[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5694278B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP5694278B2
JP5694278B2 JP2012255178A JP2012255178A JP5694278B2 JP 5694278 B2 JP5694278 B2 JP 5694278B2 JP 2012255178 A JP2012255178 A JP 2012255178A JP 2012255178 A JP2012255178 A JP 2012255178A JP 5694278 B2 JP5694278 B2 JP 5694278B2
Authority
JP
Japan
Prior art keywords
cooling
downstream
upstream
heating element
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012255178A
Other languages
English (en)
Other versions
JP2014103303A (ja
Inventor
誠司 石橋
誠司 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012255178A priority Critical patent/JP5694278B2/ja
Priority to US13/960,118 priority patent/US9439324B2/en
Priority to DE102013222496.6A priority patent/DE102013222496A1/de
Priority to CN201310595275.XA priority patent/CN103839904B/zh
Publication of JP2014103303A publication Critical patent/JP2014103303A/ja
Application granted granted Critical
Publication of JP5694278B2 publication Critical patent/JP5694278B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体素子、半導体モジュールを用いたインバータ装置等の電力変換装置に関する。
複数の半導体素子、半導体モジュールおよびこれらの半導体を冷却する冷却器から構成される電力変換装置では、冷却器に複数の半導体素子、半導体モジュールが配置されるので、冷却用の冷媒は、上流側から下流側に流れる間に温度が上昇する。そのため、この冷媒の温度上昇によって、下流側の半導体素子、半導体モジュールは、上流側の半導体素子、半導体モジュールよりも温度制約が厳しく、通電できる電力が制限されており、電力変換装置の大出力化、小型化、低コスト化の課題となっていた。
ここで、2つのインバータと1つのコンバータとを一体化した電力変換装置が提案されている(例えば、特許文献1参照)。具体的には、ウオータージャケットに蛇行する溝が形成されて冷媒流路を構成しており、第1インバータを構成する3つのパワーモジュールと、第2インバータを構成する3つのパワーモジュールと、コンバータを構成するパワーモジュールとを順に冷媒流路に配置し、パワーモジュールに内蔵された半導体素子を冷却する構成となっている。
しかしながら、特許文献1の構成では、第1インバータの発熱により冷媒温度が上昇し、第2インバータは、温度上昇した冷媒によって冷却される必要があるので、第2インバータは、第1インバータよりも出力を低減し、半導体素子が出す発熱を低減するか、放熱性を高めて半導体素子の温度上昇を低減するか、許容温度の高い半導体素子を用いる必要がある。
なお、出力を低減した場合には、大出力化が困難となり、放熱性を高める場合には、小型化(放熱性は放熱面積に比例する)、低コスト化(高熱伝導部材を用いる必要がある)が困難となり、許容温度の高い半導体素子を使う場合は、低コスト化(高耐熱部材を用いる必要がある)が困難となる等の課題が発生する。
また、第1インバータおよび第2インバータ両方の発熱により、コンバータの冷却に用いられる冷媒温度は、第2インバータよりもさらに上昇するので、コンバータでは、第2インバータよりも大きな課題が発生する。
このような冷媒温度上昇の対策として、発熱量の大きい半導体素子(IGBT:Insulated Gate Bipolar Transistor)を冷媒流路の上流側に配置し、冷媒流路の下流側に発熱の小さい半導体素子(ダイオード)を配置することで、冷媒温度上昇による悪影響を小さくすることが提案されている(例えば、特許文献2参照)。
特開2009−296708号公報 特開2007−12722号公報
しかしながら、従来技術には、以下のような課題がある。
特許文献2の構成では、IGBTおよびダイオードは、冷媒の流れに対して直列に配置されているが、電力変換装置を構成する個々の半導体群(例えばIGBTとダイオードとのペアから構成される最小単位)は、冷媒流路に対しすべて並列に配置されている。
特許文献2のような、1つのインバータから構成される電力変換装置では、冷媒流路は6並列となるが、これにより、各半導体群が使用できる冷媒の流量は、特許文献1のように直列流路を採用した場合と比べ1/6となる。冷媒の流量が小さくなると、冷却器の放熱性能が低下する他、各半導体群における冷媒の温度上昇も増加する。
そのため、特許文献2の構成を、特許文献1のような、2つのインバータと1つのコンバータとが一体化された大容量の電力変換装置に適用する場合を考えると、冷媒流路は13並列となり、各半導体群が使用できる冷媒の流量は1/13となるので、冷却器の放熱性能が大幅に低下してしまい、特許文献2の課題がより顕著化する。
また、冷媒の流路入口から出口までの間の温度上昇は、入口から出口までの間の総発熱と流量との関係で決まる。特許文献1のような大容量の電力変換装置では、入口から出口までの間の総発熱が大きくなるが、ここで特許文献2のような並列流路構成にすると、さらに各半導体群の冷媒流速が著しく減少する。
そのため、1つの半導体群の中に生じる冷媒の温度上昇が非常に大きくなり、1つの半導体素子内で大きな温度差が生じてしまい、半導体素子内部の電流分布の悪化、ひいては電流集中による半導体素子の局部過熱による破壊、短絡耐量の低下等、半導体素子の電気特性に悪影響を及ぼす等、新たな課題が発生する。
また、特許文献2では、全半導体素子を冷媒流路の最上流に配置するために、半導体素子が個別流路内で直列に並ばないよう並列に配置することや、上流側で流路を二分し、各半導体素子1つを冷却した後に流路を合流させ、下流側に流す流路を構成することが提案されている。
しかしながら、この構成では、冷媒上流側と下流側との水温差が、各半導体素子1つのみを通過する間に発生するので、各半導体素子内の温度差は、先に述べた例よりも明らかに増加してしまう他、半導体素子を一直線上に並べることや、上流側で流路を二分し、各半導体素子に冷媒を分配する流路を構成することが必要なので、小型化が困難であったり、部品配置構成の自由度が低かったりする場合があった。
また、特許文献2では、冷媒温度上昇による熱成立性悪化の対策として、冷却器の両面に半導体を配置し、発熱の大きいIGBTの直下には、発熱の小さいダイオードを配置する等の工夫により、各半導体間の熱干渉による悪影響を軽減し、放熱性を改善する工夫がなされている。これにより、各半導体間の熱干渉による悪影響を軽減し、放熱性を改善する工夫はなされているものの、冷媒流量の分散による各半導体群における冷媒温度上昇の増加に対する解決策は提案されていない。
また、半導体素子駆動用の制御基板と接続されるIGBTを冷却器の上下に配置するために、半導体モジュールの片側の面に配置される制御基板との接続構成が複雑になっている他、冷媒流路が半導体モジュールに内包されるので、冷媒漏れ対策のために、流路を含む冷却器と半導体モジュールとの一体化が必要であり、半導体モジュールの大型化が困難で、大容量化が困難である。
本発明は、上記のような課題を解決するためになされたものであり、低コストで冷却性能に優れた電力変換装置を得ることを目的とする。
本発明に係る電力変換装置は、冷媒を流通する流路を内包した冷却器と、冷却器の2つの対向する主面に分散して配置され、冷却器によって冷却される少なくとも2つ以上の発熱体と、を備えた電力変換装置であって、冷却器の冷媒入口から冷媒出口までの流路は、発熱体を冷却する上流側冷却部および下流側冷却部、冷媒入口側に位置する上流側分配部、冷媒出口側に位置する下流側分配部、上流側冷却部と下流側冷却部とを結ぶ接続部、並びに上流側冷却部と下流側冷却部と、および上流側分配部と下流側分配部とを仕切る仕切り部から構成され、流路は、上流側分配部、上流側冷却部、接続部、下流側冷却部、下流側分配部の順に冷媒が流通するように接続され、冷却器は、発熱体搭載板と一体化された冷却フィンと、仕切り板が一体化された流路筐体と、から構成され、発熱体搭載板と一体化された冷却フィンは、アルミニウムを材料とし、押出しにより加工された後に、発熱体を搭載しない面に切削または鍛造加工することにより、発熱体の一部が、上流側分配部および下流側分配部並びに接続部の少なくとも一方を含む平面上に配置され、上流側分配部および下流側分配部並びに接続部の少なくとも一方が、上流側冷却部および下流側冷却部の機能を一部兼ね備えるものである。
本発明に係る電力変換装置によれば、冷媒を流通する流路を内包した冷却器と、冷却器の2つの対向する主面に分散して配置され、冷却器によって冷却される少なくとも2つ以上の発熱体と、を備えた電力変換装置であって、冷却器の冷媒入口から冷媒出口までの流路は、発熱体を冷却する上流側冷却部および下流側冷却部、冷媒入口側に位置する上流側分配部、冷媒出口側に位置する下流側分配部、上流側冷却部と下流側冷却部とを結ぶ接続部、並びに上流側冷却部と下流側冷却部と、および上流側分配部と下流側分配部とを仕切る仕切り部から構成され、流路は、上流側分配部、上流側冷却部、接続部、下流側冷却部、下流側分配部の順に冷媒が流通するように接続されている。
そのため、低コストで冷却性能に優れた電力変換装置を得ることができる。
本発明の実施の形態1に係る電力変換装置の基本構成を示す斜視図である。 本発明の実施の形態1に係る電力変換装置における冷却器の冷媒流路を示す構成図である。 本発明の実施の形態1に係る電力変換装置の効果を、特許文献1、2の課題と併せて示す説明図である。 本発明の実施の形態1に係る電力変換装置において、発熱量同等の発熱体が各相上下に配置された場合の冷媒温度上昇影響を、特許文献1、2と比較して示す説明図である。 本発明の実施の形態1に係る電力変換装置において、発熱量が異なる発熱体が熱干渉を考慮して各相上下に配置された場合の冷媒温度上昇影響を、特許文献1、2と比較して示す説明図である。 本発明の実施の形態1に係る電力変換装置において、スイッチング素子を上流側冷却部に配置した場合の例を示す説明図である。 本発明の実施の形態1に係る電力変換装置における冷却部と接続部との連結構成を示す説明図である。 本発明の実施の形態1に係る電力変換装置における分配部の低背化を示す説明図である。 本発明の実施の形態1に係る電力変換装置において、発熱体搭載板と一体化された冷却フィンと、仕切り板が一体化された流路筐体とから構成される冷却器を示す説明図である。 本発明の実施の形態1に係る電力変換装置において、分配部と接続部とが冷却部の機能を一部兼ね備える冷却器を示す説明図である。 本発明の実施の形態1に係る電力変換装置において、発熱体搭載板、冷却フィンおよび仕切り板が別々に形成され、ロウ付により接合される冷却器を示す説明図である。 本発明の実施の形態2に係る電力変換装置の主回路を周辺機器とともに示す構成図である。 本発明の実施の形態2に係る電力変換装置における冷媒温度上昇を示す説明図である。 本発明の実施の形態2に係る電力変換装置を示す斜視図である。 本発明の実施の形態2に係る電力変換装置における冷却器を示す構成図である。 本発明の実施の形態3に係る電力変換装置の主回路を周辺機器とともに示す構成図である。 本発明の実施の形態3に係る電力変換装置における冷媒流路構成および発熱体配置を示す説明図である。 本発明の実施の形態3に係る電力変換装置における冷媒温度上昇を示す説明図である。 本発明の実施の形態3に係る電力変換装置を示す斜視図である。 本発明の実施の形態3に係る電力変換装置における冷却器を示す構成図である。 本発明の実施の形態3に係る電力変換装置における水漏れによる下側被水対策構造を示す説明図である。
以下、本発明に係る電力変換装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る電力変換装置1の基本構成を示す斜視図である。図1において、電力変換装置1は、冷媒を流通する流路を内包した冷却器10と、冷却器10によって冷却される2つの発熱体21、22とを備えている。また、発熱体21、22は、冷却器10の2つの対向する主面に分散して配置されている。
なお、図1では、発熱体21、22を搭載する2つの主面を上下、これに垂直な2方向を前後、左右とし、冷媒入口11および冷媒出口12のある面を前後方向、冷媒入口11および冷媒出口12のない面を左右と仮に定義するが、本発明の実施の形態1に係る構成は、この上下左右方向に限定するものではない。
また、図1では、冷媒入口11と冷媒出口12とを相対する面に分けて配置しているが、必ずしも冷媒入口11と冷媒出口12とは、相対する必要はなく、1つの面に集約して配置することや、異なる相対しない面に配置することも可能である。
図2は、本発明の実施の形態1に係る電力変換装置1における冷却器10の冷媒流路を示す構成図である。図2において、冷媒入口11から冷媒出口12までの流路は、発熱体21、22を冷却する上流側冷却部13、下流側冷却部14と、冷媒入口11側に位置する上流側分配部15と、冷媒出口12側に位置する下流側分配部16と、接続部17と、仕切り部18とによって構成されている。
また、冷却器10内の流路は、上流側分配部15、上流側冷却部13、接続部17、下流側冷却部14、下流側分配部16の順に冷媒が流通するよう接続され、上流側分配部15と下流側分配部16とが仕切り部18を挟み、重ねて配置されるとともに、上流側冷却部13と下流側冷却部14とが仕切り部18を挟み、重ねて配置されている。
続いて、図3〜5を参照しながら、本発明の実施の形態1に係る冷却器の流路構成の特徴を、特許文献1および特許文献2との比較を交えて説明する。図3〜5では、半導体モジュールを発熱体とする三相インバータを例とし、U相、V相、W相、各2つの半導体モジュールを冷却器の上下に配置した例を示している。
図3は、本発明の実施の形態1に係る電力変換装置の効果を、特許文献1、2の課題と併せて示す説明図である。図3において、特許文献1の例では、U相、V相、W相の冷却部が直列に連結された構成となり、特許文献2の例では、U相、V相、W相の冷却部が並列に連結された構成となる。いずれの構成でも、発熱体が冷却器の上下に分かれて配置されるので、流路も上側の流れ1と下側の流れ2とに2分される。
一方、本発明の構成では、U相、V相、W相の冷却部が並列に連結されているが、詳しく見ると、U相、V相、W相それぞれ、上側に搭載された発熱体を冷却する上流側の流れと、下側に搭載された発熱体を冷却する下流側の流れとが直列に連結された構成となっており、流路は左側に流れ1と、右側の流れ2とに2分される。
この構成により、冷媒入口での流量を1とすると、特許文献1では、U相、V相、W相、すべての冷却部で流量が等しく、各相の流量は1となり、さらに各相内で流路が上下に分かれているので、上下各冷却部の流量は、入口流量の1/2となる。
また、特許文献2では、U相、V相、W相で流路が3分割されているので、各相の流量は1/3となり、さらに各相内で流路が上下に分かれているので、上下各冷却部の流量は、各相流量の1/2、つまり入口流量の1/6となる。
本発明の構成においても、U相、V相、W相で流路が3分割されているので、各相の流量は1/3となり、さらに各相内で流路が左右に分かれているので、各冷却部の流量は、各相流量の1/2、つまり特許文献2の構成と同じく、入口流量の1/6となる。ただし、特許文献2の場合には、各相流量が上下に2分されていたのに対し、本発明の構成では、左右に2分されているのが異なる。
ここで、圧力損失は、ベルヌーイの定理により、圧力損失ΔP、流路形状に依存する圧力損失係数ζ、冷媒の密度ρ[kg/m]、冷媒の流速u[m/s]とすると、ΔP=ζ×1/2×ρ×uで表され、流速に比例する。また、流速u[m/s]は、流路断面積S[m]を通過する流量V[m/s]の関係、すなわちu=V/Sで決まるので、圧力損失は冷媒流量に比例し、流路断面積に反比例する。
特許文献1の構成は、冷媒流量が最も大きく、流路断面積が最も小さい。さらに冷媒経路長も最も長いので、圧力損失が最も大きくなる。特許文献2および本発明の構成は、冷媒流量が小さく、流路断面積が大きく、冷媒経路長も短いので、特許文献1よりも圧力損失は小さい。
圧力損失が小さければ、冷媒吐出用ポンプ等、冷却系全体を小型化、低コスト化できる利点があるが、仮に冷媒吐出用のポンプ性能を同等としてもよい場合には、流路の圧力損失が小さいほど冷却部に高圧損の放熱フィンを設定することが可能で、フィン設計の自由度が高まり、冷却性能向上が容易となる。そのため、特許文献2および本発明の構成は、他の構成よりもフィン設計の自由度が高く、冷却性能向上が容易であり、冷却系の小型化だけでなく、電力変換装置の小型化も可能となる。
特許文献2および本発明の構成では、各冷却部の流量が小さいので、流速に比例する冷却性能を確保するために、流路断面積を小さくし、同一流量でも流速を高める工夫を行うと同時に放熱面積を確保するために、フィンを形成する。同じ面積で冷却部と接する発熱体を冷却する場合では、流路幅と流路高さの積で決まる流路断面積を小さくするには、流路高さを小さくするしかなく、結果として流路の低背化、ひいては冷却器、電力変換装置の低背化が行われる。
流路断面積を小さくすると同時にフィンを形成することで圧力損失が増大するが、先に述べたとおり、本発明の構成は、圧力損失が小さい構成であり、同じ許容圧力損失の中で、流路断面積の小型化、ひいては流路、冷却器、電力変換装置の低背化が可能である。この低背化により、冷却器の両面に発熱体を分散配置することが容易になり、本発明のように、上下の冷却部間に仕切り部を設けるための寸法を確保できる。
また、発熱体からの入熱による冷媒温度上昇は、エネルギー方程式より、入口温度Tin[K]、出口温度Tw[K]、温度上昇ΔT[K]、入熱量Q[W]、冷媒の定圧比熱Cp[J/(kg・K)]、冷媒の質量流量をGr[kg/s]とすると、ΔT=Tout−Tin=Cp×Gr/Qで表される。
また、冷媒入口から出口までの間の冷媒温度上昇は、冷却器への総入熱量および総流量、すなわち発熱体の総発熱および冷媒の入口流量に比例するので、特許文献1、2および発明の構成で総入熱量と入口流量が同じ条件であれば差はない。しかしながら、流路構成の差から、各冷却部流量に差が生じるので、図3に示すように、各冷却部での冷媒温度上昇は異なる。
特許文献1では、個々の冷却部の冷媒温度上昇、すなわち半導体素子内の温度分布は小さく、半導体素子の温度特性による特性差への影響は小さいが、最下流となるW相の冷媒温度が高く、上流側U相および下流側W相で半導体モジュールの熱成立性が大きく異なり、電力変換装置の熱成立性は、最下流側W相の半導体モジュールに支配される。
ここで、部品共通化のために、発熱、放熱性能が同じ半導体モジュールを用いれば、最下流側以外のすべての半導体モジュールにコスト、サイズの無駄が発生する。この対策として、個別の発熱、放熱性能を持つ半導体モジュールを用いて、それぞれの熱成立性が最適となるよう設計すると、部品共通化ができず、低コスト化が困難である。
特許文献2では、冷媒流路構成を工夫し、U相、V相、W相それぞれ上下すべての冷却部の冷媒初期温度が同等となるよう流路設計がなされているので、各半導体モジュール間に熱成立性の差はなく、特許文献1のような課題は発生しない。
しかしながら、1つの冷却部での冷媒温度上昇が大きく、半導体モジュール内部の温度差、すなわち半導体素子内の温度差が大きくなってしまい、半導体モジュールの温度特性によって、半導体モジュール内部の電流分布の悪化、ひいては電流集中による半導体素子の局部過熱による破壊、短絡耐量の低下等、半導体素子の電気特性に悪影響を及ぼす等、新たな課題が発生する。
結果として、冷媒の最下流温度が全半導体モジュールの熱成立の制約となっており、結局のところ、特許文献1の最下流の課題を、全半導体モジュールに拡大したに過ぎない。
これに対して、本発明の実施の形態1に係る構成は、上側冷却部の中央付近から左右に冷媒が2分する構成となっており、各冷却部での冷媒温度上昇は、特許文献2に対して半減しており、半導体モジュール内部の温度差は、特許文献2に対して大幅に低減可能である。
一方、下側冷却部では、上側冷却部での入熱により冷媒温度が上昇しているので、上側の半導体モジュールよりも下側の半導体モジュールの方が、熱成立性が厳しくなっているが、スイッチング素子のIGBTと、還流素子のダイオードとで発熱が異なるように、上側および下側の半導体モジュールの発熱は必ずしも同じではなく、下側に熱成立が容易な発熱体を配置すれば、装置全体の熱成立性は改善される。
上側および下側の発熱体配置工夫によって、装置全体の熱成立性が改善されるのは、本発明の特徴であり、仮に下側に熱成立が容易な発熱体を配置しても、特許文献1の場合、装置全体の熱成立性は、最下流の上側の発熱体に支配されるし、特許文献2の場合、装置全体の熱成立性は、各相の上側の発熱体に支配され、発熱体の配置工夫によって装置の熱成立性は改善されない。
また、本発明の構成では、上側冷却部と下側冷却部とが、独立して直列に配置された流路となっており、上側冷却部と下側冷却部とで圧力損失、すなわち放熱性能を変えることが可能である。これに対して、特許文献1や特許文献2において、上下冷却部を異なる圧力損失のものとすると、圧力損失が小さい側に冷媒流量が集中し、圧力損失が大きい側に冷媒が流れず、放熱性能が悪化する。
より具体的には、発熱が大きく熱成立性が厳しい上側冷却部の放熱性能を高めようとして、高密度の冷却フィンを配置すると、上側冷却部の圧力損失だけが増加するので、冷媒は圧力損失が小さい下側を選択して流れるようになり、高い放熱性能が必要な上側の流量が減少し、期待していた放熱性能が確保できなくなる。
一方、本発明の構成では、上側冷却部と下側冷却部との圧力損失を変えても、直列流路なので、上側と下側との流量に差は生じず、上下の発熱量に応じて、上下の冷却部の圧力損失、すなわち放熱性能を最適化することが可能である。
先の例と同じように、発熱が大きく熱成立性が厳しい上側冷却部の放熱性能を高めようとして、高密度の冷却フィンを配置すると、上側冷却部の圧力損失は増加するが、圧力損失が小さい別の経路がないので、冷媒は圧力損失が高まった上側流路をこれまでと同じように流れ、高い放熱性能が必要な上側の流量が減少することはなく、期待どおりの放熱性能が確保できる。
続いて、図4〜5を参照しながら、本発明の構成による冷媒流量および冷媒温度上昇、発熱体配置による特徴およびその効果を説明し、本発明の流路構成による効果をより具体的に説明する。
ここでは、発熱体として半導体素子を内包した半導体モジュールを想定しているが、発熱体は、半導体素子や半導体モジュールに限定するものではなく、制御基板、大電流回路、平滑コンデンサやリアクトル等の受動部品等、電力変換装置内にあるすべての装置、部品が対象となり得る。また、電力変換装置の仕様に合わせ、発熱体の形状、分割数、配置は自由に選択できる。
図4は、本発明の実施の形態1に係る電力変換装置において、発熱量同等の発熱体が各相上下に配置された場合の冷媒温度上昇影響を、特許文献1、2と比較して示す説明図である。図4は、各相上側冷却部に発熱体1、下側冷却部に発熱体2が搭載された例で、発熱体1と発熱体2の発熱量、放熱量が同等の場合を想定している。例えば、各発熱体をIGBTおよびダイオードが1つずつ内包される半導体モジュールとすれば、上側に第1の三相インバータ、下側に第2の三相インバータが構成できる。
特許文献1の構成では、U相、V相、W相が直列に配置されているので、各発熱体内での温度差が小さい利点がある。しかしながら、発熱体1および発熱体2ともに最下流のW相の発熱体で熱成立が決定するので、部品を共通化し、発熱、放熱性能が同じ半導体モジュールを用いれば、最下流側以外のすべての半導体モジュールにコスト、サイズの無駄が発生する。
この対策として、個別の発熱、放熱性能を持つ半導体モジュールを用いて、それぞれの熱成立性が最適となるよう設計すると、部品共通化ができず、低コスト化が困難である。
特許文献2の構成では、U相、V相、W相が並列に配置されているので、すべての相で熱成立性は同等である。しかしながら、1つの発熱体内での温度差が大きく、冷媒最下流部の温度が全半導体モジュールの熱成立の制約となっており、結果として特許文献1の最下流の課題を、全半導体モジュールに拡大したに過ぎない。
これに対して、本発明の構成では、U相、V相、W相が並列に配置されながら、各相の発熱体1と各相の発熱体2が直列に配置されているので、各相の熱成立性が同等であるという特許文献2の利点と、各発熱体内での温度差が小さいという特許文献1の利点とを併せ持つと同時に、発熱体1の熱成立制約点を、他の構成よりも非常に低くすることができる。
これにより、発熱体1の伝熱面積小型化、放熱性能の簡素化等による低コスト化が可能となる。一方、本発明の構成では、発熱体2の熱成立性は、他の構成と同等か、それらよりも悪化する。そのため、図4の構成は、耐熱性が高くなく、コスト影響が大きい発熱体1と、高耐熱の発熱体2の組合せの際に最も効果を発揮する。
図5は、本発明の実施の形態1に係る電力変換装置において、発熱量が異なる発熱体が熱干渉を考慮して各相上下に配置された場合の冷媒温度上昇影響を、特許文献1、2と比較して示す説明図である。
図5は、各相上側冷却部に発熱体1、発熱体2、下側冷却部に発熱体3、発熱体4が搭載された例で、発熱体2、発熱体4は、発熱体1、発熱体3よりも発熱量が小さい場合を想定しており、特許文献2の例のように発熱量が大きい発熱体1、発熱体3と発熱量が小さい発熱体2、発熱体4との熱干渉を考慮した配置としている。例えば、発熱量が大きい発熱体をIGBT素子、発熱量が小さい発熱体をダイオードとすれば、上下合わせることで1つの三相インバータを構成できる。
特許文献1の構成では、U相、V相、W相が直列に配置されているので、各発熱体内での温度差が小さい利点がある。しかしながら、発熱体1〜発熱体4ともに最下流のW相の発熱体で熱成立が決定するので、部品を共通化し、発熱、放熱性能が同じ半導体モジュールを用いれば、最下流側以外のすべての半導体モジュールにコスト、サイズの無駄が発生する。
この対策として、個別の発熱、放熱性能を持つ半導体モジュールを用いて、それぞれの熱成立性が最適となるよう設計すると、部品共通化ができず、低コスト化が困難である。
特許文献2の構成では、U相、V相、W相が並列に配置されているので、すべての相で熱成立性は同等である。また、1つの相に複数の発熱体が直列で配置されているので、1つの発熱体内での温度差は図4の例よりも小さいが、冷媒最下流部の温度が全半導体モジュールの熱成立の制約となっている状況に違いはない。
また、これらの例では、特許文献2に記載のように、発熱量が大きい発熱体1、発熱体3と発熱量が小さい発熱体2、発熱体4とを上下に配置し、互いの熱干渉による悪影響を考慮した配置としている。どちらの例でも、下側の流路では、発熱量が大きい発熱体3が最下流に配置されており、発熱量が大きい発熱体の熱成立性が全体の中で最も厳しい条件となってしまっている。
一方、本発明の構成では、冷媒温度が低い上側の流路上流側に熱成立性が厳しい発熱体1、発熱体3を配置しており、良好な熱成立性を得られる。発熱量が小さい発熱体2、発熱体4は、下側の流路下流側に配置されているが、その熱成立制約点は、他の例と同等である。図5の構成は、発熱が異なる発熱体を組み合わせる際に、発熱が大きい発熱体の熱成立性を特に良好にする必要がある場合に最も効果を発揮する。
以上のように、実施の形態1によれば、冷媒を流通する流路を内包した冷却器と、冷却器の2つの対向する主面に分散して配置され、冷却器によって冷却される少なくとも2つ以上の発熱体と、を備えた電力変換装置であって、冷却器の冷媒入口から冷媒出口までの流路は、発熱体を冷却する上流側冷却部および下流側冷却部、冷媒入口側に位置する上流側分配部、冷媒出口側に位置する下流側分配部、上流側冷却部と下流側冷却部とを結ぶ接続部、並びに上流側冷却部と下流側冷却部と、および上流側分配部と下流側分配部とを仕切る仕切り部から構成され、流路は、上流側分配部、上流側冷却部、接続部、下流側冷却部、下流側分配部の順に冷媒が流通するように接続されている。
そのため、低コストで冷却性能に優れた電力変換装置を得ることができる。
なお、上記実施の形態1に係る電力変換装置1において、下流側冷却部14に搭載される発熱体22の許容温度を、上流側冷却部13に搭載される発熱体21の許容温度よりも高くすることが考えられる。
このような構成では、上流側冷却部13は、下流側冷却部14よりも冷媒温度が低く、下流側に比べ熱成立性が良好である。そのため、発熱体の許容温度に差がある場合には、上流側に許容温度が低い部品を配置し、下流側に許容温度が高い部品を配置すれば、冷媒温度が低い上流側冷却部13で許容温度が低い部品を冷却可能であり、上流側部品によって冷媒温度が上昇しても下流側部品には問題がなく、それぞれの部品性能を十分に発揮することができる(図4および後述する実施の形態2、3参照)。
また、上記実施の形態1に係る電力変換装置1において、下流側冷却部14に搭載される発熱体22を、ワイドバンドギャップ半導体とすることが考えられる。
一般に、インバータやコンバータ等の電力変換装置に用いるスイッチング素子は、珪素を主な材料にするものが多く、このスイッチング素子の許容上限温度は、125℃から175℃程度である。一方、近年、許容上限温度が200℃以上のワイドバンドギャップ半導体が発表されており、ダイオード等が製品化されている。
耐熱温度が125℃から175℃程度の珪素を主な材料とするスイッチング素子と、耐熱温度が200℃以上のワイドバンドギャップ半導体からなるダイオードとを組み合わせてインバータを構成する場合や、珪素を主な材料とする半導体素子を用いたインバータと、ワイドバンドギャップ素子を用いたインバータやコンバータとを組み合わせて1つの電力変換装置を構成する場合には、珪素を主な材料とする半導体素子とワイドバンドギャップ素子との耐熱温度差が課題となる。
しかしながら、本発明の構成では、熱成立性が良好な上流側冷却部13に珪素を主な材料とする半導体素子を配置し、冷媒温度が高い下流側にワイドバンドギャップ素子を配置することで、珪素を主な材料とする半導体素子の熱成立性に悪影響なく、電力変換装置1を構成できる(後述する実施の形態2、3参照)。
また、この電力変換装置1において、ワイドバンドギャップ半導体を、炭化珪素、窒化ガリウム系材料またはダイヤモンドとすることが考えられる。
ワイドバンドギャップ半導体として、炭化珪素や窒化ガリウム、ダイヤモンドを材料としたものが発表されており、これらの材料を用いたワイドバンドギャップ半導体を用いれば、珪素を主な材料とする半導体よりも高い耐熱温度を得ることができる(後述する実施の形態2、3参照)。
また、上記実施の形態1に係る電力変換装置1において、上流側冷却部13に搭載される発熱体21の発熱量を、下流側冷却部14に搭載される発熱体22の発熱量よりも大きくすることが考えられる。
このような構成では、上流側冷却部13は、下流側冷却部14よりも冷媒温度が低く、下流側に比べ熱成立性が良好である。そのため、発熱体の発熱量に差がある場合には、上流側に発熱量が大きい部品を配置し、下流側に発熱量が小さい部品を配置すれば、発熱量が大きい部品の熱成立を良好に保つことが可能であり、サイズ、コストともに製品への影響が大きい部品を小型化、低コスト化することができる(図5および後述する実施の形態2、3参照)。
また、上記実施の形態1に係る電力変換装置1において、上流側冷却部13に搭載される発熱体21を、スイッチング素子とすることが考えられる。
このような構成では、上流側冷却部13は、下流側冷却部14よりも冷媒温度が低く、下流側に比べ熱成立性が良好である。一般に、インバータやコンバータ等の電力変換装置は、IGBT等のスイッチング素子と、還流素子のダイオードとから構成される。スイッチング機能を有するIGBTとスイッチング機能のないダイオードとを比較すると、スイッチング素子の方が、構造が複雑であり、コストが高い。
そのため、スイッチング素子を、冷媒温度が低く、熱成立に有利な上流側冷却部13に配置すれば、コストが高いスイッチング素子の小型化に有効であり、装置の低コスト化が可能である(図5の本発明の構成参照)。
また、スイッチング素子を上流側冷却部13に配置すると、本発明の構成では、冷却器10の片側の面にスイッチング素子が集中して配置されるので、スイッチング素子を駆動する制御基板30を信号端子40と近接することが可能である。図6は、本発明の実施の形態1に係る電力変換装置1において、スイッチング素子を上流側冷却部に配置した場合の例を示す説明図である。
特許文献2では、下側のスイッチング素子から長い信号端子で上側に配置された制御基板と接続しているが、スイッチング素子と制御基板30とを近接すれば、ノイズによる誤動作を防ぐことも可能であり、特許文献2よりも単純な構造となるので、耐ノイズ性の向上の他に、小型化、低コスト化も可能である(図6および後述する実施の形態2参照)。
また、上記実施の形態1に係る電力変換装置1において、下流側冷却部14に搭載される発熱体22を、電源電圧制御用のコンバータとすることが考えられる。
内燃機関と電動機とを組み合わせて走行するハイブリッド電気自動車では、車両駆動電動機制御用の電力変換装置の他、車両駆動電動機や内燃機関による発電用電動機の小型化、車両システムの高効率化のために、車両駆動電動機制御用の電力変換装置の母線電圧を、直流−直流コンバータ等の電圧変換器等により昇圧または降圧する場合がある(特許文献1参照)。
電圧を昇圧または降圧する電圧変換器では、エネルギー授受手段として、リアクトルを用いることが多い。リアクトルは、磁性材料と導線とから構成されており、質量、容積ともに非常に大きいので、これを小型化すれば、電力変換装置を小型化かつ軽量化することができる。
リアクトルの小型化には、スイッチング周波数の高周波化が効果的であり、高周波化が容易なワイドバンドギャップ半導体の適用が望ましい。ワイドバンドギャップ半導体は、高耐熱なので、下流側冷却部14に搭載することが可能である。一方、リアクトルは、発熱するので冷却が必要だが、リアクトルの発熱は、車両駆動電動機制御用の電力変換装置に用いられる半導体モジュールよりも小さいので、下流側冷却部14に搭載することが望ましい。
結果として、電圧変換器に用いる半導体モジュールと、リアクトルとを下流側冷却部14に配置すれば、それぞれの発熱量、耐熱性に適していると同時に、半導体モジュールとリアクトルとを近接配置することが可能であり、半導体モジュールとリアクトルとの間を接続する回路部材等が削減できるので、電力変換装置1の小型化、低コスト化が可能になる(後述する実施の形態3参照)。
また、上記実施の形態1に係る電力変換装置1において、上流側冷却部13に搭載される発熱体21を、車両駆動電動機制御用の電力変換器に用いられる半導体モジュールとすることが考えられる。
電気自動車やハイブリッド電気自動車等の車両では、車両駆動電動機制御用の電力変換器の他、空調や補機駆動用電源等、大小様々な電力変換器を搭載する必要があるが、エンジンルーム等の限られた空間に収容するために、これら大小様々な電力変換器を1つの電力変換装置に一体化し、小型化する必要がある。
1つの電力変換装置に搭載されるこれら様々な電力変換器のうち、最も優先度が高いものは、車両の走行を司る車両駆動電動機制御用の電力変換器である。そのため、車両駆動電動機制御用の電力変換器に用いられる半導体モジュールを、本発明の構成において上流側冷却部13に搭載すれば、環境温度や冷媒温度が高い悪条件下でも、空調や補機よりも優先して冷却されるので、車両の運転継続がより可能になる(後述する実施の形態3参照)。
また、上記実施の形態1に係る電力変換装置1において、接続部17の流路断面積と、上流側冷却部13および下流側冷却部14の流路断面積とを、ほぼ等しくすることが考えられる。
このような構成では、特許文献2の構成と比べ、接続部17が増えているので、接続部17の圧力損失低減が必要である。接続部17の流路断面積と冷却部13、14の流路断面積とが異なる場合、流路断面積が急激に増加する部分で拡大損失、急激に減少する部分で縮小損失が発生し、無駄な圧力損失が発生する。
そこで、図7に示されるように、上流側、下流側の各冷却部と連結される接続部17の流路断面積を冷却部13、14とほぼ等しくすれば、拡大損失、縮小損失が発生せず、接続部の追加による圧力損失や、これによる冷却性能の低下を最小限にすることができる(図7および後述する実施の形態2参照)。図7は、本発明の実施の形態1に係る電力変換装置1における冷却部13、14と接続部17との連結構成を示す説明図である。
また、上記実施の形態1に係る電力変換装置1において、上流側分配部15の流路断面積を、冷媒入口11側から離れるほど小さくし、下流側分配部16の流路断面積を、冷媒出口12側に近づくほど大きくすることが考えられる。
上流側分配部15、下流側分配部16は、特許文献2にも備わる流路であり、本発明の構成によって圧力損失の著しい増加はない。しかしながら、本発明の構成では、上流側分配部15と下流側分配部16とを、仕切り部18を挟んで重ねて配置するので、冷却器10の低背化、ひいては電力変換装置1の低背化のために、上流側分配部15および下流側分配部16の低背化が必要である。
図8は、本発明の実施の形態1に係る電力変換装置1における分配部15、16の低背化を示す説明図である。図8において、上流側分配部15では、冷媒入口11側から離れるほど、上流側冷却部13に冷媒が分岐していくので、上流側分配部15の流量は、冷媒入口11側から離れるほど減少する。すなわち、上流側分配部15の流路断面積を冷媒入口11側から離れるほど小さくしても、上流側分配部15の圧力損失は増加しない。
同様に、下流側分配部16では、冷媒出口12側に近づくほど、下流側冷却部14から冷媒が合流していくので、下流側分配部16の流量は、冷媒出口12側に近づくほど増加する。すなわち、下流側分配部16の流路断面積を冷媒出口12側に近づくほど大きくすれば、下流側分配部16の圧力損失は増加しない。
冷媒入口11と冷媒出口12とを対向して配置すると、上流側分配部15の断面積の大きい部分と、下流側分配部16の断面積の小さい部分とが重ねて配置され、上流側分配部15の断面積の小さい部分と、下流側分配部16の断面積の大きい部分とが重ねて配置されるので、分配部15、16の圧力損失を増加することなく、上下分配部の高さを半減できる。
分配部15、16の低背化ができれば、冷却器10が低背化され、電力変換装置1の小型化につながるだけでなく、冷却器10の高さに比例する接続部17の流路経路長を短くできるので、本発明の構成を採用することによる冷却器10の圧力損失増加も軽減することができる(図8および後述する実施の形態2、3参照)。
また、上記実施の形態1に係る電力変換装置1において、冷却器10を、発熱体搭載板と一体化された冷却フィンと、仕切り部18が一体化された流路筐体とから構成することが考えられる。このとき、仕切り部18に設けられた貫通穴により接続部17が構成されるとともに、仕切り部18に設けられた凸凹により上流側分配部15および下流側分配部16が構成され、発熱体搭載板と一体化された冷却フィンのうち少なくとも1つと、仕切り部18が一体化された流路筐体とが、溶接またはロウ付により接合される。
本発明の冷却器10は、上流側の分配部15および冷却部13と、下流側の分配部16および冷却部14とが仕切り部18、接続部17を挟んで重ねて配置されており、流路を構成するには、上側および下側からの流路筐体への加工が必要となる。特に、図7や図8に示した構成を実現するには、流路筐体の上側および下側から加工の制約なく、自由に加工できる構成とする必要がある。
図9は、本発明の実施の形態1に係る電力変換装置1において、発熱体搭載板51と一体化された冷却フィン52と、仕切り部18が一体化された流路筐体53とから構成される冷却器10を示す説明図である。
図9の構成では、仕切り部18が一体化された流路筐体53に対し、上下両方向から加工することで接続部17と分配部15、16の形状を自由に構成した後、この流路筐体53の上下に発熱体搭載板51と一体化された冷却フィン52を後から接合することで、冷媒入口11および冷媒出口12以外を密封した流路を構成する。
この構成では、流路筐体53と、発熱体搭載板51とが別の部材となるので、流路筐体53と発熱体搭載板51との間の接合部からの冷媒漏れが課題となる。特に、本発明の構成では、発熱体21、22が冷却器10の両面に搭載されるので、流路筐体53と発熱体搭載板51との間の接合部が、冷却器10の上下に存在する。
そのため、冷媒が液体の場合、冷却器10下側の流路筐体53と発熱体搭載板51との間の接合に漏れが発生すると、冷媒が漏れ出し、下側の発熱体22が冷媒に没する等、致命的な損傷を生じる恐れがある。そこで、発熱体搭載板51を溶接またはロウ付により連続して接合することにより、Oリングや液状パッキン材等よりも信頼性の高い、漏れ対策を提供できる。
また、本発明の構成では、冷媒漏れの影響が大きい冷却器10の下側に、高耐熱により高温となる発熱体22が搭載される場合があるので、Oリングや液状パッキンのような樹脂系シール手段ではなく、溶接やロウ付のような、金属系シール手段を用いることにより、シール手段の高耐熱化を実現する。
なお、溶接またはロウ付による接合は、冷媒漏れにより致命的な損傷を被る下側のみ実施したり、冷媒温度が高くなる下流側のみ実施したりしてもよい。また、水漏れによる被害が小さい部分や、冷媒温度が低い上流側は、Oリングや液状パッキン等の手段でシールを構成してもよい(図9および後述する実施の形態3参照)。
また、この電力変換装置において、発熱体搭載板51と一体化された冷却フィン52は、アルミニウムを主な材料とし、押出しにより加工された後に、発熱体21、22を搭載しない面に切削または鍛造加工することにより、発熱体21、22の一部が、上流側分配部15および下流側分配部16並びに接続部17の少なくとも一方を含む平面上に配置され、上流側分配部15および下流側分配部16並びに接続部17の少なくとも一方が、上流側冷却部13および下流側冷却部14の機能を一部兼ね備えるよう構成することが考えられる。
図10は、本発明の実施の形態1に係る電力変換装置において、分配部15、16と接続部17とが冷却部13、14の機能を一部兼ね備える冷却器10を示す説明図である。図10の構成では、分配部15、16が冷却器10のほぼ中央、接続部17が冷却器10のほぼ両端部に配置されており、大型の発熱体または複数の発熱体を搭載する際に、可能な限り冷却器10を小型化すると、分配部15、16や接続部17が発熱体搭載部、すなわち冷却部13、14と干渉する場合がある。分配部15、16や接続部17は、圧力損失を低減するために、可能な限り断面積を大きくする必要がある。
一方、発熱体が配置される冷却部13、14には、発熱体21、22の放熱性能を確保するために、冷却フィン52を構成する必要があり、発熱体搭載部が分配部15、16や接続部17に干渉する場合は、冷却部13、14としての放熱性能の確保と、接続部17や分配部15、16としての低い圧力損失の両立が必要である。
そこで、発熱体搭載板51と一体化された冷却フィン52を、分配部15、16の冷媒流通方向に沿う押出し加工により、冷却フィン52の主たる断面形状を形成し、その後、冷却フィン部に切削または鍛造により放熱面積を増やす加工を施す。これによって、分配部15、16や接続部17のうち、発熱体21、22に近く、大きな伝熱が期待できる部分には冷却フィン52を形成し、高い放熱性能を実現する。
また、発熱体21、22から遠く、大きな伝熱が期待できない部分には、冷却フィン52を形成せず、低圧力損失で、分配部15、16や接続部17としての高い性能を実現する。この構成により、冷却部13、14としての機能と、接続部17や分配部15、16としての機能を両立することができる。
分配部15、16の冷媒方向に沿って押出し加工することで、冷却フィン52としての高い放熱性と分配部15、16や接続部17としての低圧力損失を実現できる。しかしながら、押出し加工後の材料は、分配部15、16の冷媒流通方向と直角の方向となる、冷却部13、14の冷媒流通方向には流路が形成されておらず、冷却フィン52として機能しない。そのため、切削または鍛造により、円柱や円錐、または角柱や四角錘形状を形成し、広い放熱面積を有する冷却フィン52を形成する。これにより、冷却部13、14の高い放熱性と、分配部15、16と接続部17との低圧力損失を両立する。
また、アルミニウムを主な材料とすることにより、高い押出し加工性を確保するとともに、高い耐腐食性を確保し、さらに、主に軽量化や加工性、形状自由度等の理由でアルミニウムを主な材料とする流路筐体53との高い接合性を確保し、シールの信頼性を高め、冷媒漏れ発生の可能性を低減することができる(図10および後述する実施の形態3参照)。
また、上記実施の形態1に係る電力変換装置1において、冷却器10を、発熱体搭載板と、冷却フィンと、仕切り部18とから構成することが考えられる。このとき、仕切り部18に設けられた貫通穴により接続部17が構成され、発熱体搭載板と、冷却フィンと、仕切り部18とがロウ付により接合されて流路の一部を構成する。
図10の構成では、発熱体搭載板51と一体化された押出し材54による冷却フィン52上下と、仕切り部18が一体化された流路筐体53とが接合されていた。押出し加工によって発熱体搭載板51と一体化された冷却フィン52を形成すると、薄板の形成が困難な押出し加工の制約により、発熱体搭載板51および冷却フィン52は、薄厚化が困難であった。
また、流路筐体53も、仕切り部18を一体化すると、鋳造の制約により、薄厚化が困難であった。これらを組み合わせると、冷却器10の厚みが大きくなり、電力変換装置1の低背化が困難な他、接続部17の流路経路長が長くなるので、冷却部13、14の放熱性能に寄与しない、無駄な圧力損失増大を招く場合があった。
そこで、それぞれの部材を、押出し加工や鋳造によって製造すると、加工制約により部品の薄厚化が困難なので、低背化が重要な場合には、発熱体搭載板51と、冷却フィン52と、仕切り部18とを別々の部材としてプレス加工等により形成し、これらをロウ付によって後で接合し一体化することで流路を構成すればよい。
図11は、本発明の実施の形態1に係る電力変換装置1において、発熱体搭載板51、冷却フィン52および仕切り部18が別々に形成され、ロウ付により接合される冷却器10を示す説明図である。
図11において、発熱体搭載板51と、冷却フィン52と、仕切り部18とを別々の部材として構成することで、発熱体搭載板51は、冷却フィン形成の加工制約を受けることなく、発熱体21、22を搭載するために必要な肉厚の薄厚部材とすることができる。また、冷却フィン52は、プレス加工によって微細な流路を多数構成することで、薄厚で大きな放熱面積を確保できるので、低背化および高い放熱性能の両立が可能である。また、仕切り部18は、プレス加工により、図7に示した接続部形状や、図8に示した分配部形状を容易に実現できる。
さらに、これらをロウ付により接合し一体化することで、冷媒漏れの恐れのある接合部に、Oリングや液状パッキンのような耐熱性に課題のある樹脂系シール手段を用いることなく、金属系のシール手段とすることができ、高耐熱により高温となる発熱体21、22を搭載する場合がある本発明の構成に有利である(図11および後述する実施の形態2参照)。
実施の形態2.
図12は、本発明の実施の形態2に係る電力変換装置1の主回路を周辺機器(直流電源61および電動発電機62)とともに示す構成図である。図12において、この電力変換装置1は、スイッチング素子SW1〜SW6と、還流素子D1〜D6とで構成される三相インバータであり、例えば電気自動車や、1モータ式のハイブリッド電気自動車に用いられる電力変換装置である。
次に、本発明の実施の形態2に係る電力変換装置1の冷却器10の冷媒流路構成および発熱体配置は、上述した図6に示す通りである。図6において、電力変換装置1の冷却器10の冷媒流路は、冷媒入口11、上流側分配部15、上流側冷却部13、接続部17、下流側冷却部14、下流側分配部16、冷媒出口12の順に連結されている。
また、上流側冷却部13には、発熱体21としてスイッチング素子SW1〜SW6が搭載され、下流側冷却部14には、還流素子D1〜D6が搭載されている。すなわち、上流側冷却部13には、発熱が大きく、コスト影響が大きいスイッチング素子を搭載し、下流側冷却部14には、発熱が小さく、コスト影響が小さい還流素子を搭載している。
図13は、本発明の実施の形態2に係る電力変換装置1における、流路構成および発熱体配置による冷媒温度上昇を示す説明図である。実施の形態2の流路構成および発熱体配置では、上流側のスイッチング素子は最も温度が低い冷媒で冷却されるので、熱成立が容易である。
また、下流側の還流素子は、上流側のスイッチング素子によって温度が上昇した冷媒で冷却されるが、実施の形態2の構成では、下流側に配置されるのは還流素子であり、スイッチング素子よりも発熱が小さく、熱成立に問題はない。
ただし、図13(A)のように、上流側のスイッチング素子と下流側の還流素子との間で著しく熱成立性に差がある場合には、図13(B)のように、熱成立性に余裕のあるスイッチング素子の放熱性要求を緩和することができる。すなわち、スイッチング素子の放熱経路に熱伝導率の低い材料を用いたり、放熱面積を減少させたりすることが可能となり、半導体モジュールや冷却器10の低コスト化、小型化が可能となり、電力変換装置1の低コスト化、小型化が可能になる。
また、図13(C)のように、下流側の還流素子の発熱を低減できれば、その分上流側のスイッチング素子の発熱を増やすことができる。放熱性要求の緩和と、発熱増が同時にできれば、スイッチング素子の面積を小さくすることができるので、スイッチング素子の小型化による低コスト化、スイッチング素子小型化による周辺部品の小型化、低コスト化が可能となり、図13(B)の場合に比べ、より大きな効果を得ることができる。
次に、図14、15を参照しながら、本発明の実施の形態2の電力変換装置1の構造について説明する。図14は、本発明の実施の形態2に係る電力変換装置1を示す斜視図である。また、図15は、本発明の実施の形態2に係る電力変換装置1における冷却器10を示す構成図である。
本発明の実施の形態2に係る電力変換装置1は、図14に示されるように、冷却器10の上側にスイッチング素子SW1〜SW6を内包した半導体モジュール71があり、冷却器10の下側に還流素子D1〜D6を内包した半導体モジュール72がある。また、還流素子を内蔵した半導体モジュール72の下側に平滑コンデンサ73があり、スイッチング素子を内蔵した半導体モジュール71の上側に制御基板30がある。また、冷却器10の半導体モジュール71、72を搭載しない面に冷媒入口11があり、その対向する面に冷媒出口12が配置されている。
本発明の実施の形態2に係る電力変換装置1の冷却器10は、図15に示されるように、発熱体搭載板51と、冷却フィン52と、仕切り部18とを別々の部材としてプレス加工等により形成し、これらを鋳造によって形成された流路筐体53とロウ付によって後で接合し、これらを一体化することで流路を構成している。
図15において、発熱体搭載板51と、冷却フィン52と、仕切り部18とを別々の部材として構成することで、発熱体搭載板51は、冷却フィン形成の加工制約を受けることなく、発熱体21、22を搭載するために必要な最小肉厚の薄厚部材とすることができる。
また、冷却フィン52は、プレス加工によって微細な流路を多数構成することで、薄厚で大きな放熱面積を確保できるので、低背化および高い放熱性能の両立が可能である。また、仕切り部18は、プレス加工により凸凹形状が構成されており、凸凹形状によって、上流側分配部15は、冷媒入口11側の流路断面積が大きく、冷媒出口12側に向かうほど流路断面積が小さい。
これにより、分配部15、16の流路断面積は、場所によって大小が生じるが、図8に示されるように、上流側分配部15では、冷媒入口11側から離れるほど、上流側冷却部13に冷媒が分岐していくので、上流側分配部15の流量は、冷媒入口11側から離れるほど減少する。すなわち、上流側分配部15の流路断面積を冷媒入口11側から離れるほど小さくしても、上流側分配部15の圧力損失は増加しない。
同様に、下流側分配部16では、冷媒出口12側に近づくほど、下流側冷却部14から冷媒が合流していくため、下流側分配部16の流量は、冷媒出口12側に近づくほど増加する。すなわち、下流側分配部16の流路断面積を冷媒出口12側に近づくほど大きくすれば、下流側分配部16の圧力損失は増加しない。
さらに、この形状によって、分配部15、16から冷却部13、14への流量分散が均等に行われるので、冷却部13、14の流量が均一化され、放熱性能も均一化できる。実施の形態2の構成では、冷媒入口11から冷媒出口12にかけて、三相インバータのU相、V相、W相が並んでおり、これらの動作は120度位相がずれているだけなので、放熱性能は均一であることが望ましく、実施の形態2の分配部15、16の形状は、これに適している。
仮に複数の電力変換装置1が搭載されていたり、必要放熱性能に差があったりする場合には、凸凹形状を変え、放熱性能が小さくてもよい部分への分配経路の流路断面積を小さくし、放熱性能が必要な部分への流量を増やすことも可能である。
また、冷媒入口11と冷媒出口12とを対向しているので、上流側分配部15の断面積の大きい部分と、下流側分配部16の断面積の小さい部分とが重ねて配置され、上流側分配部15の断面積の小さい部分と、下流側分配部16の断面積の大きい部分とが重ねて配置される。そのため、分配部の圧力損失を増加することなく、上下分配部の高さを半減できる。
さらに、分配部15、16の低背化ができれば、冷却器10が低背化され、電力変換装置1の小型化につながるだけでなく、冷却器10の高さに比例する接続部17の流路経路長を短くできるので、本発明の構成採用による冷却器10の圧力損失増加も軽減することができる。
また、実施の形態2の構成では、スイッチング素子と還流素子とが上下異なる面に配置されているので、スイッチング素子のスイッチング動作によって発生するスイッチングサージの課題がある。スイッチングサージは、電流変化率di/dtと、スイッチング素子と還流素子との間の配線インダクタンスとに比例するので、電流変化率di/dtが小さくできない場合には、スイッチング素子と還流素子との間の配線インダクタンスを小さくする必要がある。
実施の形態2の構成では、電源のP側に接続されるスイッチング素子(SW1、3、5)のスイッチング時に還流するN側のダイオード(D2、4、6)をP側のスイッチング素子の直下に配置し、平面方向での配線距離を低減すると同時に、上述した冷却器10の薄型化により、上下方向の配線距離も短縮し、配線距離に比例する配線インダクタンスを低減している。これは、N側のスイッチング素子(SW2、4、6)と、P側の還流素子(D1、3、5)との間の配線も同様である。
なお、スイッチング素子と還流素子とを接続する上下間の配線は、図15に示される接続バスバー81で実施する。接続バスバー81は、流路筐体53に設けられた貫通穴を経由して配置されるので、接続バスバー81を冷媒によって冷却し、断面積を小型化することも可能である。
この貫通穴によって、電力変換装置1のスイッチング素子側の空間と、還流素子側の空間とが連結されている。還流素子側の空間には、平滑コンデンサ73や、電力変換装置1の外部に三相インバータの出力電流を供給するための出力バスバー82や、平滑コンデンサ73へ電力を供給するための入力バスバー(図示せず)等が配置されており、これらは高電圧の回路なので、機器外部と導通する冷媒に対して絶縁する必要がある。
しかしながら、仮に発熱体搭載板51と流路筐体53との間のシール手段が破断した場合、上述した貫通穴を経由して冷媒が還流素子側の空間に流通してしまうので、接続バスバー81や、還流素子や、平滑コンデンサ73や、出力バスバー82や、入力バスバー等の高電圧回路が冷媒に没してしまう。
そこで、実施の形態2の冷却器10は、発熱体搭載板51と流路筐体53とをロウ付により接合し一体化することで、冷媒漏れの恐れのある接合部に、Oリングや液状パッキンのような耐熱性に課題のある樹脂系シール手段を用いることなく、金属系のシール手段とすることができる他、Oリングや液状パッキンのように、狭ピッチでネジ等により両部材を締結する必要がなく、電力変換装置1の小型化にも有利であるし、連続した接合のため、耐振性の向上にも有利である。
また、実施の形態2の構成では、冷却器10の片側の面にスイッチング素子を集中して配置しており、スイッチング素子を駆動する制御基板30を片側1枚に統合するとともに、スイッチング素子に近接配置することが可能である。スイッチング素子と制御基板30とを近接すれば、ノイズによる誤動作を防ぐことができ、耐ノイズ性の向上の他に、部品小型化により小型化、低コスト化も可能である。
実施の形態3.
図16は、本発明の実施の形態3に係る電力変換装置1の主回路を周辺機器(直流電源61、電動発電機62および発電電動機63)とともに示す構成図である。
図16において、この電力変換装置1は、スイッチング素子SW1〜SW6と、還流素子D1〜D6とで構成される電動発電機駆動用三相インバータと、スイッチング素子SW11〜SW16と、還流素子D11〜D16とで構成される発電電動機駆動用三相インバータと、スイッチング素子SW21〜SW22と、還流素子D21〜D22とで構成される昇降圧用の直流−直流コンバータとから構成されている。
この電力変換装置1は、例えば、車両駆動用として電動発電機62を用い、内燃機関による発電に発電電動機63を用い、直流電源61の電圧を、電動発電機62や発電電動機63の小型化、高効率駆動化に最適な電圧に昇圧して用いる、2モータ式のハイブリッド電気自動車に用いられる電力変換装置である。
次に、本発明の実施の形態3に係る電力変換装置1の冷却器10の冷媒流路構成および発熱体配置を図17に示す。図17は、本発明の実施の形態3に係る電力変換装置における冷媒流路構成および発熱体配置を示す説明図である。図17において、電力変換装置1の冷却器10の冷媒流路は、冷媒入口11、上流側分配部15、上流側冷却部13、接続部17、下流側冷却部14、下流側分配部16、冷媒出口12の順に連結されている。
また、上流側冷却部13には、発熱体21として、電動発電機駆動用三相インバータのスイッチング素子SW1〜SW6および還流素子D1〜D6と、発電電動機駆動用三相インバータのスイッチング素子SW11〜SW16および還流素子D11〜D16が搭載されている。
また、下流側冷却部14には、発熱体22として、ワイドバンドギャップ半導体からなる、昇降圧用直流−直流コンバータのスイッチング素子SW21〜SW22と、同じくワイドバンドギャップ半導体からなる還流素子D21〜D22と、リアクトルL1と、放電抵抗R1とが搭載されている。
すなわち、上流側冷却部13には、車両駆動を司る最も重要な電動発電機駆動用三相インバータを搭載しており、下流側冷却部14には、発熱が小さく、耐熱性が三相インバータよりも高い、昇降圧用直流−直流コンバータのワイドバンドギャップ半導体モジュールと、リアクトルとが搭載されている。
図18は、本発明の実施の形態3に係る電力変換装置1における、流路構成および発熱体配置による冷媒温度上昇を示す説明図である。実施の形態3の流路構成および発熱体配置では、手前(冷媒入口11、冷媒出口12側)と奥(冷媒入口11、冷媒出口12がない側)とで形態が異なる。
すなわち、手前には、発熱体21、22として、上流側に発電電動機駆動用三相インバータの半導体モジュール、下流側にワイドバンドギャップ半導体で構成された昇降圧用直流−直流コンバータの半導体モジュールが配置されており、奥側には、発熱体21、22として、上流側に電動発電機駆動用三相インバータの半導体モジュール、下流側に昇降圧用直流−直流コンバータのリアクトルが配置されている。
手前側について詳しく見ると、上流側の発電電動機駆動用三相インバータは、最も温度が低い冷媒で冷却されるので、熱成立が容易である。また、下流側の昇降圧用直流−直流コンバータは、上流側の発電電動機駆動用三相インバータによって温度が上昇した冷媒で冷却されるが、耐熱性が高いワイドバンドギャップ半導体素子であり、上流側の珪素製半導体を用いた昇降圧コンバータよりも耐熱温度が高く、熱成立に問題はない。
次に、奥側について詳しく見ると、上流側の電動発電機駆動用三相インバータは、最も温度が低い冷媒で冷却されるので、熱成立が容易である。また、下流側のリアクトルは、上流側の電動発電機機駆動用三相インバータによって温度が上昇した冷媒で冷却されるが、三相インバータよりも発熱量が非常に小さく、熱容量が大きいので、瞬間的な耐熱性は高く、熱成立に問題はない。
また、実施の形態3の構成では、最も温度が低い冷媒で冷却されるのは、車両走行に用いる電動発電機駆動用インバータであり、環境温度や冷媒温度が異常に上昇しても、最後まで高い出力を維持することが可能なので、車両の信頼性、安全動作に寄与することができる。
同じく、最も温度が低い冷媒で冷却される発電電動機駆動用インバータは、下流側に発熱量が大きい昇降圧用コンバータを搭載しており、昇降圧用コンバータの熱成立性に影響があるので、車両走行に用いる電動発電機駆動用インバータほどは、最後まで高い出力を維持することはできない。
しかしながら、下流側の昇降圧用コンバータには、高耐熱のワイドバンドギャップ半導体を用いているので、環境温度や冷媒温度が異常に上昇したとしても、比較的最後まで高い出力を維持することが可能である。また、発電電動機は、内燃機関と連結され、車両走行用電動発電機に電力を供給するものであり、昇降圧コンバータも蓄電池等の直流電源から車両走行用電動発電機に電力を供給するものなので、環境温度や冷媒温度が異常に上昇した際でも、いずれか一方の出力を制限すれば、常に走行用電動発電機に電力供給を継続することができる。
次に、図19、20を参照しながら、本発明の実施の形態3の電力変換装置1の構造について説明する。図19は、本発明の実施の形態3に係る電力変換装置1を示す斜視図である。また、図20は、本発明の実施の形態3に係る電力変換装置1における冷却器10を示す構成図である。
本発明の実施の形態3に係る電力変換装置1は、図19に示されるように、冷却器10の上側に、スイッチング素子SW1〜SW6と、還流素子D1〜D6とで構成される電動発電機駆動用三相インバータに用いる電動機用インバータ半導体モジュール91と、スイッチング素子SW11〜SW16と、還流素子D11〜D16とで構成される発電電動機駆動用三相インバータに用いる発電機用インバータ半導体モジュール92とが発熱体21として搭載されている。
また、冷却器10の下側に、ワイドバンドギャップ半導体を用いたスイッチング素子SW21〜SW22と、還流素子D21〜D22とで構成される昇降圧用の直流−直流コンバータに用いるコンバータ用半導体モジュール93と、昇降圧用の直流−直流コンバータに用いるリアクトル94が発熱体22として搭載されている。
この他、電動機用インバータ半導体モジュール91と、発電機用インバータ半導体モジュール92の上部には、これら半導体モジュールを駆動、制御するインバータ用制御基板31と、さらにその上部には、昇降圧用の直流−直流コンバータの2次側電圧、すなわちインバータ入力電圧を平滑する2次側平滑コンデンサ95とが搭載されている。
また、コンバータ用半導体モジュール93の下側には、この半導体モジュールを駆動、制御するコンバータ用制御基板32が搭載されている他、冷却器10の下側には、昇降圧用の直流−直流コンバータの1次側電圧を平滑する1次側平滑コンデンサ96が搭載されている。
すなわち、この電力変換装置1は、上述したように、車両駆動用として電動発電機62を用い、内燃機関による発電に発電電動機63を用い、直流電源61の電圧を、電動発電機62や発電電動機63の小型化、高効率駆動化に最適な電圧に昇圧して用いる、2モータ式のハイブリッド電気自動車に用いる電力変換装置として機能する。
また、冷媒入口11および冷媒出口12は、1つの同じ面に並んで配置されており、冷媒配管の接続作業性を向上しており、冷媒入口11および冷媒出口12は、発電機用インバータ半導体モジュール92側に配置されている。
本発明の実施の形態3に係る電力変換装置1の冷却器10は、図20に示されるように、リアクトル94の筐体を兼ねる鋳造製の流路筐体53と、冷却フィン52とが一体となった発熱体搭載板51から構成されており、上側の発熱体搭載板51は、Oリング103をシール手段として流路筐体53と接続されており、下側の発熱体搭載板51は、ロウ付104をシール手段として流路筐体53と接合されている。
また、リアクトル94は、コイル94a、磁性体コア94bおよび封止樹脂94c等から構成されており、質量が大きいので、鋳造製の流路筐体53に直接一体化し、耐振性を確保している。また、半導体モジュールを搭載する発熱体搭載板51も、多数の半導体モジュールを搭載するために、厚肉の押出し材を採用し、押出し後、切削加工にてフィンを形成することで冷却フィン52と発熱体搭載板51とを一体化し、耐振性を確保している。
実施の形態3の電力変換装置1では、複数の機能を有するので、それぞれの機能が故障した際の交換容易性も考慮する必要がある。そのため、上側の発熱体搭載板51と流路筐体53との間は、Oリング103をシール手段としており、上側のインバータと下側コンバータとの分離が可能であり、万一の故障時の交換が容易である。
一方、下側の発熱体搭載板51と流路筐体53との間は、ロウ付104により接合している。ロウ付接合により、流路筐体53との分割はできないが、下側の発熱体22は、リアクトル94と組み合わせて機能を発揮する部品しかなく、インバータと分離できているので問題はない。
また、下側の発熱体搭載板51と流路筐体53との間をロウ付104により接合することで、Oリング103や液状パッキン等のシール手段と比べ、シール信頼性を高めており、流路下流側で高温となりやすい下側シールの経年劣化による水漏れ、水漏れによりコンバータ部品が冷媒に没することを防いでいる。
なお、発熱体搭載板51と流路筐体53との接合は、ロウ付104ではなくレーザー溶接等でもよいが、実施の形態3の冷却器10は、大型で反りが大きいため、隙間を埋める目的でロウ付104を採用している。ロウ付104は、部品すべてを高温炉に入れる方法でもよいし、部品を冷却器10に搭載した後に、レーザー光等で局所加熱する方法を採用してもよい。
図21は、本発明の実施の形態3に係る電力変換装置1における水漏れによる下側被水対策構造を示す説明図である。実施の形態3の電力変換装置1でも、実施の形態2と同じように、上下を接続する主回路部品があるので、図21に示されるように、上下貫通穴111が存在する。
上下貫通穴111は、上側シール手段の故障時に下側が冷媒に没する原因となるが、実施の形態3の構成では、上下を接続する主回路部品がP2、Nの2次電圧バスバー112しかなく、この配線は実施の形態2と異なり、スイッチングサージには影響なく、低インダクタンス化の必要性がないので、このバスバー112は、比較的自由に構成可能である。
そのため、図21に示されるように、バスバー112周辺に上下貫通穴111を塞ぐバスバー部シール手段113と、あふれ止め壁114と、水抜き穴115とにより、上側シール手段の故障時に、下側へ冷媒が侵入するのを防いでいる。
なお、実施の形態3の流路の分配部15、16には、実施の形態2と同じ理由で凸部が設けられており、冷却部流量の均流化を行う。ただし、実施の形態2では、冷却器10の低背化のために、上下方向の凸凹としていたが、実施の形態3では、リアクトル94によって流路筐体高さが決まっているので、上下方向に凸凹を重ねて低背化する必要がなく、平面の左右方向の凸凹としている。
また、左右それぞれの接続部17は、1つに連通せず、複数の接続部仕切り105によって区切られている。実施の形態3の電力変換装置1は、複数の機能を搭載するので、実施の形態2よりも大型であるが、この接続部仕切り105によって仕切り部18と、流路筐体53とが強固に連結され、流路筐体53を高剛性化し、電力変換装置1の耐振性を確保している。
また、接続部仕切り105の配置間隔を変えることにより、各接続部17の流路断面を調整し、各冷却部流量の最適化を行っている。実施の形態3の電力変換装置1には、複数の機能が搭載されており、実施の形態2の電力変換装置1のように、冷却部流量の均一化が最適とは限らない。そのため、接続部仕切り105の配置間隔や、冷却フィン52の形状で、各冷却部流量の最適化を実施している。
また、リアクトル94は、電動機用インバータ半導体モジュール91の冷却部によって底面が冷やされるとともに、電動機用インバータ半導体モジュール91の冷却部の下流側にある接続部がリアクトル94側面方向に下側へ延長されており、この接続部がリアクトル冷却部102として機能する。
リアクトル94の主要な発熱部として、円形に巻いたコイル94aがあるが、このリアクトル冷却部102がコイル94aに近接することにより、リアクトル94の放熱性を改善するとともに、電動機用インバータ半導体モジュール91の放熱性への影響を軽減する他、上流側分配部15の凸形状101によってコイル94aと冷媒との間の距離を大きくしており、リアクトル94から分配部15、16への放熱性を悪くすることで、分配部15、16での冷媒温度上昇を抑制している。
なお、上側の発熱体搭載板51と流路筐体53とが、Oリング103をシール手段とすることによって別々に構成されている利点を活かし、電動機用インバータ半導体モジュール91と発電機用インバータ半導体モジュール92とは、上側の発熱体搭載板51と一体形成している。
これにより、従来の半導体モジュールのように、半導体モジュールと、冷却器10(この場合は発熱体搭載板51)との間に、放熱グリスのような熱伝導率の低いサーマルコンパウンドを塗布する必要がない。これにより、インバータ用の半導体素子から冷媒までの放熱性を高めることが可能であり、インバータ用の半導体モジュールの小型化、半導体素子の小型化による低コスト化が可能となる。
一方、下側の発熱体搭載板51は、流路筐体53とロウ付104により接合されるので、発熱体搭載板51とコンバータ用半導体モジュール93との一体化は困難である。しかしながら、コンバータ用半導体モジュール93には、ワイドバンドギャップ半導体素子を用いており、その高耐熱性と、低損失特性とにより、従来の半導体モジュールのように、半導体モジュールと、冷却器10(この場合は発熱体搭載板51)との間に、放熱グリスのような熱伝導率の低いサーマルコンパウンドを塗布する形態でも問題は生じない。
1 電力変換装置、10 冷却器、11 冷媒入口、12 冷媒出口、13 上流側冷却部、14 下流側冷却部、15 上流側分配部、16 下流側分配部、17 接続部、18 仕切り部、21 発熱体、22 発熱体、30 制御基板、31 インバータ用制御基板、32 コンバータ用制御基板、40 信号端子、51 発熱体搭載板、52 冷却フィン、53 流路筐体、54 押出し材、61 直流電源、62 電動発電機、63 発電電動機、71 半導体モジュール、72 半導体モジュール、73 平滑コンデンサ、81 接続バスバー、82 出力バスバー、91 電動機用インバータ半導体モジュール、92 発電機用インバータ半導体モジュール、93 コンバータ用半導体モジュール、94 リアクトル、94a コイル、94b 磁性体コア、94c 封止樹脂、95 2次側平滑コンデンサ、96 1次側平滑コンデンサ、101 凸形状、102 リアクトル冷却部、103 Oリング、104 ロウ付、111 上下貫通穴、112 2次電圧バスバー、113 バスバー部シール手段、114 あふれ止め壁、115 水抜き穴。

Claims (12)

  1. 冷媒を流通する流路を内包した冷却器と、
    前記冷却器の2つの対向する主面に分散して配置され、前記冷却器によって冷却される少なくとも2つ以上の発熱体と、を備えた電力変換装置であって、
    前記冷却器の冷媒入口から冷媒出口までの前記流路は、
    前記発熱体を冷却する上流側冷却部および下流側冷却部、
    前記冷媒入口側に位置する上流側分配部、
    前記冷媒出口側に位置する下流側分配部、
    前記上流側冷却部と前記下流側冷却部とを結ぶ接続部、並びに
    前記上流側冷却部と前記下流側冷却部と、および前記上流側分配部と前記下流側分配部とを仕切る仕切り部から構成され、
    前記流路は、前記上流側分配部、前記上流側冷却部、前記接続部、前記下流側冷却部、前記下流側分配部の順に前記冷媒が流通するように接続され
    前記冷却器は、
    発熱体搭載板と一体化された冷却フィンと、
    前記仕切り板が一体化された流路筐体と、から構成され、
    前記発熱体搭載板と一体化された前記冷却フィンは、アルミニウムを材料とし、
    押出しにより加工された後に、前記発熱体を搭載しない面に切削または鍛造加工することにより、前記発熱体の一部が、前記上流側分配部および前記下流側分配部並びに前記接続部の少なくとも一方を含む平面上に配置され、
    前記上流側分配部および前記下流側分配部並びに前記接続部の少なくとも一方が、前記上流側冷却部および前記下流側冷却部の機能を一部兼ね備える
    電力変換装置。
  2. 前記仕切り板に設けられた貫通穴により前記接続部が構成されるとともに、前記仕切り板に設けられた凸凹により前記上流側分配部および前記下流側分配部が構成され、
    前記発熱体搭載板と一体化された前記冷却フィンのうち少なくとも1つと、前記仕切り板が一体化された前記流路筐体とが、溶接またはロウ付により接合された
    請求項1に記載の電力変換装置。
  3. 冷媒を流通する流路を内包した冷却器と、
    前記冷却器の2つの対向する主面に分散して配置され、前記冷却器によって冷却される少なくとも2つ以上の発熱体と、を備えた電力変換装置であって、
    前記冷却器の冷媒入口から冷媒出口までの前記流路は、
    前記発熱体を冷却する上流側冷却部および下流側冷却部、
    前記冷媒入口側に位置する上流側分配部、
    前記冷媒出口側に位置する下流側分配部、
    前記上流側冷却部と前記下流側冷却部とを結ぶ接続部、並びに
    前記上流側冷却部と前記下流側冷却部と、および前記上流側分配部と前記下流側分配部とを仕切る仕切り部から構成され、
    前記流路は、前記上流側分配部、前記上流側冷却部、前記接続部、前記下流側冷却部、前記下流側分配部の順に前記冷媒が流通するように接続され
    前記冷却器は、
    発熱体搭載板と、冷却フィンと、前記仕切り板とを含み、
    前記仕切り板に設けられた貫通穴により前記接続部が構成され、
    前記発熱体搭載板と、前記冷却フィンと、前記仕切り板とがロウ付により接合され、前記流路の一部を構成する
    電力変換装置。
  4. 前記下流側冷却部に搭載される発熱体の許容温度が、前記上流側冷却部に搭載される発熱体の許容温度よりも高い
    請求項1から請求項3までの何れか1項に記載の電力変換装置。
  5. 前記下流側冷却部に搭載される発熱体が、ワイドバンドギャップ半導体である
    請求項1から請求項4までの何れか1項に記載の電力変換装置。
  6. 前記ワイドバンドギャップ半導体が、炭化珪素、窒化ガリウム系材料またはダイヤモンドである
    請求項に記載の電力変換装置。
  7. 前記上流側冷却部に搭載される発熱体の発熱量が、前記下流側冷却部に搭載される発熱体の発熱量よりも大きい
    請求項1から請求項までの何れか1項に記載の電力変換装置。
  8. 前記上流側冷却部に搭載される発熱体が、スイッチング素子である
    請求項1から請求項までの何れか1項に記載の電力変換装置。
  9. 前記下流側冷却部に搭載される発熱体が、電源電圧制御用のコンバータである
    請求項1から請求項までの何れか1項に記載の電力変換装置。
  10. 前記上流側冷却部に搭載される発熱体が、車両駆動電動機制御用の電力変換器に用いられる半導体モジュールである
    請求項1から請求項までの何れか1項に記載の電力変換装置。
  11. 前記接続部の流路断面積と、前記上流側冷却部および前記下流側冷却部の流路断面積とが、ほぼ等しい
    請求項1から請求項10までの何れか1項に記載の電力変換装置。
  12. 前記上流側分配部の流路断面積が、前記冷媒入口側から離れるほど小さくなり、前記下流側分配部の流路断面積が、前記冷媒出口側に近づくほど大きくなる
    請求項1から請求項11までの何れか1項に記載の電力変換装置。
JP2012255178A 2012-11-21 2012-11-21 電力変換装置 Expired - Fee Related JP5694278B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012255178A JP5694278B2 (ja) 2012-11-21 2012-11-21 電力変換装置
US13/960,118 US9439324B2 (en) 2012-11-21 2013-08-06 Electric power converter
DE102013222496.6A DE102013222496A1 (de) 2012-11-21 2013-11-06 Elektrischer Leistungswandler
CN201310595275.XA CN103839904B (zh) 2012-11-21 2013-11-21 功率转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255178A JP5694278B2 (ja) 2012-11-21 2012-11-21 電力変換装置

Publications (2)

Publication Number Publication Date
JP2014103303A JP2014103303A (ja) 2014-06-05
JP5694278B2 true JP5694278B2 (ja) 2015-04-01

Family

ID=50625781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255178A Expired - Fee Related JP5694278B2 (ja) 2012-11-21 2012-11-21 電力変換装置

Country Status (4)

Country Link
US (1) US9439324B2 (ja)
JP (1) JP5694278B2 (ja)
CN (1) CN103839904B (ja)
DE (1) DE102013222496A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523542B1 (ja) * 2012-12-07 2014-06-18 三菱電機株式会社 冷却装置
CN104035459B (zh) * 2014-06-06 2016-05-11 广东美的暖通设备有限公司 变频器及所述变频器的温度的控制方法
CN105940491B (zh) 2014-08-06 2019-06-25 富士电机株式会社 半导体装置
JP6256296B2 (ja) * 2014-10-29 2018-01-10 株式会社豊田自動織機 冷却器
US9826666B2 (en) * 2015-01-14 2017-11-21 Uchicago Argonne, Llc System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
US10462939B2 (en) * 2015-01-22 2019-10-29 Mitsubishi Electric Corporation Semiconductor device
CN107517596B (zh) * 2015-03-25 2019-11-26 三菱电机株式会社 电力转换装置
DE112015006992T5 (de) * 2015-10-01 2018-07-05 Mitsubishi Electric Corporation Dreiphasen-Induktionsmotor
JP2017092248A (ja) * 2015-11-10 2017-05-25 三菱アルミニウム株式会社 ヒートシンク
JP6635805B2 (ja) * 2016-01-26 2020-01-29 三菱電機株式会社 半導体装置
JP2017152612A (ja) * 2016-02-26 2017-08-31 株式会社デンソー 電力変換装置
EP3249685B1 (en) * 2016-05-24 2019-11-27 Mitsubishi Electric R&D Centre Europe B.V. System comprising at least one power module comprising at least one power die that is cooled by a liquid cooled busbar
US10462940B2 (en) * 2016-07-08 2019-10-29 CPS Technologies Thermal management device for heat generating power electronics incorporating high thermal conductivity pyrolytic graphite and cooling tubes
JP6873382B2 (ja) * 2017-02-10 2021-05-19 日立Astemo株式会社 半導体装置
KR102426767B1 (ko) * 2017-07-25 2022-07-29 엘지이노텍 주식회사 전력제어장치
CN111868923B (zh) * 2018-03-19 2023-10-13 三菱电机株式会社 液冷式冷却器
KR102590523B1 (ko) * 2018-05-28 2023-10-17 엘지이노텍 주식회사 컨버터
EP3606304A1 (de) * 2018-07-30 2020-02-05 Siemens Aktiengesellschaft Modularer stromrichter
US11070140B2 (en) * 2018-10-25 2021-07-20 Eaton Intelligent Power Limited Low inductance bus assembly and power converter apparatus including the same
WO2020100260A1 (ja) * 2018-11-15 2020-05-22 三菱電機株式会社 電力変換器
GB201818946D0 (en) * 2018-11-21 2019-01-09 Mclaren Applied Tech Ltd Cooling system
JP7135879B2 (ja) * 2019-01-18 2022-09-13 株式会社デンソー 電力変換装置
CN110958818B (zh) * 2019-12-11 2021-06-04 深圳绿色云图科技有限公司 单相浸没式液冷机柜及单相浸没式液冷系统
CN110958819B (zh) * 2019-12-11 2021-06-01 深圳绿色云图科技有限公司 冷却装置及单相浸没式液冷机柜
CN110996619B (zh) * 2019-12-11 2021-06-04 深圳绿色云图科技有限公司 单相浸没式液冷机柜
US10905031B1 (en) * 2019-12-27 2021-01-26 Baidu Usa Llc Universal cooling baseboard module
JP6945671B2 (ja) * 2020-02-28 2021-10-06 三菱電機株式会社 電力変換装置
JP7388257B2 (ja) * 2020-03-12 2023-11-29 株式会社デンソー 電力変換器
KR20210127528A (ko) * 2020-04-14 2021-10-22 엘지이노텍 주식회사 컨버터 모듈
JP6921282B1 (ja) * 2020-07-17 2021-08-18 三菱電機株式会社 電力変換装置
CN115474396A (zh) 2021-05-25 2022-12-13 冷王公司 电力装置和冷却板
EP4410065A1 (en) * 2021-09-27 2024-08-07 Volkswagen Aktiengesellschaft A cooling plate, a central compute unit, a vehicle and a manufacturing method for a vehicle

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414867B2 (en) * 2000-02-16 2002-07-02 Hitachi, Ltd. Power inverter
US7032695B2 (en) * 2002-01-16 2006-04-25 Rockwell Automation Technologies, Inc. Vehicle drive module having improved terminal design
US6898072B2 (en) * 2002-01-16 2005-05-24 Rockwell Automation Technologies, Inc. Cooled electrical terminal assembly and device incorporating same
EP1940011B1 (en) * 2002-09-13 2010-03-03 Aisin AW Co., Ltd. Drive unit
EP1548916B1 (en) * 2002-09-13 2008-07-02 Aisin Aw Co., Ltd. Drive device
JP4699820B2 (ja) 2005-06-28 2011-06-15 本田技研工業株式会社 パワー半導体モジュール
JP4850564B2 (ja) * 2006-04-06 2012-01-11 日立オートモティブシステムズ株式会社 電力変換装置
JP4857017B2 (ja) * 2006-04-27 2012-01-18 日立オートモティブシステムズ株式会社 電力変換装置
JP4434181B2 (ja) * 2006-07-21 2010-03-17 株式会社日立製作所 電力変換装置
JP4751810B2 (ja) * 2006-11-02 2011-08-17 日立オートモティブシステムズ株式会社 電力変換装置
JP5024600B2 (ja) * 2007-01-11 2012-09-12 アイシン・エィ・ダブリュ株式会社 発熱体冷却構造及びその構造を備えた駆動装置
JP4436843B2 (ja) * 2007-02-07 2010-03-24 株式会社日立製作所 電力変換装置
JP4305537B2 (ja) * 2007-03-15 2009-07-29 株式会社日立製作所 電力変換装置
JP4719187B2 (ja) * 2007-06-15 2011-07-06 トヨタ自動車株式会社 半導体素子の冷却構造
JP4216319B2 (ja) * 2007-06-19 2009-01-28 ファナック株式会社 インバータ筐体の冷却構造
JP5314933B2 (ja) 2008-06-02 2013-10-16 本田技研工業株式会社 電力変換装置
JP4657329B2 (ja) * 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
JP5260347B2 (ja) * 2009-02-06 2013-08-14 日立オートモティブシステムズ株式会社 電力変換装置
JP4797077B2 (ja) * 2009-02-18 2011-10-19 株式会社日立製作所 半導体パワーモジュール、電力変換装置、および、半導体パワーモジュールの製造方法
JP5344999B2 (ja) 2009-06-09 2013-11-20 三菱電機株式会社 ヒートシンク
US8169780B2 (en) * 2009-06-18 2012-05-01 Honda Motor Co., Ltd. Power conversion device
JP2011017516A (ja) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp プレート積層型冷却装置及びその製造方法
JP5702988B2 (ja) * 2010-01-29 2015-04-15 株式会社 日立パワーデバイス 半導体パワーモジュール及びそれが搭載される電力変換装置並びに半導体パワーモジュール搭載用水路形成体の製造方法
JP5813300B2 (ja) * 2010-08-23 2015-11-17 三桜工業株式会社 冷却装置
JP2012104583A (ja) * 2010-11-09 2012-05-31 Mitsubishi Electric Corp 電力変換装置
JP5568026B2 (ja) * 2011-01-20 2014-08-06 トヨタ自動車株式会社 ろう付け方法及びろう付け構造
JP5249365B2 (ja) * 2011-01-26 2013-07-31 三菱電機株式会社 電力変換装置
JP5655873B2 (ja) * 2012-05-09 2015-01-21 株式会社安川電機 インバータ装置
US20130312933A1 (en) * 2012-05-22 2013-11-28 Lear Corporation Coldplate for Use in an Electric Vehicle (EV) or a Hybrid-Electric Vehicle (HEV)
JP5726215B2 (ja) * 2013-01-11 2015-05-27 株式会社豊田中央研究所 冷却型スイッチング素子モジュール

Also Published As

Publication number Publication date
DE102013222496A1 (de) 2014-05-22
US20140140117A1 (en) 2014-05-22
JP2014103303A (ja) 2014-06-05
CN103839904B (zh) 2017-03-01
CN103839904A (zh) 2014-06-04
US9439324B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5694278B2 (ja) 電力変換装置
US9986665B2 (en) Power conversion apparatus
US8169780B2 (en) Power conversion device
US9673130B2 (en) Semiconductor device having a cooler
JP4770490B2 (ja) パワー半導体素子の冷却構造およびインバータ
CN110383470B (zh) 冷却系统
JP6296888B2 (ja) 電力変換装置
CA2575817A1 (en) Cooling structure of power conversion equipment
AU2014342857B2 (en) Heat sink device for power modules of power converter assembly
JP2011109740A (ja) 電力変換装置
JP4715529B2 (ja) パワー半導体素子の冷却構造
KR100888390B1 (ko) 플라즈마 아크 발생 시스템 및 플라즈마 아크 발생 시스템의 냉각 방법
EP3758059A1 (en) Power inverter device, arrangement and corresponding operating method
JP6735721B2 (ja) 鉄道車両用電力変換装置および鉄道車両
JP7379958B2 (ja) 電力変換装置
JP2023004273A (ja) 電力変換装置
JP7233510B1 (ja) 電力変換装置
JP2022019040A (ja) 電力変換装置
CN214378410U (zh) 功率模块底板、功率模块、控制器、汽车及电力电子装置
US20240379499A1 (en) Cooler and semiconductor device
JP6921282B1 (ja) 電力変換装置
JP2017055586A (ja) 電力変換装置
JP2010252462A (ja) 昇降圧コンバータ
JP2017092207A (ja) 冷却器

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5694278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees