applies this invention is 0.8-1.5 mass%.
また、Alは、通常、脱酸剤として、あるいは、磁気特性を改善する元素として添加されるが、Alは、Siよりも酸化され易い元素であるため、SiとAlが共存する場合には、Alが優先的に酸化されて表層に酸化皮膜(保護皮膜)を形成するため、Siの表層濃化は抑制される。しかし、Alの含有量が0.02mass%以下の鋼板では、上記温度よりも低温かつ短時間の加熱で、Siが鋼板内部で酸化され、Siの表層濃化が抑制される。そこで、本発明では、上記効果を得るためAlの含有量を0.02mass%以下とする。好ましくは、0.01mass%以下である。 In addition, Al is usually added as a deoxidizer or as an element that improves magnetic properties, but since Al is an element that is more easily oxidized than Si, when Si and Al coexist, Since Al is preferentially oxidized to form an oxide film (protective film) on the surface layer, Si surface layer concentration is suppressed. However, in a steel sheet having an Al content of 0.02 mass% or less, Si is oxidized inside the steel sheet by heating at a temperature lower than the above temperature for a short time, and Si surface layer concentration is suppressed. Therefore, in the present invention, in order to obtain the above effect, the Al content is set to 0.02 mass% or less. Preferably, it is 0.01 mass% or less.
なお、Si,Al以外の元素は、通常の冷延鋼板に含まれる範囲で含有することができる。例えば、鋼板表面に濃化しやすい元素として知られているC,Mn,PおよびSは、本発明が解決しようとしている炉内ロールへの酸化物付着にほとんど影響しないため、機械的強度特性や製造性等から要求される成分範囲であるC:0.5mass%以下、Mn:0.001〜5mass%、P:0.001〜0.5mass%、S:0.0001〜0.01mass%の範囲で含有することができる。 In addition, elements other than Si and Al can be contained in a range included in a normal cold-rolled steel sheet. For example, C, Mn, P and S, which are known as elements that are easily concentrated on the steel sheet surface, have little influence on the adhesion of oxides to the in-furnace roll that the present invention is trying to solve. Component ranges required from properties such as C: 0.5 mass% or less, Mn: 0.001-5 mass%, P: 0.001-0.5 mass%, S: 0.0001-0.01 mass% Can be contained.
次に、本発明の鋼板の連続焼鈍方法について説明する。
本発明の連続焼鈍方法は、上記連続焼鈍する焼鈍炉の上流側に、大気中または酸化性雰囲気中で鋼板を加熱する予備導加熱装置を配設し、上記成分組成を有する鋼板を、350〜650℃の温度Tに加熱し、上記温度Tと上記温度Tでの保持時間tとの積(T*t)が240℃・秒以上となる時間保持する予備加熱した後、上記加熱後の鋼板を焼鈍炉内に導入して還元処理し、所定の焼鈍を施す連続焼鈍方法である。
Next, the continuous annealing method for the steel sheet of the present invention will be described.
In the continuous annealing method of the present invention, a pre-conducting heating device for heating a steel plate in the atmosphere or in an oxidizing atmosphere is disposed upstream of the annealing furnace for continuous annealing, and a steel plate having the above component composition is 350 to 350- After heating to a temperature T of 650 ° C. and pre-heating for a time that the product of the temperature T and the holding time t at the temperature T (T * t) is 240 ° C. · sec or more, the heated steel plate This is a continuous annealing method in which the material is introduced into an annealing furnace, subjected to reduction treatment, and subjected to predetermined annealing.
図2は、図1に示した従来の連続焼鈍設備に、本発明に用いる予備加熱装置11を、入側ルーパ3と加熱帯4との間に設置した例を示したものである。ここで、上記連続焼鈍設備の焼鈍炉の上流側に設置する予備加熱装置11は、鋼板を350〜650℃の温度に加熱できる装置であれば、いずれの方法でもよいが、既存の連続焼鈍設備に設置すること等を考慮すると、短時間で加熱することができる誘導加熱装置または通電加熱装置であることが好ましい。
FIG. 2 shows an example in which the
次に、鋼板を大気中または酸化性雰囲気中で鋼板を予備加熱する温度Tを350〜650℃の範囲とする理由は、350℃未満の温度では、Siを鋼板内部で酸化させる効果が小さく、Siの鋼板表層への濃化を抑制することができない。一方、650℃を超えると、Al含有量が少ない本発明の鋼板では、Siが鋼板表層へ濃化したり、厚い鉄酸化物層が形成されたりするようになるからである。好ましくは400〜600℃の温度範囲である。 Next, the reason why the temperature T for preheating the steel sheet in the air or in an oxidizing atmosphere is in the range of 350 to 650 ° C is that the effect of oxidizing Si inside the steel plate is small at a temperature lower than 350 ° C. Concentration of Si on the steel sheet surface layer cannot be suppressed. On the other hand, when the temperature exceeds 650 ° C., in the steel sheet of the present invention having a small Al content, Si is concentrated on the steel sheet surface layer or a thick iron oxide layer is formed. Preferably it is the temperature range of 400-600 degreeC.
次に、鋼板を大気中または酸化性雰囲気中で350〜650℃の範囲の温度Tに保持する時間tは、上記温度Tとの積(T*t)が240℃・秒以上となる時間とする必要がある。上記(T*t)が240℃・秒未満では、Siを鋼板内部で酸化させる効果が小さく、Siの鋼板表層への濃化を抑制することができない。一方、保持時間が長くなると、加熱した鋼板温度Tが低下して350℃を下回るようになり、加熱負荷が増大するため、また、予備加熱装置を設置するスペースを小さくする観点から、10秒以内とするのが好ましい。 Next, the time t for holding the steel sheet at a temperature T in the range of 350 to 650 ° C. in the air or in an oxidizing atmosphere is a time when the product (T * t) with the temperature T is 240 ° C. · second or more. There is a need to. When the above (T * t) is less than 240 ° C. · second, the effect of oxidizing Si inside the steel sheet is small, and the concentration of Si on the steel sheet surface layer cannot be suppressed. On the other hand, when the holding time becomes longer, the heated steel plate temperature T decreases and falls below 350 ° C., and the heating load increases. From the viewpoint of reducing the space for installing the preheating device, it is within 10 seconds. Is preferable.
また、上記予備加熱に加えて、鋼帯内部でのSiの酸化を促進させる方法としては、上記予備加熱した鋼板温度Tより高温の過熱水蒸気を鋼板表面に噴射してやることが有効である。これは、高温の水蒸気(H2O)は、Siの鋼板内部での酸化を促進させる効果があり、低温加熱条件においても鋼板内部の酸化が促進されて、Siの表層濃化をより抑制することが可能となるからである。 Moreover, in addition to the preheating, as a method for promoting the oxidation of Si inside the steel strip, it is effective to inject superheated steam having a temperature higher than the preheated steel plate temperature T onto the steel plate surface. This is because high-temperature water vapor (H 2 O) has an effect of accelerating the oxidation of Si inside the steel plate, and the oxidation of the inside of the steel plate is promoted even under low-temperature heating conditions, thereby further suppressing the surface concentration of Si. Because it becomes possible.
なお、過熱水蒸気の温度を鋼板温度より高く設定する理由は、過熱水蒸気の温度が鋼板温度より低いと、鋼板表面で水蒸気が凝縮を起こして、温度ムラや外観ムラが発生するからである。鋼板より高くする温度は、鋼板温度Tに対して30〜500℃高い範囲とするのが好ましい。30℃未満では、過熱水蒸気が操業条件の変動によって凝縮を起こすおそれがあり、一方、500℃を超えると、加熱装置の負荷が大きくなり、操業上、好ましくないからである。なお、過熱水蒸気噴射による上記効果は、単に過熱水蒸気を噴射するだけでは小さく、前述した予備加熱と併用するのが好ましい。 The reason why the temperature of the superheated steam is set higher than the steel plate temperature is that when the temperature of the superheated steam is lower than the steel plate temperature, the water vapor condenses on the steel plate surface, resulting in temperature unevenness and appearance unevenness. The temperature higher than that of the steel plate is preferably in the range of 30 to 500 ° C. higher than the steel plate temperature T. If it is less than 30 ° C., the superheated steam may condense due to fluctuations in operating conditions. On the other hand, if it exceeds 500 ° C., the load on the heating device increases, which is not preferable for operation. Note that the above-described effect of superheated steam injection is small by simply injecting superheated steam, and is preferably used in combination with the preheating described above.
また、上記過熱水蒸気を鋼板表面に噴射する位置は、図2において誘導加熱装置11の直後に過熱水蒸気噴射装置12を設置しているように、鋼板を温度Tに加熱して保持している時間内tの位置で行うのが好ましい。過熱水蒸気の噴射効果は高温ほど効果が大きいからである。
Further, the position at which the superheated steam is sprayed onto the surface of the steel sheet is the time during which the steel sheet is heated to the temperature T and held so that the
表1に示したA〜Eの成分組成を有する、板厚0.6mm×板幅1000mmの冷間圧延後の鋼板を、図2に示した連続焼鈍設備を用いて、表2に示した各種条件で鋼板を予備加熱した後、連続焼鈍し、炉内ロールへの酸化物付着による鋼板への押し疵の発生有無を調査した。ただし、一部については、予備加熱は実施しなかった。なお、連続焼鈍設備に設置した誘導加熱装置IHは、出力6000kW、周波数40kHz、加熱長5mのソレノイドコイルで、IH出側から加熱帯入側までの距離は2mであった。また、鋼板の焼鈍条件は、IH入側の鋼板温度を約200℃、焼鈍温度(均熱温度)を800℃とし、IHで加熱したIH出側の鋼板温度Tは、接触式温度計により測定した。また、焼鈍炉内の還元帯(加熱帯+均熱帯)における加熱はラジアントチューブで行い、雰囲気ガスは、H2:5vol%−N2:95vol%で、露点は−35℃とした。 Various cold-rolled steel sheets having a component composition of A to E shown in Table 1 and having a thickness of 0.6 mm and a plate width of 1000 mm shown in Table 2 using the continuous annealing equipment shown in FIG. After preheating the steel sheet under the conditions, continuous annealing was performed, and the presence or absence of occurrence of pressing iron on the steel sheet due to oxide adhesion to the in-furnace roll was investigated. However, preheating was not carried out for a part. The induction heating device IH installed in the continuous annealing facility was a solenoid coil with an output of 6000 kW, a frequency of 40 kHz, and a heating length of 5 m, and the distance from the IH exit side to the heating zone entry side was 2 m. The annealing conditions of the steel sheet were as follows: the steel temperature on the IH inlet side was about 200 ° C., the annealing temperature (soaking temperature) was 800 ° C., and the steel plate temperature T on the IH outlet side heated by IH was measured with a contact thermometer. did. Moreover, the heating in the reduction zone (heating zone + soaking zone) in the annealing furnace was performed with a radiant tube, the atmospheric gas was H 2 : 5 vol% -N 2 : 95 vol%, and the dew point was −35 ° C.
なお、鋼板表面に発生した炉内ロールへの酸化物付着に起因した押し疵の発生有無は、表2に示した各条件において500トン処理したときの鋼板表面を目視検査し、下記の基準で判定した。
<押し疵のランク付け>
◎:ほとんど見られない(合格)
○:微小な凹みがわずかに散見されるが、問題ないレベル(合格)
△:押し疵あり(不合格)
×:多数の押し疵あり(不合格)
In addition, the presence or absence of the occurrence of pressing iron due to oxide adhesion to the in-furnace roll generated on the steel sheet surface was visually inspected on the steel sheet surface when 500 tons were processed under each condition shown in Table 2, and the following criteria were used. Judged.
<Racing the push rod>
◎: Almost not seen (pass)
○: Slight dents are slightly scattered, but there is no problem (pass)
△: There is a push-up (failed)
×: Many push rods (failed)
上記調査結果を表2に併記した。この結果からわかるように、本発明に適合する条件で焼鈍した発明例の鋼板では、Siの表層濃化が抑制され、炉内ロールへの酸化物付着による押し疵の発生が防止されている。これに対して、誘導加熱装置IHでの加熱温度Tが低い場合、あるいは、加熱後の保持時間tが短い比較例の鋼板では、鋼板内部のSiの酸化が不十分なため、Siが鋼板表層に濃化し、炉内ロールへの酸化物付着に起因した押し疵が発生した。また、誘導加熱装置IHの加熱温度Tが高過ぎた比較例の鋼板でも、鋼板表層に形成される酸化鉄層が厚くなり、炉内ロールへの酸化物の付着が生じて、押し疵が発生した。 The survey results are shown in Table 2. As can be seen from this result, in the steel sheet of the inventive example annealed under the conditions suitable for the present invention, the surface layer concentration of Si is suppressed, and the occurrence of pressing iron due to oxide adhesion to the in-furnace roll is prevented. On the other hand, when the heating temperature T in the induction heating apparatus IH is low, or in the comparative steel plate having a short holding time t after heating, since the oxidation of Si inside the steel plate is insufficient, Si is the surface layer of the steel plate. Condensation due to oxide adhesion to the in-furnace roll occurred. In addition, even in the comparative steel sheet in which the heating temperature T of the induction heating device IH is too high, the iron oxide layer formed on the steel sheet surface layer becomes thick, causing the oxide to adhere to the in-furnace roll, resulting in the occurrence of push rods. did.
実施例1に用いた5種の成分組成を有する冷間圧延後の鋼板を、図2に示した連続焼鈍設備を用いて、表3に示した各種条件で予備加熱と過熱水蒸気の噴射を施した後、連続焼鈍し、炉内ロールへの酸化物付着による鋼板への押し疵の発生有無と外観品質を、実施例1と同様、目視検査により評価した。なお、本実施例の焼鈍条件は、実施例1と同じ条件とした。また、過熱水蒸気は、IH出側〜焼鈍炉の2m間でかつ誘導加熱装置の直後に設置された過熱水蒸気噴射装置に設けられた開口寸法が10mm×1500mmのスリットノズルから、片面当たり25〜30kg/hrで噴射した。 The steel sheet after cold rolling having the five component compositions used in Example 1 was subjected to preheating and superheated steam injection under various conditions shown in Table 3 using the continuous annealing equipment shown in FIG. Then, continuous annealing was performed, and the presence / absence and appearance quality of pressing iron on the steel sheet due to oxide adhesion to the in-furnace roll were evaluated by visual inspection in the same manner as in Example 1. The annealing conditions in this example were the same as those in Example 1. Also, the superheated steam is 25-30 kg per side from a slit nozzle having an opening size of 10 mm × 1500 mm provided in the superheated steam spraying device installed between 2 m from the IH exit side to the annealing furnace and immediately after the induction heating device. / Hr.
上記調査の結果を、表3に併記した。この結果から、過熱水蒸気を本発明に適合する条件で鋼板表面に噴射した条件では、押し疵の発生が改善されている。しかし、過熱水蒸気の温度が鋼帯温度より低い条件では、押し疵の発生は軽減されているものの、水蒸気の凝縮による外観ムラが発生している。また、過熱水蒸気の噴射のみで、予備加熱をしなかった場合には、押し疵防止効果が得られていない。 The results of the above investigation are also shown in Table 3. From this result, under the condition that superheated steam was sprayed on the steel sheet surface under the conditions suitable for the present invention, the generation of push rods was improved. However, under the condition that the temperature of the superheated steam is lower than the steel strip temperature, the occurrence of pushing iron is reduced, but the appearance unevenness due to the condensation of the steam occurs. In addition, when the preheating is performed only by the injection of superheated steam, the effect of preventing squeezing is not obtained.
本発明の技術は、炉内ロールの損傷を抑制し、長寿命化するのに有効であるだけでなく、表面が美麗な鋼板の製造にも有効である。 The technique of the present invention is effective not only for suppressing damage to the in-furnace roll and extending the life, but also for producing a steel sheet having a beautiful surface.
1:鋼板(鋼帯)
2:ペイオフリール
3:入側ルーパ
4:加熱帯
5:均熱帯
6:急冷帯
7:過時効帯
8:焼鈍炉
9:出側ルーパ
10:テンションリール
11:誘導加熱装置(IH)
12:過熱水蒸気噴射装置
1: Steel plate (steel strip)
2: Payoff reel 3: Entrance side looper 4: Heating zone 5: Soaking zone 6: Quench zone 7: Overaging zone 8: Annealing furnace 9: Outlet looper 10: Tension reel 11: Induction heating device (IH)
12: Superheated steam injection device
Claims (3)
上記連続焼鈍する焼鈍炉の上流側に、誘導加熱装置または通電加熱装置を用いた予備加熱装置を配設し、さらに、上記予備加熱装置出側から上記焼鈍炉の間を大気または酸化性の雰囲気とし、
上記予備加熱装置で、上記鋼板を上記予備加熱装置の出側温度Tが350〜650℃となるよう加熱した後、上記大気中または酸化性の雰囲気中に保持する時間tが、上記温度Tとの積(T*t)が240℃・秒以上となるよう、上記大気中または酸化性の雰囲気中に保持し、その後、
上記予備加熱後の鋼板を焼鈍炉内に導入して還元処理し、所定の焼鈍を施すことを特徴とする鋼板の連続焼鈍方法。 In a method of continuously annealing a steel sheet having a component composition containing Si: 0.3 to 1.8 mass% and Al: 0.02 mass% or less,
A preheating device using an induction heating device or an electric heating device is disposed upstream of the annealing furnace for continuous annealing, and further, an atmosphere or an oxidizing atmosphere is provided between the preheating device outlet side and the annealing furnace. age,
In the preheating device, after the steel sheet is heated so that the outlet temperature T of the preheating device is 350 to 650 ° C. , the time t that is maintained in the atmosphere or an oxidizing atmosphere is the temperature T. so that the product (T * t) is 240 ° C. · sec or more and, held in an atmosphere of the atmospheric or oxidizing, after them,
The steel sheet after preheating reduction treatment by introducing into the annealing furnace, continuous annealing method of a steel sheet, characterized in that for performing a predetermined annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012279259A JP5822077B2 (en) | 2012-12-21 | 2012-12-21 | Continuous annealing method for steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012279259A JP5822077B2 (en) | 2012-12-21 | 2012-12-21 | Continuous annealing method for steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014122390A JP2014122390A (en) | 2014-07-03 |
JP5822077B2 true JP5822077B2 (en) | 2015-11-24 |
Family
ID=51403125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012279259A Active JP5822077B2 (en) | 2012-12-21 | 2012-12-21 | Continuous annealing method for steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5822077B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6833676B2 (en) | 2014-09-12 | 2021-02-24 | アレリス、アルミナム、デュッフェル、ベスローテン、フェンノートシャップ、メット、ベペルクテ、アーンスプラケレイクヘイトAleris Alminum Duffel Bvba | Annealing method for aluminum alloy sheet material |
JP7155709B2 (en) * | 2018-07-24 | 2022-10-19 | 大同特殊鋼株式会社 | Continuous atmosphere heat treatment furnace |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5672133A (en) * | 1979-11-19 | 1981-06-16 | Nippon Steel Corp | Preheating apparatus for continuous annealing furnace |
JPH06212384A (en) * | 1993-01-18 | 1994-08-02 | Sumitomo Metal Ind Ltd | Hot dip galvanizing method for silicon-containing steel sheet |
JPH06212383A (en) * | 1993-01-18 | 1994-08-02 | Sumitomo Metal Ind Ltd | Hot dip galvanizing method for silicon-containing steel sheet |
JPH0797670A (en) * | 1993-09-30 | 1995-04-11 | Sumitomo Metal Ind Ltd | Galvanizing method for silicon-containing steel sheet |
JP2964910B2 (en) * | 1994-04-28 | 1999-10-18 | 住友金属工業株式会社 | Method for producing hot-dip galvanized steel sheet and apparatus therefor |
JP2007277627A (en) * | 2006-04-05 | 2007-10-25 | Nippon Steel Corp | Method for producing high strength steel sheet and high strength plated steel sheet, and annealing furnace and production equipment used for producing them |
-
2012
- 2012-12-21 JP JP2012279259A patent/JP5822077B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014122390A (en) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9090952B2 (en) | High-strength cold-rolled steel sheet and method for producing the same | |
JP5799997B2 (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them | |
TWI435939B (en) | Method for producing cold rolled steel sheet having high silicon content excellent in chemical conversion treatment | |
JP5636683B2 (en) | High-strength galvannealed steel sheet with excellent adhesion and manufacturing method | |
JP5799996B2 (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them | |
JP2008523243A5 (en) | ||
JP5799819B2 (en) | Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance | |
WO2018074295A1 (en) | HOT-ROLLED-SHEET ANNEALING EQUIPMENT FOR Si-CONTAINING HOT-ROLLED STEEL SHEET, METHOD FOR HOT-ROLLED-SHEET ANNEALING, AND DESCALING METHOD | |
JP2008523243A (en) | Method of melt dip coating high strength steel strip | |
JP5552859B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP2010255111A (en) | High-strength hot-dip galvanized steel plate and method for producing the same | |
JP2010255113A (en) | High strength hot dip galvanized steel sheet and method for producing the same | |
JP7258619B2 (en) | Steel plate continuous annealing equipment and method for manufacturing annealed steel plate | |
JP5488322B2 (en) | Steel plate manufacturing method | |
JP5822077B2 (en) | Continuous annealing method for steel sheet | |
JP2011147956A (en) | METHOD FOR PRODUCING Si-CONTAINING STEEL SHEET | |
JP5555992B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion | |
US9677148B2 (en) | Method for manufacturing galvanized steel sheet | |
JP2011006753A (en) | Method and facility for manufacturing steel sheet | |
JP2007277627A (en) | Method for producing high strength steel sheet and high strength plated steel sheet, and annealing furnace and production equipment used for producing them | |
JP6137002B2 (en) | Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP2010255112A (en) | High strength hot dip galvanized steel sheet and method for producing the same | |
JP2001262303A (en) | Method for producing alloyed galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property | |
JP5599626B2 (en) | Method for producing cold-rolled steel sheet capable of suppressing generation of blister | |
JP2003253413A (en) | Facility and method for manufacturing both cold rolled steel plate and plated steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150922 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5822077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |