[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016132570A1 - Demister, exhaust gas recirculating system, and marine engine provided with same - Google Patents

Demister, exhaust gas recirculating system, and marine engine provided with same Download PDF

Info

Publication number
WO2016132570A1
WO2016132570A1 PCT/JP2015/070621 JP2015070621W WO2016132570A1 WO 2016132570 A1 WO2016132570 A1 WO 2016132570A1 JP 2015070621 W JP2015070621 W JP 2015070621W WO 2016132570 A1 WO2016132570 A1 WO 2016132570A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
casing
demister
droplets
recirculated exhaust
Prior art date
Application number
PCT/JP2015/070621
Other languages
French (fr)
Japanese (ja)
Inventor
亮 ▲高▼田
村田 聡
野中 剛
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580072649.7A priority Critical patent/CN107407234A/en
Priority to KR1020177017332A priority patent/KR20170081703A/en
Publication of WO2016132570A1 publication Critical patent/WO2016132570A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a demister, an exhaust gas recirculation system, and a marine engine provided with the same.
  • EGR Exhaust Gas Recirculation
  • NOx nitrogen oxide
  • a scrubber washing and dust collecting device
  • a demister gas and liquid separation for separating water downstream thereof Device
  • the demister has a structure in which an exhaust gas containing water is passed through an element in which a plurality of walls bent in a waveform are arranged in proximity to one another.
  • the water contained in the water is made to collide with the corrugated wall to separate it into gas and liquid.
  • the exhaust gas from which water has been removed by the demister is supplied to the intake side of the engine by a dedicated blower, mixed with the intake air, and supplied to the combustion chamber.
  • the conventional demister has a structure in which the droplets contained in the exhaust gas are made to collide with the corrugated wall through the exhaust gas through an element composed of a plurality of walls bent in a corrugated manner so as to separate gas and liquid.
  • the Therefore there is a problem that pressure loss resistance is large and engine efficiency is reduced. If the distance between the corrugated walls is increased to reduce the pressure drop resistance, the water removal performance is reduced, and the water-containing exhaust gas flows to the intake side of the engine. In particular, in an engine equipped with a supercharger, there has been a concern that this moisture may collide with a high-speed rotating compressor wheel to cause erosion.
  • the present invention has been made to solve the above-mentioned problems, and a demister and exhaust gas capable of removing droplets such as water contained in recirculated exhaust gas recirculated to the engine side without increasing pressure drop resistance.
  • An object of the present invention is to provide a recirculation system and a marine engine provided with the same.
  • the present invention adopts the following means.
  • the demister according to the first aspect of the present invention includes a cylindrical casing having an axial direction along the vertical direction, and an outer peripheral surface provided on the upper outer peripheral surface of the casing to recirculate the droplets from the tangential direction inside the casing.
  • a droplet discharge unit for discharging the droplets separated from the recirculated exhaust gas.
  • the particulate matter is washed and collected by droplets such as water in a scrubber or the like, and the recirculated exhaust gas containing a large amount of droplets is tangentially drawn from the recirculated exhaust gas inlet into the casing of the demister. Flow into the casing to form a swirling flow inside the casing, and the centrifugal separation action separates the droplets.
  • This demister does not lower the engine efficiency because it does not have an element member or the like that increases the pressure loss resistance in the flow path of the recirculated exhaust gas, unlike the demister that separates the recirculated exhaust gas by colliding with the wall etc. .
  • the casing includes a cylindrical portion forming an upper side in the vertical direction, and a conical portion connected to the lower portion of the cylindrical portion and having a cross-sectional diameter perpendicular to the axial direction decreasing from the upper portion to the lower portion. Is preferred.
  • the number of revolutions of the swirling flow formed by the recirculating exhaust gas containing the droplets is accelerated as the diameter of the casing becomes smaller, and the centrifugal force acting on the droplets increases. Since the casing has a conical shape in which the diameter of the cross section orthogonal to the axial direction decreases downward, the centrifugal force acting on the recirculating exhaust gas which descends by gravity while rotating is increased, and the recirculated exhaust gas and droplets The gas-liquid separation action is increased. Therefore, the droplets L can be efficiently separated from the recirculated exhaust gas G.
  • an electric particle collecting apparatus may be installed at the recirculated exhaust gas outlet to attract the droplets to an electrode by charging the droplets to separate them from the recirculated exhaust gas.
  • the droplets that could not be separated by the centrifugal force inside the demister are charged when passing through the electric particle collector installed at the recirculation exhaust gas outlet, and the electrode of the electric particle collector is charged. Attracted and separated from the recycle exhaust gas. That is, droplets that can not be collected in the casing of the demister are collected by the electric particle collector. Therefore, it is possible to reliably separate the droplets remaining in the recirculated exhaust gas.
  • the recirculated exhaust gas outlet may be provided with a porous droplet separating member.
  • the droplets that can not be collected in the casing of the demister are collected by the droplet separating member. That is, since the droplets contained in the recirculating exhaust gas are separated in two stages of the casing of the demister and the droplet separating member, the droplet separating action of the recirculating exhaust gas can be further enhanced.
  • a plurality of the casings may be connected in series, and the diameter of the cylindrical portion of the downstream casing may be smaller than the diameter of the cylindrical portion of the upstream casing.
  • the swirling rotational speed of the swirling flow of the recirculation exhaust gas which has flowed out of the upstream side casing and flowed into the downstream side casing is Be accelerated.
  • the rotational speed of the swirling flow in the downstream side casing can be kept high, and the centrifugal force can be maintained to enhance the droplet separating action.
  • An exhaust gas recirculation system comprises an exhaust gas recirculation passage for extracting a part of exhaust gas discharged from an engine and feeding the exhaust gas as recirculation exhaust gas to the intake side of the engine; A scrubber connected to a passage for washing and collecting particulate matter contained in the recirculated exhaust gas by droplets; and a demister according to any of the foregoing, connected downstream of the scrubber.
  • the recirculation exhaust gas flowing through the exhaust gas recirculation passage is first cleaned and collected by the droplets of water and the like in the scrubber.
  • the recycled and collected exhaust gas contains a large amount of droplets, and the recycled exhaust gas containing the droplets then flows tangentially into the interior of the demister to form a swirling flow, and its centrifugal separation action
  • the droplets are separated by
  • the recirculated exhaust gas swirls inside the casing of the demister, and the centrifugal force at that time causes droplets contained in the recirculated exhaust gas to adhere to the inner peripheral wall surface of the casing and flow downward, and only the recirculated exhaust gas flows over the demister It is discharged from the recirculated exhaust gas outlet formed in the Therefore, the exhaust gas containing droplets such as moisture is prevented from flowing to the intake side of the engine, and the generation of erosion on the compressor wheel of the turbocharger can be prevented.
  • This demister does not lower the engine efficiency because an element member or the like that increases the pressure loss resistance is not installed in the flow path of the recirculated exhaust gas, unlike the one in which the recirculated exhaust gas collides with the wall or the like.
  • a centrifugal blower that feeds the recirculated exhaust gas to the demister is connected between the scrubber and the demister, and the centrifugal blower is discharged tangentially from the centrifugal blower.
  • the recirculated exhaust gas may be connected tangentially to the demister.
  • particulate matter is washed and collected by droplets such as water in the scrubber, and the recirculated exhaust gas containing a large number of droplets is then sent to the demister by the centrifugal blower and is The remaining droplets are separated.
  • the droplets contained in the recirculated exhaust gas adhere to the inner peripheral wall surface of the blower casing and flow to the outlet side while forming a liquid film (liquid vein) layer .
  • the flow of the liquid film layer is discharged tangentially from the centrifugal blower together with the recirculated exhaust gas, and flows into the interior of the demister from the tangential direction.
  • a gas-liquid separator may be provided between the scrubber and the centrifugal blower.
  • the exhaust gas recirculation system configured as described above, particulate matter is washed and collected by droplets such as water in the scrubber, and the recirculation exhaust gas containing a large number of droplets is roughly separated into droplets in the gas-liquid separator. Then, it is sent to the demister by a centrifugal blower, and the remaining droplets are further separated in the demister. Therefore, the droplets contained in the recirculated exhaust gas can be reliably separated.
  • a drain pipe of the droplet separated from the recirculated exhaust gas by the demister may be connected to the droplet storage tank of the gas-liquid separator.
  • the droplets separated from the recirculated exhaust gas flow to the droplet storage tank of the gas-liquid separator in which the pressure of the centrifugal blower does not act. Therefore, due to the pressure difference, the droplets collected in the demister can be favorably flowed to the droplet storage tank of the gas-liquid separator, the droplet removal performance is improved, and the surplus related to the discharge of droplets is obtained. Power can be reduced.
  • a marine engine according to the present invention includes the exhaust gas recirculation system according to any one of the above aspects.
  • droplets such as water contained in the recirculated exhaust gas to be recirculated to the engine side can be removed without increasing the pressure loss resistance, that is, without reducing the engine efficiency. It is possible to prevent the generation of erosion on the compressor impeller of the turbocharger due to the droplets contained in the exhaust gas.
  • the pressure drop resistance is increased by droplets such as water contained in the recirculated exhaust gas recirculated to the engine side. It can be removed without
  • FIG. 1 is a schematic configuration view showing a first embodiment of the present invention.
  • the marine engine 1 according to the first embodiment includes an engine body 2, a turbocharger 3, and an exhaust gas recirculation system 4A.
  • the engine body 2 is, for example, a two-stroke diesel engine, and includes a plurality of cylinders 2a, and a scavenging chamber 5 is provided on one side thereof and an exhaust static pressure chamber 6 is provided on the other side.
  • a turbine 7 and a compressor 8 are provided coaxially, an exhaust gas supply pipe 9 extending from an exhaust static pressure chamber 6 is connected to an inlet side of the turbine 7, and an exhaust gas discharge pipe extending from an outlet side of the turbine 7 The other end of 10 is open to the outside.
  • a fluid suction pipe 11 is connected to the inlet side of the compressor 8, and a compressed fluid supply pipe 12 extending from the outlet side of the compressor 8 is connected to the scavenging chamber 5.
  • the exhaust gas discharged from the cylinder 2 a of the engine body 2 flows into the static exhaust pressure chamber 6.
  • the exhaust gas having flowed into the static exhaust pressure chamber 6 is supplied to the turbine 7 through the exhaust gas supply pipe 9 to drive the turbine 7.
  • a compressor 8 provided coaxially with the turbine 7 is rotated, and a fluid is sucked from the fluid suction pipe 11 and compressed by a compressor wheel (not shown), and this compressed fluid is compressed fluid
  • the gas is supplied from the supply pipe 12 to the scavenging chamber 5.
  • the cylinder 2a is filled with a high density fluid, the combustion efficiency is improved, and the engine efficiency is improved.
  • An exhaust gas recirculation system 4A includes an EGR valve 16, an exhaust gas recirculation passage 17, a scrubber 18, a demister 19A, and a blower 20.
  • the exhaust gas recirculation system 4A is a pollution reduction device that completely drives the turbine 7 and extracts a part of the exhaust gas passing through the exhaust gas discharge pipe 10 and mixes it with the compressed fluid to the engine body 2 as the recirculation exhaust gas G. As a result, the amount of oxygen in the compressed fluid is reduced, the combustion temperature is reduced, and the amount of NOx (nitrogen oxide) contained in the exhaust gas is reduced.
  • the exhaust gas recirculation passage 17 is branched from the middle of the exhaust gas discharge pipe 10, an EGR valve 16 is provided in the vicinity of the branch portion, and the other end of the exhaust gas recirculation passage 17 is connected to the air intake pipe 11.
  • a scrubber 18, a demister 19A, and a blower 20 are sequentially connected in the middle of the exhaust gas recirculation passage 17.
  • the scrubber 18 is a washing and collecting device for washing and collecting (separating) particulate matter contained in the recirculated waste gas G by spraying droplets such as water on the recirculated waste gas G passing therethrough. .
  • the demister 19A separates the droplets L (see FIG. 3) remaining in the form of mist in the recirculated exhaust gas G after the particulate matter is washed and collected by the droplets in the scrubber 18.
  • the blower 20 feeds the recirculated exhaust gas G from which the droplets L have been removed in the demister 19A to the air intake pipe 11 side.
  • the demister 19A includes a cylindrical casing 23 whose axial direction extends in the vertical direction, an outlet pipe 24, and a droplet storage tank 27.
  • the casing 23 includes a cylindrical portion 23a, a conical portion 23b, and a top plate 23c.
  • the cylindrical portion 23a has a cylindrical shape with a constant diameter.
  • the conical portion 23b is connected to the lower side of the cylindrical portion 23a and is orthogonal to the axial direction from the large end portion 231 forming one end in the axial direction to the small end portion 232 (droplet discharging portion) forming the other end in the axial direction It has a conical tubular shape whose cross-sectional diameter decreases, and its large end 231 is connected to the cylindrical portion 23a.
  • the top plate 23c is provided at an end (upper part) of the cylindrical portion 23a opposite to the conical portion 23b.
  • a recirculation exhaust gas inlet port 233 for introducing the recirculation exhaust gas G in the tangential direction is formed inside the casing 23 on the upper outer peripheral surface of the casing 23, that is, the outer peripheral surface of the cylindrical portion 23a here.
  • An exhaust gas recirculation passage 17 is tangentially connected to the recirculation exhaust gas inlet port 233. The recirculated exhaust gas G flowing from the exhaust gas recirculation passage 17 flows into the casing 23 along the tangential direction of the cylindrical portion 23 a from the recirculated exhaust gas inlet port 233.
  • a recirculated exhaust gas outlet 234 is bored in the upper part of the casing 23 and at a position coinciding with the axial center, that is, in the central part of the top plate 23c here, and the outlet pipe 24 is inserted therein. It is fixed along.
  • the upper end side of the outlet pipe 24 is connected to the blower 20 side, and the lower end of the outlet pipe 24 is located inside the casing 23.
  • the demister 19A causes the recirculation exhaust gas G to flow tangentially into the casing 23 from the exhaust gas recirculation passage 17 (recirculation exhaust gas inlet 233) to form a swirling flow R, and the centrifugal force thereof. It has a cyclone structure that separates the droplets L remaining in the recirculated exhaust gas G.
  • the recirculated exhaust gas G from which the droplets L have been separated is discharged from the recirculated exhaust gas outlet 234 (outlet pipe 24) of the casing 23 and flows to the blower 20.
  • the droplets L separated from the recirculated exhaust gas G are discharged from the small end 232.
  • the droplet storage tank 27 is, for example, a cylindrical tank having a diameter larger than the small end 232 of the conical portion 23b, and is connected to the bottom (small end 232) of the casing 23 (conical portion 23b) via the connecting pipe 236. Are connected.
  • the droplet L separated from the recirculated exhaust gas G inside the casing 23 is collected in the droplet storage tank 27.
  • the connection pipe 236 may be omitted, and the droplet storage tank 27 may be directly connected to the lower portion (recirculation exhaust gas outlet 234) of the conical portion 23b.
  • the cylindrical portion 23a, the conical portion 23b and the top plate 23c may be integrated, and it is not essential to provide both the cylindrical portion 23a and the conical portion 23b.
  • the cylindrical portion 23a is omitted
  • the top plate 23c is provided at the large end 231 of the conical portion 23b
  • the recirculation exhaust gas inlet port 233 is bored in the upper outer peripheral surface of the conical portion 23b to connect the exhaust gas recirculation passage 17 It is good also as composition.
  • the demister 19A includes the casing 23 including the cylindrical portion 23a and the conical portion 23b.
  • the recirculation exhaust gas inlet port 233 is formed on the outer peripheral surface of the cylindrical portion 23a forming the upper part, and the exhaust gas recirculation passage 17 is provided in the recirculation exhaust gas inlet port 233. It is connected to flow along the tangential direction.
  • An exhaust gas recirculation passage 17 is connected to the recirculation exhaust gas inlet port 233 along the tangential direction of the cylindrical portion 23a. For this reason, as shown in FIG. 3, the recirculated exhaust gas G flows tangentially from the exhaust gas recirculation passage 17 into the casing 23 to form a swirling flow R. A large amount of droplets L mixed in the recirculating exhaust gas G and remaining in the form of mist are separated from the recirculating exhaust gas G by the centrifugal force acting on the swirling flow R.
  • the droplets L contained in the recirculating exhaust gas G adhere to the inner peripheral wall surface of the casing 23 by the centrifugal force.
  • the droplets L flow downward of the casing 23 by the downward flow and gravity generated along the inner circumferential surface of the casing 23, and are discharged from the droplet discharge portion 232 and collected in the droplet storage tank 27.
  • the upward flow is generated in the central portion inside the casing 23 only the recirculated exhaust gas G from which the droplet L is removed rises and is discharged from the recirculated exhaust gas outlet 234 at the top of the casing 23.
  • the conical portion 23 b forming the lower portion of the casing 23 is formed to decrease in diameter toward the side (small end portion 232 side) axially opposite to the cylindrical portion 23 a. For this reason, the centrifugal force acting on the droplet L which descends by gravity while swirling with the recirculating exhaust gas G inside the casing 23 increases from the large end 231 side to the small end 232 side of the conical portion 23b.
  • the gas-liquid separation action of the recirculated exhaust gas G and the droplets L is increased. Therefore, the droplets L can be efficiently separated from the recirculated exhaust gas G.
  • the demister 19A is different from the one in which the recirculation exhaust gas G collides with the wall etc., and no element member or the like that increases the pressure loss resistance is installed in the flow path of the recirculation exhaust gas G, so the flow of the recirculation exhaust gas G is blocked. Can be suppressed. For this reason, the efficiency reduction of the engine body 2 can be suppressed.
  • the demister 19B according to the second embodiment has a point at which the electric aggregater 30 is provided at the recirculation exhaust gas outlet 234 of the casing 23 through the outlet pipe 24, and the outlet pipe 24 has a lower outlet pipe 24a and an upper outlet pipe 24b. And is different from the demister 19A of the first embodiment in that it is divided into two.
  • the configuration of the other parts is the same as that of the demister 19A of the first embodiment, and therefore the same reference numerals are given to the respective parts and redundant description will be omitted.
  • the electric granulating apparatus 30 is housed in a box-like housing 31, a cylindrical electrode tube 32 housed inside the housing 31, and inside the housing 31, and A negative electrode 33 provided at the axial center of the electrode tube 32 and a drain tube 38 are provided.
  • the electric particle collector 30 separates the droplet L from the recirculated exhaust gas G by charging the droplet L contained in the recirculated exhaust gas G and causing the electrode tube 32 to adsorb the droplet L.
  • a recirculated exhaust gas inlet hole 31a is formed on the lower surface of the housing 31 of the electric granulator 30, and a recirculated exhaust gas outlet hole 31b is formed on the upper surface.
  • the lower outlet pipe 24 a is inserted into the recirculation exhaust gas outlet 234 drilled in the top plate 23 c of the casing 23 and fixed along the axial center of the casing 23.
  • the lower end portion of the lower outlet pipe 24a extends to near the axially middle portion inside the casing 23, and the upper end portion is inserted into and fixed to the recirculation exhaust gas inlet hole 31a of the housing 31.
  • the upper end portion of the lower outlet pipe 24 a protrudes above the lower surface of the housing 31.
  • the lower end portion of the upper outlet pipe 24b is inserted into and fixed to the recirculation exhaust gas outlet hole 31b of the housing 31.
  • the lower end portion of the upper outlet pipe 24b protrudes below the upper surface of the housing 31, and the upper end portion of the upper outlet pipe 24b is connected to the blower 20 side.
  • two semi-cylindrical plates 32a and 32b (electrodes) formed by curving a porous plate are fixed to face each other, and an insulating member 32c is interposed therebetween.
  • These half-cylindrical plates 32a and 32b function as plus electrodes.
  • the electrode tube 32 radially spaces the intermittent portion of the outlet tube 24 inside the housing 31, that is, the space between the lower outlet tube 24a and the upper outlet tube 24b, to both the tubes 24a and 24b. I am surrounded.
  • the lower end of the electrode tube 32 is lower than the upper end of the lower outlet pipe 24a, and the upper end of the electrode tube 32 is higher than the lower end of the upper outlet pipe 24b. That is, the electrode pipe 32 axially overlaps the upper end portion of the lower outlet pipe 24 a and the lower end portion of the upper outlet pipe 24 b in the housing 31.
  • the upper and lower end portions of the electrode tube 32 are separated from the upper and lower surfaces of the housing 31.
  • the negative electrode 33 is disposed in the inner central region of the electrode tube 32, and between the two semi-cylindrical plates 32 a and 32 b and the negative electrode 33, the power supply line 34 and the power supply 35. And a high voltage current of direct current is applied.
  • the drain pipe 38 extends from the bottom of the housing 31 and is connected to the droplet storage tank 27.
  • the drain pipe 38 is a pipe for discharging the droplets L separated from the recirculated exhaust gas G by the electric particle collector 30 into the droplet storage tank 27.
  • the demister 19B As described above, in the demister 19B according to the second embodiment, as shown in FIG. 5, the recirculated exhaust gas G that has flowed from the exhaust gas recirculation passage 17 through the recirculated exhaust gas inlet 233 of the demister 19B into the casing 23 Similar to the demister 19A in the first embodiment, a swirling flow R is formed in the casing 23, and the remaining droplets L are separated by the centrifugal separation action. The droplets L separated here flow downward and are collected in the droplet storage tank 27.
  • the droplets L which can not be separated from the recirculated exhaust gas G by the centrifugal force inside the casing 23 try to flow toward the blower 20 through the outlet pipe 24 (lower outlet pipe 24a, upper outlet pipe 24b). It separates in the electric particle collector 30 provided in the outlet pipe 24. That is, the liquid contained in the recirculated exhaust gas G passing through the outlet pipe 24 by the direct current high voltage current applied between the electrode tube 32 (semi-cylindrical plates 32a and 32b) which is the positive electrode and the negative electrode 33
  • the drop L is charged with a negative charge.
  • the droplet L is attracted to and attached to the electrode tube 32 which is a positive electrode, and thus it is forcibly separated from the recirculated exhaust gas G and attached to the inner peripheral surfaces of the semi-cylindrical plates 32a and 32b.
  • the droplets L remaining in the recirculated exhaust gas G can be separated reliably, and the generation of erosion on the compressor wheel of the turbocharger 3 can be prevented.
  • the semi-cylindrical plates 31a and 31b are described as being porous plates, but the plates may be non-perforated plates, wire nets or the like.
  • the attracted droplet L also passes through the holes of the semi-cylindrical plates 31a and 31b and falls to the bottom of the housing 31. Recovery of L can be facilitated.
  • the demister 19C according to the third embodiment has a point that the droplet separating member 40 is provided at the recirculation exhaust gas outlet 234 of the casing 23 via the outlet pipe 24, and the outlet pipe 24 has the enlarged diameter portion 24c and the lower outlet. It differs from the demister 19A of the first embodiment in that it is divided into a pipe 24a and an upper outlet pipe 24b.
  • the configuration of the other parts is the same as that of the demister 19A of the first embodiment, and therefore the same reference numerals are given to the respective parts and redundant description will be omitted.
  • the outlet pipe 24 includes a lower outlet pipe 24a fixed to the casing 23, an enlarged diameter portion 24c connected to the upper end of the lower outlet pipe 24a, and an upper outlet pipe 24b connected on the enlarged diameter portion 24c. And is configured.
  • the upper outlet pipe 24b is connected to the blower 20 side.
  • the diameter of the enlarged diameter portion 24c is increased in a tapered shape from the lower outlet pipe 24a side and becomes a maximum diameter and continues for a predetermined length, and then is reduced in diameter toward the upper outlet pipe 24b side .
  • the maximum diameter of the enlarged diameter portion 24c is, for example, about twice the diameter of the lower outlet pipe 24a and the upper outlet pipe 24b, but this ratio may be changed as appropriate.
  • the droplet separating member 40 is accommodated in the portion of the largest diameter of the enlarged diameter portion 24c.
  • the droplet separating member 40 is formed of a porous material, and as the material thereof, one obtained by compressing metal fibers, one obtained by arranging metal wires in a matrix, etc. have good air permeability. Although other porous materials may be used.
  • the surface area of the droplet separating member 40 can be increased.
  • the droplets L which can not be separated from the recirculated exhaust gas G in the casing 23 of the demister 19C can be collected by being attached to the droplet separating member 40.
  • the collected droplets L flow down the outlet pipe 24 (lower outlet pipe 24 a) by gravity and pass through the casing 23 and are collected in the droplet storage tank 27. Therefore, the droplet L contained in the recirculated exhaust gas G can be separated in two steps of the casing 23 of the demister 19C and the droplet separating member 40, and the droplet separating function of the recirculated exhaust gas G can be further enhanced.
  • the droplet separating member 40 provided in the enlarged diameter portion 24 c of the outlet pipe 24 has good air permeability because of its large surface area, and the air flow resistance of the recirculated exhaust gas G passing through the droplet separating member 40 It is hard to generate pressure loss in the flow of recirculation exhaust gas G.
  • An exhaust gas recirculation system 4B shown in FIG. 7 differs from the exhaust gas recirculation system 4A of the first embodiment in that a demister 19D in which a plurality of casings 23A and 23B are connected in series is provided.
  • the configuration of the other parts is the same as that of the exhaust gas recirculation system 4A of the first embodiment, so the same reference numerals will be given to the respective parts and redundant explanations will be omitted.
  • the demister 19D has a configuration in which the upstream side casing 23A and the downstream side casing 23B are connected in series, and the downstream side of the diameter (Da) of the cylindrical portion 23Aa of the upstream side casing 23A.
  • the diameter (Db) of the cylindrical portion 23Ab of the casing 23B is set small.
  • the shapes and structures of the upstream side casing 23A and the downstream side casing 23B are the same as those of the demister 19A in the first embodiment, and droplet reservoirs 27a and 27b are provided in the lower part of each.
  • an exhaust gas recirculation passage 17 branched from the exhaust gas discharge pipe 10 is connected to the upstream side casing 23A.
  • the exhaust gas recirculation passage 17 is connected along a tangential direction to a recirculation exhaust gas inlet port 233a formed on the upper outer peripheral surface of the upstream side casing 23A. Therefore, the recirculated exhaust gas G flowing from the scrubber 18 through the exhaust gas recirculation passage 17 is introduced into the upstream side casing 23A from the tangential direction.
  • An outlet pipe 24a extending upward from the recirculation exhaust gas outlet 234a formed at the center of the upper surface of the upstream casing 23A is horizontally curved and formed on the upper outer peripheral surface of the downstream casing 23B. It is connected along a tangential direction to the circulating exhaust gas inlet 233b. Therefore, the recirculated exhaust gas G flowing from the upstream side casing 23A through the outlet pipe 24a is introduced into the downstream side casing 23B in the tangential direction. Further, an outlet pipe 24b extending upward from a recirculated exhaust gas outlet 234b formed at the center of the upper surface of the downstream side casing 23B is connected to the blower 20 side.
  • a swirling flow R as shown in FIG. 3 is formed inside the first casing 23A.
  • a large amount of droplets L mixed in the recirculating exhaust gas G and remaining in the form of mist are separated from the recirculating exhaust gas G by the centrifugal force acting on the swirling flow R.
  • the separated droplets L adhere to the inner wall surface of the first casing 23A, flow downward, and are collected in the droplet storage tank 27a.
  • the droplets L not separated from the recirculated exhaust gas G in the first casing 23A exit from the outlet pipe 24a together with the recirculated exhaust gas G and enter the second casing 23B in a tangential direction, even in the second casing 23B. Similarly, a swirling flow R is formed.
  • the droplets L are separated from the recirculated exhaust gas G by centrifugal force and flow downward and are collected in the droplet storage tank 27b.
  • the upstream casing 23A and the downstream casing 23B of the demister 19D both cause the recirculated exhaust gas G to flow in the tangential direction to form the swirling flow R, and the liquid remaining in the recirculated exhaust gas G due to the centrifugal force. It has a cyclone structure that separates the droplets L. Moreover, the outlet pipe 24a of the upstream side casing 23A has a two-stage cyclone structure in which it flows into the downstream side casing 23B in a tangential direction.
  • the electric particle collector 30 shown in FIGS. 4 and 5 or the droplet separating member 40 shown in FIG. 6 may be installed on at least one of the casings 23A and 23B. Also, three or more casings may be connected in series.
  • a fifth embodiment of the present invention will be described with reference to FIG. 9 and FIG.
  • a gas / liquid separator 45, a centrifugal blower 50, and a demister 19E are sequentially connected downstream of the scrubber 18 in the exhaust gas recirculation passage 17 branched from the exhaust gas discharge pipe 10.
  • the exhaust gas recirculation system 4A of the first embodiment The configuration of the other parts is the same as that of the exhaust gas recirculation system 4A of the first embodiment, so the same reference numerals will be given to the respective parts and redundant explanations will be omitted.
  • the gas-liquid separator 45 connected to the downstream side of the scrubber 18 has, for example, a structure in which the recirculation exhaust gas G passes through an internal element in which a plurality of wire mesh-like or porous droplet separation plates 45 a are arranged in parallel. As a result, droplets of water or the like remaining in the form of mist in the recirculated exhaust gas G collide with the droplet separating plate 45 a and are separated into gas and liquid.
  • a droplet storage tank 45b is provided at the bottom of the gas-liquid separator 45.
  • the centrifugal blower 50 feeds the recirculated exhaust gas G whose droplets are separated by the gas-liquid separator 45 to the intake side of the marine engine 1, that is, the demister 19E side.
  • the demister 19E has a cyclone structure including a cylindrical (conical) casing 23 connected to the downstream side of the centrifugal blower 50 and further separating the droplets L remaining in the recirculated exhaust gas G discharged from the centrifugal blower 50. is there.
  • the structure of the demister 19E is the same as that of the demister 19A of the first embodiment shown in FIGS. 2 and 3, and thus the description of its configuration and operation is omitted.
  • the demister 19E is disposed such that the recirculated exhaust gas G discharged from the centrifugal blower 50 in the tangential direction flows into the demister 19E from the tangential direction.
  • the centrifugal blower 50 has a structure in which a blower fan 50b is axially supported within the blower casing 50a, and the blower casing 50a and the demister 19E are connected by, for example, a connection passage 51 disposed horizontally.
  • the connection passage 51 is tangentially connected to the blower casing and the casing of the demister 19E in plan view (see FIG. 10).
  • the recirculation exhaust gas G flowing through the exhaust gas recirculation passage 17 is first stripped of particulate matter by spraying droplets such as water in the scrubber 18.
  • the recirculated exhaust gas G washed and collected by the scrubber 18 contains a large amount of droplets.
  • the recirculated exhaust gas G containing the droplets first flows to the gas-liquid separator 45 where the droplets are roughly separated.
  • the separated droplets are collected in a droplet storage tank 45 b provided at the bottom of the gas-liquid separator 45.
  • the recirculated exhaust gas G is sent to the demister 19E by the centrifugal blower 50, and flows tangentially into the demister 19E of the cyclone structure to form a swirling flow R, as shown in FIG.
  • the remaining droplet L is further separated by.
  • the droplets L separated here are collected in the droplet storage tank 27 (see FIG. 9).
  • the droplets L included in the recirculated exhaust gas G adhere to the inner peripheral wall surface of the blower casing 50a by the centrifugal force accompanying the rotation of the blower fan 50b,
  • the liquid film flows to the outlet side (demista 19E side) while forming the layer LF.
  • the flow of the liquid (liquid film) layer LF is discharged from the centrifugal blower 50 in the tangential direction together with the recirculated exhaust gas G, and flows into the inside of the demister 19E having a cyclone structure from the tangential direction.
  • the droplets L tend to flow along the inner circumferential wall surface of the demister 19E from the beginning of the inflow of the recirculated exhaust gas G. And, together with the centrifugal separation action of the swirling flow R generated by the cyclone structure, an excellent gas-liquid separation action is exhibited. Therefore, it is suppressed that the recirculation
  • the recirculated exhaust gas G containing the droplets L is first roughly separated from the droplets L in the gas-liquid separator 45 and then sent to the demister 19E by the centrifugal blower 50 to be left Droplets L are further separated. For this reason, it is possible to reliably separate the droplets L included in the recirculated exhaust gas G.
  • the exhaust gas recirculation system 4D shown in FIG. 11 is a fifth embodiment in that the drain pipe 53 extending from the bottom of the casing 23 of the demister 19E is connected to the droplet storage tank 45b provided in the gas-liquid separator 45. It differs from the exhaust gas recirculation system 4C.
  • the configuration of the other parts is the same as that of the exhaust gas recirculation system 4C of the fifth embodiment, so the same reference numerals will be given to the respective parts and overlapping descriptions will be omitted.
  • the drain pipe 53 extending from the bottom of the demister 19E to the droplet storage tank 45b of the gas-liquid separator 45, it is collected in the demister 19E on which the pressure of the centrifugal blower 50 acts.
  • the droplet L flows to the droplet storage tank 45b of the gas-liquid separator 45 where the pressure of the centrifugal blower 50 is not applied. Therefore, the pressure difference allows the droplets L collected in the demister 19E to be favorably flowed to the droplet storage tank 45b of the gas-liquid separator 45, and the droplet removal performance is improved.
  • the water etc. contained in the exhaust gas to be recirculated to the engine side Can be reliably removed without increasing the pressure drop resistance, that is, without reducing the engine efficiency. And, it is possible to prevent the occurrence of erosion on the compressor wheel of the turbocharger 3 due to the droplets L contained in the recirculated exhaust gas.
  • the present invention is not limited to only the configurations of the first to sixth embodiments, and various changes and improvements can be made as appropriate without departing from the scope of the present invention. Embodiments are also included in the scope of the present invention.
  • marine engine 1 has been described as being a two-stroke diesel engine, the present invention is not limited thereto, and the invention may be applied to other types of engines or an engine without the supercharger 3. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)
  • Electrostatic Separation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

A demister (19A) is coupled to a downstream side of a scrubber (18) which uses droplets (L) to wash and collect particulate matter contained in recirculated exhaust gas (G) recirculating through an engine, and separates out the droplets (L) remaining in the recirculated exhaust gas (G) in the form of mist. The demister (19A) has a cyclone structure equipped with: a cylindrical casing (23) the axial direction of which lies in the vertical direction; a recirculated exhaust gas introduction port (233) which is provided in an upper portion outer peripheral surface of the casing (23) and which introduces the recirculated exhaust gas (G) from a tangential direction into the interior of the casing (23); a recirculated exhaust gas discharge port (234) which is provided in an upper portion of the casing (23), in a position coinciding with the axial center thereof, and which discharges the recirculated exhaust gas (G); and a droplet discharging portion (232) which is provided in a lower portion of the casing (23) and which discharges the droplets (L) that have been separated from the recirculated exhaust gas (G).

Description

デミスタ、排ガス再循環システム、およびこれを備えた舶用エンジンDemista, exhaust gas recirculation system, and marine engine equipped with the same
 本発明は、デミスタ、排ガス再循環システム、およびこれを備えた舶用エンジンに関するものである。 The present invention relates to a demister, an exhaust gas recirculation system, and a marine engine provided with the same.
 特許文献1,2等に開示されているように、多くのディーゼルエンジンには、排ガスの一部を吸入空気に混合して酸素量を減少させ、燃焼温度を低下させることにより排ガス中に含まれるNOx(窒素酸化物)の排出量を低減させる排ガス再循環システム(EGR:Exhaust Gas Recirculation)が備えられている。 As disclosed in Patent Documents 1 and 2, etc., many diesel engines are included in the exhaust gas by mixing a part of the exhaust gas with the intake air to reduce the amount of oxygen and lowering the combustion temperature. An exhaust gas recirculation system (EGR: Exhaust Gas Recirculation) is provided to reduce NOx (nitrogen oxide) emissions.
 重油を燃料とする舶用ディーゼルエンジンにおいては、排ガス中に粒子状物質が含まれており、この粒子状物質をそのまま吸気側に再循環させるとエンジンに悪影響が及ぶ。このため、再循環させる排ガスに水を液滴噴霧して粒子状物質を洗浄集塵(分離)するスクラバ(洗浄集塵装置)が設置され、その下流側に水分を分離するデミスタ(気液分離装置)が設けられる。 In a marine diesel engine fueled with heavy oil, exhaust gas contains particulate matter, and if the particulate matter is recirculated to the intake side as it is, the engine is adversely affected. For this reason, a scrubber (washing and dust collecting device) is installed for washing and collecting (separating) particulate matter by droplet spray of water to the exhaust gas to be recirculated, and a demister (gas and liquid separation for separating water downstream thereof Device) is provided.
 デミスタは、特許文献1の図2等に示されるように、波形に屈曲された複数の壁体を近接させて配列したエレメントに、水分を含む排ガスを通す構造になっており、これによって排ガス中に含まれる水分を波形壁体に衝突させて気液分離するようになっている。このデミスタにて水分を除去された排ガスは、専用のブロワによりエンジンの吸気側に供給され、吸入空気に混合されて燃焼室に供給される。 As shown in FIG. 2 and the like of Patent Document 1, the demister has a structure in which an exhaust gas containing water is passed through an element in which a plurality of walls bent in a waveform are arranged in proximity to one another. The water contained in the water is made to collide with the corrugated wall to separate it into gas and liquid. The exhaust gas from which water has been removed by the demister is supplied to the intake side of the engine by a dedicated blower, mixed with the intake air, and supplied to the combustion chamber.
特開2002-332919号公報JP 2002-332919 A 特開2012-237242号公報JP, 2012-237242, A
 しかしながら、従来のデミスタは、上記のように、波形に屈曲された複数の壁体からなるエレメントに排ガスを通して排ガス中に含まれる液滴を波形壁体に衝突させて気液分離するという構造であった。このため、圧損抵抗が大きく、エンジン効率を低下させるという課題があった。この圧損抵抗を低下させるべく波形壁体の間隔を粗くすると、水分の除去性能が低下し、水分を含んだ排ガスがエンジンの吸気側に流れてしまう。特に過給機を備えているエンジンにおいては、この水分が高速回転するコンプレッサ翼車に衝突してエロージョン(浸食)を発生させる懸念があった。 However, as described above, the conventional demister has a structure in which the droplets contained in the exhaust gas are made to collide with the corrugated wall through the exhaust gas through an element composed of a plurality of walls bent in a corrugated manner so as to separate gas and liquid. The Therefore, there is a problem that pressure loss resistance is large and engine efficiency is reduced. If the distance between the corrugated walls is increased to reduce the pressure drop resistance, the water removal performance is reduced, and the water-containing exhaust gas flows to the intake side of the engine. In particular, in an engine equipped with a supercharger, there has been a concern that this moisture may collide with a high-speed rotating compressor wheel to cause erosion.
 本発明は、上記課題を解決するべくなされたものであり、エンジン側に再循環させる再循環排ガス中に含まれる水分等の液滴を、圧損抵抗を高めることなく除去することができるデミスタ、排ガス再循環システム、およびこれを備えた舶用エンジンを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and a demister and exhaust gas capable of removing droplets such as water contained in recirculated exhaust gas recirculated to the engine side without increasing pressure drop resistance. An object of the present invention is to provide a recirculation system and a marine engine provided with the same.
 上記課題を解決するために、本発明は以下の手段を採用する。 In order to solve the above-mentioned subject, the present invention adopts the following means.
 即ち、本発明の第1態様に係るデミスタは、軸方向が鉛直方向に沿う円筒状のケーシングと、前記ケーシングの上部外周面に設けられて前記ケーシングの内部に接線方向から液滴を含む再循環排ガスを導入させる再循環排ガス導入口と、前記ケーシングの上部、且つ前記ケーシングの軸中心に一致する位置に設けられて前記再循環排ガスを排出させる再循環排ガス排出口と、前記ケーシングの下部に設けられて前記再循環排ガスから分離された前記液滴を排出する液滴排出部と、を具備する。 That is, the demister according to the first aspect of the present invention includes a cylindrical casing having an axial direction along the vertical direction, and an outer peripheral surface provided on the upper outer peripheral surface of the casing to recirculate the droplets from the tangential direction inside the casing. A recirculation exhaust gas inlet for introducing exhaust gas, a recirculation exhaust gas outlet provided at an upper portion of the casing and at a position coinciding with an axial center of the casing for discharging the recirculation exhaust gas, and provided at a lower portion of the casing And a droplet discharge unit for discharging the droplets separated from the recirculated exhaust gas.
 上記構成のデミスタによれば、スクラバ等において水等の液滴により粒状物質を洗浄集塵され、多量の液滴を含んだ再循環排ガスが、デミスタのケーシング内部に再循環排ガス導入口から接線方向に流れ込んでケーシング内部で旋回流を形成し、その遠心分離作用によって液滴を分離される。 According to the above-described demister, the particulate matter is washed and collected by droplets such as water in a scrubber or the like, and the recirculated exhaust gas containing a large amount of droplets is tangentially drawn from the recirculated exhaust gas inlet into the casing of the demister. Flow into the casing to form a swirling flow inside the casing, and the centrifugal separation action separates the droplets.
 つまり、再循環排ガスがケーシングの内部で旋回することにより、遠心力によって再循環排ガス中に含まれる液滴がケーシングの内周壁面に付着し、ケーシングの内周面沿い発生する下降流れと重力とによってケーシングの下方に流れ、液滴排出部から排出される。 That is, when the recirculated exhaust gas swirls inside the casing, droplets contained in the recirculated exhaust gas adhere to the inner circumferential wall surface of the casing by centrifugal force, and the downward flow and gravity generated along the inner circumferential surface of the casing Flows downward from the casing and is discharged from the droplet discharge unit.
 一方、ケーシング内部の中心部では上昇流が発生するため、液滴を除去された再循環排ガスのみが上昇してケーシング上部に形成された再循環排ガス排出口から排出される。したがって、水分等の液滴を含んだ排ガスがエンジンの吸気側に流れることが抑制され、過給機のコンプレッサ翼車にエロージョンが発生することを防止できる。 On the other hand, since the upward flow occurs in the central portion inside the casing, only the recirculated exhaust gas from which the droplets are removed rises and is discharged from the recirculated exhaust gas outlet formed in the upper portion of the casing. Therefore, the exhaust gas containing droplets such as moisture is prevented from flowing to the intake side of the engine, and the generation of erosion on the compressor wheel of the turbocharger can be prevented.
 このデミスタは、再循環排ガスを壁体等に衝突させて分離するものとは異なり、再循環排ガスの流路に圧損抵抗が大きくなるエレメント部材等が設置されないため、エンジン効率を低下させることがない。 This demister does not lower the engine efficiency because it does not have an element member or the like that increases the pressure loss resistance in the flow path of the recirculated exhaust gas, unlike the demister that separates the recirculated exhaust gas by colliding with the wall etc. .
 上記構成のデミスタにおいて、前記ケーシングは、鉛直方向上部側をなす円筒部と、前記円筒部の下部に繋がり、上部から下部にかけて軸方向に直交する断面の直径が小さくなる円錐部と、を具備するのが好ましい。 In the above-described demister, the casing includes a cylindrical portion forming an upper side in the vertical direction, and a conical portion connected to the lower portion of the cylindrical portion and having a cross-sectional diameter perpendicular to the axial direction decreasing from the upper portion to the lower portion. Is preferred.
 ケーシングの内部において、液滴を含む再循環排ガスにより形成される旋回流の旋回回転数は、ケーシングの直径が小さくなるほど加速され、液滴に作用する遠心力が増加する。ケーシングは、下方に向かって軸方向に直交する断面の直径が小さくなる円錐形状であるため、旋回しながら重力により下降する再循環排ガスに作用する遠心力が増大し、再循環排ガスと液滴の気液分離作用が増大する。このため、再循環排ガスGから液滴Lを効率良く分離することができる。 Inside the casing, the number of revolutions of the swirling flow formed by the recirculating exhaust gas containing the droplets is accelerated as the diameter of the casing becomes smaller, and the centrifugal force acting on the droplets increases. Since the casing has a conical shape in which the diameter of the cross section orthogonal to the axial direction decreases downward, the centrifugal force acting on the recirculating exhaust gas which descends by gravity while rotating is increased, and the recirculated exhaust gas and droplets The gas-liquid separation action is increased. Therefore, the droplets L can be efficiently separated from the recirculated exhaust gas G.
 上記構成のデミスタにおいて、前記再循環排ガス排出口に、前記液滴を帯電させることにより該液滴を電極に引き付けて前記再循環排ガスから分離する電気集粒装置を設置してもよい。 In the demister of the above-described configuration, an electric particle collecting apparatus may be installed at the recirculated exhaust gas outlet to attract the droplets to an electrode by charging the droplets to separate them from the recirculated exhaust gas.
 上記構成によれば、デミスタの内部において遠心力で分離しきれなかった液滴が、再循環排ガス排出口に設置された電気集粒装置を通過する際に帯電され、電気集粒装置の電極に引き付けられて再循環排ガスから分離される。即ち、デミスタのケーシング内において捕集できなかった液滴が電気集粒装置によって捕集される。このため、再循環排ガス中に残存する液滴を確実に分離することができる。 According to the above configuration, the droplets that could not be separated by the centrifugal force inside the demister are charged when passing through the electric particle collector installed at the recirculation exhaust gas outlet, and the electrode of the electric particle collector is charged. Attracted and separated from the recycle exhaust gas. That is, droplets that can not be collected in the casing of the demister are collected by the electric particle collector. Therefore, it is possible to reliably separate the droplets remaining in the recirculated exhaust gas.
 上記構成のデミスタにおいて、前記再循環排ガス排出口に多孔状の液滴分離部材を設けてもよい。 In the demister of the above configuration, the recirculated exhaust gas outlet may be provided with a porous droplet separating member.
 上記構成によれば、デミスタのケーシング内において捕集できなかった液滴が液滴分離部材によって捕集される。つまり、デミスタのケーシングと、液滴分離部材との2段階で再循環排ガス中に含まれる液滴が分離されるため、再循環排ガスの液滴分離作用をより高めることができる。 According to the above configuration, the droplets that can not be collected in the casing of the demister are collected by the droplet separating member. That is, since the droplets contained in the recirculating exhaust gas are separated in two stages of the casing of the demister and the droplet separating member, the droplet separating action of the recirculating exhaust gas can be further enhanced.
 上記構成のデミスタにおいて、前記ケーシングを複数基直列に接続し、その上流側のケーシングの円筒部の直径よりも、下流側のケーシングの円筒部の直径を小さくしてもよい。 In the demister of the above configuration, a plurality of the casings may be connected in series, and the diameter of the cylindrical portion of the downstream casing may be smaller than the diameter of the cylindrical portion of the upstream casing.
 上記構成によれば、下流側のケーシングの直径が上流側のケーシングの直径よりも小さいために、上流側のケーシングから出て下流側のケーシングに流入した再循環排ガスの旋回流の旋回回転数が加速される。 According to the above configuration, since the diameter of the downstream side casing is smaller than the diameter of the upstream side casing, the swirling rotational speed of the swirling flow of the recirculation exhaust gas which has flowed out of the upstream side casing and flowed into the downstream side casing is Be accelerated.
 したがって、下流側のケーシングにおける旋回流の旋回回転数を高く保ち、遠心力を維持して液滴の分離作用を高めることができる。 Therefore, the rotational speed of the swirling flow in the downstream side casing can be kept high, and the centrifugal force can be maintained to enhance the droplet separating action.
 本発明の第2態様に係る排ガス再循環システムは、エンジンから排出される排ガスの一部を抽気し、再循環排ガスとして前記エンジンの吸気側に送給する排ガス再循環通路と、前記排ガス再循環通路に接続されて前記再循環排ガス中に含まれる粒状物質を液滴により洗浄集塵するスクラバと、前記スクラバの下流側に接続される、前記のいずれかに記載のデミスタと、を具備している。 An exhaust gas recirculation system according to a second aspect of the present invention comprises an exhaust gas recirculation passage for extracting a part of exhaust gas discharged from an engine and feeding the exhaust gas as recirculation exhaust gas to the intake side of the engine; A scrubber connected to a passage for washing and collecting particulate matter contained in the recirculated exhaust gas by droplets; and a demister according to any of the foregoing, connected downstream of the scrubber. There is.
 上記構成の排ガス再循環システムによれば、排ガス再循環通路を流れる再循環排ガスは、まずスクラバにおいて水等の液滴により粒状物質を洗浄集塵される。洗浄集塵された再循環排ガスには多量の液滴が含まれ、この液滴を含んだ再循環排ガスは、次にデミスタの内部に接線方向に流れ込んで旋回流を形成し、その遠心分離作用によって液滴を分離される。 According to the exhaust gas recirculation system configured as described above, the recirculation exhaust gas flowing through the exhaust gas recirculation passage is first cleaned and collected by the droplets of water and the like in the scrubber. The recycled and collected exhaust gas contains a large amount of droplets, and the recycled exhaust gas containing the droplets then flows tangentially into the interior of the demister to form a swirling flow, and its centrifugal separation action The droplets are separated by
 つまり、再循環排ガスがデミスタのケーシング内部で旋回し、その時の遠心力によって再循環排ガス中に含まれる液滴がケーシングの内周壁面に付着して下方に流れ、再循環排ガスのみがデミスタの上部に形成された再循環排ガス排出口から排出される。したがって、水分等の液滴を含んだ排ガスがエンジンの吸気側に流れることが抑制され、過給機のコンプレッサ翼車にエロージョンが発生することを防止できる。 That is, the recirculated exhaust gas swirls inside the casing of the demister, and the centrifugal force at that time causes droplets contained in the recirculated exhaust gas to adhere to the inner peripheral wall surface of the casing and flow downward, and only the recirculated exhaust gas flows over the demister It is discharged from the recirculated exhaust gas outlet formed in the Therefore, the exhaust gas containing droplets such as moisture is prevented from flowing to the intake side of the engine, and the generation of erosion on the compressor wheel of the turbocharger can be prevented.
 このデミスタは、再循環排ガスを壁体等に衝突させるものとは異なり、再循環排ガスの流路に圧損抵抗が大きくなるエレメント部材等が設置されないため、エンジン効率を低下させることがない。 This demister does not lower the engine efficiency because an element member or the like that increases the pressure loss resistance is not installed in the flow path of the recirculated exhaust gas, unlike the one in which the recirculated exhaust gas collides with the wall or the like.
 上記構成の排ガス再循環システムにおいて、前記スクラバと前記デミスタとの間に、前記再循環排ガスを前記デミスタに送給する遠心ブロワを接続し、前記遠心ブロワを、該遠心ブロワから接線方向に吐出された前記再循環排ガスが前記デミスタに接線方向から流入するように接続してもよい。 In the exhaust gas recirculation system configured as described above, a centrifugal blower that feeds the recirculated exhaust gas to the demister is connected between the scrubber and the demister, and the centrifugal blower is discharged tangentially from the centrifugal blower. The recirculated exhaust gas may be connected tangentially to the demister.
 上記構成の排ガス再循環システムによれば、スクラバにおいて水等の液滴により粒状物質を洗浄集塵され、多量の液滴を含む再循環排ガスは、次に遠心ブロワによってデミスタに送られ、デミスタにおいて残存する液滴を分離される。 According to the exhaust gas recirculation system configured as described above, particulate matter is washed and collected by droplets such as water in the scrubber, and the recirculated exhaust gas containing a large number of droplets is then sent to the demister by the centrifugal blower and is The remaining droplets are separated.
 遠心ブロワの内部では、ブロワファンの回転に伴う遠心力により、再循環排ガスに含まれる液滴がブロワケーシングの内周壁面に付着し、液膜(液脈)層を形成しながら出口側に流れる。この液膜層の流れは、再循環排ガスとともに遠心ブロワから接線方向に吐出され、デミスタの内部に接線方向から流入する。 Inside the centrifugal blower, due to the centrifugal force accompanying the rotation of the blower fan, the droplets contained in the recirculated exhaust gas adhere to the inner peripheral wall surface of the blower casing and flow to the outlet side while forming a liquid film (liquid vein) layer . The flow of the liquid film layer is discharged tangentially from the centrifugal blower together with the recirculated exhaust gas, and flows into the interior of the demister from the tangential direction.
 このため、デミスタの内部では、再循環排ガスが流入する当初から液滴がデミスタの内周壁面に沿って流れる傾向が生じ、デミスタの内部における旋回流の遠心分離作用と相俟って優れた気液分離作用が発揮される。したがって、水分等の液滴を含んだ排ガスがエンジンの吸気側に流れることが抑制され、過給機のコンプレッサ翼車にエロージョンが発生することを防止できる。 For this reason, inside the demister, there is a tendency for droplets to flow along the inner peripheral wall surface of the demister from the beginning when the recirculated exhaust gas flows in, and the air separation is excellent due to the centrifugal separation action of the swirling flow inside the demister. The liquid separation action is exhibited. Therefore, the exhaust gas containing droplets such as moisture is prevented from flowing to the intake side of the engine, and the generation of erosion on the compressor wheel of the turbocharger can be prevented.
 上記構成の排ガス再循環システムにおいて、前記スクラバと前記遠心ブロワとの間に気液分離器を設けてもよい。 In the exhaust gas recirculation system configured as described above, a gas-liquid separator may be provided between the scrubber and the centrifugal blower.
 上記構成の排ガス再循環システムによれば、スクラバにおいて水等の液滴により粒状物質を洗浄集塵され、多量の液滴を含む再循環排ガスは、まず気液分離器において大まかに液滴を分離されてから、遠心ブロワによってデミスタに送られ、デミスタにおいて残存する液滴をさらに分離される。したがって、再循環排ガスに含まれる液滴を確実に分離することができる。 According to the exhaust gas recirculation system configured as described above, particulate matter is washed and collected by droplets such as water in the scrubber, and the recirculation exhaust gas containing a large number of droplets is roughly separated into droplets in the gas-liquid separator. Then, it is sent to the demister by a centrifugal blower, and the remaining droplets are further separated in the demister. Therefore, the droplets contained in the recirculated exhaust gas can be reliably separated.
 上記構成の排ガス再循環システムにおいて、前記デミスタにて前記再循環排ガスから分離された前記液滴のドレン管を、前記気液分離器の液滴貯留槽に接続してもよい。 In the exhaust gas recirculation system configured as described above, a drain pipe of the droplet separated from the recirculated exhaust gas by the demister may be connected to the droplet storage tank of the gas-liquid separator.
 上記構成によれば、遠心ブロワの圧力が作用しているデミスタにおいて、再循環排ガスから分離された液滴が、遠心ブロワの圧力が作用していない気液分離器の液滴貯留槽に流れる。このため、その圧力差により、デミスタにおいて捕集された液滴を気液分離器の液滴貯留槽に良好に流すことができ、液滴除去性能を向上させるとともに、液滴の排出に関わる余剰動力を削減することができる。 According to the above configuration, in the demister in which the pressure of the centrifugal blower acts, the droplets separated from the recirculated exhaust gas flow to the droplet storage tank of the gas-liquid separator in which the pressure of the centrifugal blower does not act. Therefore, due to the pressure difference, the droplets collected in the demister can be favorably flowed to the droplet storage tank of the gas-liquid separator, the droplet removal performance is improved, and the surplus related to the discharge of droplets is obtained. Power can be reduced.
 また、本発明に係る舶用エンジンは、上記のいずれかの態様の排ガス再循環システムを備えている。 Furthermore, a marine engine according to the present invention includes the exhaust gas recirculation system according to any one of the above aspects.
 この舶用エンジンによれば、エンジン側に再循環させる再循環排ガス中に含まれる水分等の液滴を、圧損抵抗を高めることなく、即ちエンジン効率を低下させることなく除去することができ、再循環排ガス中に含まれる液滴によって過給機のコンプレッサ翼車にエロージョンが発生することを防止できる。 According to this marine engine, droplets such as water contained in the recirculated exhaust gas to be recirculated to the engine side can be removed without increasing the pressure loss resistance, that is, without reducing the engine efficiency. It is possible to prevent the generation of erosion on the compressor impeller of the turbocharger due to the droplets contained in the exhaust gas.
 以上のように、本発明に係るデミスタ、排ガス再循環システム、これを備えた舶用エンジンによれば、エンジン側に再循環させる再循環排ガス中に含まれる水分等の液滴を、圧損抵抗を高めることなく除去することができる。 As described above, according to the demister, the exhaust gas recirculation system, and the marine engine provided with the same according to the present invention, the pressure drop resistance is increased by droplets such as water contained in the recirculated exhaust gas recirculated to the engine side. It can be removed without
本発明の第1実施形態に係る排ガス再循環システムの概略構成図である。It is a schematic block diagram of the exhaust gas recirculation system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るデミスタの斜視図である。It is a perspective view of a demister concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るデミスタの縦断面図である。It is a longitudinal cross-sectional view of a demister concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係るデミスタの斜視図である。It is a perspective view of a demister concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るデミスタの縦断面図である。It is a longitudinal cross-sectional view of the demister which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るデミスタの縦断面図である。It is a longitudinal cross-sectional view of the demister which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る排ガス再循環システムの概略構成図である。It is a schematic block diagram of the exhaust gas recirculation system concerning a 4th embodiment of the present invention. 本発明の第4実施形態に係るデミスタの斜視図である。It is a perspective view of a demister concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る排ガス再循環システムの概略構成図である。It is a schematic block diagram of the exhaust gas recirculation system concerning a 5th embodiment of the present invention. 図9のX矢視方向から見たブロワとデミスタの横断面図である。It is a cross-sectional view of the blower and the demister seen from the X arrow direction of FIG. 本発明の第6実施形態に係る排ガス再循環システムの概略構成図である。It is a schematic block diagram of the exhaust gas recirculation system concerning a 6th embodiment of the present invention.
 以下に、本発明の複数の実施形態について、図面を参照しながら説明する。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
 図1は、本発明の第1実施形態を示す概略構成図である。
 第1実施形態に係る舶用エンジン1は、エンジン本体2と、過給機3と、排ガス再循環システム4Aとを備えている。エンジン本体2は、例えば2サイクルディーゼルエンジンであり、複数のシリンダ2aを備えるとともに、その一側に掃気室5、他側に排気静圧室6がそれぞれ設置されている。
First Embodiment
FIG. 1 is a schematic configuration view showing a first embodiment of the present invention.
The marine engine 1 according to the first embodiment includes an engine body 2, a turbocharger 3, and an exhaust gas recirculation system 4A. The engine body 2 is, for example, a two-stroke diesel engine, and includes a plurality of cylinders 2a, and a scavenging chamber 5 is provided on one side thereof and an exhaust static pressure chamber 6 is provided on the other side.
 過給機3は、タービン7とコンプレッサ8とが同軸上に設けられ、排気静圧室6から延びる排ガス供給管9がタービン7の入口側に接続され、タービン7の出口側から延びる排ガス放出管10の他端が外部に開放されている。コンプレッサ8の入口側に流体吸入管11が接続され、コンプレッサ8の出口側から延びる圧縮流体供給管12が掃気室5に接続されている。 In the turbocharger 3, a turbine 7 and a compressor 8 are provided coaxially, an exhaust gas supply pipe 9 extending from an exhaust static pressure chamber 6 is connected to an inlet side of the turbine 7, and an exhaust gas discharge pipe extending from an outlet side of the turbine 7 The other end of 10 is open to the outside. A fluid suction pipe 11 is connected to the inlet side of the compressor 8, and a compressed fluid supply pipe 12 extending from the outlet side of the compressor 8 is connected to the scavenging chamber 5.
 舶用エンジン1が作動すると、エンジン本体2のシリンダ2aから排出される排ガスが排気静圧室6に流入する。排気静圧室6に流入した排ガスは、排ガス供給管9を経てタービン7に供給され、タービン7が駆動される。タービン7が駆動されると、タービン7と同軸上に設けられたコンプレッサ8が回転し、コンプレッサ翼車(非図示)により流体吸入管11から流体が吸入されて圧縮され、この圧縮流体が圧縮流体供給管12から掃気室5に供給される。これにより、シリンダ2aに高密度の流体が充填され、燃焼効率が向上してエンジン効率が高められる。 When the marine engine 1 operates, the exhaust gas discharged from the cylinder 2 a of the engine body 2 flows into the static exhaust pressure chamber 6. The exhaust gas having flowed into the static exhaust pressure chamber 6 is supplied to the turbine 7 through the exhaust gas supply pipe 9 to drive the turbine 7. When the turbine 7 is driven, a compressor 8 provided coaxially with the turbine 7 is rotated, and a fluid is sucked from the fluid suction pipe 11 and compressed by a compressor wheel (not shown), and this compressed fluid is compressed fluid The gas is supplied from the supply pipe 12 to the scavenging chamber 5. As a result, the cylinder 2a is filled with a high density fluid, the combustion efficiency is improved, and the engine efficiency is improved.
 第1実施形態に係る排ガス再循環システム4Aは、EGRバルブ16と、排ガス再循環通路17と、スクラバ18と、デミスタ19Aと、ブロワ20とを備えている。排ガス再循環システム4Aは、タービン7を駆動し終えて排ガス放出管10を通る排ガスの一部を抽気し、再循環排ガスGとしてエンジン本体2への圧縮流体に混合する公害低減装置である。これにより、圧縮流体の酸素量を減少させ、燃焼温度を低下させて排ガス中に含まれるNOx(窒素酸化物)の排出量を低減させる。 An exhaust gas recirculation system 4A according to the first embodiment includes an EGR valve 16, an exhaust gas recirculation passage 17, a scrubber 18, a demister 19A, and a blower 20. The exhaust gas recirculation system 4A is a pollution reduction device that completely drives the turbine 7 and extracts a part of the exhaust gas passing through the exhaust gas discharge pipe 10 and mixes it with the compressed fluid to the engine body 2 as the recirculation exhaust gas G. As a result, the amount of oxygen in the compressed fluid is reduced, the combustion temperature is reduced, and the amount of NOx (nitrogen oxide) contained in the exhaust gas is reduced.
 排ガス再循環通路17は、排ガス放出管10の途中から分岐しており、その分岐部付近にEGRバルブ16が設けられ、排ガス再循環通路17の他端が空気吸入管11に接続されている。この排ガス再循環通路17の途中に、スクラバ18と、デミスタ19Aと、ブロワ20とが順に接続されている。EGRバルブ16の開度、あるいはブロワ20の回転数が調整されることにより、排ガス放出管10から抽気される再循環排ガスGの量が舶用エンジン1の運転状況に応じて加減される。 The exhaust gas recirculation passage 17 is branched from the middle of the exhaust gas discharge pipe 10, an EGR valve 16 is provided in the vicinity of the branch portion, and the other end of the exhaust gas recirculation passage 17 is connected to the air intake pipe 11. A scrubber 18, a demister 19A, and a blower 20 are sequentially connected in the middle of the exhaust gas recirculation passage 17. By adjusting the opening degree of the EGR valve 16 or the rotational speed of the blower 20, the amount of the recirculated exhaust gas G extracted from the exhaust gas discharge pipe 10 is adjusted according to the operating condition of the marine engine 1.
 スクラバ18は、その内部を通過する再循環排ガスGに水等の液滴を噴霧することにより、再循環排ガスG中に含まれる粒子状物質を洗浄集塵(分離)する洗浄集塵装置である。
 デミスタ19Aは、スクラバ18において液滴により粒子状物質を洗浄集塵された後の再循環排ガスG中にミスト状に残存する液滴L(図3参照)を分離する。
 ブロワ20は、デミスタ19Aにおいて液滴Lを除去された再循環排ガスGを空気吸入管11側に送給する。
The scrubber 18 is a washing and collecting device for washing and collecting (separating) particulate matter contained in the recirculated waste gas G by spraying droplets such as water on the recirculated waste gas G passing therethrough. .
The demister 19A separates the droplets L (see FIG. 3) remaining in the form of mist in the recirculated exhaust gas G after the particulate matter is washed and collected by the droplets in the scrubber 18.
The blower 20 feeds the recirculated exhaust gas G from which the droplets L have been removed in the demister 19A to the air intake pipe 11 side.
 図2、図3に示すように、第1実施形態に係るデミスタ19Aは、軸方向が鉛直方向に沿う円筒状のケーシング23と、出口管24と、液滴貯留槽27とを備えている。 As shown in FIGS. 2 and 3, the demister 19A according to the first embodiment includes a cylindrical casing 23 whose axial direction extends in the vertical direction, an outlet pipe 24, and a droplet storage tank 27.
 ケーシング23は、円筒部23aと、円錐部23bと、天板23cとを備えている。円筒部23aは直径が一定の円筒状である。円錐部23bは、円筒部23aの下方に繋がり、その軸方向の一端をなす大端部231から、軸方向の他端をなす小端部232(液滴排出部)にかけて、軸方向に直交する断面の直径が縮小する円錐管状であり、その大端部231が円筒部23aに繋がっている。天板23cは、円錐部23bの反対側となる円筒部23aの端部(上部)に設けられている。 The casing 23 includes a cylindrical portion 23a, a conical portion 23b, and a top plate 23c. The cylindrical portion 23a has a cylindrical shape with a constant diameter. The conical portion 23b is connected to the lower side of the cylindrical portion 23a and is orthogonal to the axial direction from the large end portion 231 forming one end in the axial direction to the small end portion 232 (droplet discharging portion) forming the other end in the axial direction It has a conical tubular shape whose cross-sectional diameter decreases, and its large end 231 is connected to the cylindrical portion 23a. The top plate 23c is provided at an end (upper part) of the cylindrical portion 23a opposite to the conical portion 23b.
 ケーシング23の上部外周面、つまりここでは円筒部23aの外周面に、ケーシング23の内部に再循環排ガスGを接線方向に導入させる再循環排ガス導入口233が形成されている。この再循環排ガス導入口233には排ガス再循環通路17が接線方向に接続されている。排ガス再循環通路17から流れてくる再循環排ガスGは、再循環排ガス導入口233より円筒部23aの接線方向に沿ってケーシング23内に流れ込む。 A recirculation exhaust gas inlet port 233 for introducing the recirculation exhaust gas G in the tangential direction is formed inside the casing 23 on the upper outer peripheral surface of the casing 23, that is, the outer peripheral surface of the cylindrical portion 23a here. An exhaust gas recirculation passage 17 is tangentially connected to the recirculation exhaust gas inlet port 233. The recirculated exhaust gas G flowing from the exhaust gas recirculation passage 17 flows into the casing 23 along the tangential direction of the cylindrical portion 23 a from the recirculated exhaust gas inlet port 233.
 ケーシング23の上部、且つ軸中心に一致する位置、つまりここでは天板23cの中央部に再循環排ガス排出口234が穿設されており、ここに出口管24が挿入されてケーシング23の軸心に沿って固定されている。この出口管24の上端側はブロワ20側に接続され、出口管24の下端部はケーシング23の内部に位置する。 A recirculated exhaust gas outlet 234 is bored in the upper part of the casing 23 and at a position coinciding with the axial center, that is, in the central part of the top plate 23c here, and the outlet pipe 24 is inserted therein. It is fixed along. The upper end side of the outlet pipe 24 is connected to the blower 20 side, and the lower end of the outlet pipe 24 is located inside the casing 23.
 図3に示すように、デミスタ19Aは、再循環排ガスGを排ガス再循環通路17(再循環排ガス導入口233)からケーシング23内に接線方向に流入させて旋回流Rを形成させ、その遠心力によって再循環排ガスG中に残存する液滴Lを分離させるサイクロン構造となっている。液滴Lを分離された再循環排ガスGは、ケーシング23の再循環排ガス排出口234(出口管24)から排出されてブロワ20に流れる。また、再循環排ガスGから分離された液滴Lは、小端部232から排出される。 As shown in FIG. 3, the demister 19A causes the recirculation exhaust gas G to flow tangentially into the casing 23 from the exhaust gas recirculation passage 17 (recirculation exhaust gas inlet 233) to form a swirling flow R, and the centrifugal force thereof. It has a cyclone structure that separates the droplets L remaining in the recirculated exhaust gas G. The recirculated exhaust gas G from which the droplets L have been separated is discharged from the recirculated exhaust gas outlet 234 (outlet pipe 24) of the casing 23 and flows to the blower 20. In addition, the droplets L separated from the recirculated exhaust gas G are discharged from the small end 232.
 液滴貯留槽27は、例えば円錐部23bの小端部232よりも大きな直径を持つ円柱形状のタンクであり、ケーシング23(円錐部23b)の底部(小端部232)に連結管236を介して連結されている。この液滴貯留槽27には、ケーシング23の内部で再循環排ガスGから分離された液滴Lが捕集される。連結管236を省いて円錐部23bの下部(再循環排ガス排出口234)に液滴貯留槽27を直接連結してもよい。 The droplet storage tank 27 is, for example, a cylindrical tank having a diameter larger than the small end 232 of the conical portion 23b, and is connected to the bottom (small end 232) of the casing 23 (conical portion 23b) via the connecting pipe 236. Are connected. The droplet L separated from the recirculated exhaust gas G inside the casing 23 is collected in the droplet storage tank 27. The connection pipe 236 may be omitted, and the droplet storage tank 27 may be directly connected to the lower portion (recirculation exhaust gas outlet 234) of the conical portion 23b.
 円筒部23aと円錐部23bと天板23cとの間は一体化してもよく、円筒部23aと円錐部23bの両方を備えることは必須ではない。例えば円筒部23aを省き、円錐部23bの大端部231に天板23cを設けるとともに、円錐部23bの上部外周面に再循環排ガス導入口233を穿設して排ガス再循環通路17を接続する構成としてもよい。 The cylindrical portion 23a, the conical portion 23b and the top plate 23c may be integrated, and it is not essential to provide both the cylindrical portion 23a and the conical portion 23b. For example, the cylindrical portion 23a is omitted, the top plate 23c is provided at the large end 231 of the conical portion 23b, and the recirculation exhaust gas inlet port 233 is bored in the upper outer peripheral surface of the conical portion 23b to connect the exhaust gas recirculation passage 17 It is good also as composition.
 以上のように、第1実施形態に係るデミスタ19Aは、円筒部23aと、円錐部23bとを含むケーシング23を備えている。ケーシング23は、その上部をなす円筒部23aの外周面に再循環排ガス導入口233が形成され、この再循環排ガス導入口233に、排ガス再循環通路17が、再循環排ガスGを円筒部23aの接線方向に沿って流し込むように接続されている。 As described above, the demister 19A according to the first embodiment includes the casing 23 including the cylindrical portion 23a and the conical portion 23b. In the casing 23, the recirculation exhaust gas inlet port 233 is formed on the outer peripheral surface of the cylindrical portion 23a forming the upper part, and the exhaust gas recirculation passage 17 is provided in the recirculation exhaust gas inlet port 233. It is connected to flow along the tangential direction.
 再循環排ガス導入口233には、排ガス再循環通路17が円筒部23aの接線方向に沿うように接続されている。このため、図3に示すように、再循環排ガスGは、排ガス再循環通路17からケーシング23内に接線方向に流れ込んで旋回流Rを形成する。この旋回流Rに作用する遠心力により、再循環排ガスG中に混入されてミスト状に残存している多量の液滴Lが再循環排ガスGから分離される。 An exhaust gas recirculation passage 17 is connected to the recirculation exhaust gas inlet port 233 along the tangential direction of the cylindrical portion 23a. For this reason, as shown in FIG. 3, the recirculated exhaust gas G flows tangentially from the exhaust gas recirculation passage 17 into the casing 23 to form a swirling flow R. A large amount of droplets L mixed in the recirculating exhaust gas G and remaining in the form of mist are separated from the recirculating exhaust gas G by the centrifugal force acting on the swirling flow R.
 即ち、再循環排ガスGがケーシング23の内部で旋回することにより、遠心力によって再循環排ガスG中に含まれる液滴Lがケーシング23の内周壁面に付着する。この液滴Lは、ケーシング23の内周面沿い発生する下降流れと重力とによってケーシング23の下方に流れ、液滴排出部232から排出されて液滴貯留槽27に捕集される。一方、ケーシング23内部の中心部では上昇流が発生するため、液滴Lを除去された再循環排ガスGのみが上昇してケーシング23上部の再循環排ガス排出口234から排出される。 That is, when the recirculating exhaust gas G swirls inside the casing 23, the droplets L contained in the recirculating exhaust gas G adhere to the inner peripheral wall surface of the casing 23 by the centrifugal force. The droplets L flow downward of the casing 23 by the downward flow and gravity generated along the inner circumferential surface of the casing 23, and are discharged from the droplet discharge portion 232 and collected in the droplet storage tank 27. On the other hand, since the upward flow is generated in the central portion inside the casing 23, only the recirculated exhaust gas G from which the droplet L is removed rises and is discharged from the recirculated exhaust gas outlet 234 at the top of the casing 23.
 ケーシング23の内部において、液滴Lを含む再循環排ガスGにより形成される旋回流Rの旋回回転数は、ケーシング23の直径が小さくなるほど加速され、液滴Lに作用する遠心力が増加する(自由渦において旋回速度×半径=一定のため)。ケーシング23の下部を形成する円錐部23bは、円筒部23aに対して軸方向反対側(小端部232側)に向かって直径が縮小するように形成されている。このため、ケーシング23の内部で再循環排ガスGとともに旋回しながら重力により下降する液滴Lに作用する遠心力が、円錐部23bの大端部231側から小端部232側に向かって増大し、再循環排ガスGと液滴Lの気液分離作用が増大する。このため、再循環排ガスGから液滴Lを効率良く分離することができる。 Inside the casing 23, the swirling rotational speed of the swirling flow R formed by the recirculating exhaust gas G including the droplet L is accelerated as the diameter of the casing 23 becomes smaller, and the centrifugal force acting on the droplet L increases ( Because of the swirling speed x radius = constant in free vortices). The conical portion 23 b forming the lower portion of the casing 23 is formed to decrease in diameter toward the side (small end portion 232 side) axially opposite to the cylindrical portion 23 a. For this reason, the centrifugal force acting on the droplet L which descends by gravity while swirling with the recirculating exhaust gas G inside the casing 23 increases from the large end 231 side to the small end 232 side of the conical portion 23b. The gas-liquid separation action of the recirculated exhaust gas G and the droplets L is increased. Therefore, the droplets L can be efficiently separated from the recirculated exhaust gas G.
 したがって、再循環排ガスGが液滴Lを含んだままで過給エンジン側に流れることを抑制できる。これにより、コンプレッサ8の翼車に液滴Lが衝突することによるエロージョンの発生を防止することができる。 Therefore, it is possible to suppress the recirculation exhaust gas G from flowing to the supercharged engine side while containing the droplets L. As a result, the occurrence of erosion due to the collision of the droplet L with the impeller of the compressor 8 can be prevented.
 デミスタ19Aは、再循環排ガスGを壁体等に衝突させるものとは異なり、再循環排ガスGの流路に圧損抵抗が大きくなるエレメント部材等が設置されないため、再循環排ガスGの流れが阻害されることを抑制できる。このため、エンジン本体2の効率低下を抑制することができる。 The demister 19A is different from the one in which the recirculation exhaust gas G collides with the wall etc., and no element member or the like that increases the pressure loss resistance is installed in the flow path of the recirculation exhaust gas G, so the flow of the recirculation exhaust gas G is blocked. Can be suppressed. For this reason, the efficiency reduction of the engine body 2 can be suppressed.
[第2実施形態]
 次に、本発明の第2実施形態について、図4と図5を参照しながら説明する。
 第2実施形態に係るデミスタ19Bは、ケーシング23の再循環排ガス排出口234に出口管24を介して電気集粒装置30が備えられる点、および出口管24が下部出口管24aと上部出口管24bとに分割されている点において第1実施形態のデミスタ19Aと異なっている。その他の部分の構成は第1実施形態のデミスタ19Aと同様であるため、各部に同一符号を付して重複する説明は省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
The demister 19B according to the second embodiment has a point at which the electric aggregater 30 is provided at the recirculation exhaust gas outlet 234 of the casing 23 through the outlet pipe 24, and the outlet pipe 24 has a lower outlet pipe 24a and an upper outlet pipe 24b. And is different from the demister 19A of the first embodiment in that it is divided into two. The configuration of the other parts is the same as that of the demister 19A of the first embodiment, and therefore the same reference numerals are given to the respective parts and redundant description will be omitted.
 図4、図5に示すように、電気集粒装置30は、箱状のハウジング31と、このハウジング31の内部に収容される円筒状の電極管32と、ハウジング31の内部に収容され、かつ電極管32の軸中心に設けられるマイナス電極33と、ドレン管38とを備えている。電気集粒装置30は、再循環排ガスG中に含まれる液滴Lを帯電させて電極管32に吸着させることにより液滴Lを再循環排ガスGから分離する装置である。 As shown in FIGS. 4 and 5, the electric granulating apparatus 30 is housed in a box-like housing 31, a cylindrical electrode tube 32 housed inside the housing 31, and inside the housing 31, and A negative electrode 33 provided at the axial center of the electrode tube 32 and a drain tube 38 are provided. The electric particle collector 30 separates the droplet L from the recirculated exhaust gas G by charging the droplet L contained in the recirculated exhaust gas G and causing the electrode tube 32 to adsorb the droplet L.
 電気集粒装置30のハウジング31の下面には再循環排ガス入口穴31aが形成され、上面には再循環排ガス出口穴31bが形成されている。
 下部出口管24aは、ケーシング23の天板23cに穿設された再循環排ガス排出口234に挿入されてケーシング23の軸心に沿って固定されている。下部出口管24aの下端部はケーシング23内部の軸方向中間部付近まで延び、上端部はハウジング31の再循環排ガス入口穴31aに挿入されて固定されている。下部出口管24aの上端部はハウジング31の下面よりも上方に突出している。
 ハウジング31の再循環排ガス出口穴31bに上部出口管24bの下端部が挿入されて固定されている。上部出口管24bの下端部は、ハウジング31の上面よりも下方に突出しており、上部出口管24bの上端部はブロワ20側に接続されている。
A recirculated exhaust gas inlet hole 31a is formed on the lower surface of the housing 31 of the electric granulator 30, and a recirculated exhaust gas outlet hole 31b is formed on the upper surface.
The lower outlet pipe 24 a is inserted into the recirculation exhaust gas outlet 234 drilled in the top plate 23 c of the casing 23 and fixed along the axial center of the casing 23. The lower end portion of the lower outlet pipe 24a extends to near the axially middle portion inside the casing 23, and the upper end portion is inserted into and fixed to the recirculation exhaust gas inlet hole 31a of the housing 31. The upper end portion of the lower outlet pipe 24 a protrudes above the lower surface of the housing 31.
The lower end portion of the upper outlet pipe 24b is inserted into and fixed to the recirculation exhaust gas outlet hole 31b of the housing 31. The lower end portion of the upper outlet pipe 24b protrudes below the upper surface of the housing 31, and the upper end portion of the upper outlet pipe 24b is connected to the blower 20 side.
 図4に示すように、電極管32は、例えば多孔状の板を湾曲形成した2枚の半円筒板32a,32b(電極)を対向させて固定し、その間に絶縁部材32cを介装することによって円筒状に形成されている。これらの半円筒板32a,32bはプラス電極として機能する。 As shown in FIG. 4, for example, in the electrode tube 32, two semi-cylindrical plates 32a and 32b (electrodes) formed by curving a porous plate are fixed to face each other, and an insulating member 32c is interposed therebetween. Are formed in a cylindrical shape. These half- cylindrical plates 32a and 32b function as plus electrodes.
 電極管32は、ハウジング31の内部における出口管24の間欠部、即ち下部出口管24aと上部出口管24bとの間の空間を、両方の管24a,24bに対して径方向に間隔を空けて包囲している。図4、図5に示すように、電極管32の下端部は下部出口管24aの上端部よりも低く、電極管32の上端部は上部出口管24bの下端部よりも高くなっている。つまり、電極管32は、ハウジング31の内部において、下部出口管24aの上端部と、上部出口管24bの下端部に対して軸方向にオーバーラップしている。電極管32の上下端部はハウジング31の上下面から離れている。 The electrode tube 32 radially spaces the intermittent portion of the outlet tube 24 inside the housing 31, that is, the space between the lower outlet tube 24a and the upper outlet tube 24b, to both the tubes 24a and 24b. I am surrounded. As shown in FIGS. 4 and 5, the lower end of the electrode tube 32 is lower than the upper end of the lower outlet pipe 24a, and the upper end of the electrode tube 32 is higher than the lower end of the upper outlet pipe 24b. That is, the electrode pipe 32 axially overlaps the upper end portion of the lower outlet pipe 24 a and the lower end portion of the upper outlet pipe 24 b in the housing 31. The upper and lower end portions of the electrode tube 32 are separated from the upper and lower surfaces of the housing 31.
 図5に示すように、マイナス電極33は、電極管32の内部中心領域に設置されており、2枚の半円筒板32a,32bと、マイナス電極33との間に、電源線34と電源35とによって直流の高電圧電流が印加される。 As shown in FIG. 5, the negative electrode 33 is disposed in the inner central region of the electrode tube 32, and between the two semi-cylindrical plates 32 a and 32 b and the negative electrode 33, the power supply line 34 and the power supply 35. And a high voltage current of direct current is applied.
 ドレン管38は、ハウジング31の底部から延出して液滴貯留槽27に接続されている。このドレン管38は、電気集粒装置30によって再循環排ガスGから分離された液滴Lを液滴貯留槽27に排出する管である。 The drain pipe 38 extends from the bottom of the housing 31 and is connected to the droplet storage tank 27. The drain pipe 38 is a pipe for discharging the droplets L separated from the recirculated exhaust gas G by the electric particle collector 30 into the droplet storage tank 27.
 以上のように第2実施形態に係るデミスタ19Bにおいて、図5に示すように、排ガス再循環通路17からデミスタ19Bの再循環排ガス導入口233を経てケーシング23内に流入した再循環排ガスGは、第1実施形態におけるデミスタ19Aと同様に、ケーシング23内で旋回流Rを形成し、その遠心分離作用によって残存する液滴Lを分離される。ここで分離された液滴Lは下方に流下して液滴貯留槽27に捕集される。 As described above, in the demister 19B according to the second embodiment, as shown in FIG. 5, the recirculated exhaust gas G that has flowed from the exhaust gas recirculation passage 17 through the recirculated exhaust gas inlet 233 of the demister 19B into the casing 23 Similar to the demister 19A in the first embodiment, a swirling flow R is formed in the casing 23, and the remaining droplets L are separated by the centrifugal separation action. The droplets L separated here flow downward and are collected in the droplet storage tank 27.
 ケーシング23の内部において遠心力により再循環排ガスGから分離できなかった液滴Lは、出口管24(下部出口管24a、上部出口管24b)を通過してブロワ20側に流れようとするが、出口管24に設けられた電気集粒装置30において分離される。
 即ち、プラス電極である電極管32(半円筒板32a,32b)と、マイナス電極33との間に印加される直流の高電圧電流により、出口管24を通過する再循環排ガスGに含まれる液滴Lにマイナスの電荷が帯電される。この液滴Lはプラス電極である電極管32に引き付けられて付着するため、再循環排ガスGから強制的に分離されて半円筒板32a,32bの内周面に付着する。
The droplets L which can not be separated from the recirculated exhaust gas G by the centrifugal force inside the casing 23 try to flow toward the blower 20 through the outlet pipe 24 (lower outlet pipe 24a, upper outlet pipe 24b). It separates in the electric particle collector 30 provided in the outlet pipe 24.
That is, the liquid contained in the recirculated exhaust gas G passing through the outlet pipe 24 by the direct current high voltage current applied between the electrode tube 32 ( semi-cylindrical plates 32a and 32b) which is the positive electrode and the negative electrode 33 The drop L is charged with a negative charge. The droplet L is attracted to and attached to the electrode tube 32 which is a positive electrode, and thus it is forcibly separated from the recirculated exhaust gas G and attached to the inner peripheral surfaces of the semi-cylindrical plates 32a and 32b.
 半円筒板32a,32bの内周面と出口管24(24a,24b)の外周囲との間には間隔が設けられているため、半円筒板32a,32bの内周面に付着した液滴Lが下方に流れ落ちても下部出口管24a(ケーシング23)の中に入ることはなく、液滴Lはハウジング31の底部からドレン管38を経て液滴貯留槽27に流れる。 Since a space is provided between the inner circumferential surface of the semi-cylindrical plates 32a and 32b and the outer periphery of the outlet tube 24 (24a and 24b), the droplets attached to the inner circumferential surface of the semi-cylindrical plates 32a and 32b Even if L flows downward, it does not enter the lower outlet pipe 24 a (the casing 23), and the droplet L flows from the bottom of the housing 31 through the drain pipe 38 to the droplet reservoir 27.
 この電気集粒装置30を設けたことにより、再循環排ガスG中に残存する液滴Lを確実に分離し、過給機3のコンプレッサ翼車にエロージョンが発生することを防止することができる。本実施形態では半円筒板31a,31bが多孔状の板であると説明したが、孔が空いていない板や金網等であってもよい。半円筒板31a,31bを多孔状の板や金網とすることにより、引き付けられた液滴Lが半円筒板31a,31bの孔を通り抜けてハウジング31の底部に落ちることにもなるため、液滴Lの回収を容易にすることができる。 By providing the electric granulating device 30, the droplets L remaining in the recirculated exhaust gas G can be separated reliably, and the generation of erosion on the compressor wheel of the turbocharger 3 can be prevented. In the present embodiment, the semi-cylindrical plates 31a and 31b are described as being porous plates, but the plates may be non-perforated plates, wire nets or the like. By making the semi-cylindrical plates 31a and 31b into a porous plate or a wire net, the attracted droplet L also passes through the holes of the semi-cylindrical plates 31a and 31b and falls to the bottom of the housing 31. Recovery of L can be facilitated.
[第3実施形態]
 次に、本発明の第3実施形態について、図6を参照しながら説明する。
 第3実施形態に係るデミスタ19Cは、ケーシング23の再循環排ガス排出口234に出口管24を介して液滴分離部材40が備えられる点、および出口管24が拡径部24cを挟んで下部出口管24aと上部出口管24bとに分割されている点において第1実施形態のデミスタ19Aと異なっている。その他の部分の構成は第1実施形態のデミスタ19Aと同様であるため、各部に同一符号を付して重複する説明は省略する。
Third Embodiment
Next, a third embodiment of the present invention will be described with reference to FIG.
The demister 19C according to the third embodiment has a point that the droplet separating member 40 is provided at the recirculation exhaust gas outlet 234 of the casing 23 via the outlet pipe 24, and the outlet pipe 24 has the enlarged diameter portion 24c and the lower outlet. It differs from the demister 19A of the first embodiment in that it is divided into a pipe 24a and an upper outlet pipe 24b. The configuration of the other parts is the same as that of the demister 19A of the first embodiment, and therefore the same reference numerals are given to the respective parts and redundant description will be omitted.
 出口管24は、ケーシング23側に固定される下部出口管24aと、この下部出口管24aの上端部に接続される拡径部24cと、拡径部24cの上に接続される上部出口管24bとを備えて構成されている。上部出口管24bはブロワ20側に接続されている。拡径部24cの径は、下部出口管24a側からテーパー状に拡径し、最大径となって所定の長さ続いた後、上部出口管24b側に向かってテーパー状に縮径している。拡径部24cの最大径は、例えば下部出口管24aおよび上部出口管24bの径の2倍程度とされているが、この比率は適宜変更してよい。 The outlet pipe 24 includes a lower outlet pipe 24a fixed to the casing 23, an enlarged diameter portion 24c connected to the upper end of the lower outlet pipe 24a, and an upper outlet pipe 24b connected on the enlarged diameter portion 24c. And is configured. The upper outlet pipe 24b is connected to the blower 20 side. The diameter of the enlarged diameter portion 24c is increased in a tapered shape from the lower outlet pipe 24a side and becomes a maximum diameter and continues for a predetermined length, and then is reduced in diameter toward the upper outlet pipe 24b side . The maximum diameter of the enlarged diameter portion 24c is, for example, about twice the diameter of the lower outlet pipe 24a and the upper outlet pipe 24b, but this ratio may be changed as appropriate.
 液滴分離部材40は、拡径部24cの最大径の部分に収容されている。液滴分離部材40は多孔状の物質で形成されており、その材料としては、金属の繊維を圧縮したものや、金属線をマトリクス状に配置したもの等が良好な通気性を有しているために好適であるが、他の多孔状物質を用いてもよい。このように出口管24の中間部に拡径部24cを設け、その最大径の部分に液滴分離部材40を設置することにより、液滴分離部材40の表面積を増大させることができる。 The droplet separating member 40 is accommodated in the portion of the largest diameter of the enlarged diameter portion 24c. The droplet separating member 40 is formed of a porous material, and as the material thereof, one obtained by compressing metal fibers, one obtained by arranging metal wires in a matrix, etc. have good air permeability. Although other porous materials may be used. As described above, by providing the enlarged diameter portion 24 c in the middle portion of the outlet pipe 24 and installing the droplet separating member 40 in the portion of the largest diameter, the surface area of the droplet separating member 40 can be increased.
 上記構成によれば、デミスタ19Cのケーシング23内において再循環排ガスGから分離できなかった液滴Lを、液滴分離部材40に付着させることによって捕集することができる。捕集された液滴Lは、重力により出口管24(下部出口管24a)を流下し、ケーシング23内を経て液滴貯留槽27に捕集される。したがって、デミスタ19Cのケーシング23と、液滴分離部材40との2段階で再循環排ガスG中に含まれる液滴Lを分離することができ、再循環排ガスGの液滴分離作用をより高めることができる。 According to the above configuration, the droplets L which can not be separated from the recirculated exhaust gas G in the casing 23 of the demister 19C can be collected by being attached to the droplet separating member 40. The collected droplets L flow down the outlet pipe 24 (lower outlet pipe 24 a) by gravity and pass through the casing 23 and are collected in the droplet storage tank 27. Therefore, the droplet L contained in the recirculated exhaust gas G can be separated in two steps of the casing 23 of the demister 19C and the droplet separating member 40, and the droplet separating function of the recirculated exhaust gas G can be further enhanced. Can.
 出口管24の拡径部24cに設けられた液滴分離部材40は、その表面積が大きいために良好な通気性を備えており、この液滴分離部材40を通過する再循環排ガスGの通気抵抗となりにくく、再循環排ガスGの流れに圧力損失を発生させにくい。 The droplet separating member 40 provided in the enlarged diameter portion 24 c of the outlet pipe 24 has good air permeability because of its large surface area, and the air flow resistance of the recirculated exhaust gas G passing through the droplet separating member 40 It is hard to generate pressure loss in the flow of recirculation exhaust gas G.
[第4実施形態]
 次に、本発明の第4実施形態について、図7、図8を参照しながら説明する。
 図7に示す排ガス再循環システム4Bは、複数のケーシング23A,23Bが直列に接続されたデミスタ19Dが備えられている点において第1実施形態の排ガス再循環システム4Aと異なっている。その他の部分の構成は第1実施形態の排ガス再循環システム4Aと同様であるため、各部に同一符号を付して重複する説明は省略する。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 7 and 8.
An exhaust gas recirculation system 4B shown in FIG. 7 differs from the exhaust gas recirculation system 4A of the first embodiment in that a demister 19D in which a plurality of casings 23A and 23B are connected in series is provided. The configuration of the other parts is the same as that of the exhaust gas recirculation system 4A of the first embodiment, so the same reference numerals will be given to the respective parts and redundant explanations will be omitted.
 図8に示すように、デミスタ19Dは、上流側ケーシング23Aと下流側ケーシング23Bとが直列に接続された構成であり、上流側ケーシング23Aの円筒部23Aaの直径(Da)よりも、下流側のケーシング23Bの円筒部23Abの直径(Db)が小さく設定されている。上流側ケーシング23Aと下流側ケーシング23Bの形状や構造は、第1実施形態におけるデミスタ19Aと同様であり、各々の下部に液滴貯留槽27a,27bが設けられている。 As shown in FIG. 8, the demister 19D has a configuration in which the upstream side casing 23A and the downstream side casing 23B are connected in series, and the downstream side of the diameter (Da) of the cylindrical portion 23Aa of the upstream side casing 23A. The diameter (Db) of the cylindrical portion 23Ab of the casing 23B is set small. The shapes and structures of the upstream side casing 23A and the downstream side casing 23B are the same as those of the demister 19A in the first embodiment, and droplet reservoirs 27a and 27b are provided in the lower part of each.
 図7に示すように、排ガス放出管10から分岐した排ガス再循環通路17が、上流側ケーシング23Aに接続されている。図8に示すように、排ガス再循環通路17は、上流側ケーシング23Aの上部外周面に形成された再循環排ガス導入口233aに対して接線方向に沿って接続されている。このため、スクラバ18から排ガス再循環通路17を経て流れて来る再循環排ガスGが上流側ケーシング23Aの内部に接線方向から導入される。 As shown in FIG. 7, an exhaust gas recirculation passage 17 branched from the exhaust gas discharge pipe 10 is connected to the upstream side casing 23A. As shown in FIG. 8, the exhaust gas recirculation passage 17 is connected along a tangential direction to a recirculation exhaust gas inlet port 233a formed on the upper outer peripheral surface of the upstream side casing 23A. Therefore, the recirculated exhaust gas G flowing from the scrubber 18 through the exhaust gas recirculation passage 17 is introduced into the upstream side casing 23A from the tangential direction.
 上流側ケーシング23Aの上面中心部に形成された再循環排ガス排出口234aから上方に向かって延出する出口管24aが、水平方向に湾曲して下流側ケーシング23Bの上部外周面に形成された再循環排ガス導入口233bに対して接線方向に沿って接続されている。このため、上流側ケーシング23Aから出口管24aを経て流れて来る再循環排ガスGが下流側ケーシング23Bの内部に接線方向から導入される。さらに、下流側ケーシング23Bの上面中心部に形成された再循環排ガス排出口234bから上方に向かって延出する出口管24bがブロワ20側に接続されている。 An outlet pipe 24a extending upward from the recirculation exhaust gas outlet 234a formed at the center of the upper surface of the upstream casing 23A is horizontally curved and formed on the upper outer peripheral surface of the downstream casing 23B. It is connected along a tangential direction to the circulating exhaust gas inlet 233b. Therefore, the recirculated exhaust gas G flowing from the upstream side casing 23A through the outlet pipe 24a is introduced into the downstream side casing 23B in the tangential direction. Further, an outlet pipe 24b extending upward from a recirculated exhaust gas outlet 234b formed at the center of the upper surface of the downstream side casing 23B is connected to the blower 20 side.
 以上のように構成された排ガス再循環システム4Bおよびデミスタ19Dにおいて、スクラバ18により粒子状物質を洗浄集塵(分離)されてミスト状の液滴Lを含む再循環排ガスGが、排ガス再循環通路17からデミスタ19Dの第1のケーシング23Aに接線方向から流入する。これにより、第1のケーシング23Aの内部で図3に示すような旋回流Rが形成される。この旋回流Rに作用する遠心力により、再循環排ガスG中に混入されてミスト状に残存している多量の液滴Lが再循環排ガスGから分離される。分離された液滴Lは、第1のケーシング23Aの内壁面に付着し、下方に流下して液滴貯留槽27aに捕集される。 In the exhaust gas recirculation system 4B and the demister 19D configured as described above, the recirculation exhaust gas G containing the droplets L in the form of mist after the particulate matter is washed and collected (separated) by the scrubber 18 17 from the tangential direction into the first casing 23A of the demister 19D. Thereby, a swirling flow R as shown in FIG. 3 is formed inside the first casing 23A. A large amount of droplets L mixed in the recirculating exhaust gas G and remaining in the form of mist are separated from the recirculating exhaust gas G by the centrifugal force acting on the swirling flow R. The separated droplets L adhere to the inner wall surface of the first casing 23A, flow downward, and are collected in the droplet storage tank 27a.
 第1のケーシング23Aにて再循環排ガスGから分離されなかった液滴Lは、再循環排ガスGとともに出口管24aから出て第2のケーシング23Bに接線方向から流入し、第2のケーシング23Bでも同様に旋回流Rを形成する。ここでも、遠心力により液滴Lが再循環排ガスGから分離され、下方に流下して液滴貯留槽27bに捕集される。 The droplets L not separated from the recirculated exhaust gas G in the first casing 23A exit from the outlet pipe 24a together with the recirculated exhaust gas G and enter the second casing 23B in a tangential direction, even in the second casing 23B. Similarly, a swirling flow R is formed. Here too, the droplets L are separated from the recirculated exhaust gas G by centrifugal force and flow downward and are collected in the droplet storage tank 27b.
 このように、デミスタ19Dの上流側ケーシング23Aと下流側ケーシング23Bは、共に再循環排ガスGを接線方向に流入させて旋回流Rを形成させ、その遠心力によって再循環排ガスG中に残存する液滴Lを分離させるサイクロン構造となっている。しかも、上流側ケーシング23Aの出口管24aが下流側ケーシング23Bに接線方向から流入する2段サイクロン構造になっている。 Thus, the upstream casing 23A and the downstream casing 23B of the demister 19D both cause the recirculated exhaust gas G to flow in the tangential direction to form the swirling flow R, and the liquid remaining in the recirculated exhaust gas G due to the centrifugal force. It has a cyclone structure that separates the droplets L. Moreover, the outlet pipe 24a of the upstream side casing 23A has a two-stage cyclone structure in which it flows into the downstream side casing 23B in a tangential direction.
 この構成によれば、下流側のケーシング23Bの円筒部23Abの直径Dbが、上流側のケーシング23Aの円筒部23Aaの直径Daよりも小さいために、上流側のケーシング23Aから出て下流側のケーシング23Bに流入した再循環排ガスGの旋回流Rの旋回回転数が加速される。 According to this configuration, since the diameter Db of the cylindrical portion 23Ab of the downstream side casing 23B is smaller than the diameter Da of the cylindrical portion 23Aa of the upstream side casing 23A, the downstream side casing exits from the upstream side casing 23A. The swirling rotational speed of the swirling flow R of the recirculated exhaust gas G that has flowed into 23B is accelerated.
 したがって、下流側のケーシング23Bにおける旋回流Rの旋回回転数を高く保ち、遠心力を維持して液滴Lの分離作用を高め、過給機3のコンプレッサ翼車にエロージョンが発生することを効果的に防止することができる。ケーシング23A,23Bの少なくとも一方に、図4、図5に示す電気集粒装置30や、図6に示す液滴分離部材40等を設置してもよい。また、ケーシングを3基以上直列に接続してもよい。 Therefore, the rotational speed of the swirling flow R in the downstream side casing 23B is kept high, the centrifugal force is maintained to enhance the separation action of the droplets L, and the generation of erosion on the compressor wheel of the turbocharger 3 is effective. Can be prevented. The electric particle collector 30 shown in FIGS. 4 and 5 or the droplet separating member 40 shown in FIG. 6 may be installed on at least one of the casings 23A and 23B. Also, three or more casings may be connected in series.
[第5実施形態]
 次に、本発明の第5実施形態について、図9、図10を参照しながら説明する。
 図9に示す排ガス再循環システム4Cは、排ガス放出管10から分岐する排ガス再循環通路17におけるスクラバ18の下流側に、気液分離器45と、遠心ブロワ50と、デミスタ19Eとが順に接続されている点において第1実施形態の排ガス再循環システム4Aと異なっている。その他の部分の構成は第1実施形態の排ガス再循環システム4Aと同様であるため、各部に同一符号を付して重複する説明は省略する。
Fifth Embodiment
Next, a fifth embodiment of the present invention will be described with reference to FIG. 9 and FIG.
In an exhaust gas recirculation system 4C shown in FIG. 9, a gas / liquid separator 45, a centrifugal blower 50, and a demister 19E are sequentially connected downstream of the scrubber 18 in the exhaust gas recirculation passage 17 branched from the exhaust gas discharge pipe 10. And the exhaust gas recirculation system 4A of the first embodiment. The configuration of the other parts is the same as that of the exhaust gas recirculation system 4A of the first embodiment, so the same reference numerals will be given to the respective parts and redundant explanations will be omitted.
 スクラバ18の下流側に接続された気液分離器45は、例えば複数の金網状または多孔状の液滴分離板45aを平行に配列した内部エレメントに再循環排ガスGを通す構造である。これにより、再循環排ガスG中にミスト状に残存する水等の液滴が液滴分離板45aに衝突して気液分離される。気液分離器45の底部には液滴貯留槽45bが設けられている。 The gas-liquid separator 45 connected to the downstream side of the scrubber 18 has, for example, a structure in which the recirculation exhaust gas G passes through an internal element in which a plurality of wire mesh-like or porous droplet separation plates 45 a are arranged in parallel. As a result, droplets of water or the like remaining in the form of mist in the recirculated exhaust gas G collide with the droplet separating plate 45 a and are separated into gas and liquid. At the bottom of the gas-liquid separator 45, a droplet storage tank 45b is provided.
 遠心ブロワ50は、気液分離器45によって液滴を分離された再循環排ガスGを舶用エンジン1の吸気側、つまりデミスタ19E側に送給する。デミスタ19Eは、遠心ブロワ50の下流側に接続され、遠心ブロワ50から吐出された再循環排ガスGに残存する液滴Lをさらに分離する円筒状(円錐状)のケーシング23を備えたサイクロン構造である。このデミスタ19Eの構造は、図2、図3に示す第1実施形態のデミスタ19Aと同様であるため、その構成および作用の説明は省略する。 The centrifugal blower 50 feeds the recirculated exhaust gas G whose droplets are separated by the gas-liquid separator 45 to the intake side of the marine engine 1, that is, the demister 19E side. The demister 19E has a cyclone structure including a cylindrical (conical) casing 23 connected to the downstream side of the centrifugal blower 50 and further separating the droplets L remaining in the recirculated exhaust gas G discharged from the centrifugal blower 50. is there. The structure of the demister 19E is the same as that of the demister 19A of the first embodiment shown in FIGS. 2 and 3, and thus the description of its configuration and operation is omitted.
 図10に示すように、デミスタ19Eは、遠心ブロワ50から接線方向に吐出された再循環排ガスGが、デミスタ19Eに接線方向から流入するように配置されている。遠心ブロワ50は、ブロワケーシング50aの内部にブロワファン50bが軸支された構造であり、ブロワケーシング50aとデミスタ19Eとの間が、例えば水平に配設された接続通路51によって接続されている。この接続通路51は、平面視(図10参照)でブロワケーシングとデミスタ19Eのケーシングに対して接線状に接続されている。 As shown in FIG. 10, the demister 19E is disposed such that the recirculated exhaust gas G discharged from the centrifugal blower 50 in the tangential direction flows into the demister 19E from the tangential direction. The centrifugal blower 50 has a structure in which a blower fan 50b is axially supported within the blower casing 50a, and the blower casing 50a and the demister 19E are connected by, for example, a connection passage 51 disposed horizontally. The connection passage 51 is tangentially connected to the blower casing and the casing of the demister 19E in plan view (see FIG. 10).
 以上のように構成された排ガス再循環システム4Cにおいて、排ガス再循環通路17を流れる再循環排ガスGは、まずスクラバ18において水等の液滴を噴霧されることにより粒状物質を取り除かれる。このようにスクラバ18にて洗浄集塵された再循環排ガスGには多量の液滴が含まれる。この液滴を含む再循環排ガスGは、まず気液分離器45に流れ、この気液分離器45で大まかに液滴を分離される。分離された液滴は、気液分離器45の底部に設けられた液滴貯留槽45bに捕集される。 In the exhaust gas recirculation system 4C configured as described above, the recirculation exhaust gas G flowing through the exhaust gas recirculation passage 17 is first stripped of particulate matter by spraying droplets such as water in the scrubber 18. Thus, the recirculated exhaust gas G washed and collected by the scrubber 18 contains a large amount of droplets. The recirculated exhaust gas G containing the droplets first flows to the gas-liquid separator 45 where the droplets are roughly separated. The separated droplets are collected in a droplet storage tank 45 b provided at the bottom of the gas-liquid separator 45.
 次に、再循環排ガスGは、遠心ブロワ50によってデミスタ19Eに送られ、図10に示すように、サイクロン構造のデミスタ19Eの内部に接線方向に流れ込んで旋回流Rを形成し、その遠心分離作用によって残存する液滴Lをさらに分離される。ここで分離された液滴Lは液滴貯留槽27(図9参照)に捕集される。 Next, the recirculated exhaust gas G is sent to the demister 19E by the centrifugal blower 50, and flows tangentially into the demister 19E of the cyclone structure to form a swirling flow R, as shown in FIG. The remaining droplet L is further separated by. The droplets L separated here are collected in the droplet storage tank 27 (see FIG. 9).
 図10に示すように、遠心ブロワ50の内部では、ブロワファン50bの回転に伴う遠心力により、再循環排ガスGに含まれる液滴Lがブロワケーシング50aの内周壁面に付着し、液脈(液膜)層LFを形成しながら出口側(デミスタ19E側)に流れる。この液脈(液膜)層LFの流れは、再循環排ガスGとともに遠心ブロワ50から接線方向に吐出され、サイクロン構造を持つデミスタ19Eの内部に接線方向から流入する。 As shown in FIG. 10, inside the centrifugal blower 50, the droplets L included in the recirculated exhaust gas G adhere to the inner peripheral wall surface of the blower casing 50a by the centrifugal force accompanying the rotation of the blower fan 50b, The liquid film flows to the outlet side (demista 19E side) while forming the layer LF. The flow of the liquid (liquid film) layer LF is discharged from the centrifugal blower 50 in the tangential direction together with the recirculated exhaust gas G, and flows into the inside of the demister 19E having a cyclone structure from the tangential direction.
 このため、デミスタ19Eの内部では、再循環排ガスGが流入した当初から液滴Lがデミスタ19Eの内周壁面に沿って流れる傾向が生じる。そして、サイクロン構造により発生する旋回流Rの遠心分離作用と相俟って優れた気液分離作用が発揮される。したがって、再循環排ガスGが水分等の液滴Lを含んだまま過給機3側に流れることが抑制され、コンプレッサ翼車にエロージョンが発生することを防止できる。 For this reason, in the interior of the demister 19E, the droplets L tend to flow along the inner circumferential wall surface of the demister 19E from the beginning of the inflow of the recirculated exhaust gas G. And, together with the centrifugal separation action of the swirling flow R generated by the cyclone structure, an excellent gas-liquid separation action is exhibited. Therefore, it is suppressed that the recirculation | reflux waste gas G flows into the supercharger 3 side, containing the droplet L, such as a water | moisture content, and it can prevent that an erosion generate | occur | produces in a compressor wheel.
 この排ガス再循環システム4Dによれば、液滴Lを含む再循環排ガスGが、まず気液分離器45において大まかに液滴Lを分離され、次に遠心ブロワ50によりデミスタ19Eに送られて残存する液滴Lをさらに分離される。このため、再循環排ガスGに含まれる液滴Lを確実に分離することができる。 According to the exhaust gas recirculation system 4D, the recirculated exhaust gas G containing the droplets L is first roughly separated from the droplets L in the gas-liquid separator 45 and then sent to the demister 19E by the centrifugal blower 50 to be left Droplets L are further separated. For this reason, it is possible to reliably separate the droplets L included in the recirculated exhaust gas G.
[第6実施形態]
 次に、本発明の第6実施形態について、図11を参照しながら説明する。
 図11に示す排ガス再循環システム4Dは、デミスタ19Eのケーシング23底部から延びるドレン管53が、気液分離器45に設けられた液滴貯留槽45bに接続されている点において第5実施形態の排ガス再循環システム4Cと異なっている。その他の部分の構成は第5実施形態の排ガス再循環システム4Cと同様であるため、各部に同一符号を付して重複する説明は省略する。
Sixth Embodiment
Next, a sixth embodiment of the present invention will be described with reference to FIG.
The exhaust gas recirculation system 4D shown in FIG. 11 is a fifth embodiment in that the drain pipe 53 extending from the bottom of the casing 23 of the demister 19E is connected to the droplet storage tank 45b provided in the gas-liquid separator 45. It differs from the exhaust gas recirculation system 4C. The configuration of the other parts is the same as that of the exhaust gas recirculation system 4C of the fifth embodiment, so the same reference numerals will be given to the respective parts and overlapping descriptions will be omitted.
 上記のように、デミスタ19Eの底部から延びるドレン管53を、気液分離器45の液滴貯留槽45bに接続することにより、遠心ブロワ50の圧力が作用しているデミスタ19Eにおいて捕集された液滴Lが、遠心ブロワ50の圧力が作用していない気液分離器45の液滴貯留槽45bに流れる。このため、その圧力差により、デミスタ19Eにおいて捕集された液滴Lを気液分離器45の液滴貯留槽45bに良好に流すことができ、液滴除去性能を向上させるとともに、液滴Lの排出に関わる余剰動力を削減することができる。 As described above, by connecting the drain pipe 53 extending from the bottom of the demister 19E to the droplet storage tank 45b of the gas-liquid separator 45, it is collected in the demister 19E on which the pressure of the centrifugal blower 50 acts. The droplet L flows to the droplet storage tank 45b of the gas-liquid separator 45 where the pressure of the centrifugal blower 50 is not applied. Therefore, the pressure difference allows the droplets L collected in the demister 19E to be favorably flowed to the droplet storage tank 45b of the gas-liquid separator 45, and the droplet removal performance is improved. Surplus power related to the emission of
 以上説明したように、上記各実施形態に係るデミスタ19A~19E、排ガス再循環システム4A~4D、およびこれを備えた舶用エンジン1によれば、エンジン側に再循環させる排ガス中に含まれる水分等の液滴Lを、圧損抵抗を高めることなく、即ちエンジン効率を低下させることなく、確実に除去することができる。そして、再循環排ガス中に含まれる液滴Lによって過給機3のコンプレッサ翼車にエロージョンが発生することを防止することができる。 As described above, according to the demisters 19A to 19E, the exhaust gas recirculation systems 4A to 4D, and the marine engine 1 including the same according to the above embodiments, the water etc. contained in the exhaust gas to be recirculated to the engine side Can be reliably removed without increasing the pressure drop resistance, that is, without reducing the engine efficiency. And, it is possible to prevent the occurrence of erosion on the compressor wheel of the turbocharger 3 due to the droplets L contained in the recirculated exhaust gas.
 本発明は第1~第6実施形態の構成のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。 The present invention is not limited to only the configurations of the first to sixth embodiments, and various changes and improvements can be made as appropriate without departing from the scope of the present invention. Embodiments are also included in the scope of the present invention.
 例えば、舶用エンジン1は2サイクルディーゼルエンジンであると説明したが、これに限らず、他の形式のエンジンであったり、過給機3を備えないエンジンであったりしても、本発明を適用することができる。 For example, although the marine engine 1 has been described as being a two-stroke diesel engine, the present invention is not limited thereto, and the invention may be applied to other types of engines or an engine without the supercharger 3. can do.
1 舶用エンジン(エンジン)
3 過給機
4A,4B,4C,4D 排ガス再循環システム
7 タービン
8 コンプレッサ
16 EGRバルブ
17 排ガス再循環通路
18 スクラバ
19A,19B,19C,19D,19E デミスタ
20 ブロワ
23,23A,23B ケーシング
23Aa 上流側のケーシングの円筒部
23Ab 下流側のケーシングの円筒部
23a 円筒部
23b 円錐部
24 出口管
30 電気集粒装置
32a,32b 半円筒板(電極)
40 液滴分離部材
45 気液分離器
45b 液滴貯留槽
50 遠心ブロワ
53 ドレン管
232 小端部(液滴排出部)
233 再循環排ガス導入口
234 再循環排ガス排出口
Da 上流側のケーシングの円筒部の直径
Db 下流側のケーシングの円筒部の直径
G 再循環排ガス
L 液滴
R 旋回流
1 Marine engine (engine)
3 Turbochargers 4A, 4B, 4C, 4D Exhaust gas recirculation system 7 Turbine 8 Compressor 16 EGR valve 17 Exhaust gas recirculation passage 18 Scrubbers 19A, 19B, 19C, 19D, 19E Demister 20 Blowers 23, 23A, 23B Casing 23Aa upstream side The cylindrical portion 23Ab of the casing of the casing The cylindrical portion 23a of the downstream side of the casing The cylindrical portion 23a The cylindrical portion 23b The conical portion 24 The outlet pipe 30 Electric collecting device 32a, 32b Half cylindrical plate (electrode)
40 Droplet separation member 45 Gas-liquid separator 45b Droplet storage tank 50 Centrifugal blower 53 Drain pipe 232 Small end (droplet discharge part)
233 Recirculation exhaust gas inlet 234 Recirculation exhaust gas outlet Da Diameter Db of the cylindrical portion of the casing on the upstream side Diameter D of the cylindrical portion of the casing on the downstream side Recirculation exhaust gas L Droplet R Swirling flow

Claims (10)

  1.  軸方向が鉛直方向に沿う円筒状のケーシングと、
     前記ケーシングの上部外周面に設けられて前記ケーシングの内部に接線方向から液滴を含む再循環排ガスを導入させる再循環排ガス導入口と、
     前記ケーシングの上部、且つ前記ケーシングの軸中心に一致する位置に設けられて前記再循環排ガスを排出させる再循環排ガス排出口と、
     前記ケーシングの下部に設けられて前記再循環排ガスから分離された前記液滴を排出する液滴排出部と、
    を具備するデミスタ。
    A cylindrical casing whose axial direction is along the vertical direction,
    A recirculation exhaust gas inlet provided on an upper outer peripheral surface of the casing for introducing recirculation exhaust gas containing droplets from the tangential direction into the interior of the casing;
    A recirculated exhaust gas outlet provided at an upper portion of the casing and at a position coinciding with an axial center of the casing for discharging the recirculated exhaust gas;
    A droplet discharge unit provided at a lower portion of the casing and discharging the droplets separated from the recirculated exhaust gas;
    Demista equipped with.
  2.  前記ケーシングは、
     鉛直方向上部側をなす円筒部と、
     前記円筒部の下部に繋がり、上部から下部にかけて軸方向に直交する断面の直径が小さくなる円錐部と、
    を具備する請求項1に記載のデミスタ。
    The casing is
    A cylindrical portion forming an upper side in the vertical direction;
    A conical portion connected to the lower portion of the cylindrical portion, the diameter of the cross section orthogonal to the axial direction decreasing from the upper portion to the lower portion;
    The demister according to claim 1, comprising
  3.  前記再循環排ガス排出口に、前記液滴を帯電させることにより該液滴を電極に引き付けて前記再循環排ガスから分離する電気集粒装置を備えた請求項1または2に記載のデミスタ。 The demister according to claim 1 or 2, further comprising: an electric collecting device at the recirculation exhaust gas outlet for attracting the droplets to an electrode to separate it from the recirculation exhaust gas by charging the droplets.
  4.  前記再循環排ガス排出口に多孔状の液滴分離部材を備えた請求項1または2に記載のデミスタ。 The demister according to claim 1 or 2, wherein the recirculated exhaust gas outlet is provided with a porous droplet separating member.
  5.  前記ケーシングは、複数基直列に接続されており、その上流側のケーシングの円筒部の直径よりも、下流側のケーシングの円筒部の直径が小さい請求項1から3のいずれかに記載のデミスタ。 The demister according to any one of claims 1 to 3, wherein the plurality of casings are connected in series and the diameter of the cylindrical portion of the downstream casing is smaller than the diameter of the cylindrical portion of the upstream casing.
  6.  エンジンから排出される排ガスの一部を抽気し、再循環排ガスとして前記エンジンの吸気側に送給する排ガス再循環通路と、
     前記排ガス再循環通路に接続されて前記再循環排ガス中に含まれる粒状物質を液滴により洗浄集塵するスクラバと、
     前記スクラバの下流側に接続される、請求項1から5のいずれかに記載のデミスタと、
    を具備する排ガス再循環システム。
    An exhaust gas recirculation passage which extracts a part of exhaust gas discharged from the engine and feeds it to the intake side of the engine as recirculation exhaust gas;
    A scrubber connected to the exhaust gas recirculation passage for cleaning and collecting particulate matter contained in the recirculated exhaust gas by droplets;
    The demister according to any one of claims 1 to 5, which is connected to the downstream side of the scrubber;
    Exhaust gas recirculation system equipped with.
  7.  前記スクラバと前記デミスタとの間に、前記再循環排ガスを前記デミスタに送給する遠心ブロワを接続し、
     前記遠心ブロワは、該遠心ブロワから接線方向に吐出された前記再循環排ガスが前記デミスタに接線方向から流入するように接続されている請求項6に記載の排ガス再循環システム。
    Connecting between the scrubber and the demister, a centrifugal blower for feeding the recirculated exhaust gas to the demister;
    The exhaust gas recirculation system according to claim 6, wherein the centrifugal blower is connected such that the recirculated exhaust gas discharged tangentially from the centrifugal blower flows tangentially into the demister.
  8.  前記スクラバと前記遠心ブロワとの間に気液分離器を設けた請求項7に記載の排ガス再循環システム。 The exhaust gas recirculation system according to claim 7, wherein a gas-liquid separator is provided between the scrubber and the centrifugal blower.
  9.  前記デミスタにて前記再循環排ガスから分離された前記液滴のドレン管を、前記気液分離器の液滴貯留槽に接続した請求項8に記載の排ガス再循環システム。 The exhaust gas recirculation system according to claim 8, wherein a drain pipe of the droplet separated from the recirculated exhaust gas by the demister is connected to a droplet storage tank of the gas-liquid separator.
  10.  請求項6から9のいずれかに記載の排ガス再循環システムを備えた舶用エンジン。 A marine engine provided with the exhaust gas recirculation system according to any one of claims 6 to 9.
PCT/JP2015/070621 2015-02-16 2015-07-17 Demister, exhaust gas recirculating system, and marine engine provided with same WO2016132570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580072649.7A CN107407234A (en) 2015-02-16 2015-07-17 Demister, exhaust gas recycling system and the marine engine for possessing the system
KR1020177017332A KR20170081703A (en) 2015-02-16 2015-07-17 Demister, exhaust gas recirculating system, and marine engine provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015027884A JP2016151196A (en) 2015-02-16 2015-02-16 Exhaust gas recirculation system and marine engine mounted with the same
JP2015-027884 2015-02-16

Publications (1)

Publication Number Publication Date
WO2016132570A1 true WO2016132570A1 (en) 2016-08-25

Family

ID=56692033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070621 WO2016132570A1 (en) 2015-02-16 2015-07-17 Demister, exhaust gas recirculating system, and marine engine provided with same

Country Status (4)

Country Link
JP (1) JP2016151196A (en)
KR (1) KR20170081703A (en)
CN (1) CN107407234A (en)
WO (1) WO2016132570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702605A4 (en) * 2017-10-25 2021-06-02 Usui Co., Ltd. Gas-liquid separator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944264B1 (en) * 2017-12-15 2019-01-31 한국농어촌공사 Cyclone Roe collection system
CN108005759A (en) * 2017-12-29 2018-05-08 中船动力研究院有限公司 Marine diesel exhaust gas recirculation device
KR102085845B1 (en) 2018-04-09 2020-03-06 주식회사 이엠텍 High power microspeaker having a structure for rocking of a voicecoil
JP7161415B2 (en) * 2019-01-21 2022-10-26 株式会社ディスコ processing equipment
CN112053970B (en) * 2019-06-05 2024-11-08 东京毅力科创株式会社 Substrate processing apparatus
KR102176993B1 (en) * 2019-09-18 2020-11-12 삼보모터스주식회사 Condensing water separation unit and egr module including the same
CN111089054A (en) * 2020-02-25 2020-05-01 上海齐耀螺杆机械有限公司 Rotational flow gas phase temperature measuring device in gas-liquid two-phase state and liquid spraying screw compressor system thereof
WO2021176130A1 (en) * 2020-03-06 2021-09-10 Outotec (Finland) Oy Cyclone separator arrangement
CN113117906B (en) * 2021-04-21 2022-01-04 西南石油大学 Electrostatic cyclone composite separation device for shale hammer mill drilling cuttings dust
CN114000961A (en) * 2021-10-27 2022-02-01 中船动力研究院有限公司 Exhaust gas recirculation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254160A (en) * 1995-03-16 1996-10-01 Kawasaki Heavy Ind Ltd Exhaust gas recirculation control device for diesel engine
JP2002130058A (en) * 2000-08-07 2002-05-09 Filterwerk Mann & Hummel Gmbh Device for returning gas in internal combustion engine
JP2006274961A (en) * 2005-03-30 2006-10-12 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device
JP2014134154A (en) * 2013-01-10 2014-07-24 Mitsubishi Heavy Ind Ltd Marine vessel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238823B2 (en) * 2014-04-08 2017-11-29 臼井国際産業株式会社 Exhaust gas treatment equipment for marine diesel engines using low quality fuel containing sulfur component at high concentration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254160A (en) * 1995-03-16 1996-10-01 Kawasaki Heavy Ind Ltd Exhaust gas recirculation control device for diesel engine
JP2002130058A (en) * 2000-08-07 2002-05-09 Filterwerk Mann & Hummel Gmbh Device for returning gas in internal combustion engine
JP2006274961A (en) * 2005-03-30 2006-10-12 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device
JP2014134154A (en) * 2013-01-10 2014-07-24 Mitsubishi Heavy Ind Ltd Marine vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702605A4 (en) * 2017-10-25 2021-06-02 Usui Co., Ltd. Gas-liquid separator
US11421630B2 (en) 2017-10-25 2022-08-23 Usui Co., Ltd. Gas-liquid separator

Also Published As

Publication number Publication date
CN107407234A (en) 2017-11-28
KR20170081703A (en) 2017-07-12
JP2016151196A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2016132570A1 (en) Demister, exhaust gas recirculating system, and marine engine provided with same
JP6062660B2 (en) Large-displacement diesel engine exhaust gas treatment equipment that uses lower quality fuel than heavy oil
US7244282B2 (en) Separator device
US10913023B2 (en) Rotating separator with housing preventing separated liquid carryover
US6878189B2 (en) Air precleaner and method for separating heavier-than-air particulate debris from debris laden air
JP5863087B2 (en) Exhaust gas treatment equipment for large displacement diesel engines using low quality fuels below heavy oil
US20130056407A1 (en) Rotating Separator with Housing Preventing Separated Liquid Carryover
JP6172714B2 (en) Exhaust gas treatment equipment for marine diesel engines using heavy oil
US20170100689A1 (en) Air intake water separator
US8961667B2 (en) Radial counterflow muffler for NO reduction and pollutant collection
US6110246A (en) Air precleaner having stationary vanes and rotating impeller
JP5768423B2 (en) Electric dust collector
CN209637911U (en) Spiral-flow type air prefilter
RU2259862C2 (en) Vortex air cleaner
US20150377192A1 (en) Exhaust ejector tube for engine system
CN105840270B (en) A kind of active multilevel gs-oil separator
JP2666271B2 (en) Centrifugal pre-cleaner
WO2003069136A1 (en) Pollution reduction apparatus for vehicle
CN110067679B (en) Desert air filter
JP2005098274A (en) Air pre-cleaner
CN206257054U (en) Compressor exhaust pipe and compressor
CN2826332Y (en) Glass tank flue gas desulfurization and defluorination device
CN205627457U (en) A dust removal defogging device and system for coal fired power plant tail flue gas
JP7312935B2 (en) Oil smoke collector
RU2091172C1 (en) Vortex dust collector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177017332

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882671

Country of ref document: EP

Kind code of ref document: A1