[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5768423B2 - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
JP5768423B2
JP5768423B2 JP2011059290A JP2011059290A JP5768423B2 JP 5768423 B2 JP5768423 B2 JP 5768423B2 JP 2011059290 A JP2011059290 A JP 2011059290A JP 2011059290 A JP2011059290 A JP 2011059290A JP 5768423 B2 JP5768423 B2 JP 5768423B2
Authority
JP
Japan
Prior art keywords
electrode
particulate matter
cylindrical
fluid
cylindrical electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011059290A
Other languages
Japanese (ja)
Other versions
JP2012192362A (en
Inventor
将隆 吉田
将隆 吉田
康史 三塚
康史 三塚
貴誌 乾
貴誌 乾
一美 川上
一美 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011059290A priority Critical patent/JP5768423B2/en
Publication of JP2012192362A publication Critical patent/JP2012192362A/en
Application granted granted Critical
Publication of JP5768423B2 publication Critical patent/JP5768423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Description

本発明は、粒子状物質(PM:Particulate Matter)を含有する例えば内燃機関の排気ガス等の粒子状物含有ガス中から粒子状物質を除去するようにした電気集塵装置に関する。   The present invention relates to an electrostatic precipitator configured to remove particulate matter from particulate matter-containing gas such as exhaust gas of an internal combustion engine that contains particulate matter (PM).

内燃機関から排出される排気ガスには、NOx、SOxの他、炭素を主成分とする粒子状物質などの有害物質が含まれている。人間が呼吸により粒子状物質を体内に吸い込むと様々な健康被害が発生することが知られており、粒子状物質を効率良く補集する電気集塵装置の開発が望まれている。
このような電気集塵装置では、補集した粒子状物質をそのまま放置すると補集効率が低下することから、補集した粒子状物質を洗い流す洗浄処理を行う必要がある。このような洗浄機能を有する電気集塵機として、例えば電気集塵機の機内におけるトンネル内の浮遊微粒子多くを含む空気を通過させる通路に形成した集塵部に下流側から対向して補集ダスト払い落とし用のエアブロー式ダスト洗浄機構を装備した電気集塵装置の補集ダスト洗浄方式が提案されている(例えば、特許文献1参照)。
Exhaust gas discharged from an internal combustion engine contains NOx, SOx, and harmful substances such as particulate matter containing carbon as a main component. It is known that various health hazards occur when a human inhales particulate matter into the body by breathing, and the development of an electrostatic precipitator that efficiently collects particulate matter is desired.
In such an electrostatic precipitator, if the collected particulate matter is left as it is, the collection efficiency is lowered. Therefore, it is necessary to perform a cleaning process for washing out the collected particulate matter. As an electrostatic precipitator having such a cleaning function, for example, a dust collecting part that is formed in a passage through which air containing a large amount of suspended particulates in a tunnel in an electric precipitator passes is opposed from the downstream side and used for collecting collected dust. An auxiliary dust cleaning system for an electric dust collector equipped with an air blow type dust cleaning mechanism has been proposed (see, for example, Patent Document 1).

また、燃焼機関の排気管に連なり、通過する排気ガスに含まれるすすを電気的に吸着するすす吸着装置と、すす吸着装置に吸着したすすを洗浄除去してその吸着力を回復させる再生装置と、燃焼機関の排気管に連なりすすを核とする排気ガスの凝縮液化によってすすや有害排気ガスを除去する核凝縮装置とから構成した排気浄化装置も提案されている(例えば、特許文献2参照)。   Also, a soot adsorption device that is connected to the exhaust pipe of the combustion engine and electrically adsorbs soot contained in the passing exhaust gas, and a regeneration device that cleans and removes the soot adsorbed on the soot adsorption device and restores its adsorption power Also, an exhaust purification device is proposed which is constituted by a nuclear condensing device that removes soot and harmful exhaust gas by condensing liquefied exhaust gas with soot as a core connected to an exhaust pipe of a combustion engine (see, for example, Patent Document 2). .

さらに、煤塵を含んだ空気を通過させる複数の集塵通路のそれぞれに放電極及び集塵極を配置して煤塵にコロナ放電を利用して電荷を与え、この煤塵にクーロン力を作用させて集塵極に補集するようにし、1つの集塵通路の入口ダンパ及び出口ダンパを閉じた状態で、水スプレーノズルによる洗浄と加熱空気による乾燥とを行うようにした電気集塵装置も提案されている(例えば、特許文献3〜5参照)。   Furthermore, a discharge electrode and a dust collection electrode are arranged in each of a plurality of dust collection passages through which air containing dust is passed, and a charge is applied to the dust using corona discharge, and the dust is collected by applying a Coulomb force to the dust. There has also been proposed an electrostatic precipitator that collects in the dust electrode and performs cleaning with a water spray nozzle and drying with heated air with the inlet damper and outlet damper of one dust collecting passage closed. (For example, see Patent Documents 3 to 5).

特開昭60−28838号公報JP 60-28838 A 特開2000−64818号公報JP 2000-64818 A 特開平10−244183号公報Japanese Patent Laid-Open No. 10-244183 特開平6−55100号公報JP-A-6-55100 特開平3−26353号公報JP-A-3-26353

しかしながら、上記特許文献1〜5に記載の従来例にあっては、ダスト等を含む空気を通過させる空気流路に電気集塵部を配置し、この電気集塵部で補集したダスト等を同様に空気流路に配置した洗浄機構で洗浄するようにしており、電気集塵部を洗浄機構で洗浄する場合には、空気流路を流れる空気を止め、且つ電気集塵部の電圧印加を停止してから洗浄を行うようにしており、洗浄中はダスト等を補集することはできないという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、粒子状物質含有ガスの通過を停止させることなく、補集した粒子状物質の回収を行うことができる電気集塵装置を提供することを目的としている。
However, in the conventional examples described in Patent Documents 1 to 5, an electric dust collecting part is arranged in an air flow path through which air containing dust and the like passes, and dust collected by the electric dust collecting part is collected. Similarly, the cleaning mechanism arranged in the air flow path is used for cleaning, and when the electrostatic dust collecting part is cleaned by the cleaning mechanism, the air flowing through the air flow path is stopped and the voltage applied to the electrostatic dust collecting part is applied. Cleaning is performed after stopping, and there is an unsolved problem that dust cannot be collected during cleaning.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and the collected particulate matter can be recovered without stopping the passage of the particulate matter-containing gas. The object is to provide an electrostatic precipitator.

上記目的を達成するために、本発明の一の形態に係る電気集塵装置は、軸方向に延長する放電電極と、該放電電極を半径方向に所定距離を保って覆い所要数の貫通孔を有する筒状電極と、前記筒状電極の外側を半径方向に所定距離を保って覆うケーシング電極と、前記放電電極と前記筒状電極及び前記ケーシング電極との間に高電圧を印加して、前記筒状電極内を通流する粒子状物質含有ガスの粒子状物質を帯電させて前記筒状電極の前記貫通孔を通過させて当該筒状電極の外周面及び前記ケーシング電極の内周面に補集させる高電圧源と、前記筒状電極の外周面及び前記ケーシング電極の内周面間の前記粒子状物質を補集する補集領域に配置された前記粒子状物質を回収する回収機構とを備え、前記回収機構は、前記筒状電極及びケーシング電極の軸方向の一端側に配置し、補集した前記粒子状物質を吹き飛ばす流体噴射ノズルと、前記筒状電極及びケーシング電極の軸方向の他端側に配置した前記粒子状物質を含む流体を吸引する流体吸引部とを備えていることを特徴としている。 In order to achieve the above object, an electrostatic precipitator according to an embodiment of the present invention comprises a discharge electrode extending in the axial direction, covering the discharge electrode with a predetermined distance in the radial direction, and a required number of through holes. A cylindrical electrode having a casing electrode that covers the outside of the cylindrical electrode while maintaining a predetermined distance in the radial direction, and applying a high voltage between the discharge electrode, the cylindrical electrode, and the casing electrode, The particulate matter of the particulate matter-containing gas flowing through the cylindrical electrode is charged and passed through the through hole of the cylindrical electrode to compensate the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode. A high voltage source to be collected, and a recovery mechanism for recovering the particulate matter disposed in a collection region for collecting the particulate matter between the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode. wherein the recovery mechanism, the tubular electrode and casings A fluid injection nozzle that is disposed on one end side in the axial direction of the electrode and blows off the collected particulate matter, and a fluid that includes the particulate matter disposed on the other end side in the axial direction of the cylindrical electrode and the casing electrode. And a fluid suction part for suction .

この構成によると、筒状電極の内部に粒子状物質含有ガスを通過させ、この粒子状物質含有ガスに含まれる粒子状物質を筒状電極及びケーシング電極間の補集領域に補集し、この補集領域に補集した粒子状物質を回収する回収機構を設けたので、回収機構を粒子状物質含有ガスの通路となる筒状電極の内側とは異なる領域に配置することができ、粒子状物質含有ガスを流した状態で粒子状物質の回収を行うことができる。
また、流体噴射ノズルを補集領域の一端側に配置し、他端側に流体吸引部を設けたので、流体噴射ノズルから噴射した流体によって筒状電極及びケーシング電極で補集した粒子状物質を他端側へ吹き飛ばし、この吹き飛ばされた粒子状物質を流体吸引装置で吸引することにより、補集した粒子状物質を効果的に回収することができる。
According to this configuration, the particulate matter-containing gas is allowed to pass through the inside of the cylindrical electrode, and the particulate matter contained in the particulate matter-containing gas is collected in a collecting region between the cylindrical electrode and the casing electrode. Since the collection mechanism that collects the particulate matter collected in the collection region is provided, the collection mechanism can be arranged in a region different from the inside of the cylindrical electrode that becomes the passage of the particulate matter-containing gas. The particulate matter can be recovered in a state where the substance-containing gas is flowed.
In addition, since the fluid ejection nozzle is arranged on one end side of the collection region and the fluid suction part is provided on the other end side, the particulate matter collected by the cylindrical electrode and the casing electrode by the fluid ejected from the fluid ejection nozzle is collected. By blowing off to the other end side and sucking the blown off particulate matter with a fluid suction device, the collected particulate matter can be effectively recovered.

また、本発明の一の形態に係る電気集塵装置は、筒状筐体内を仕切板で仕切って形成した軸方向に延長する複数の電極収納部を備え、前記各電極収納部は、軸方向に延長する放電電極と、該放電電極を半径方向に所定距離を保って覆い所要数の貫通孔を有する筒状電極と、前記筒状電極の外側を半径方向に所定距離を保って覆うケーシング電極と、前記放電電極と前記筒状電極及び前記ケーシング電極との間に高電圧を印加して、前記筒状電極内を通流する粒子状物質含有ガスの粒子状物質を帯電させて前記筒状電極の前記貫通孔を通過させて当該筒状電極の外周面及び前記ケーシング電極の内周面に補集させる高電圧源と、前記筒状電極の外周面及び前記ケーシング電極の内周面間の前記粒子状物質を補集する補集領域に配置された前記粒子状物質を回収する回収機構とを備え、前記回収機構は、前記筒状電極及びケーシング電極の軸方向の一端側に配置し、補集した前記粒子状物質を吹き飛ばす流体噴射ノズルと、前記筒状電極及びケーシング電極の軸方向の他端側に配置した前記粒子状物質を含む流体を吸引する流体吸引部とを備えていることを特徴としている。 The electrostatic precipitator according to one aspect of the present invention includes a plurality of electrode storage portions extending in the axial direction formed by partitioning a cylindrical housing with a partition plate, and each of the electrode storage portions is axially A discharge electrode extending in a radial direction, covering the discharge electrode with a predetermined distance in the radial direction and having a required number of through-holes, and a casing electrode covering the outside of the cylindrical electrode with a predetermined distance in the radial direction And applying a high voltage between the discharge electrode and the cylindrical electrode and the casing electrode to charge the particulate matter of the particulate matter-containing gas flowing through the cylindrical electrode, A high voltage source that passes through the through hole of the electrode and collects on the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode, and between the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode The grains arranged in a collection area for collecting the particulate matter And a recovery mechanism for recovering Jo material, the recovery mechanism is arranged on one end side in the axial direction of the tubular electrode and the casing electrode, and a fluid injection nozzle to blow the particulate matter scavenged, the tubular And a fluid suction part for sucking a fluid containing the particulate matter disposed on the other end side in the axial direction of the electrode and the casing electrode .

この構成によると、筒状筐体内に仕切板で仕切って軸方向に延長する複数の電極収納部を備え、各電極収納部に、放電電極と、筒状電極と、筒状筐体及び仕切板で構成されるケーシング電極とを設けるようにしたので、各電極収納部が個別の電気集塵部となり、各電気集塵部の補集部に粒子状物質を回収する回収機構を設けることができ、電気集塵部単位で粒子状物質の回収を個別に行うことができ、回収用の使用流体量を制限して、コンプレッサや吸引ポンプの低容量化、配管の小径化、装置の小形化及びコストダウン化が可能となる。
また、流体噴射ノズルを補集領域の一端側に配置し、他端側に流体吸引部を設けたので、流体噴射ノズルから噴射した流体によって筒状電極及びケーシング電極で補集した粒子状物質を他端側へ吹き飛ばし、この吹き飛ばされた粒子状物質を流体吸引装置で吸引することにより、補集した粒子状物質を効果的に回収することができる。
According to this configuration, the cylindrical housing includes a plurality of electrode storage portions that are partitioned by the partition plate and extend in the axial direction, and each electrode storage portion includes a discharge electrode, a cylindrical electrode, a cylindrical housing, and a partition plate. Since each electrode storage part becomes an individual electric dust collecting part, a collecting mechanism for collecting particulate matter can be provided at the collecting part of each electric dust collecting part. , Particulate matter can be individually collected in units of electrostatic precipitators, limiting the amount of fluid used for recovery, reducing the capacity of compressors and suction pumps, reducing the diameter of piping, reducing the size of equipment, Cost reduction is possible.
In addition, since the fluid ejection nozzle is arranged on one end side of the collection region and the fluid suction part is provided on the other end side, the particulate matter collected by the cylindrical electrode and the casing electrode by the fluid ejected from the fluid ejection nozzle is collected. By blowing off to the other end side and sucking the blown off particulate matter with a fluid suction device, the collected particulate matter can be effectively recovered.

また、本発明の他の形態に係る電気集塵装置は、前記流体噴射ノズルは、気体を噴射するように構成されていることを特徴としている。
この構成によると、流体噴射ノズルから気体を噴射するので、補集領域が乾燥状態のまま粒子状物質の回収を行うことができる。
Moreover, the electrostatic precipitator which concerns on the other form of this invention is characterized by the said fluid injection nozzle being comprised so that gas may be injected.
According to this configuration, since the gas is ejected from the fluid ejection nozzle, the particulate matter can be recovered while the collection region is in a dry state.

また、本発明の他の形態に係る電気集塵装置は、前記流体噴射ノズルは、液体を噴射するように構成されていることを特徴としている。
この構成によると、流体噴射ノズルから液体を噴射するので、こびりついた粒子状物質でも確実に剥離して回収することができる。この場合には、流体噴射ノズルを上方側に設置することにより、重力を使用して噴射液体の流速を上げることができる。
Moreover, the electric dust collector which concerns on the other form of this invention is characterized by the said fluid injection nozzle being comprised so that a liquid may be injected.
According to this configuration, since the liquid is ejected from the fluid ejection nozzle, it is possible to reliably peel off and collect even the particulate matter. In this case, by installing the fluid ejection nozzle on the upper side, the flow velocity of the ejection liquid can be increased using gravity.

また、本発明の他の形態に係る電気集塵装置は、前記液体は水、海水及び洗浄液の何れかであることを特徴としている。
この構成によれば、液体として、陸上であれば、水を使用し、船舶等であれば海水を使用し、粒子状物質の汚れが酷い場合には、洗浄液を使用して粒子状物質の回収を行う。
Moreover, the electrostatic precipitator which concerns on the other form of this invention is characterized by the said liquid being either water, seawater, or a washing | cleaning liquid.
According to this configuration, water is used as the liquid if it is on land, seawater is used if it is a ship or the like, and if the particulate matter is severely contaminated, the cleaning liquid is used to collect the particulate matter. I do.

また、本発明の他の形態に係る電気集塵装置は、前記筒状電極は、前記貫通孔の開口比が前記流体噴射ノズルの流体が当該筒状電極内部に流入することを阻止する値に設定されていることを特徴としている。
この構成によれば、筒状電極の貫通孔の開口比が流体噴射ノズルから噴射した流体が筒状電極の内部に流入することを阻止する値に設定されているので、筒状電極の内部へ流体が流入して一度補集した粒子状物質を引き剥がして再飛散させてしまうことを防止し、粒子状物質の回収を確実に行うことができる。
Further, in the electrostatic precipitator according to another aspect of the present invention, the cylindrical electrode has an opening ratio of the through hole at a value that prevents fluid from the fluid ejection nozzle from flowing into the cylindrical electrode. It is characterized by being set.
According to this configuration, the opening ratio of the through hole of the cylindrical electrode is set to a value that prevents the fluid ejected from the fluid ejection nozzle from flowing into the cylindrical electrode. It is possible to prevent the particulate matter once collected after the fluid has flowed in from being peeled off and scattered again, and the particulate matter can be reliably recovered.

また、本発明の他の形態に係る電気集塵装置は、前記筒状電極が、前記回収機構の流体噴射ノズル及び前記流体吸引部の少なくとも一方に対向する位置に前記貫通孔を形成しない貫通孔非形成領域が形成されていることを特徴としている。
この構成によれば、筒状電極が回収機構を構成する流体噴射ノズル及び流体吸引部の少なくとも一方に対向する位置に貫通孔を形成しない貫通孔非形成領域が形成されているので、流体噴出ノズルから噴射される流体が筒状電極内に入ることを確実に防止することができ、筒状電極の内部へ流体が流入して一度補集した粒子状物質を引き剥がして再飛散させてしまうことを防止し、粒子状物質の回収を確実に行うことができる。
In the electrostatic precipitator according to another aspect of the present invention, the cylindrical electrode does not form the through hole at a position facing at least one of the fluid ejection nozzle and the fluid suction portion of the recovery mechanism. A non-formation region is formed.
According to this configuration, since the through-hole non-forming region where the through-hole is not formed is formed at a position where the cylindrical electrode opposes at least one of the fluid ejection nozzle and the fluid suction portion constituting the recovery mechanism, the fluid ejection nozzle It is possible to reliably prevent the fluid ejected from the pipe from entering the cylindrical electrode, and the fluid flows into the cylindrical electrode and the particulate matter once collected is peeled off and scattered again. And particulate matter can be reliably recovered.

本発明によれば、粒子状物質含有ガスを筒状電極の内側に通流して放電電極によって粒子状物質に帯電させ、帯電した粒子状物質をクーロン力によって貫通孔を通って筒状電極の外側に移動させ、この筒状電極及びケーシング電極間の補集領域で付着補集する。この付着補集した粒子状物質を回収機構で例えば流体を利用して払拭することにより、粒子状物質含有ガスの通路とは分離された補集領域で粒子状物質の回収を行うことができ、粒子状物質含有ガスを通流した状態で粒子状物質の回収を行うことができる。   According to the present invention, the particulate matter-containing gas is allowed to flow inside the cylindrical electrode to be charged to the particulate matter by the discharge electrode, and the charged particulate matter is passed through the through hole by the Coulomb force to the outside of the cylindrical electrode. And collected in the collecting region between the cylindrical electrode and the casing electrode. By wiping off the collected particulate matter using a recovery mechanism, for example, using a fluid, the particulate matter can be recovered in the collection region separated from the passage of the particulate matter-containing gas, The particulate matter can be recovered with the particulate matter-containing gas flowing.

また、本発明によれば、筒状筐体内に仕切板で仕切って軸方向に延長する複数の電極収納部を備え、各電極収納部に、放電電極と、筒状電極と、筒状筐体及び仕切板で構成されるケーシング電極とを設けるようにしたので、各電極収納部が個別の電気集塵部となり、各電気集塵部の補集部に粒子状物質を回収する回収機構を設けることができ、電気集塵部単位で粒子状物質の回収を個別に行うことができ、回収用の使用流体量を制限して、コンプレッサや吸引ポンプの低容量化、配管の小径化、装置の小形化及びコストダウン化が可能となる。   Further, according to the present invention, a plurality of electrode storage portions that are partitioned by a partition plate and extend in the axial direction are provided in the cylindrical housing, and each electrode storage portion includes a discharge electrode, a cylindrical electrode, and a cylindrical housing. And a casing electrode composed of a partition plate, each electrode storage portion becomes an individual electric dust collecting portion, and a collecting mechanism for collecting particulate matter is provided in the collecting portion of each electric dust collecting portion. It is possible to collect particulate matter individually for each electrostatic precipitator, limit the amount of fluid used for recovery, reduce the capacity of compressors and suction pumps, reduce the diameter of piping, Miniaturization and cost reduction are possible.

本発明に係る電気集塵装置の第1の実施形態を示す全体構成図である。It is a whole lineblock diagram showing a 1st embodiment of an electric dust collector concerning the present invention. 図1の電気集塵装置の外筒を一部除去して示す外観斜視図である。It is an external appearance perspective view which removes and shows a part of outer cylinder of the electric dust collector of FIG. 電気集塵装置の要部を示す斜視図である。It is a perspective view which shows the principal part of an electric dust collector. 電気集塵装置の内筒電極及び放電電極を拡大して示す斜視図である。It is a perspective view which expands and shows the inner cylinder electrode and discharge electrode of an electric dust collector. 開口比と抵抗係数との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between an aperture ratio and a resistance coefficient. 本発明の第2の実施形態を示す電気集塵機の外筒を一部除去して示す斜視図である。It is a perspective view which removes and partially shows the outer cylinder of the electrostatic precipitator which shows the 2nd Embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の第1の実施形態を示す全体構成図である。
図中、1は例えば内燃機関特にディーゼルエンジンの排気ガス中に含まれる炭素を主成分とする粒子径が100μm以下の粒子状物質(PM:Particulate Matter)、特に粒子径が10μm以下の浮遊粒子状物質(SPM:Suspended Particulate Matter)を補集可能な電気集塵装置である。
この電気集塵装置1には、ディーゼルエンジン2から排出される粒子状物質含有ガスが供給される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention.
In the figure, reference numeral 1 denotes, for example, particulate matter (PM: Particulate Matter) having a particle size of 100 μm or less, mainly containing carbon contained in the exhaust gas of an internal combustion engine, particularly a diesel engine, in particular, a suspended particle shape having a particle size of 10 μm or less It is an electrostatic precipitator capable of collecting a substance (SPM: Suspended Particulate Matter).
The electric dust collector 1 is supplied with particulate matter-containing gas discharged from the diesel engine 2.

電気集塵装置1は、図2及び図3に示すように、ディーゼルエンジン2から供給される粒子状物質含有ガスを導入する裁頭角錐筒状のガス案内部15と、このガス案内部15の下流側に形成された粒子状物質含有ガスを旋回流として送り出す旋回流形成部16と、この旋回流形成部16の下流側に配置された例えば断面が12面体の放電電極17を支持する電極支持部18と、この電極支持部18の下流側に配置された電気集塵部19と、最下流に配置された放電電極支持部20とを備えている。   As shown in FIGS. 2 and 3, the electrostatic precipitator 1 includes a truncated gas pyramid-shaped gas guide 15 for introducing the particulate matter-containing gas supplied from the diesel engine 2, and the gas guide 15. A swirl flow forming portion 16 for sending the particulate matter-containing gas formed on the downstream side as a swirl flow, and an electrode support disposed on the downstream side of the swirl flow forming portion 16 for supporting, for example, a discharge electrode 17 having a dodecahedron cross section. A part 18, an electrostatic precipitator 19 disposed on the downstream side of the electrode support 18, and a discharge electrode support 20 disposed on the most downstream side.

電気集塵部19は、放電電極17を半径方向に所定距離を保って覆う例えばステンレス製で円筒状の筒状電極21と、この筒状電極21を囲んで支持する筒状筐体を構成する角筒状のケーシング電極22とで構成されている。
ここで、放電電極18は、図4に示すように、外周面に円周方向に90°間隔で4つの針状電極17aを形成した電極群が3組軸方向に所定間隔を保ち各電極群で円周方向に30°ずれた関係で多数形成されている。
The electrostatic precipitator 19 constitutes a cylindrical electrode 21 made of, for example, stainless steel that covers the discharge electrode 17 at a predetermined distance in the radial direction, and a cylindrical housing that surrounds and supports the cylindrical electrode 21. It is composed of a rectangular tube-like casing electrode 22.
Here, as shown in FIG. 4, each of the discharge electrodes 18 has an electrode group in which four needle-like electrodes 17a are formed at intervals of 90 ° in the circumferential direction on the outer peripheral surface, and each electrode group maintains a predetermined interval in the direction of three sets of axes. In this way, a large number of them are formed so as to be shifted by 30 ° in the circumferential direction.

また、筒状電極21の円筒面には、放電電極17の針状電極部17aと対向する位置に、粒子状物質の粒子径より十分に大きい幅(例えば数mm程度)を有し、円周方向に延長する長円形の貫通孔21aが多数形成されている。この貫通孔21aの形状は、長円形とする場合に限らず、円形としてパンチングパイプを適用するようにしてもよい。   Further, the cylindrical surface of the cylindrical electrode 21 has a width (for example, about several mm) sufficiently larger than the particle diameter of the particulate matter at a position facing the needle electrode portion 17a of the discharge electrode 17, Many oblong through holes 21a extending in the direction are formed. The shape of the through-hole 21a is not limited to an oval shape, and a punching pipe may be applied as a circle.

そして、図3に示すように、放電電極17と筒状電極21及びケーシング電極22との間に放電電極17を負極側とし、筒状電極21及びケーシング電極22を正極側とする103〜105ボルト程度の直流高電圧電源DCを接続し、さらに正極側を接地する。この状態で、放電電極17と筒状電極21の間に粒子状物質含有ガスを旋回気流として供給すると、粒子状物質含有ガスに含まれる粒子状物質はコロナ放電を浴びて帯電する。そして、放電電極17と筒状電極21間の電界により粒子状物質にクーロン力が働き、粒子状物質が筒状電極21へ向けて運動を始める。粒子状物質は質量を持つために、慣性力によってそのまま筒状電極21の貫通孔21aを通過して筒状電極21及びケーシング電極22間の半閉空間である補集領域23に導かれる。 Then, as shown in FIG. 3, the discharge electrodes 17 and the cylindrical electrode 21 and the discharge electrode 17 and the negative electrode side between the casing electrode 22, 10 3 to 10 of the cylindrical electrode 21 and the casing electrode 22 and the positive electrode side Connect a DC high-voltage power supply DC of about 5 volts, and ground the positive electrode side. In this state, when the particulate matter-containing gas is supplied as a swirling airflow between the discharge electrode 17 and the cylindrical electrode 21, the particulate matter contained in the particulate matter-containing gas is charged by corona discharge. The electric field between the discharge electrode 17 and the cylindrical electrode 21 causes the Coulomb force to act on the particulate matter, and the particulate matter starts to move toward the tubular electrode 21. Since the particulate matter has a mass, it passes through the through hole 21 a of the cylindrical electrode 21 as it is due to inertial force and is guided to the collection region 23 which is a semi-closed space between the cylindrical electrode 21 and the casing electrode 22.

この補集領域23では、流れ場は非常に緩やかなため、粒子状物質は流れ場の影響を受けにくく、粒子状物質は自分自身の電荷と筒状電極21及びケーシング電極22間の電位差による電気影像力を受けて、筒状電極21の外周面及びケーシング電極22の内周面に移動付着して補集される。なお、数値解析によれば、筒状電極21内のガス流路における粒子状物質含有ガス主流の流速に比べ、補集空間23の大部分で約1/20〜1/10程度、局所的に1/4程度の流速となることが確認されている。   In this collection region 23, the flow field is very gentle, so that the particulate matter is not easily affected by the flow field, and the particulate matter is an electric charge due to its own charge and the potential difference between the cylindrical electrode 21 and the casing electrode 22. In response to the image force, they are collected by moving and adhering to the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22. In addition, according to the numerical analysis, compared with the flow velocity of the particulate matter-containing gas main flow in the gas flow path in the cylindrical electrode 21, about 1/20 to 1/10 in the most part of the collection space 23, locally. It has been confirmed that the flow rate is about 1/4.

さらに、ケーシング電極22の軸方向両端部が、図2に示すように、中心開口24を有する端板25a及び25bによって閉塞され、これら端板25a及び25bの中心開口24が筒状電極21と連通されている。
筒状電極21、ケーシング電極22、端板25a及び25bで囲まれる半閉空間が粒子状物質の補集領域23とされ、この補集領域23内における端板25a及び25bに補集した粒子状物質を回収する回収機構26が形成されている。
Further, both end portions in the axial direction of the casing electrode 22 are closed by end plates 25 a and 25 b having a center opening 24 as shown in FIG. 2, and the center openings 24 of these end plates 25 a and 25 b communicate with the cylindrical electrode 21. Has been.
A semi-closed space surrounded by the cylindrical electrode 21, the casing electrode 22, and the end plates 25 a and 25 b serves as a particulate matter collection region 23, and the particulate matter collected by the end plates 25 a and 25 b in the collection region 23. A recovery mechanism 26 for recovering the substance is formed.

この回収機構26には、例えば下側の端板25aのケーシング電極22に囲まれる4隅にそれぞれ4つの流体噴射ノズル27が流体としての空気を上方に向けて筒状電極21の外周面及びケーシング電極22の内周面に沿わせて噴射するように配置されている。これら流体噴射ノズル27は外部に配置されたコンプレッサ28に接続されて、このコンプレッサ28から圧縮空気が供給される。   The recovery mechanism 26 includes, for example, four fluid injection nozzles 27 at four corners surrounded by the casing electrode 22 of the lower end plate 25a so that air as a fluid is directed upward and the outer peripheral surface of the cylindrical electrode 21 and the casing. It arrange | positions so that it may inject along the internal peripheral surface of the electrode 22. FIG. These fluid injection nozzles 27 are connected to a compressor 28 disposed outside, and compressed air is supplied from the compressor 28.

また、回収機構26には、例えば上側の端部25bのケーシング電極22に囲まれる4隅にそれぞれ流体噴射ノズル27と対向して4つの流体吸引部29が配置されている。これら流体吸引部29は、図1に示すように、外部に配置されたサイクロン30を介して吸引ポンプ31に接続されて、補集領域23内で流体噴射ノズル27から噴射された流体例えば空気によって吹き飛ばされた粒子状物質を吸引して外部に排気する。   Further, in the recovery mechanism 26, for example, four fluid suction portions 29 are arranged at four corners surrounded by the casing electrode 22 of the upper end portion 25b so as to face the fluid ejection nozzles 27, respectively. As shown in FIG. 1, these fluid suction portions 29 are connected to a suction pump 31 through a cyclone 30 disposed outside, and are fluids ejected from a fluid ejection nozzle 27 in the collection region 23, for example, air. The blown away particulate matter is sucked and exhausted to the outside.

また、筒状電極21の流体噴射ノズル27に対向する円筒面は貫通孔21aが形成されていない貫通孔非形成領域21bとされている。同様に、筒状電極21の流体吸引部29に対向する円筒面は貫通孔21aが形成されていない貫通孔非形成領域21cとされている。
さらに、筒状電極21の貫通孔21aの開口比βは、図5に示すように、レイノルズ数を例えばRe=16としたときに、0.4〜0.5に設定することにより、抵抗係数Kが大きくなり、流体噴射ノズル27から噴射されて筒状電極21の外周面及びケーシング電極22の内周面に補集された粒子状物質を吹き飛ばしながら上昇する空気流が貫通孔21aを通じて筒状電極21の内周側に入ることを阻止することができる。
The cylindrical surface of the cylindrical electrode 21 facing the fluid ejection nozzle 27 is a through hole non-forming region 21b in which the through hole 21a is not formed. Similarly, the cylindrical surface facing the fluid suction part 29 of the cylindrical electrode 21 is a through-hole non-forming region 21c in which the through-hole 21a is not formed.
Furthermore, the opening ratio β of the through hole 21a of the cylindrical electrode 21 is set to 0.4 to 0.5 when the Reynolds number is set to Re = 16, for example, as shown in FIG. K increases, and an air flow rising while blowing off the particulate matter injected from the fluid injection nozzle 27 and collected on the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22 is cylindrical through the through hole 21a. It is possible to prevent the electrode 21 from entering the inner peripheral side.

この電気集塵装置1によると、単に放電電極17及び筒状電極21間のガス流路に粒子状物質含有ガスを通流させるだけで、抽気手段としての送風機等を設ける必要がない。また、粒子状物質含有ガスの流れを妨げるダンパ等を設ける必要もないので、粒子状物質含有ガスの圧力損失を少なくすることができる。さらに、筒状電極21に形成した貫通孔21aの径を粒子状物質の粒子径にかかわらず大きな径に形成することができるので、この分の圧力損失も小さく抑制することができる。さらに、粒子状物質が補集空間23を構成する筒状電極21の外周面やケーシング電極22の内周面で補集するので、両電極21及び22の表面積に応じた多量の粒子状物質の補集を許容することができるとともに、貫通孔21aは極めて目詰まりしにくく、目詰まりによる補集障害を生じることを確実に防止することができる。さらにまた、補集空間23の流れ場が小さいために、一度補集した粒子状物質の再飛散が生じにくい。また、ダンパや送風機等の可動部が存在しないために、故障の可能性が極めて低い。   According to the electrostatic precipitator 1, the particulate matter-containing gas is simply passed through the gas flow path between the discharge electrode 17 and the cylindrical electrode 21, and there is no need to provide a blower or the like as an extraction means. Moreover, since it is not necessary to provide a damper or the like that obstructs the flow of the particulate matter-containing gas, the pressure loss of the particulate matter-containing gas can be reduced. Furthermore, since the diameter of the through-hole 21a formed in the cylindrical electrode 21 can be formed to a large diameter regardless of the particle diameter of the particulate matter, the pressure loss corresponding to this can be suppressed small. Further, since the particulate matter is collected on the outer peripheral surface of the cylindrical electrode 21 constituting the collection space 23 and the inner peripheral surface of the casing electrode 22, a large amount of particulate matter corresponding to the surface area of both the electrodes 21 and 22 is collected. While the collection can be permitted, the through-hole 21a is extremely difficult to be clogged, and it is possible to reliably prevent the collection failure due to the clogging. Furthermore, since the flow field of the collection space 23 is small, it is difficult for the particulate matter collected once to re-scatter. Moreover, since there are no movable parts such as dampers and blowers, the possibility of failure is extremely low.

次に、上記第1の実施形態の動作を説明する。
ディーゼルエンジン2から排気される粒子状物質含有ガスは、電気集塵装置1に供給され、ガス導入部15から旋回流形成部16で旋回気流として電気集塵部19の筒状電極21内に流される。粒子状物質含有ガスは、筒状電極21を通過する際に、前述したように、粒子状物質がコロナ放電によって帯電され、帯電された粒子状物質がクーロン力によって筒状電極21の貫通孔21aを通じて筒状電極21の外側の補集領域23に移動し、筒状電極21の外周面及びケーシング電極22の内周面に付着補集される。
付着補集された粒子状物質が多くなると、回収機構26を作動させて、筒状電極21の外周面及びケーシング電極22の内周面に付着補集された粒子状物質を外部に回収する。
Next, the operation of the first embodiment will be described.
The particulate matter-containing gas exhausted from the diesel engine 2 is supplied to the electrostatic precipitator 1, and flows from the gas introduction unit 15 into the cylindrical electrode 21 of the electric dust collector 19 as a swirling air flow in the swirling flow forming unit 16. It is. As described above, when the particulate matter-containing gas passes through the cylindrical electrode 21, the particulate matter is charged by corona discharge, and the charged particulate matter is penetrated through the through-hole 21a of the tubular electrode 21 by Coulomb force. To the collecting region 23 outside the cylindrical electrode 21, and adhere and collect on the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22.
When the adhering and collecting particulate matter increases, the recovery mechanism 26 is operated to collect the adhering and collecting particulate matter on the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22 to the outside.

この場合の粒子状物質の回収は、筒状電極21の内部に粒子状物質含有ガスを通流させて、粒子状物質をコロナ放電によって帯電させて、クーロン力により貫通孔21aを通じて補集領域23に移動させる集塵状態を維持したまま4つの流体噴射ノズル27から圧縮空気を所定流量で上方に噴射する。これら流体噴射ノズル27から噴射された圧縮空気は、拡散されて筒状電極21の外周面及びケーシング電極22の内周面に沿って上昇し、これらに付着補集されている粒子状物質を上方に吹き飛ばす。一方、補集領域23の上方では、4つの流体吸引部29が吸引ポンプ31で吸引されることによって空気を吸引しているので、噴射空気によって吹き飛ばされた粒子状物質が空気とともに上昇して流体吸引部29を通って外部のサイクロン30に排出される。このサイクロン30では固気分離を行って粒子状物質を分離して下方に回収し、粒子状物質を分離された空気が吸引ポンプに吸引されて外部に排気される。   In this case, the particulate matter is collected by letting the particulate matter-containing gas flow through the cylindrical electrode 21, charging the particulate matter by corona discharge, and collecting the region 23 through the through hole 21a by Coulomb force. Compressed air is jetted upward at a predetermined flow rate from the four fluid jet nozzles 27 while maintaining the dust collection state to be moved to. The compressed air ejected from the fluid ejection nozzles 27 is diffused and rises along the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22, and the particulate matter adhering to and collected by these is moved upward. Blow away. On the other hand, since the four fluid suction parts 29 are sucked by the suction pump 31 to suck air above the collection region 23, the particulate matter blown off by the jet air rises together with the air and flows into the fluid. It is discharged to the external cyclone 30 through the suction part 29. The cyclone 30 performs solid-gas separation to separate particulate matter and collect it downward, and the air from which the particulate matter has been separated is sucked into a suction pump and exhausted to the outside.

この回収機構26によって粒子状物質を回収する際に、流体噴射ノズル27の近傍の筒状電極21には貫通孔21aが形成されていない貫通孔非形成領域21bが形成されており、流体噴射ノズル27から噴射された空気が筒状電極21内に流入することを確実に防止することができる。同様に、流体吸引部29の近傍の筒状電極21にも貫通孔非形成領域21cが形成されているので、流体吸引部29で吸引される粒子状物質を含む空気のみを吸引し、筒状電極21の内部を通る粒子状物質が除去されたガスを吸引することを確実に防止することができる。   When the particulate matter is recovered by the recovery mechanism 26, the cylindrical electrode 21 in the vicinity of the fluid injection nozzle 27 is formed with a through hole non-forming region 21b in which the through hole 21a is not formed. It is possible to reliably prevent the air jetted from 27 from flowing into the cylindrical electrode 21. Similarly, since the cylindrical electrode 21 in the vicinity of the fluid suction part 29 is also formed with the through-hole non-forming region 21c, only the air containing the particulate matter sucked by the fluid suction part 29 is sucked to form a cylindrical shape. The suction of the gas from which the particulate matter passing through the electrode 21 is removed can be reliably prevented.

さらに、筒状電極21の貫通孔21aの開口比βが抵抗係数Kを大きくする値である0.4〜0.5に形成されているので、粒子状物質を含む空気が貫通孔21aを通じて筒状電極21内に侵入することを確実に防止することができる。
そして、回収機構26の流体噴射ノズル27から流体を噴射しても筒状電極21の外周面及びケーシング電極22の内周面に付着補集された粒子状物質が残留する場合には、流体噴射ノズル27から水、海水等の液体を噴射させ、これでも粒子状物質が残留する場合には、液体に洗浄剤を含有させて洗浄液として流体噴射ノズル27から噴射させる。このように、流体噴射ノズル27から水、海水、洗浄液等の液体を噴射させる場合には、流体噴射ノズル27を上方の端板25bに形成し、流体吸引部29を下方の端板25aに形成することが好ましい。
Further, since the opening ratio β of the through-hole 21a of the cylindrical electrode 21 is formed to be 0.4 to 0.5 which is a value that increases the resistance coefficient K, air containing particulate matter passes through the through-hole 21a. Intrusion into the electrode 21 can be reliably prevented.
If the particulate matter adhered and collected on the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22 remains even after the fluid is ejected from the fluid ejection nozzle 27 of the recovery mechanism 26, the fluid ejection When a liquid such as water or seawater is ejected from the nozzle 27 and the particulate matter still remains, the liquid is made to contain a cleaning agent and ejected from the fluid ejection nozzle 27 as a cleaning liquid. As described above, when liquid such as water, seawater, and cleaning liquid is ejected from the fluid ejection nozzle 27, the fluid ejection nozzle 27 is formed on the upper end plate 25b, and the fluid suction portion 29 is formed on the lower end plate 25a. It is preferable to do.

このように、上記第1の実施形態によると、筒状電極21の内部を粒子状物質含有ガスが通流し、この筒状電極21の外側に粒子状物質の補集領域23を形成し、この補集領域23に補集した粒子状物質を回収する回収機構26を配置したので、筒状電極21内の粒子状物質含有ガスの通流を停止させることなく、補集領域23で補集した粒子状物質の回収を行うことができ、粒子状物質含有ガスからの粒子状物質の補集効率を向上させることができる。   As described above, according to the first embodiment, the particulate matter-containing gas flows through the cylindrical electrode 21, and the particulate matter collecting region 23 is formed outside the cylindrical electrode 21. Since the collection mechanism 26 for collecting the particulate matter collected in the collection region 23 is disposed, the collection is performed in the collection region 23 without stopping the flow of the particulate matter-containing gas in the cylindrical electrode 21. The particulate matter can be recovered, and the collection efficiency of the particulate matter from the particulate matter-containing gas can be improved.

また、回収機構26を筒状電極21とケーシング電極22との間の補集領域23の軸方向の一端に流体噴射ノズル27を配置し、他端に流体吸引部29を配置した構成としたので、流体噴射ノズル27から噴射した流体を補集領域23に軸方向に通過させて、筒状電極21の外周面及びケーシング電極22の内周面に付着補集した粒子状物質を上方に吹き飛ばして流体流とともに流体吸引部29で吸引して粒子状物質を外部に回収することができる。   In addition, the recovery mechanism 26 has a configuration in which a fluid ejection nozzle 27 is disposed at one end in the axial direction of the collecting region 23 between the cylindrical electrode 21 and the casing electrode 22 and a fluid suction portion 29 is disposed at the other end. The fluid ejected from the fluid ejection nozzle 27 is passed through the collection region 23 in the axial direction, and the particulate matter adhered and collected on the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 22 is blown upward. The particulate matter can be collected outside by being sucked by the fluid suction portion 29 together with the fluid flow.

このとき、筒状電極21の流体噴出ノズル27及び流体吸引部29の近傍に貫通孔非形成領域21b及び21cが形成され、これらの領域では貫通孔21aが形成されていないので、流体噴射ノズル27から噴射された流体が筒状電極21内に流入することを確実に防止することができる。
さらに、筒状電極21の貫通孔21aの開口比を抵抗係数が大きくなる値に選定することにより、流体噴射ノズル27から噴射された流体が貫通孔21aを通過して筒状電極21の内周側に侵入することを確実に防止することができ、筒状電極21の内部へ流体が流入して一度補集した粒子状物質を引き剥がして再飛散させてしまうことを防止することができる。
At this time, through-hole non-formation regions 21b and 21c are formed in the vicinity of the fluid ejection nozzle 27 and the fluid suction portion 29 of the cylindrical electrode 21, and the through-hole 21a is not formed in these regions. It is possible to reliably prevent the fluid jetted from flowing into the cylindrical electrode 21.
Further, by selecting the opening ratio of the through hole 21a of the cylindrical electrode 21 to a value that increases the resistance coefficient, the fluid ejected from the fluid ejection nozzle 27 passes through the through hole 21a and the inner periphery of the cylindrical electrode 21. Intrusion to the side can be reliably prevented, and it can be prevented that the fluid flows into the cylindrical electrode 21 and the particulate matter once collected is peeled off and scattered again.

なお、回収機構26で使用する流体としては、気体として空気を適用し、液体としてディーゼルエンジン2が車両用エンジンであるときには水を適用し、舶用エンジンであるときには海水を適用する。そして、液体を使用する場合には、粒子状物質の回収が不十分であるときには水又は海水に洗浄剤を添加した洗浄液を適用することが好ましい。   As a fluid used in the recovery mechanism 26, air is applied as a gas, and water is applied as a liquid when the diesel engine 2 is a vehicle engine, and seawater is applied when the diesel engine 2 is a marine engine. And when using a liquid, when the collection | recovery of a particulate matter is inadequate, it is preferable to apply the washing | cleaning liquid which added the washing | cleaning agent to water or seawater.

次に、本発明の第2の実施形態を図6について説明する。
この第2の実施形態においては、軸方向に延長する複数の電極収納部を形成することにより、電気集塵部を複数形成して集塵能力を向上させるようにしたものである。
すなわち、第2の実施形態では、図6に示すように、前述した第1の実施形態における電気集塵装置1を例えば4本分を組み合わせた大きさに相当する大きさの導電性を有する角筒状の筐体41を備えている。この筐体41の内部を平面から見て十字形状の仕切板42で仕切って軸方向に延長する4つの電極収納部43a〜43dを形成している。
Next, a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, by forming a plurality of electrode storage portions extending in the axial direction, a plurality of electrostatic dust collection portions are formed to improve the dust collection capability.
That is, in the second embodiment, as shown in FIG. 6, the conductive corners having a size corresponding to the size obtained by combining, for example, four electrostatic precipitators 1 in the first embodiment described above. A cylindrical casing 41 is provided. The inside of the housing 41 is partitioned by a cross-shaped partition plate 42 when viewed from above, and four electrode storage portions 43a to 43d extending in the axial direction are formed.

各電極収納部43a〜43dのそれぞれには、前述した第1の実施形態における図3に示すように、ガス導入部15及び旋回流形成部16によって粒子状物質含有ガスが旋回流として導入される電気集塵部19が形成されている。
そして、筒状電極21の外側の筐体41の内面及び仕切板42によって角筒状のケーシング電極44が形成されている。また、筒状電極21が軸方向の両端で、中央部に開口34を有する端板45a及び45bによって保持され、これら端板45a及び45bで筒状電極21及びケーシング電極44間の補集領域46の上下端部が閉塞されている。
As shown in FIG. 3 in the first embodiment described above, the particulate matter-containing gas is introduced into each of the electrode storage portions 43a to 43d as a swirling flow by the gas introduction portion 15 and the swirling flow forming portion 16. An electric dust collector 19 is formed.
A rectangular cylindrical casing electrode 44 is formed by the inner surface of the casing 41 outside the cylindrical electrode 21 and the partition plate 42. Further, the cylindrical electrode 21 is held at both ends in the axial direction by end plates 45a and 45b having an opening 34 in the center, and a collecting region 46 between the cylindrical electrode 21 and the casing electrode 44 by these end plates 45a and 45b. The upper and lower ends are closed.

そして、各電極収納部43a〜43dの下側の端板45aの上面に前述した第1の実施形態と同様に4つの流体噴射ノズル47が配置され、上側の端板45bの下面から上面を貫通し、流体噴射ノズル47と対向する流体吸引部48が形成されている。各電極収納部43a〜43dの流体噴出ノズル47の流体供給部は電極収納部43a〜43d毎に互いに連結されて個別の電磁開閉弁49を介して外部のコンプレッサ28に接続され、流体吸引部38も個別の電磁開閉弁50を介し、サイクロン30を介して吸引ポンプ31に接続されている。
筒状電極21の上下端部側には貫通孔非形成部21b及び21cが形成されているとともに、貫通孔21aの開口比が抵抗係数Kを増加させる値に設定されて、流体噴射ノズル47から噴射された流体が貫通孔21aを通じて筒状電極21内に侵入することを防止している。
Then, four fluid ejection nozzles 47 are arranged on the upper surface of the lower end plate 45a of each electrode storage portion 43a to 43d as in the first embodiment, and penetrate the upper surface from the lower surface of the upper end plate 45b. In addition, a fluid suction portion 48 that faces the fluid ejection nozzle 47 is formed. The fluid supply portions of the fluid ejection nozzles 47 of the electrode storage portions 43a to 43d are connected to each other for each of the electrode storage portions 43a to 43d and connected to the external compressor 28 via individual electromagnetic on-off valves 49, and the fluid suction portion 38. Is also connected to a suction pump 31 via a cyclone 30 via an individual electromagnetic on-off valve 50.
Through holes 21b and 21c are formed on the upper and lower ends of the cylindrical electrode 21, and the opening ratio of the through hole 21a is set to a value that increases the resistance coefficient K. The ejected fluid is prevented from entering the cylindrical electrode 21 through the through hole 21a.

この第2の実施形態でも、電極収納部43a〜43dの構成が、前述した第1の実施形態における電気集塵装置1の電気集塵部19と同様の構成を有するので、各電極収納部43a〜43dで、個別に筒状電極21内を通流する粒子状物質含有ガスに含まれる粒子状物質をコロナ放電によって帯電させ、帯電された粒子状物質をクーロン力によって筒状電極21の貫通孔21aを通じて補集領域46を形成する筒状電極21の外周面及びケーシング電極44の内周面に付着補集される。このとき、上述した第1の実施形態における電気集塵部19が4個形成されているので、粒子状物質の補集能力を4倍とすることができる。   Also in this 2nd Embodiment, since the structure of the electrode storage parts 43a-43d has the structure similar to the electrostatic dust collection part 19 of the electrostatic dust collector 1 in 1st Embodiment mentioned above, each electrode storage part 43a. ˜43d, the particulate matter contained in the particulate matter-containing gas flowing individually through the cylindrical electrode 21 is charged by corona discharge, and the charged particulate matter is penetrated through the cylindrical electrode 21 by Coulomb force. 21a is attached and collected on the outer peripheral surface of the cylindrical electrode 21 and the inner peripheral surface of the casing electrode 44, which form the collection region 46. At this time, since the four electrostatic precipitators 19 in the first embodiment described above are formed, the collecting ability of the particulate matter can be quadrupled.

そして、各電極収納部43a〜43dで補集された粒子状物質を回収するには、電極収納部43a〜43dのうちの何れか1つの電極収納部例えば43aの電磁開閉弁49及び50を開状態に制御して、他の電磁開閉弁49及び50を閉状態に維持する。
これによって、電極収納部43aの流体噴射ノズル47に圧縮流体を供給して補集領域46内に上方に向けて流体を噴射するとともに、流体吸引部48から流体を吸引することにより、筒状電極21の外周面及びケーシング電極44の内周面に補集されている粒子状物質を吹き飛ばして流体流とともに外部のサイクロン30に排出して回収する。
And in order to collect | recover the particulate matter collected by each electrode accommodating part 43a-43d, the electromagnetic on-off valves 49 and 50 of any one electrode accommodating part, for example, 43a, are opened. The other electromagnetic on-off valves 49 and 50 are maintained in the closed state by controlling to the state.
As a result, a compressed fluid is supplied to the fluid ejection nozzle 47 of the electrode storage portion 43a, the fluid is ejected upward into the collection region 46, and the fluid is sucked from the fluid suction portion 48, whereby a cylindrical electrode is obtained. The particulate matter collected on the outer peripheral surface of 21 and the inner peripheral surface of the casing electrode 44 is blown off and discharged to the external cyclone 30 together with the fluid flow for recovery.

このように、各電極収納部43a〜43dで補集した粒子状物質の回収を個別に行うことにより、コンプレッサ等の流体供給源及び吸引ポンプ等の流体吸引源は第1の実施形態と同様に電極収納部43a〜43dの1個分で済むことになり、流体供給源、粒子状物質を回収するサイクロン30及び吸引ポンプ31の容量を減少させ、これら間を接続する配管を小径化でき、全体の装置構成を小形化することができるとともに、コストダウンが可能となる。   As described above, by collecting the particulate matter collected in each of the electrode storage portions 43a to 43d individually, the fluid supply source such as the compressor and the fluid suction source such as the suction pump are the same as in the first embodiment. One electrode storage portion 43a to 43d is sufficient, the capacity of the fluid supply source, the cyclone 30 for collecting particulate matter and the suction pump 31 can be reduced, and the pipe connecting them can be reduced in diameter. The apparatus configuration can be reduced in size and the cost can be reduced.

上記第2の実施形態の場合には、電極収納部43a〜43dが4つであるので、このうちの1つの電極収納部を粒子状物質の回収のために粒子状物質含有ガスの通流を停止させたとしても、75%の効率で運用することができる。この効率は、形成する電極収納部数が多くなれば大きくなり、例えば電極収納部数を10とすると、そのうちの1つの電極収納部の粒子状物質含有ガスの通流を停止したとしても90%の効率で運用することができる。   In the case of the second embodiment, there are four electrode storage portions 43a to 43d. Therefore, one of the electrode storage portions 43a to 43d allows the particulate matter-containing gas to flow for recovery of the particulate matter. Even if it is stopped, it can be operated with 75% efficiency. This efficiency increases as the number of electrode storage portions to be formed increases. For example, when the number of electrode storage portions is 10, even when the flow of particulate matter-containing gas in one of the electrode storage portions is stopped, the efficiency is 90%. Can be used.

なお、上記第1及び第2の実施形態においては、ディーゼルエンジン2から排出される粒子状物質含有ガスに含まれる粒子状物質を除去する場合について説明したが、これに限定されるものではなく、他の内燃機関や産業機械等から排出される任意の粒子状物質含有ガスから粒子状物質を除去することができる。
また、上記第1及び第2の実施形態においては、電気集塵部19のケーシング電極22が角筒状である場合について説明したが、これに限定されるものではなく、筒状電極21を、半閉空間の補集空間23を形成して覆うことができればよく、円筒状、ハニカム形状、多角筒状等の任意の形状とすることができる。
In the first and second embodiments, the case where the particulate matter contained in the particulate matter-containing gas discharged from the diesel engine 2 is removed has been described. However, the present invention is not limited to this. Particulate matter can be removed from any particulate matter-containing gas discharged from other internal combustion engines or industrial machines.
Moreover, in the said 1st and 2nd embodiment, although the case where the casing electrode 22 of the electrostatic dust collection part 19 was a rectangular tube shape was demonstrated, it is not limited to this, The cylindrical electrode 21 is used. It suffices if the semi-closed collection space 23 can be formed and covered, and can have any shape such as a cylindrical shape, a honeycomb shape, or a polygonal cylindrical shape.

同様に、筒状電極21についても円筒状に限定されるものではなく、放電電極17の針状電極17aと対向する内周面と針状電極17aとの間の距離を等しくすれば任意の形状とすることができる。すなわち、上記のように断面12面体の放電電極17を使用する場合には12角筒状に形成するようにしてもよく、針状電極の突出数に合わせた任意の形状とすることができる。   Similarly, the cylindrical electrode 21 is not limited to a cylindrical shape, and may have any shape as long as the distance between the inner peripheral surface of the discharge electrode 17 facing the needle electrode 17a and the needle electrode 17a is equal. It can be. That is, when the discharge electrode 17 having a dodecahedron cross section is used as described above, it may be formed in a dodecagonal tube shape, and may have an arbitrary shape according to the number of protrusions of the needle electrode.

また、上記第1及び第2の実施形態においては、放電電極17の針状電極17aを軸方向でずらして突出させる場合について説明したが、これに限定されるものではなく、針状電極17aの突出方向を同一方向とするようにしてもよい。
また、上記第1及び第2の実施形態においては、旋回流形成部16により粒子状物質含有ガスが旋回流として導入される場合について説明したが、旋回流形成部16による圧力損失を低減したい場合には、旋回流形成部16を設けずに、粒子状物質含有ガスをそのまま通流させてもよい。
Moreover, in the said 1st and 2nd embodiment, although the case where the acicular electrode 17a of the discharge electrode 17 was shifted and protruded in an axial direction was demonstrated, it is not limited to this, The acicular electrode 17a The protruding direction may be the same direction.
In the first and second embodiments, the case where the particulate matter-containing gas is introduced as the swirling flow by the swirling flow forming unit 16 has been described. However, when the pressure loss due to the swirling flow forming unit 16 is desired to be reduced. In this case, the particulate matter-containing gas may be passed as it is without providing the swirl flow forming portion 16.

1…電気集塵装置、2…ディーゼルエンジン,15…ガス導入部、16…旋回流形成部、17…放電電極、17a…針状電極、18…放電電極支持部、19…電気集塵部、20…放電電極支持部、21…筒状電極、21a…貫通孔、21b,21c…貫通孔非形成領域、22…ケーシング電極、23…補集空間、DC…直流高圧電源、25a,25b…端板、26…回収機構、27…流体噴射ノズル、28…コンプレッサ、29…流体吸引部、30…サイクロン、31…吸引ポンプ、41…筐体、42…仕切板、43a〜43d…電極収納部、45a,45b…端板、46…補集領域、47…流体噴射ノズル、48…流体吸引部、49,50…電磁開閉弁   DESCRIPTION OF SYMBOLS 1 ... Electric dust collector, 2 ... Diesel engine, 15 ... Gas introduction part, 16 ... Swirling flow formation part, 17 ... Discharge electrode, 17a ... Needle electrode, 18 ... Discharge electrode support part, 19 ... Electric dust collection part, DESCRIPTION OF SYMBOLS 20 ... Discharge electrode support part, 21 ... Cylindrical electrode, 21a ... Through-hole, 21b, 21c ... Through-hole non-formation area | region, 22 ... Casing electrode, 23 ... Collection space, DC ... DC high voltage power supply, 25a, 25b ... End Plate, 26 ... Recovery mechanism, 27 ... Fluid injection nozzle, 28 ... Compressor, 29 ... Fluid suction part, 30 ... Cyclone, 31 ... Suction pump, 41 ... Housing, 42 ... Partition plate, 43a-43d ... Electrode storage part, 45a, 45b ... end plate, 46 ... collection region, 47 ... fluid injection nozzle, 48 ... fluid suction part, 49, 50 ... electromagnetic on-off valve

Claims (7)

軸方向に延長する放電電極と、
該放電電極を半径方向に所定距離を保って覆い所要数の貫通孔を有する筒状電極と、
前記筒状電極の外側を半径方向に所定距離を保って覆うケーシング電極と、
前記放電電極と前記筒状電極及び前記ケーシング電極との間に高電圧を印加して、前記筒状電極内を通流する粒子状物質含有ガスの粒子状物質を帯電させて前記筒状電極の前記貫通孔を通過させて当該筒状電極の外周面及び前記ケーシング電極の内周面に補集させる高電圧源と、
前記筒状電極の外周面及び前記ケーシング電極の内周面間の前記粒子状物質を補集する補集領域に配置された前記粒子状物質を回収する回収機構とを備え
前記回収機構は、前記筒状電極及びケーシング電極の軸方向の一端側に配置し、補集した前記粒子状物質を吹き飛ばす流体噴射ノズルと、前記筒状電極及びケーシング電極の軸方向の他端側に配置した前記粒子状物質を含む流体を吸引する流体吸引部とを備えている
ことを特徴とする電気集塵装置。
A discharge electrode extending in the axial direction;
A cylindrical electrode having a required number of through holes covering the discharge electrode in a radial direction while maintaining a predetermined distance;
A casing electrode that covers the outside of the cylindrical electrode while maintaining a predetermined distance in the radial direction;
A high voltage is applied between the discharge electrode and the cylindrical electrode and the casing electrode to charge the particulate matter of the particulate matter-containing gas flowing through the cylindrical electrode, and A high voltage source that passes through the through hole and collects on the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode;
A recovery mechanism for recovering the particulate matter disposed in a collecting region for collecting the particulate matter between the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode ;
The recovery mechanism is disposed on one end side in the axial direction of the cylindrical electrode and the casing electrode, and a fluid ejection nozzle that blows off the collected particulate matter; and the other end side in the axial direction of the cylindrical electrode and the casing electrode An electrostatic precipitator , comprising: a fluid suction part that sucks a fluid containing the particulate matter disposed in the container .
筒状筐体内を仕切板で仕切って形成した軸方向に延長する複数の電極収納部を備え、
前記各電極収納部は、
軸方向に延長する放電電極と、
該放電電極を半径方向に所定距離を保って覆い所要数の貫通孔を有する筒状電極と、
前記筒状電極の外側を半径方向に所定距離を保って覆うケーシング電極と、
前記放電電極と前記筒状電極及び前記ケーシング電極との間に高電圧を印加して、前記筒状電極内を通流する粒子状物質含有ガスの粒子状物質を帯電させて前記筒状電極の前記貫通孔を通過させて当該筒状電極の外周面及び前記ケーシング電極の内周面に補集させる高電圧源と、
前記筒状電極の外周面及び前記ケーシング電極の内周面間の前記粒子状物質を補集する補集領域に配置された前記粒子状物質を回収する回収機構とを備え
前記回収機構は、前記筒状電極及びケーシング電極の軸方向の一端側に配置し、補集した前記粒子状物質を吹き飛ばす流体噴射ノズルと、前記筒状電極及びケーシング電極の軸方向の他端側に配置した前記粒子状物質を含む流体を吸引する流体吸引部とを備えている
ことを特徴とする電気集塵装置。
A plurality of electrode storage portions extending in the axial direction formed by partitioning the inside of the cylindrical housing with a partition plate,
Each of the electrode storage portions is
A discharge electrode extending in the axial direction;
A cylindrical electrode having a required number of through holes covering the discharge electrode in a radial direction while maintaining a predetermined distance;
A casing electrode that covers the outside of the cylindrical electrode while maintaining a predetermined distance in the radial direction;
A high voltage is applied between the discharge electrode and the cylindrical electrode and the casing electrode to charge the particulate matter of the particulate matter-containing gas flowing through the cylindrical electrode, and A high voltage source that passes through the through hole and collects on the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode;
A recovery mechanism for recovering the particulate matter disposed in a collecting region for collecting the particulate matter between the outer peripheral surface of the cylindrical electrode and the inner peripheral surface of the casing electrode ;
The recovery mechanism is disposed on one end side in the axial direction of the cylindrical electrode and the casing electrode, and a fluid ejection nozzle that blows off the collected particulate matter; and the other end side in the axial direction of the cylindrical electrode and the casing electrode An electrostatic precipitator , comprising: a fluid suction part that sucks a fluid containing the particulate matter disposed in the container .
前記流体噴射ノズルは、気体を噴射するように構成されていることを特徴とする請求項1又は2に記載の電気集塵装置。 Wherein the fluid injection nozzle, an electric dust collector of claim 1 or 2, characterized in that it is configured to inject a gas. 前記流体噴射ノズルは、液体を噴射するように構成されていることを特徴とする請求項1又は2に記載の電気集塵装置。 Wherein the fluid injection nozzle, an electric dust collector of claim 1 or 2, characterized in that it is configured to inject the liquid. 前記液体は水、海水及び洗浄液の何れかであることを特徴とする請求項に記載の電気集塵装置。 The electrostatic precipitator according to claim 4 , wherein the liquid is water, seawater, or a cleaning liquid. 前記筒状電極は、前記貫通孔の開口比が前記流体噴射ノズルの流体が当該筒状電極内部に流入することを阻止する値に設定されていることを特徴とする請求項乃至の何れか1項に記載の電気集塵装置。 The tubular electrode, any claim 1 to 5, characterized in that the opening ratio of the through hole is fluid in the fluid ejection nozzle is set to a value that prevents flowing into the cylindrical electrode The electric dust collector of Claim 1. 前記筒状電極は、前記回収機構の流体噴射ノズル及び前記流体吸引部の少なくとも一方に対向する位置に前記貫通孔を形成しない貫通孔非形成領域が形成されていることを特徴とする請求項乃至の何れか1項に記載の電気集塵装置。 The tubular electrode according to claim 1, characterized in that the through-hole-free region that does not form the through hole at a position opposed to at least one of the fluid ejection nozzle and the fluid suction portion of the recovery mechanism is formed The electric dust collector of any one of thru | or 6 .
JP2011059290A 2011-03-17 2011-03-17 Electric dust collector Active JP5768423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059290A JP5768423B2 (en) 2011-03-17 2011-03-17 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059290A JP5768423B2 (en) 2011-03-17 2011-03-17 Electric dust collector

Publications (2)

Publication Number Publication Date
JP2012192362A JP2012192362A (en) 2012-10-11
JP5768423B2 true JP5768423B2 (en) 2015-08-26

Family

ID=47084804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059290A Active JP5768423B2 (en) 2011-03-17 2011-03-17 Electric dust collector

Country Status (1)

Country Link
JP (1) JP5768423B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718420B1 (en) * 2013-01-30 2017-03-21 후지 덴키 가부시키가이샤 System for treating exhaust gas from marine diesel engine
NL2011012C2 (en) * 2013-06-19 2014-12-22 Virus Free Air B V Gas flow cleaning device.
JP6345958B2 (en) * 2014-03-25 2018-06-20 友信工機株式会社 Air purification device
CN109046811A (en) * 2018-08-06 2018-12-21 汤铁 Strong centrifugal electrostatic dust collector at a high speed
CN109395884B (en) * 2018-10-25 2020-11-10 浙江三尼科技有限公司 Be applied to exhaust purification advanced treatment's device
CN109549566A (en) * 2018-12-06 2019-04-02 珠海格力电器股份有限公司 A suction tube subassembly and dust catcher for dust catcher
JP7318728B2 (en) * 2019-11-05 2023-08-01 富士電機株式会社 electric dust collector
KR20220025014A (en) * 2020-03-02 2022-03-03 후지 덴키 가부시키가이샤 cyclone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339049B2 (en) * 2003-08-29 2009-10-07 日新電機株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus

Also Published As

Publication number Publication date
JP2012192362A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5768423B2 (en) Electric dust collector
US5961693A (en) Electrostatic separator for separating solid particles from a gas stream
US7708803B2 (en) Method and apparatus for the enhanced removal of aerosols from a gas stream
JP5705461B2 (en) Electric dust collector
JP4894739B2 (en) Wet electric dust collector
KR100849416B1 (en) Apparatus for collecting dust having self cleaning function
JP2001513440A (en) Combination of filter and electrostatic separator
WO2016132570A1 (en) Demister, exhaust gas recirculating system, and marine engine provided with same
US7641718B2 (en) Electrostatic precipitator
JP2006136766A (en) Diesel engine exhaust gas purifying apparatus
US8608838B2 (en) Tubing air purification system
JP2005507765A (en) Air cleaning apparatus and method
CN105649715B (en) The method being dusted using electrostatic tail gas clean-up capturing device
KR100720114B1 (en) Electric Cyclone and Electric Cyclone Scrubber including the same
KR20040090182A (en) Baghouse for simultaneously removing fine particle and nitric oxides to preliminary reduction of dust loading
JP2012192361A (en) Electrostatic dust catcher
JP5970878B2 (en) Marine diesel engine exhaust gas treatment equipment
US7294169B2 (en) Electrical enhancement of fabric filter performance
US6905537B1 (en) Machine and process for filterless removal of particles and organisms from ambient air, carpets and furnishings
JP2012090671A (en) Air cleaning device
JP2000157820A (en) Dust extractor of filter for filtering dust collector
JP2009089764A (en) Vacuum cleaner
JP2009056448A (en) Air treatment device
JPH08257336A (en) Air cleaner
KR20020097444A (en) Wet type dust collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250