JP6137002B2 - Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet - Google Patents
Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Download PDFInfo
- Publication number
- JP6137002B2 JP6137002B2 JP2014053263A JP2014053263A JP6137002B2 JP 6137002 B2 JP6137002 B2 JP 6137002B2 JP 2014053263 A JP2014053263 A JP 2014053263A JP 2014053263 A JP2014053263 A JP 2014053263A JP 6137002 B2 JP6137002 B2 JP 6137002B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- dip galvanized
- iron oxide
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 45
- 239000008397 galvanized steel Substances 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 140
- 239000010959 steel Substances 0.000 claims description 140
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 85
- 238000010438 heat treatment Methods 0.000 claims description 85
- 238000007747 plating Methods 0.000 claims description 69
- 238000011282 treatment Methods 0.000 claims description 63
- 230000003647 oxidation Effects 0.000 claims description 57
- 238000007254 oxidation reaction Methods 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 43
- 239000012298 atmosphere Substances 0.000 claims description 41
- 230000007704 transition Effects 0.000 claims description 30
- 230000001590 oxidative effect Effects 0.000 claims description 24
- 238000005275 alloying Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 15
- 239000002344 surface layer Substances 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 238000005246 galvanizing Methods 0.000 claims description 9
- 238000002441 X-ray diffraction Methods 0.000 claims description 7
- 230000000052 comparative effect Effects 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 3
- 238000011946 reduction process Methods 0.000 claims description 3
- 235000013980 iron oxide Nutrition 0.000 description 35
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical group [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 24
- 230000009467 reduction Effects 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002436 steel type Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000010301 surface-oxidation reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002389 environmental scanning electron microscopy Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000155 in situ X-ray diffraction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に関し、特に、酸化処理における最高加熱温度を効率的に決定して、良好な機械的特性とめっき特性とを兼ね備える溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造する方法、および本発明の方法により製造された溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet, and in particular, hot dip galvanizing that efficiently determines the maximum heating temperature in oxidation treatment and combines good mechanical properties and plating properties. The present invention relates to a method for producing a steel sheet and an galvannealed steel sheet, and a galvanized steel sheet and an galvannealed steel sheet produced by the method of the present invention.
近年、自動車、家電、建材等の分野においては、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造でき、かつ防錆性に優れた溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板が使用されている。 In recent years, in the fields of automobiles, home appliances, building materials, etc., surface-treated steel sheets with rust-preventing properties, especially hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that can be manufactured at low cost and have excellent anti-rust properties. Is used.
一般に、溶融亜鉛めっき鋼板は、以下の方法により製造される。すなわち、まず、スラブを熱延、冷延あるいは熱処理した薄鋼板の表面を、前処理工程にて脱脂および/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中あるいは還元性雰囲気中で加熱することにより再結晶焼鈍を行う。その後、非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却し、大気に接触させることなく微量のAl(0.1〜0.2質量%程度)を添加した溶融亜鉛めっき浴中に浸漬して溶融亜鉛めっき処理を施す。こうして溶融亜鉛めっき鋼板を製造することができる。さらに、溶融亜鉛めっき処理に引き続き、鋼板を合金化炉内で熱処理することにより、合金化溶融亜鉛めっき鋼板を製造することができる。 Generally, a hot dip galvanized steel sheet is manufactured by the following method. That is, first, the surface of a thin steel plate obtained by hot-rolling, cold-rolling or heat-treating a slab is cleaned by degreasing and / or pickling in the pretreatment step, or the pretreatment step is omitted and the steel plate is removed in the preheating furnace. After the oil on the surface is removed by combustion, recrystallization annealing is performed by heating in a non-oxidizing atmosphere or a reducing atmosphere. Then, the steel sheet is cooled to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere, and in a hot dip galvanizing bath to which a small amount of Al (about 0.1 to 0.2% by mass) is added without being exposed to the air. Immerse and galvanize. Thus, a hot-dip galvanized steel sheet can be manufactured. Furthermore, an alloying hot dip galvanized steel plate can be manufactured by heat-processing a steel plate in an alloying furnace following a hot dip galvanization process.
ところで、近年、素材鋼板の高性能化とともに軽量化が推進され、素材鋼板の高強度化が求められてきており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板の使用量が増加している。ここで、鋼板の高強度化のために、鋼にSi、Mn、P、Al等の固溶強化元素の添加を行うのが一般的である。中でもSiやAlは、鋼の延性を損なわずに高強度化できる利点を有しており、特にSiを含有する鋼板は高強度鋼板として有望である。 By the way, in recent years, weight reduction has been promoted with higher performance of raw steel sheets, and higher strength of raw steel sheets has been demanded, and the amount of high-strength hot-dip galvanized steel sheets that have rust prevention properties is increasing. . Here, in order to increase the strength of the steel sheet, it is common to add a solid solution strengthening element such as Si, Mn, P, or Al to the steel. Among these, Si and Al have an advantage that the strength can be increased without impairing the ductility of the steel. In particular, a steel plate containing Si is promising as a high strength steel plate.
このSi含有鋼板について、鋼板中のSi量に対するMn量の比(以下、「Mn/Si比」と称する)が低い方が、残留γ相が形成されやすくなり、良好な機械的特性を確保しやすい。しかし、鋼板中のMnが少なく、SiやAlを多量に含有する高強度鋼板を素材鋼板として溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造する場合、以下の問題が存在する。 For this Si-containing steel sheet, the lower the ratio of the Mn content to the Si content in the steel sheet (hereinafter referred to as “Mn / Si ratio”), the more easily the residual γ phase is formed, ensuring good mechanical properties. Cheap. However, when manufacturing hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets using a high-strength steel sheet containing a small amount of Mn in the steel sheet and containing a large amount of Si or Al as a raw steel sheet, the following problems exist.
すなわち、上述のように、溶融亜鉛めっき鋼板を製造する際に、還元性雰囲気中で、例えば600〜900℃程度の温度で再結晶焼鈍を行った後に、溶融亜鉛めっき処理を行う。しかし、鋼中のSiやAlは易酸化性元素であるため、一般的に用いられる還元雰囲気中においても、選択表面酸化されて表面に濃化し、SiやAlの酸化物が形成される。これらの酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させ、不めっきが生じるか、不めっきに至らなかった場合でも、めっき密着性を悪化させる問題がある。 That is, as described above, when a hot dip galvanized steel sheet is manufactured, hot dip galvanizing treatment is performed after recrystallization annealing is performed at a temperature of, for example, about 600 to 900 ° C. in a reducing atmosphere. However, since Si and Al in steel are easily oxidizable elements, even in a generally used reducing atmosphere, selective surface oxidation is performed and the surface is concentrated to form Si and Al oxides. These oxides have a problem that the wettability with molten zinc at the time of the plating treatment is lowered, and the plating adhesion is deteriorated even when non-plating occurs or non-plating does not occur.
また、鋼中のSiが選択表面酸化されて表面に濃化すると、めっき処理中に著しい合金化遅延が生じ、その結果、生産性が著しく低下する。そこで、生産性を高めるために過剰な高温で合金化処理すると、今度は耐パウダリング性が劣化する新たな問題が生じ、高い生産性と良好な耐パウダリング性とを両立させることは困難である。また、高温での合金化処理により、残留γ相が不安定になって機械的特性が悪化し、SiやAlを添加することによるメリットを享受できなくなる場合もある。 Further, when Si in steel is selectively surface oxidized and concentrated on the surface, a remarkable alloying delay occurs during the plating process, and as a result, the productivity is remarkably lowered. Therefore, if alloying is performed at an excessively high temperature in order to increase productivity, a new problem that deteriorates the powdering resistance occurs, and it is difficult to achieve both high productivity and good powdering resistance. is there. Further, the alloying treatment at a high temperature may cause the residual γ phase to become unstable and the mechanical characteristics to deteriorate, so that the benefits of adding Si or Al may not be enjoyed.
さらに、鋼中のSi量が同じであっても、鋼中のMn/Si比が低い場合、濡れ性が劣り、めっき後の合金化反応性が低いSiO2が多量に形成され、濡れ性やめっき後の反応性が比較的良好なMn2SiO4が形成されにくい。そのため、Mn/Si比が低く機械的特性が良好であっても、良好なめっき特性と両立させることは困難である。 Furthermore, even if the amount of Si in the steel is the same, if the Mn / Si ratio in the steel is low, the wettability is poor, and a large amount of SiO 2 with low alloying reactivity after plating is formed. It is difficult to form Mn 2 SiO 4 having relatively good reactivity after plating. Therefore, even if the Mn / Si ratio is low and the mechanical properties are good, it is difficult to achieve both good plating properties.
このように、良好な機械的特性とめっき特性を兼ね備える高強度溶融亜鉛めっき鋼板を製造することは困難である。加えて、近年、このような高強度鋼板が外板や一部の足回り部品のように外見上見えやすい場所に使用される場合があり、表面の外観の美麗さについてもこと厳しく要求されるようになった。 Thus, it is difficult to produce a high-strength hot-dip galvanized steel sheet that has good mechanical characteristics and plating characteristics. In addition, in recent years, such high-strength steel sheets may be used in places where they are easily visible, such as outer panels and some undercarriage parts, and the appearance of the surface is also strictly required. It became so.
このような問題に対して、幾つかの技術が開示されている。例えば、特許文献1には、空気比0.95〜1.10の酸化性雰囲気中で鋼板を予め加熱し、平均酸化速度30オングストローム/秒で急速に酸化して鋼板表面に酸化鉄を形成した後、水素濃度10%以下の還元性雰囲気中で鋼板を加熱して還元焼鈍を行うことにより、溶融亜鉛めっき後の密着性および外観の均一性を図る技術について記載されている。 Several techniques have been disclosed for such problems. For example, Patent Document 1 discloses that a steel sheet is preheated in an oxidizing atmosphere having an air ratio of 0.95 to 1.10, rapidly oxidized at an average oxidation rate of 30 angstroms / second to form iron oxide on the steel sheet surface, and then the hydrogen concentration. It describes a technique for improving adhesion and appearance uniformity after hot-dip galvanization by heating a steel sheet in a reducing atmosphere of 10% or less and performing reduction annealing.
また、特許文献2には、溶融亜鉛めっき処理に先立って、硫黄または硫黄化合物を鋼板表面にS量として0.1〜1000mg/m2付着させた後、予熱工程を弱酸化性雰囲気で行い、続いて、水素を含む非酸化性雰囲気中で焼鈍することにより、表面外観が良好で、線状マークが生じず、高強度でかつめっき皮膜の均一性に優れ、さらに密着性に優れた溶融亜鉛めっき鋼板を製造する方法について記載されている。 Further, in Patent Document 2, prior to hot dip galvanizing treatment, sulfur or a sulfur compound is deposited on the steel sheet surface as an S amount of 0.1 to 1000 mg / m 2, and then a preheating step is performed in a weakly oxidizing atmosphere. Hot-dip galvanized steel sheet with good surface appearance, no linear marks, high strength, excellent plating film uniformity, and excellent adhesion by annealing in a non-oxidizing atmosphere containing hydrogen Is described.
さらに、特許文献3には、酸化処理における雰囲気中の酸素濃度や水蒸気量を制御することにより、良好なめっき特性を確保する技術について記載されている。 Furthermore, Patent Document 3 describes a technique for ensuring good plating characteristics by controlling the oxygen concentration and the amount of water vapor in the atmosphere in the oxidation treatment.
ところで、上記特許文献1〜3に記載された技術はいずれも、素材となる鋼板を酸化性雰囲気中で加熱して、鋼板表層に酸化鉄を形成させる酸化処理を施した後、還元雰囲気中で加熱し、酸化処理により形成された酸化鉄を還元する還元処理を施す、いわゆる酸化・還元処理を施すことにより、Si系酸化物の選択表面酸化を抑制し、溶融亜鉛との濡れ性を改善させる技術に基づくものである。この技術では、還元処理におけるSi系酸化物の選択表面酸化を抑制するために、酸化処理において、必要かつ十分な量の酸化量を確保することが肝要である。 By the way, as for the technique described in the said patent documents 1-3, after heating the steel plate used as a raw material in an oxidizing atmosphere and performing the oxidation process which forms iron oxide in a steel plate surface layer, in a reducing atmosphere By applying a reduction treatment that reduces the iron oxide formed by heating and oxidation treatment, so-called oxidation / reduction treatment is performed to suppress selective surface oxidation of Si-based oxides and improve wettability with molten zinc. It is based on technology. In this technique, in order to suppress the selective surface oxidation of the Si-based oxide in the reduction treatment, it is important to secure a necessary and sufficient amount of oxidation in the oxidation treatment.
この鋼板の酸化量は、酸化処理において、主に最高加熱温度や加熱炉内の雰囲気により制御することができる。このうち、加熱炉内の雰囲気を速やかに変化させることは、実工程では困難であるため、最高加熱温度を変化させることにより、酸化量を制御することが好ましい。高強度鋼板の開発は活発に行われており、多くの様々な新規鋼種が開発されているが、これを実工程に展開するに当たり、鋼種毎に適正な最高加熱温度を決定する必要がある。以降、「適正な最高加熱温度」とは、実製造(実操業)における酸化処理において、鋼板表層に十分な酸化鉄が形成され、不めっきやめっき密着性不良等のめっき不良が発生せず、良好な機械的特性とめっき特性とを兼ね備えるめっきを形成できる、酸化処理時の最高加熱温度のことを指す。 The oxidation amount of the steel sheet can be controlled mainly by the maximum heating temperature or the atmosphere in the heating furnace in the oxidation treatment. Among these, since it is difficult to change the atmosphere in the heating furnace quickly in an actual process, it is preferable to control the oxidation amount by changing the maximum heating temperature. Development of high-strength steel sheets has been actively carried out, and many various new steel types have been developed. In order to develop these into actual processes, it is necessary to determine an appropriate maximum heating temperature for each steel type. Hereinafter, “appropriate maximum heating temperature” means that sufficient iron oxide is formed on the steel sheet surface layer in the oxidation process in actual production (actual operation), and plating defects such as non-plating and poor plating adhesion do not occur. It refers to the maximum heating temperature during oxidation treatment that can form a plating having both good mechanical properties and plating properties.
しかしながら、この適正な最高加熱温度を見つけるためには、実験室で様々な最高加熱温度で焼鈍した鋼板を作製し、必要十分な酸化量を確保できる条件を見出す必要がある。これは非常に煩雑な作業であり、新規な鋼種を開発しても、それを実工程に展開するまでに多大な時間を要することが、開発上の大きな課題となっていた。 However, in order to find this appropriate maximum heating temperature, it is necessary to produce steel sheets annealed at various maximum heating temperatures in a laboratory and find a condition that can secure a necessary and sufficient amount of oxidation. This is a very complicated operation, and even if a new steel type is developed, it takes a long time to develop it into an actual process, which has been a major development issue.
そこで、本発明の目的は、酸化処理における適正な最高加熱温度を効率的に決定して、良好な機械的特性とめっき特性とを兼ね備える溶融亜鉛めっき鋼板を製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a hot-dip galvanized steel sheet having both good mechanical characteristics and plating characteristics by efficiently determining an appropriate maximum heating temperature in the oxidation treatment.
発明者らは、上記課題を解決する方途について鋭意検討した。そのために、環境制御型走査電子顕微鏡(Environmental Scanning Electron Microscope, E-SEM)を用いて、鋼板表面に対してその場観察実験を行い、実製造(実操業)時の酸化処理を模した模擬的な酸化処理における鋼板表層での酸化鉄の形成状況の把握を行った。その結果、以下に詳述するように、鋼板表層での酸化鉄の粒径が急激に増大し、酸化鉄の形態が遷移する温度が存在することが判明した。 The inventors diligently studied how to solve the above problems. For that purpose, an in-situ observation experiment was performed on the surface of the steel sheet using an environmental scanning electron microscope (E-SEM) to simulate the oxidation process during actual production (actual operation). The formation status of iron oxide on the surface layer of steel plate in various oxidation treatments was grasped. As a result, as will be described in detail below, it has been found that there is a temperature at which the iron oxide particle size in the steel sheet surface layer rapidly increases and the form of the iron oxide transitions.
図1は、E-SEMで観察しながら酸化性雰囲気下で昇温していった時のSi1.8質量%含有鋼板表面のSEM像である。ここで、(a)〜(d)は、鋼板表面の温度が(a)750℃、(b)860℃、(c)890℃および(d)950℃の場合にそれぞれ対応している。 FIG. 1 is an SEM image of the surface of a steel plate containing 1.8% by mass of Si when the temperature is raised in an oxidizing atmosphere while observing with E-SEM. Here, (a) to (d) correspond to the case where the temperature of the steel sheet surface is (a) 750 ° C., (b) 860 ° C., (c) 890 ° C. and (d) 950 ° C., respectively.
図1(a)および(b)を比較すると、いずれの温度においても、酸化鉄の粒径は0.1μm〜0.2μm程度であり、温度を750℃から860℃に上昇させても、酸化鉄の形態はほとんど変化しなかった。ところが、温度を860℃から890℃に上昇させると、酸化鉄の形態が大きく変化した。すなわち、図1(c)に示すように、860℃から890℃までの狭い範囲の温度上昇において、酸化鉄の粒径が0.2μm〜1μm程度に急激に増大した。この粒径の急激な増大は、860℃から890℃まで温度上昇の間に、個々の酸化鉄粒が徐々に粗大化するのではなく、観察領域中の一部において、1℃以内の温度変化で急激に粗大化するように生じ、その現象があちこちで発生し、最終的に890℃まで昇温された時点で、ほぼ観察領域全域において粒径が増大するように進行した。本発明においては、鋼板表層の酸化鉄の粒径が急激に増大する現象を「酸化鉄形態遷移」と称し、酸化鉄形態遷移が発生する温度を「酸化鉄形態遷移温度」と称することとする。 Comparing FIGS. 1 (a) and 1 (b), the iron oxide particle size is about 0.1 μm to 0.2 μm at any temperature, and even if the temperature is increased from 750 ° C. to 860 ° C., the oxidation The iron form remained almost unchanged. However, when the temperature was raised from 860 ° C. to 890 ° C., the form of iron oxide changed greatly. That is, as shown in FIG. 1C, the iron oxide particle size rapidly increased to about 0.2 μm to 1 μm in a narrow temperature increase from 860 ° C. to 890 ° C. This rapid increase in particle size does not cause the individual iron oxide particles to gradually become coarser during the temperature increase from 860 ° C. to 890 ° C., but changes in temperature within 1 ° C. in a part of the observation region. This phenomenon occurred in various places, and this phenomenon occurred in various places. When the temperature was finally raised to 890 ° C., the particle diameter proceeded to increase almost over the entire observation region. In the present invention, the phenomenon in which the iron oxide particle size of the steel sheet surface layer increases rapidly is referred to as “iron oxide form transition”, and the temperature at which the iron oxide form transition occurs is referred to as “iron oxide form transition temperature”. .
発明者らは、観察結果をさらに詳細に検討したところ、酸化鉄形態遷移に伴い、鋼板表層の酸化鉄の量が急激に増加して、良好なめっき特性を得るのに十分な酸化鉄が形成されていることも判明した。こうしたことから、発明者らは、この酸化鉄形態遷移が生じる酸化鉄形態遷移温度こそが、従来は実験室で酸化量測定やめっき実験まで行ない、試行錯誤の末に決定していた、実製造(実操業)時の酸化処理における適正な最高加熱温度に相当するのではないかと推測した。 The inventors have examined the observation results in more detail, and as the iron oxide form transitions, the amount of iron oxide on the steel sheet surface layer increases rapidly, and iron oxide sufficient to obtain good plating properties is formed. It also turned out to be. For this reason, the inventors determined that the iron oxide form transition temperature at which this iron oxide form transition occurs was determined by trial and error after performing oxidative measurement and plating experiments in the laboratory. It was speculated that this would correspond to an appropriate maximum heating temperature in the oxidation treatment during (actual operation).
そこで発明者らは、酸化処理における適正な最高加熱温度が確立されている様々な既存鋼種の鋼板について、それらの酸化鉄形態遷移温度を調べた。その結果、鋼板Xに対する適正な最高加熱温度Xaは、鋼板Xの酸化鉄形態遷移温度Xt、および酸化処理における適正な最高加熱温度Waが確立されている鋼板(以下、「対比鋼板」と称する)Wの酸化鉄形態遷移温度Wtとの間に、以下の関係式(A)が成り立つことを見出した。
Xa=Wa+Xt−Wt (A)
Therefore, the inventors investigated the iron oxide form transition temperature of steel plates of various existing steel types for which an appropriate maximum heating temperature in the oxidation treatment has been established. As a result, the appropriate maximum heating temperature Xa for the steel plate X is a steel plate in which the iron oxide form transition temperature Xt of the steel plate X and the appropriate maximum heating temperature Wa in the oxidation treatment are established (hereinafter referred to as “contrast steel plate”). It has been found that the following relational expression (A) holds between the iron oxide form transition temperature Wt of W.
Xa = Wa + Xt−Wt (A)
このことから、酸化処理における適正な最高加熱温度Xaが未知の鋼板Xおよび、適正な最高加熱温度Waが確立している対比鋼板Wについて、酸化鉄形態遷移温度XtおよびWtを予め求めておけば、上記式(A)から、鋼板Xの適正な最高加熱温度Xaを効率的に決定できることを見出し、本発明を完成させるに至った。 Therefore, if the iron oxide form transition temperatures Xt and Wt are obtained in advance for the steel plate X whose proper maximum heating temperature Xa in the oxidation treatment is unknown and the comparative steel plate W whose proper maximum heating temperature Wa is established, From the above formula (A), it was found that an appropriate maximum heating temperature Xa of the steel plate X can be determined efficiently, and the present invention has been completed.
すなわち、本発明の要旨構成は以下の通りである。
(1)0.1〜3質量%のSiを含有する鋼板に対して、該鋼板を酸化性雰囲気中で加熱して該鋼板の表面に酸化鉄を形成する酸化処理と、該酸化処理後の鋼板を非酸化性雰囲気中で加熱して前記酸化鉄を還元する還元処理と、該還元処理後の鋼板に溶融亜鉛めっきを施すめっき処理とを経て溶融亜鉛めっき鋼板を製造するに当たり、前記鋼板および、酸化処理における適正な最高加熱温度Waが確立している対比鋼板につき、酸化性雰囲気下の加熱過程における鋼板表層での酸化鉄形成状況を把握し、酸化鉄の形成状況から、前記鋼板での酸化鉄の形態が遷移する温度Xtと前記対比鋼板での酸化鉄の形態が遷移する温度Wtとを求め、これらXtおよびWtと前記Waとから、下記式(A)に従って求めた、Xaを最高加熱温度として前記酸化処理を行い、前記酸化性雰囲気下の加熱過程は5℃/分以上50℃/分以下の昇温速度で行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
(記)
Xa=Wa+Xt−Wt (A)
That is, the gist of the present invention is as follows.
(1) With respect to a steel plate containing 0.1 to 3% by mass of Si, an oxidation treatment in which the steel plate is heated in an oxidizing atmosphere to form iron oxide on the surface of the steel plate, and the steel plate after the oxidation treatment In manufacturing a hot-dip galvanized steel sheet through a reduction treatment in which the iron oxide is reduced by heating in a non-oxidizing atmosphere and a plating treatment in which hot-dip galvanization is performed on the steel plate after the reduction treatment, the steel plate and the oxidation For the comparative steel sheet for which an appropriate maximum heating temperature Wa has been established in the treatment, the iron oxide formation state on the steel sheet surface layer in the heating process in an oxidizing atmosphere is grasped, and the iron oxide in the steel sheet is determined from the iron oxide formation state. The temperature Xt at which the form transitions and the temperature Wt at which the form of iron oxide in the contrast steel plate transitions are determined, and Xa is determined from these Xt, Wt and Wa according to the following formula (A), and Xa is the maximum heating temperature. As said oxidation treatment Gastric line method for producing a hot-dip galvanized steel sheet wherein the heating process of the oxidizing atmosphere is characterized by rows Ukoto at a heating rate of 5 ° C. / min or higher 50 ° C. / min or less.
(Record)
Xa = Wa + Xt−Wt (A)
(2)前記酸化鉄形成状況の把握は、環境制御型走査電子顕微鏡あるいはX線回折を用いた観察により行う、前記(1)に記載の溶融亜鉛めっき鋼板の製造方法。 (2) The method for producing a hot-dip galvanized steel sheet according to (1) above, wherein the iron oxide formation status is grasped by observation using an environmental control scanning electron microscope or X-ray diffraction.
(3)前記(1)または(2)に記載された方法により製造された溶融亜鉛めっき鋼板を加熱して、めっきされた溶融亜鉛を合金化する合金化処理を施すことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 (3) Alloying characterized by heating the hot dip galvanized steel sheet produced by the method described in (1) or (2) above and subjecting the hot dip galvanized steel to alloying Manufacturing method of hot dip galvanized steel sheet.
(4)前記(1)または(2)に記載された方法により製造された溶融亜鉛めっき鋼板。 (4) A hot-dip galvanized steel sheet produced by the method described in (1) or (2) above.
(5)前記(3)に記載された方法により製造された合金化溶融亜鉛めっき鋼板。 (5) An alloyed hot-dip galvanized steel sheet produced by the method described in (3) above.
本発明によれば、酸化処理における適正な最高加熱温度を効率的に決定して、良好な機械的特性とめっき特性とを兼ね備える溶融亜鉛めっき鋼板を製造することができる。 According to the present invention, it is possible to efficiently determine an appropriate maximum heating temperature in the oxidation treatment, and to manufacture a hot-dip galvanized steel sheet having both good mechanical characteristics and plating characteristics.
以下、本発明を具体的に説明する。
本発明にかかわる鋼板としては、Siを含有する高強度鋼板を用いる。なお、以下に記載した鋼板成分に関する「%」表示は、特に断らない限り質量%を意味するものとする。
Hereinafter, the present invention will be specifically described.
As the steel sheet according to the present invention, a high-strength steel sheet containing Si is used. In addition, unless otherwise indicated, the "%" display regarding the steel plate component described below shall mean the mass%.
Si:0.1%以上3%以下
Siは、上述のように、鋼の延性や加工性等を低下させることなく強度向上に寄与する元素である。しかしながら、含有量が0.1%未満の場合には、その添加効果に乏しい。一方、3%を超えて含有する場合には、鋼板表面に酸化物として濃化し、不めっきの原因となるばかりでなく、外観性状が悪化するため、本手法の適用が困難である。そこで、Siは0.1%以上3%以下の範囲で含有した鋼板を対象とする。
Si: 0.1% or more and 3% or less As described above, Si is an element that contributes to strength improvement without reducing the ductility, workability, and the like of steel. However, when the content is less than 0.1%, the effect of addition is poor. On the other hand, if the content exceeds 3%, it is concentrated as an oxide on the surface of the steel sheet, which not only causes non-plating, but also deteriorates the appearance properties, so that this method is difficult to apply. Therefore, Si is intended for steel sheets containing 0.1% to 3%.
本発明にかかわる鋼板は、上記組成のSiを基本元素として含有する。これ以外の組成については、要求される溶融亜鉛めっき鋼板の特性に応じて適宜添加することができるが、基本的な成分組成の一例として以下があげられる。 The steel sheet according to the present invention contains Si having the above composition as a basic element. About the composition other than this, although it can add suitably according to the characteristic of the hot-dip galvanized steel plate requested | required, the following is mention | raise | lifted as an example of a basic component composition.
Mn:0.5%以上3.5%以下
高強度化を図るにはMnを0.5%以上添加するとより効果的である。一方、Mnは3. 5%を超えると溶接性やめっき密着性の確保、強度延性バランス確保が困難になる。よって、Mn量は0.5%以上3. 5%以下の範囲で含有した鋼板を素材として用いることが好ましい。
Mn: 0.5% to 3.5% It is more effective to add 0.5% or more of Mn to increase the strength. On the other hand, if Mn exceeds 3.5%, it becomes difficult to ensure weldability, plating adhesion, and strength ductility balance. Therefore, it is preferable to use, as a material, a steel sheet that contains Mn in a range of 0.5% to 3.5%.
C:0.05%以上0.25%以下
Cは、鋼の強度向上に寄与する元素である。しかし、含有量が、0.25%を超えると溶接性が劣化する。そこでCは0.05%以上0.25%以下の範囲で含有した鋼板を素材として用いることが好ましい。
C: 0.05% or more and 0.25% or less C is an element that contributes to improving the strength of steel. However, if the content exceeds 0.25%, the weldability deteriorates. Therefore, it is preferable to use a steel plate containing C in a range of 0.05% to 0.25% as a raw material.
Al:0.005%以上3.0%以下
AlはSiと補完的に添加される元素である。Alを含有せずにSiを充分添加すれば機械的特性の確保は可能であるものの、製鋼工程で不可避的に混入するため、Alは通常0.005%以上含有することが好ましい。一方、Al添加量が3.0%を超えると酸化皮膜の生成抑制が困難で密着性改善が困難である。よってAl量は0.005%以上3.0%以下の範囲で含有した鋼板を素材として用いることが好ましい。
Al: 0.005% or more and 3.0% or less Al is an element added complementarily to Si. Although it is possible to ensure mechanical properties if Si is sufficiently added without containing Al, it is inevitably mixed in the steel making process, so Al is usually preferably contained in an amount of 0.005% or more. On the other hand, when the Al addition amount exceeds 3.0%, it is difficult to suppress the formation of an oxide film and it is difficult to improve the adhesion. Therefore, it is preferable to use, as a material, a steel plate containing Al in a range of 0.005% to 3.0%.
P:0.001%以上0.10%以下
Pは不可避的に含有されるものであり、セメンタイトの析出を遅延させ変態の進行を遅らせるため、0.001%以上が好ましい。一方、0.10%を超えると溶接性が劣化するだけでなく、表面品質が劣化するため、非合金化時にはめっき密着性が劣化し、合金化処理時には合金化温度が上昇し、延性が劣化すると同時に合金化めっき皮膜の密着性が劣化する場合がある。よって、P量は0.001%以上0.10%以下の範囲で含有した鋼板を素材として用いることが好ましい。
P: 0.001% or more and 0.10% or less P is unavoidably contained, and is preferably 0.001% or more in order to delay the precipitation of cementite and delay the progress of transformation. On the other hand, if it exceeds 0.10%, not only the weldability deteriorates, but also the surface quality deteriorates, so the plating adhesion deteriorates during non-alloying, the alloying temperature rises during alloying, and the ductility deteriorates at the same time. The adhesion of the alloyed plating film may deteriorate. Therefore, it is preferable to use as a material a steel sheet containing P in a range of 0.001% to 0.10%.
S:0.2%以下
SはPと同様不可避的に含有される元素であるが、多量に含有されると溶接性が劣化する。鋼中のS量が増加すると、熱間赤熱脆性の原因となり、製造工程中に、熱延板の破断等の不具合を生じることがある。また、鋼板に介在物MnSを形成し、冷間圧延後に板状の介在物として存在することにより、特に材料の極限変形能を低下させ、また伸びフランジ性などの成形性を低下させるため、0.2%を上限とした鋼板を素材として用いることが好ましい。さらに0.0050%以下とすることが好ましい。より好ましくは0.0030%以下である。
S: 0.2% or less S is an element which is unavoidably contained like P, but if contained in a large amount, weldability deteriorates. When the amount of S in steel increases, it causes hot red hot brittleness and may cause problems such as breakage of a hot-rolled sheet during the manufacturing process. In addition, inclusion MnS is formed on the steel sheet, and is present as a plate-like inclusion after cold rolling, so that the ultimate deformability of the material is particularly lowered, and the formability such as stretch flangeability is reduced. It is preferable to use a steel plate with an upper limit of% as the material. Further, it is preferably 0.0050% or less. More preferably, it is 0.0030% or less.
Nb:0.010以上0.080%以下
Nbは、固溶強化または析出強化により鋼板の強度の向上に寄与する元素である。しかし、含有量が0.010%に満たないとその添加効果に乏しい。一方、0.080%を超えて含有すると、熱延板が硬質化し、熱間圧延や冷間圧延時の圧延荷重の増大を招くこととなる。そこで、0.010%以上0.080%以下の範囲で含有した鋼板を素材として用いてもよい。
Nb: 0.010 or more and 0.080% or less Nb is an element that contributes to improving the strength of the steel sheet by solid solution strengthening or precipitation strengthening. However, if the content is less than 0.010%, the addition effect is poor. On the other hand, if the content exceeds 0.080%, the hot-rolled sheet becomes hard, and the rolling load during hot rolling or cold rolling is increased. Therefore, a steel plate contained in the range of 0.010% to 0.080% may be used as a material.
このような成分組成を有する鋼板に対して、酸化処理、還元処理を施し、その後溶融亜鉛めっき処理を施す場合、さらにその後、合金化処理を行う場合において、本発明を適用することにより、良好な機械的特性とめっき特性とを兼ね備える溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を効率よく製造することができる。以下、各処理について説明するが、これに限定されるものではなく、通常のめっき鋼板および合金化溶融亜鉛めっき鋼板を製造するときに使用されている条件を用いることができる。 When the steel sheet having such a component composition is subjected to oxidation treatment and reduction treatment, and then subjected to hot dip galvanizing treatment, and further to alloying treatment thereafter, it is preferable to apply the present invention. A hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having both mechanical properties and plating properties can be produced efficiently. Hereinafter, although each process is demonstrated, it is not limited to this, The conditions currently used when manufacturing a normal plated steel plate and an galvannealed steel plate can be used.
(酸化処理)
酸化手段の違いが本発明の効果を妨げるものではなく、鋼板を酸化することができればどのような手段であってもよい。従って実際に製造に用いられる加熱手段としては、バーナー加熱,誘導加熱,放射加熱および通電加熱など、従来から使用されている加熱方式でよく、特に限定するものではない。例えば、バーナー加熱方式としては、従来用いられている酸化炉や無酸化炉等の加熱炉を使用することができる。無酸化炉の場合、例えば直火バーナーの空燃比を1.0超えとすることにより容易に鋼板を酸化することができる。
(Oxidation treatment)
The difference in the oxidation means does not hinder the effect of the present invention, and any means may be used as long as the steel sheet can be oxidized. Accordingly, the heating means actually used in the production may be any conventional heating method such as burner heating, induction heating, radiant heating, and current heating, and is not particularly limited. For example, as the burner heating method, a conventionally used heating furnace such as an oxidation furnace or a non-oxidation furnace can be used. In the case of a non-oxidizing furnace, for example, the steel sheet can be easily oxidized by setting the air-fuel ratio of the direct fire burner to exceed 1.0.
また、誘導加熱方式、放射加熱方式および通電加熱方式の場合は、加熱する鋼板近傍の雰囲気を酸化性雰囲気とすることにより容易に鋼板を酸化することができる。酸化性雰囲気としては、酸素、水蒸気および二酸化炭素等の酸化性ガスを1種または2種以上含有する雰囲気が一般的であるが、これらを窒素等と混合して用いてもよく、鋼板を酸化することができれば特に限定するものではない。
なお、上記は代表的な例を示したのであって、いずれにしても鋼板を酸化させることができれば良く、その手段は特に限定するものではない。
In addition, in the case of the induction heating method, the radiant heating method, and the energization heating method, the steel plate can be easily oxidized by setting the atmosphere in the vicinity of the steel plate to be heated to an oxidizing atmosphere. The oxidizing atmosphere is generally an atmosphere containing one or more oxidizing gases such as oxygen, water vapor and carbon dioxide, but these may be mixed with nitrogen and used to oxidize the steel sheet. If it can do, it will not specifically limit.
In addition, the above showed a typical example, and in any case, it is sufficient that the steel sheet can be oxidized, and the means is not particularly limited.
(還元処理)
次に、還元処理における還元方法は、従来使用されている方法を行えばよく、特に限定するものではない。例えば、放射加熱方式の焼鈍炉内で水素を含む還元性雰囲気中にて600〜900℃程度の温度で還元処理を行うのが一般的ではあるが、鋼板表面の酸化皮膜を還元することができれば手段は問わない。
(Reduction treatment)
Next, the reduction method in the reduction process may be a conventionally used method, and is not particularly limited. For example, it is common to perform a reduction treatment at a temperature of about 600 to 900 ° C. in a reducing atmosphere containing hydrogen in a radiant heating type annealing furnace, but if the oxide film on the steel sheet surface can be reduced Any means can be used.
(めっき処理)
上記の還元処理後、非酸化性あるいは還元性雰囲気中にてめっきに適した温度まで冷却したのち、めっき浴中に浸漬して溶融亜鉛めっきを施す。この溶融亜鉛めっき処理は、従来から行われている方法に従えばよい。例えば、めっき浴温は440〜520℃程度、鋼板のめっき浴浸漬時の温度はめっき浴温とほぼ等しくし、また亜鉛めっき浴中のAl濃度は0.1〜0.2質量%程度とするのが一般的であるが、特に限定するものではない。
(Plating treatment)
After the above reduction treatment, after cooling to a temperature suitable for plating in a non-oxidizing or reducing atmosphere, it is immersed in a plating bath and hot dip galvanized. This hot dip galvanizing treatment may be performed in accordance with a conventional method. For example, the plating bath temperature is about 440 to 520 ° C., the temperature when the steel sheet is immersed in the plating bath is approximately equal to the plating bath temperature, and the Al concentration in the galvanizing bath is generally about 0.1 to 0.2 mass%. However, it is not particularly limited.
なお、製品の用途によっては、めっき温度やめっき浴組成等のめっき条件を変更する場合があるが、めっき条件の違いは本発明の効果に何ら影響を与えるものではなく、特に限定されるものではない。例えば、めっき浴中にAl以外に、Pb,Sb,Fe,Mg,Mn,Ni,Ca,Ti,V,Cr,Co,Sn等の元素が混入していても本発明の効果は何ら変わらない。 Depending on the application of the product, the plating conditions such as the plating temperature and the plating bath composition may be changed, but the difference in the plating conditions does not affect the effect of the present invention and is not particularly limited. Absent. For example, even if elements such as Pb, Sb, Fe, Mg, Mn, Ni, Ca, Ti, V, Cr, Co, and Sn are mixed in the plating bath other than Al, the effect of the present invention is not changed. .
さらに、めっき後のめっき層の厚さを調整する方法についても、特に限定するものではないが、一般的にはガスワイピングが使用され、ガスワイピングのガス圧,ワイピングノズル/鋼板間距離等を調節することによって、めっき層の厚さを調整する。このとき、めっき層の厚さは特に限定されるものではないが、3〜15μm程度とするのが好ましい。というのは3μm未満では十分な防錆性が得られず、一方15μm超えでは防錆性が飽和するだけでなく、加工性や経済性が損なわれるからである。但し、めっき層の厚さの違いは本発明の効果を妨げるものではなく、特に限定するものではない。 Furthermore, the method for adjusting the thickness of the plated layer after plating is not particularly limited, but generally, gas wiping is used, and the gas pressure of gas wiping, the distance between the wiping nozzle and the steel plate, etc. are adjusted. By adjusting, the thickness of the plating layer is adjusted. At this time, the thickness of the plating layer is not particularly limited, but is preferably about 3 to 15 μm. This is because if the thickness is less than 3 μm, sufficient rust resistance cannot be obtained, while if it exceeds 15 μm, not only the rust resistance is saturated but also the workability and economy are impaired. However, the difference in the thickness of the plating layer does not hinder the effect of the present invention and is not particularly limited.
(合金化処理)
また、本発明では、上記した溶融亜鉛めっき後に合金化処理を施すことも可能である。
前述したように、本発明によれば、焼鈍時のSi表面濃化を抑制することができるため、Si含有鋼板での著しい合金化遅延という従来技術での問題を解消することができる。その結果、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板を生産性を阻害することなく製造することができる。合金化処理方法としては、ガス加熱、インダクション加熱および通電加熱など、従来から用いられているどのような加熱方法を用いてもよく、特に限定するものではない。例えば合金化処理板温は460〜600℃程度、合金化保持時間は5〜60秒程度とするのが一般的である。
(Alloying treatment)
Moreover, in this invention, it is also possible to give an alloying process after the above hot dip galvanizing.
As described above, according to the present invention, since Si surface concentration during annealing can be suppressed, the problem in the prior art of significant alloying delay in the Si-containing steel sheet can be solved. As a result, an alloyed hot-dip galvanized steel sheet having excellent powdering resistance can be produced without impairing productivity. As the alloying treatment method, any conventionally used heating method such as gas heating, induction heating, and current heating may be used, and it is not particularly limited. For example, the alloying plate temperature is generally about 460 to 600 ° C., and the alloying holding time is generally about 5 to 60 seconds.
上記のような成分組成を有する鋼板に対して、上記のような酸化処理、還元処理を施し、その後溶融亜鉛めっき処理や、さらにその後の合金化処理を行う場合において、酸化処理、の際に、本発明を適用して求められた酸化処理時の最高加熱温度を用いることにより、良好な機械的特性とめっき特性とを兼ね備える溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を効率的に製造することができる。
以下、本発明の骨子である酸化処理時の適正な最高加熱温度の求め方について述べる。
In the case of performing oxidation treatment as described above, reduction treatment, hot dip galvanization treatment, and further alloying treatment thereafter, in the oxidation treatment, the steel sheet having the above component composition, By using the maximum heating temperature during oxidation treatment obtained by applying the present invention, efficiently producing hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets having good mechanical properties and plating properties Can do.
Hereinafter, a method for obtaining an appropriate maximum heating temperature during the oxidation treatment, which is the gist of the present invention, will be described.
(酸化鉄形態遷移温度を求める)
実際に溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板を製造しようとする、Si:0.1%以上3%以下の組成を有する鋼板Xを用意する、予め、該鋼板Xを酸化性雰囲気中で鋼板表面を観察しながら昇温加熱して、該鋼板Xの表面に酸化鉄を形成する模擬的な酸化処理を行う。その際、加熱過程における鋼板表層での酸化鉄形成状況を把握し、酸化鉄形態遷移温度Xtを求める。また、適正な最高加熱温度Waが確立している対比鋼板Wにつき、同様に酸化性雰囲気下の加熱過程における鋼板表層での酸化鉄形成状況を把握し、対比鋼板Wでの酸化鉄形態遷移温度Wtを求める。
(Determine iron oxide form transition temperature)
Prepare a steel plate X having a composition of Si: 0.1% or more and 3% or less, which is intended to produce a hot dip galvanized steel plate or an alloyed hot dip galvanized steel plate. While observing the above, the temperature is raised and heated, and a simulated oxidation treatment for forming iron oxide on the surface of the steel plate X is performed. At that time, the iron oxide formation state on the steel sheet surface layer in the heating process is grasped, and the iron oxide form transition temperature Xt is obtained. In addition, for the comparative steel sheet W for which an appropriate maximum heating temperature Wa has been established, the iron oxide formation state on the steel sheet surface layer in the heating process in an oxidizing atmosphere is also grasped, and the iron oxide form transition temperature in the comparative steel sheet W Wt is obtained.
上記酸化鉄形成状況の把握は、模擬的な酸化処理中の鋼板表層に形成される酸化鉄を観察して、酸化鉄の粒径の変化を把握することである。昇温していくと、一般に、酸化鉄形態遷移に伴い、酸化鉄の粒径は急激に増大するため、この温度を酸化鉄形態遷移温度とする。 The grasp of the iron oxide formation state is to observe the iron oxide formed on the steel sheet surface layer during the simulated oxidation treatment and grasp the change in the particle size of the iron oxide. Generally, as the temperature rises, the particle size of iron oxide increases rapidly with the iron oxide form transition, so this temperature is set as the iron oxide form transition temperature.
上記の模擬的な酸化処理中の鋼板表層の観察を行うための手法に特に制限はなく、E-SEMやX線回折(X-ray Diffraction, XRD)等により行うことができる。例えばE-SEMを用いて行う場合、鋼板表層に900μm2程度の観察視野を設定し、観察視野内で50個の酸化鉄に注目して、その平均粒径を加熱温度に対してプロットし、平均粒径が急激に増加する温度領域の変曲点を酸化鉄形態遷移温度とすればよい。また、上記観察は、実製造(実操業)時の酸化処理雰囲気に近い条件下で行うことが望ましいが、大気圧下での実験は不可能であるため、実炉の酸素分圧に近い酸素分圧の酸化性雰囲気で行えばよい。例えば実炉の酸素分圧が100Paである場合、100Paの純酸素雰囲気で実験を行えばよい。また、この際の酸化性雰囲気は、純酸素雰囲気でよく、また、酸素の他に、水蒸気、希ガスおよび窒素を含む雰囲気としてもよい。 There is no particular limitation on the method for observing the steel sheet surface layer during the above-described simulated oxidation treatment, and it can be performed by E-SEM, X-ray diffraction (XRD), or the like. For example, when using E-SEM, set the observation field of about 900μm 2 on the steel sheet surface layer, pay attention to 50 iron oxides in the observation field, and plot the average particle size against the heating temperature, The inflection point in the temperature region where the average particle diameter increases rapidly may be the iron oxide form transition temperature. The above observation is preferably performed under conditions close to the oxidation treatment atmosphere during actual production (actual operation), but since experiments under atmospheric pressure are not possible, oxygen close to the oxygen partial pressure of the actual furnace What is necessary is just to perform in the oxidizing atmosphere of partial pressure. For example, when the oxygen partial pressure of the actual furnace is 100 Pa, the experiment may be performed in a 100 Pa pure oxygen atmosphere. In addition, the oxidizing atmosphere at this time may be a pure oxygen atmosphere, or may be an atmosphere containing water vapor, a rare gas, and nitrogen in addition to oxygen.
また、E-SEM以外の観察手法は、XRDをはじめとして、鋼板表層の酸化鉄量をモニターする手法が主となる。XRDを用いる場合、酸化鉄に起因する信号強度の増加を加熱温度に対してプロットし、酸化鉄の信号が急激に増加する温度領域の変曲点を酸化鉄形態遷移温度とする。XRDは、大気圧下での実験が可能であるため、実炉の酸素分圧に近い雰囲気で行えばよい。例えば実炉の酸素分圧が100Paである場合、0.1体積%酸素―窒素雰囲気(酸素分圧が約100Paに相当)下で実験を行うことができる。 In addition, observation methods other than E-SEM are mainly methods that monitor the amount of iron oxide on the steel sheet surface layer, starting with XRD. When XRD is used, the increase in signal intensity due to iron oxide is plotted against the heating temperature, and the inflection point in the temperature region where the iron oxide signal increases rapidly is defined as the iron oxide form transition temperature. Since XRD allows experiments under atmospheric pressure, it can be performed in an atmosphere close to the partial pressure of oxygen in the actual furnace. For example, when the oxygen partial pressure of the actual furnace is 100 Pa, the experiment can be performed under a 0.1% by volume oxygen-nitrogen atmosphere (the oxygen partial pressure corresponds to about 100 Pa).
上記E-SEMおよびXRDのいずれを用いた場合でも、実験室の装置では測定をしながらの昇温となるため、昇温速度は実機と比較して非常に遅い。しかし、発明者らが鋭意検討した結果、実験室の装置で可能な5℃/分〜50℃/分程度の昇温速度の場合でも、上記式(A)は成立し、酸化処理における適正な最高加熱温度を決定できることが分かった。
ここで、5℃/分未満の場合には、実験が長時間となり効率が悪くなる。一方、50℃/分を超えると、現行のESEMやその場X線回折では十分な時間分解能でデータを取得することができなくなる。そこで、5℃/分以上50℃/分以下とする。技術の進歩により十分な時間分解能でデータを取得することができるようになれば実機の炉と同等の昇温速度としてもよい。加熱炉中の雰囲気を上記のように調整し、炉内に導入された鋼板Xを、酸化鉄形態遷移温度を超えるまで加熱する。
以上の条件は、加熱を一段階で行った場合についての説明であるが、二段階以上に分け、各段階で昇温速度を変えて行うこともできる。
Regardless of which E-SEM or XRD is used, the temperature rise rate is very slow compared to the actual machine because the temperature rises while measuring in the laboratory apparatus. However, as a result of intensive studies by the inventors, the above formula (A) is established even at a heating rate of about 5 ° C./min to 50 ° C./min, which is possible with a laboratory apparatus, and is appropriate for the oxidation treatment. It has been found that the maximum heating temperature can be determined.
Here, when the temperature is less than 5 ° C./min, the experiment takes a long time and the efficiency is deteriorated. On the other hand, if it exceeds 50 ° C / min, data cannot be acquired with sufficient time resolution by current ESEM and in situ X-ray diffraction. Therefore, it is set to 5 ° C./min or more and 50 ° C./min or less. If data can be acquired with sufficient time resolution due to technological progress, the temperature rise rate may be equivalent to that of an actual furnace. The atmosphere in the heating furnace is adjusted as described above, and the steel plate X introduced into the furnace is heated until it exceeds the iron oxide form transition temperature.
The above conditions describe the case where the heating is performed in one stage. However, the heating can be performed in two or more stages and changing the temperature increase rate in each stage.
(酸化処理時の適正な最高加熱温度を求める)
こうして得られた鋼板Xの酸化鉄形態遷移温度Xt、対比鋼板Wの酸化鉄形態遷移温度Wtおよび対比鋼板Wの適正な最高加熱温度Waとから、下記式(A)に従ってXaを求める。
Xa=Wa+Xt−Wt (A)
ここで、実製造(実操業)においては、対比鋼板Wの適正な最高加熱温度は、ある程度の範囲を持っているが、その範囲内であれば、どの温度をWaとしてもよい。
また、発明者らの検討によると、対比鋼板Wにおいて確立されている適正な最高加熱温度範囲の下限をWaとして求めたXaより鋼板Xの酸化処理時の最高加熱温度が低いと、酸化鉄の生成量が不足して不めっきが発生する。また、対比鋼板Wの適正な最高加熱温度範囲の上限をWaとして求めたXaより鋼板Xの酸化処理時の最高加熱温度が高いと、過酸化による酸化鉄のロールピックアップや不めっき、めっき密着性不良が生じる。
(Determining an appropriate maximum heating temperature during oxidation treatment)
From the iron oxide form transition temperature Xt of the steel sheet X thus obtained, the iron oxide form transition temperature Wt of the contrast steel sheet W, and the appropriate maximum heating temperature Wa of the contrast steel sheet W, Xa is determined according to the following formula (A).
Xa = Wa + Xt−Wt (A)
Here, in actual production (actual operation), the appropriate maximum heating temperature of the contrast steel sheet W has a certain range, but any temperature within the range may be set to Wa.
Further, according to the study by the inventors, if the maximum heating temperature during the oxidation treatment of the steel sheet X is lower than Xa obtained by setting the lower limit of the appropriate maximum heating temperature range established in the contrast steel sheet W as Wa, The amount produced is insufficient and non-plating occurs. In addition, if the maximum heating temperature during oxidation of the steel sheet X is higher than Xa obtained by setting the upper limit of the appropriate maximum heating temperature range of the contrast steel sheet W as Wa, the iron oxide roll pick-up or non-plating due to peroxidation, plating adhesion Defects occur.
従来は、開発された様々な新規鋼種を実工程に展開するために、実験室で鋼種毎に様々な最高加熱温度で焼鈍した鋼板を作製し、必要十分な酸化量を確保できる条件を見出す煩雑な作業を要していたが、本発明により、こうした煩雑な作業なしに酸化処理における適正な最高加熱温度を効率的に決定することができる。そして、このようにして決定された、最高加熱温度は0.1〜3.0質量%のSiを含有する鋼板について行なわれる通常の酸化処理に適用できる。 Conventionally, in order to develop various new steel types that have been developed into actual processes, it is complicated to find the conditions for producing necessary and sufficient oxidation amounts by producing steel plates annealed at various maximum heating temperatures for each steel type in the laboratory. However, according to the present invention, an appropriate maximum heating temperature in the oxidation treatment can be efficiently determined without such a complicated operation. And the maximum heating temperature determined in this way is applicable to the normal oxidation process performed about the steel plate containing 0.1-3.0 mass% Si.
(実施例)
以下、本発明の実施例について説明する。
まず、表1に示した組成を有する厚さ0.7mmの各種冷延鋼板を用意した。表1中の鋼板No.1〜4のPは0.001質量%以上0.10質量%以下であり、Sは0.2質量%以下であった。このうち、鋼板No.4は実製造(実操業)において酸化処理における適正な最高加熱温度が確立されている対比鋼板である。鋼板No.4の適正な最高加熱温度(Wa)は720〜750℃である。これらの鋼板の表面における酸化鉄形成過程を観察し、得られた各鋼板の酸化鉄形態遷移温度を求めた。酸化鉄形態遷移温度は、E-SEMを用いたその場観察で求めた。E-SEMでの条件は、100Paの酸素雰囲気下において30℃/分の昇温速度で室温から950℃まで加熱し、各鋼板の表面における酸化鉄形成過程をその場観察し、上述の方法により求めた。得られた各鋼板の酸化鉄形態遷移温度を表2に示す。鋼板No.4との酸化鉄形態遷移温度差(℃)[Xt−Wt]、および、鋼板No.4の実製造(実操業)における適正な最高加熱温度(Wa)、および、それらの和[Wa+Xt−Wt]を合わせて表2に示した。
続いて、厚さ0.7mm、70mm×180mmの各鋼板を用いめっき性を調査するために実製造(実操業)を模擬してCGLシミュレータを用いてめっき実験を実施した。鋼板No.1〜4をシミュレータ内にセットし、0.1%O2−N2(露点20℃)、ガス流量40 l/分雰囲気で10℃/秒で昇温し、表2に示した「酸化処理時最高加熱温度」まで加熱を行い酸化処理を行なった。最高加熱温度到達後にN2ガスで冷却を行った。冷却時のN2ガス流量は200 l/分である。その後、酸化処理後の鋼板を10体積%水素+窒素雰囲気中(露点:−35℃)で板温:830℃,保持時間:45秒の条件で還元した。めっき条件は、Alを0.14質量%含む(Fe飽和)460℃の亜鉛めっき浴を用い、侵入板温:460℃および浸漬時間:1秒とし、窒素ガスワイパーで付着量を片面:45g/m2 に調整し溶融亜鉛めっき鋼板を作製した。
(Example)
Examples of the present invention will be described below.
First, various cold-rolled steel sheets having a composition shown in Table 1 and having a thickness of 0.7 mm were prepared. Steel plate No. in Table 1 P of 1-4 was 0.001 mass% or more and 0.10 mass% or less, and S was 0.2 mass% or less. Among these, steel plate No. 4 is a comparative steel sheet in which an appropriate maximum heating temperature in the oxidation treatment is established in actual production (actual operation). Steel plate No. The appropriate maximum heating temperature (Wa) of 4 is 720 to 750 ° C. The iron oxide formation process on the surface of these steel plates was observed, and the iron oxide form transition temperature of each obtained steel plate was determined. The iron oxide form transition temperature was determined by in-situ observation using E-SEM. E-SEM conditions were as follows: heating from room temperature to 950 ° C. at a rate of 30 ° C./min in an oxygen atmosphere of 100 Pa, and in-situ observation of the iron oxide formation process on the surface of each steel plate. Asked. Table 2 shows the iron oxide form transition temperatures of the obtained steel sheets. Steel plate No. No. 4 iron oxide form transition temperature difference (° C.) [Xt−Wt] and steel plate No. Table 2 shows the appropriate maximum heating temperature (Wa) in the actual production (actual operation) of No. 4 and the sum [Wa + Xt−Wt] thereof.
Subsequently, in order to investigate the plating property using each steel sheet having a thickness of 0.7 mm and 70 mm × 180 mm, a practical experiment (actual operation) was simulated and a plating experiment was performed using a CGL simulator. Steel plate No. 1 to 4 are set in the simulator, heated at 10 ° C / second in an atmosphere of 0.1% O 2 -N 2 (dew point 20 ° C) and gas flow rate 40 l / min. Oxidation was performed by heating to “heating temperature”. After reaching the maximum heating temperature, cooling was performed with N 2 gas. The N 2 gas flow rate during cooling is 200 l / min. Thereafter, the steel plate after the oxidation treatment was reduced in a 10% by volume hydrogen + nitrogen atmosphere (dew point: −35 ° C.) under conditions of a plate temperature of 830 ° C. and a holding time of 45 seconds. The plating conditions were 0.14% by mass of Al (Fe saturated), 460 ° C zinc plating bath, intrusion plate temperature: 460 ° C and immersion time: 1 second. A hot dip galvanized steel sheet was prepared.
(評価)
<めっき外観(不めっき有無)>
得られた溶融亜鉛めっき鋼板に対して、ルーペおよび目視にて外観観察を行い、不めっきが全くない場合を不めっき無し(○)とし、ルーペで確認して不めっきと識別できるレベルの不めっきしか発生していない場合を顕著な不めっきなし(△)、目視にて不めっきが観察できる場合を不めっき有り(×)とした。
(Evaluation)
<Plating appearance (with or without plating)>
The obtained hot-dip galvanized steel sheet is visually observed with a magnifying glass and visually. When there is no plating, no plating is indicated (O). In the case where only non-plating occurred, the case where there was no significant plating (Δ), and the case where non-plating could be observed with the naked eye was judged as non-plating (x).
<めっき密着性>
得られた溶融亜鉛めっき鋼板について、ボールインパクト試験を行った。試験は、ISO 6272に準拠し、直径1/2インチ径のパンチを用い、2.8kgの重りを1mの高さから 落下させた。その後、衝撃で凸部ができた鋼板の凸部側のめっきに対して、加工部をセロテープ(登録商標)剥離し、めっき層剥離の有無を目視判定することでめっき密着性を評価した。試験後のめっき剥離状態を目視にて調べ、めっき剥離の無い場合を密着性合格とし、めっき剥離の有る場合を密着性不合格とした。
評価結果も合わせて表2に示した。
<Plating adhesion>
A ball impact test was performed on the obtained hot-dip galvanized steel sheet. In the test, a 2.8 kg weight was dropped from a height of 1 m using a punch with a diameter of 1/2 inch in accordance with ISO 6272. Then, the plating adhesion was evaluated by peeling the processed part with cello tape (registered trademark) against plating on the convex part side of the steel sheet on which the convex part was formed by impact, and visually judging the presence or absence of peeling of the plating layer. The plating peeling state after the test was visually observed, and the case where there was no plating peeling was regarded as adhesion pass, and the case where plating peeling was present was regarded as adhesion failure.
The evaluation results are also shown in Table 2.
表2より、鋼板No.1〜3について、実験室で簡便な方法で求めた酸化鉄形態遷移温度差(Xt−Wt)と実製造(実操業)における適正な最高加熱温度(Wa)とから求めた(Wa+Xt−Wt)を最高加熱温度として、酸化処理を行なった鋼板を用いてめっきをしたものは、不めっきがなく外観良好で、かつ、めっき密着性も良好で機械的特性にも優れることが分かる。また、この範囲を外れた温度を最高加熱温度として酸化処理を行なった場合は、結果が良好ではなかった。 From Table 2, steel plate No. 1 to 3 were determined from the iron oxide form transition temperature difference (Xt-Wt) determined by a simple method in the laboratory and the appropriate maximum heating temperature (Wa) in actual production (actual operation) (Wa + Xt-Wt). It can be seen that those plated with a steel plate subjected to oxidation treatment at a maximum heating temperature have no unplating, good appearance, good plating adhesion, and excellent mechanical properties. Further, when the oxidation treatment was performed with the temperature outside this range as the maximum heating temperature, the results were not good.
このように、本発明により、実験室で様々な最高加熱温度で焼鈍した鋼板を作製し、必要十分な酸化量を確保することのできる条件を探索することなく、酸化処理における適正な最高加熱温度を効率的に決定して、良好なめっき特性を備える溶融亜鉛めっき鋼板を製造できることが分かる。 Thus, according to the present invention, steel plates annealed at various maximum heating temperatures in a laboratory are prepared, and the appropriate maximum heating temperature in the oxidation treatment is searched without searching for conditions that can ensure the necessary and sufficient amount of oxidation. It can be seen that a hot-dip galvanized steel sheet with good plating characteristics can be manufactured.
Claims (3)
前記鋼板および、酸化処理における適正な最高加熱温度Waが確立している対比鋼板につき、酸化性雰囲気下の加熱過程における鋼板表層での酸化鉄形成状況を把握し、酸化鉄の形成状況から、前記鋼板での酸化鉄の形態が遷移する温度Xtと前記対比鋼板での酸化鉄の形態が遷移する温度Wtとを求め、これらXtおよびWtと前記Waとから、下記式(A)に従って求めた、Xaを最高加熱温度として前記酸化処理を行い、前記酸化性雰囲気下の加熱過程は5℃/分以上50℃/分以下の昇温速度で行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
(記)
Xa=Wa+Xt−Wt (A) With respect to a steel sheet containing 0.1 to 3% by mass of Si, the steel sheet is heated in an oxidizing atmosphere to form iron oxide on the surface of the steel sheet, and the oxidized steel sheet is non-oxidizing In producing a hot-dip galvanized steel sheet through a reduction process of reducing the iron oxide by heating in an atmosphere, and a plating process in which hot-dip galvanizing is performed on the steel sheet after the reduction process,
For the steel sheet and the comparative steel sheet in which an appropriate maximum heating temperature Wa in the oxidation treatment is established, grasp the iron oxide formation status on the steel sheet surface layer in the heating process in an oxidizing atmosphere, and from the iron oxide formation status, The temperature Xt at which the form of iron oxide in the steel sheet transitions and the temperature Wt at which the form of iron oxide in the contrast steel sheet transitions were determined, and these Xt, Wt, and Wa were determined according to the following formula (A). A method for producing a hot-dip galvanized steel sheet, wherein the oxidation treatment is performed with Xa as the maximum heating temperature, and the heating process in the oxidizing atmosphere is performed at a temperature increase rate of 5 ° C / min to 50 ° C / min.
(Record)
Xa = Wa + Xt−Wt (A)
A hot-dip galvanized steel sheet produced by the method according to claim 1 or 2 is heated to perform an alloying treatment for alloying the plated hot-dip galvanized steel sheet. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014053263A JP6137002B2 (en) | 2014-03-17 | 2014-03-17 | Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014053263A JP6137002B2 (en) | 2014-03-17 | 2014-03-17 | Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015175040A JP2015175040A (en) | 2015-10-05 |
JP6137002B2 true JP6137002B2 (en) | 2017-05-31 |
Family
ID=54254510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014053263A Active JP6137002B2 (en) | 2014-03-17 | 2014-03-17 | Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6137002B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111194405B (en) * | 2017-10-05 | 2023-02-17 | 日本制铁株式会社 | Plating layer adhesion evaluation device and evaluation method, and alloying hot dip galvanized steel sheet manufacturing facility and manufacturing method |
JP6928573B2 (en) * | 2018-03-26 | 2021-09-01 | 日本製鉄株式会社 | Inorganic chemical conversion treatment liquid and inorganic chemical conversion treatment steel sheet |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2725537B2 (en) * | 1992-09-03 | 1998-03-11 | 住友金属工業株式会社 | Manufacturing method of galvannealed steel sheet with excellent impact adhesion |
JP3255765B2 (en) * | 1993-07-14 | 2002-02-12 | 川崎製鉄株式会社 | Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet |
JP2970445B2 (en) * | 1994-12-14 | 1999-11-02 | 住友金属工業株式会社 | Hot-dip galvanizing method for Si-added high tensile steel |
JP4741376B2 (en) * | 2005-01-31 | 2011-08-03 | 新日本製鐵株式会社 | High-strength galvannealed steel sheet with good appearance, manufacturing method and manufacturing equipment thereof |
JP4747656B2 (en) * | 2005-04-20 | 2011-08-17 | Jfeスチール株式会社 | Method for producing high-tensile hot-dip galvanized steel sheet and method for producing high-tensile alloyed hot-dip galvanized steel sheet |
JP4810980B2 (en) * | 2005-11-09 | 2011-11-09 | Jfeスチール株式会社 | Method for producing hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet |
JP4972775B2 (en) * | 2006-02-28 | 2012-07-11 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion |
JP5211657B2 (en) * | 2007-11-29 | 2013-06-12 | Jfeスチール株式会社 | Method for producing hot-dip galvanized steel sheet |
JP5715344B2 (en) * | 2009-11-02 | 2015-05-07 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
JP5652219B2 (en) * | 2011-01-20 | 2015-01-14 | Jfeスチール株式会社 | Method for producing alloyed hot-dip galvanized steel sheet with excellent plating adhesion and sliding properties |
WO2013157222A1 (en) * | 2012-04-18 | 2013-10-24 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and process for producing same |
-
2014
- 2014-03-17 JP JP2014053263A patent/JP6137002B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015175040A (en) | 2015-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5708884B2 (en) | Alloyed hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5799997B2 (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them | |
JP5799996B2 (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them | |
JP2012514131A (en) | Steel plate annealing apparatus, plated steel plate manufacturing apparatus including the same, and plated steel plate manufacturing method using the same | |
JP2010255100A (en) | High-strength hot-dip galvanized steel plate and method for producing the same | |
KR101726090B1 (en) | High strength galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same | |
JP5799819B2 (en) | Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance | |
US10023933B2 (en) | Galvannealed steel sheet and method for producing the same | |
JP5811841B2 (en) | Method for producing Si-containing high-strength galvannealed steel sheet | |
KR20150008112A (en) | High-strength hot-dip galvanized steel sheet and process for producing same | |
KR20150136113A (en) | Method for manufacturing high-strength alloyed hot-dip galvanized steel plate | |
KR101650665B1 (en) | High strength hot dip galvannealed steel sheet of excellent phosphatability and ductility, and a production process therefor | |
TWI652355B (en) | Hot-dipped galvanized steel and method of forming the same | |
KR101707981B1 (en) | Method for manufacturing galvanized steel sheet | |
WO2013042356A1 (en) | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating | |
JP6137002B2 (en) | Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
WO2017110054A1 (en) | Mn-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET AND MANUFACTURING METHOD THEREFOR | |
JP5211657B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP5092858B2 (en) | Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP2005200711A (en) | Method of producing hot dip galvannealed steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6137002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |