JP5435932B2 - Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator - Google Patents
Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator Download PDFInfo
- Publication number
- JP5435932B2 JP5435932B2 JP2008301038A JP2008301038A JP5435932B2 JP 5435932 B2 JP5435932 B2 JP 5435932B2 JP 2008301038 A JP2008301038 A JP 2008301038A JP 2008301038 A JP2008301038 A JP 2008301038A JP 5435932 B2 JP5435932 B2 JP 5435932B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- sintered body
- alumina sintered
- manufacturing apparatus
- terms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、アルミナ質焼結体ならびに半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材に関するもので、特に、半導体製造装置の内壁材(チャンバー)やマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリングをはじめとする部材や、液晶パネル製造装置のステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等に用いる部材、さらにはマイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料等に好適に用いることができる。 The present invention relates to an alumina sintered body, a member for a semiconductor manufacturing apparatus, a member for a liquid crystal panel manufacturing apparatus, and a member for a dielectric resonator, and in particular, an inner wall material (chamber), a microwave introduction window, a shower of a semiconductor manufacturing apparatus. Used in parts such as heads, focus rings, shield rings, liquid crystal panel manufacturing equipment stages, mirrors, mask holders, mask stages, chucks, reticles, and other high-frequency regions such as microwaves and millimeter waves It can be suitably used for various resonator materials, MIC dielectric substrate materials, dielectric waveguide materials, and the like.
従来から、アルミナ質焼結体は耐熱性、耐薬品性、耐プラズマ性に優れ、さらに高周波領域での誘電正接(tanδ)が小さいことから、半導体、液晶用高周波プラズマ装置用部材などに用いられている。 Conventionally, alumina sintered bodies are excellent in heat resistance, chemical resistance, and plasma resistance, and have a low dielectric loss tangent (tan δ) in the high frequency region, so they have been used for semiconductors and high frequency plasma device members for liquid crystals. ing.
半導体または液晶パネルの製造装置用部材はエッチング、クリーニング用として使用される反応性の高いハロゲン系腐食ガスやそれらのプラズマと接触するため、高い耐腐食性が要求され、一般的に99.0質量%以上の高純度のアルミナ質焼結体が求められている。一方、高純度のアルミナ質焼結体となるにつれて焼結性の観点から誘電正接が増加し、これによりMHz帯での高周波の透過率が低下し、エネルギーロスの増加、発熱による部材の破損といった問題が発生することが知られている。 Semiconductor or liquid crystal panel manufacturing equipment members are in contact with highly reactive halogen-based corrosive gases used for etching and cleaning, and their plasmas, and therefore require high corrosion resistance, and generally 99.0 mass. % Or more high-purity alumina sintered body is required. On the other hand, the dielectric loss tangent increases from the viewpoint of sinterability as it becomes a high-purity alumina sintered body, which decreases the high-frequency transmittance in the MHz band, increases energy loss, breaks the member due to heat generation, etc. Problems are known to occur.
アルミナ質焼結体の低損失化について、焼結助剤としてSiO2、CaO、MgOを含有させ、その含有量をコントロールし、ある範囲内とすることで、低温で焼成しつつ、高周波誘電特性を向上させたアルミナ質焼結体が知られている(例えば、特許文献1参照)。 For reducing the loss of the alumina sintered body, SiO 2 , CaO, and MgO are included as sintering aids, and the content is controlled to be within a certain range. There is known an alumina sintered body with improved sinter (see, for example, Patent Document 1).
この特許文献1では、アルミナ99.8〜99.9質量%と、残部が所定比率のSiO2、CaO、MgOからなる粒界相成分とから構成し、測定周波数8GHzにおけるQ値が10000以上(誘電正接が0.0001以下)のマイクロ波共振器用等のアルミナ質焼結体が得られたことが記載されている。
特許文献1のようにSiO2、CaO、MgOを含有したアルミナ質焼結体は、測定周波数8GHzにおける誘電正接が0.0001以下のものが得られている。しかしながら、MHz帯での誘電正接が大きく、例えば、MHz帯の高周波が使用される半導体用高周波プラズマ装置用部材等に用いた場合には、MHz帯の高周波の透過率が低下し、エネルギーロスの増加、発熱による部材の破損といった問題が生じている。さらに、近年ではMHz帯〜GHz帯の広い周波数領域での用途があり、そこでの低損失化が求められていた。 As in Patent Document 1, an alumina sintered body containing SiO 2 , CaO, and MgO has a dielectric loss tangent of 0.0001 or less at a measurement frequency of 8 GHz. However, the dielectric loss tangent in the MHz band is large. For example, when used for a member for a high-frequency plasma device for semiconductors in which a high frequency in the MHz band is used, the transmittance of the high frequency in the MHz band is reduced, and energy loss Problems such as increase and damage to members due to heat generation have occurred. Furthermore, in recent years, there are applications in a wide frequency range from the MHz band to the GHz band, and a reduction in loss has been demanded there.
本発明は、MHz帯〜GHz帯における誘電正接を小さくできるアルミナ質焼結体およびその製法ならびに半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材を提供することを目的とする。 An object of the present invention is to provide an alumina sintered body capable of reducing the dielectric loss tangent in the MHz band to the GHz band, a manufacturing method thereof, a member for a semiconductor manufacturing apparatus, a member for a liquid crystal panel manufacturing apparatus, and a member for a dielectric resonator. .
本発明のアルミナ質焼結体は、AlをAl2O3換算で99.3質量%以上、SiをSiO 2 換算で0.05〜0.32質量%、SrをSrO換算で0.01〜0.16質量%含有するとともに、アルミナ結晶粒子を主結晶粒子としてなり、該アルミナ結晶粒子で構成される3重点にSi、Al、SrおよびOの各元素を含有する結晶相が存在し、該結晶相が前記3重点のうち60%以上に存在し、かつ前記アルミナ結晶粒子の平均粒径が10μm未満であることを特徴とする。
Alumina sintered body of the present invention, the A l Al 2 O 3 in terms of 99.3 mass% or more, 0.05 to 0.32 wt% of Si in terms of SiO 2, the Sr in terms of SrO 0.01 ~ 0.16% by mass and alumina crystal particles as the main crystal particles, there is a crystal phase containing each element of Si, Al, Sr and O at the triple point composed of the alumina crystal particles , the crystal phase is present in 60% or more of the triple point, and the average particle size of the alumina crystal particles, characterized in der Rukoto less than 10 [mu] m.
このようなアルミナ質焼結体では、元素としてAlをAl2O3換算で99.3質量%以上含有するため、アルミナ本来の優れた耐腐食性と機械的特性、電気特性を維持することができるとともに、アルミナ結晶粒子で構成される3重点に、従来の粒界相成分からなるガラスではなく、Si、Al、SrおよびO元素を含有する低損失の結晶相が存在するため、従来よりもMHz帯〜GHz帯で低損失のアルミナ質焼結体を得ることができる。 Such an alumina sintered body contains Al as an element in an amount of 99.3% by mass or more in terms of Al 2 O 3 , so that it can maintain the original excellent corrosion resistance, mechanical characteristics, and electrical characteristics of alumina. In addition, since there is a low-loss crystal phase containing Si, Al, Sr and O elements in the triple point composed of alumina crystal particles, instead of the conventional glass composed of grain boundary phase components, A low-loss alumina sintered body can be obtained in the MHz band to the GHz band.
また、本発明のアルミナ質焼結体は、前記結晶相がSrAl2Si2O8型結晶相であることを特徴とする。SrAl2Si2O8型結晶相はMHz帯〜GHz帯で低損失であるため、MHz帯〜GHz帯で低損失のアルミナ質焼結体を得ることができる。 The alumina sintered body of the present invention is characterized in that the crystal phase is a SrAl 2 Si 2 O 8 type crystal phase. Since the SrAl 2 Si 2 O 8 type crystal phase has a low loss in the MHz band to the GHz band, an alumina sintered body having a low loss in the MHz band to the GHz band can be obtained.
さらに、本発明のアルミナ質焼結体は、元素としてMgおよびCaのうち少なくとも1種を含有することが望ましい。このようなアルミナ質焼結体では、Mg、Caは焼結助剤として機能し、焼結性を向上することができ、MHz帯〜GHz帯でより低損失のアルミナ質焼結体を得ることができる。さらに、焼結性が向上するため、例えば、肉厚の厚い焼結体の厚さ方向中央部が十分に焼結し、肉厚の厚い焼結体全体の機械的強度等の特性を向上できる。また、Caを含有する場合には、Si、Al、Sr、Ca、O元素を含む低損失のSrAl2Si2O8型結晶相、例えば、(Sr、Ca)Al2Si2O8で表される結晶が生成することにより、アルミナ質焼結体の誘電正接をさらに低下できる。 Furthermore, the alumina sintered body of the present invention desirably contains at least one of Mg and Ca as an element. In such an alumina sintered body, Mg and Ca can function as a sintering aid, improve the sinterability, and obtain a lower loss alumina sintered body in the MHz band to the GHz band. Can do. Furthermore, since the sinterability is improved, for example, the central portion in the thickness direction of the thick sintered body is sufficiently sintered, and the characteristics such as the mechanical strength of the entire thick sintered body can be improved. . When Ca is contained, the low-loss SrAl 2 Si 2 O 8 type crystal phase containing Si, Al, Sr, Ca, and O elements, for example, (Sr, Ca) Al 2 Si 2 O 8 By forming the crystal to be produced, the dielectric loss tangent of the alumina sintered body can be further reduced.
また、本発明のアルミナ質焼結体は、前記Si、Al、SrおよびOの各元素を含有する結晶相が、前記アルミナ結晶粒子で構成される3重点のうち60%以上の3重点に存在することを特徴とする。 In the alumina sintered body of the present invention, the crystal phase containing each element of Si, Al, Sr, and O exists at a triple point of 60% or more of the triple points composed of the alumina crystal particles. It is characterized by doing.
このようなアルミナ質焼結体では、焼結体中の3重点の60%以上にSi、Al、SrおよびOの各元素を含有する低損失の結晶相が存在するため、また一方で、誘電正接を大きくする非晶質相の存在比率が少なくなるため、周波数1MHz〜8.5GHzにおける誘電正接を小さくすることができる。 In such an alumina sintered body, a low-loss crystal phase containing each element of Si, Al, Sr and O is present in 60% or more of the triple points in the sintered body. Since the existence ratio of the amorphous phase that increases the tangent is reduced, the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be reduced.
本発明のアルミナ質焼結体では、前記アルミナ結晶粒子の平均粒径が10μm未満であることを特徴とする。このようなアルミナ質焼結体では、強度を向上できる。 The alumina sintered body of the present invention is characterized in that the average particle diameter of the alumina crystal particles is less than 10 μm. Such an alumina sintered body can improve strength.
本発明のアルミナ質焼結体の製法は、99.3質量%以上のアルミナ粉末に、焼成後における含有量として、SiをSiO 2 換算で0.05〜0.32質量%、SrをSrO換算で0.01〜0.16質量%となるSi源およびSr源を含有する混合物を大気中で熱処理してなる原料粉末を混合した後、所定形状に成形し、大気中で焼成することを特徴とする。
The manufacturing method of the alumina sintered body of the present invention is as follows. The content after firing to 99.3% by mass or more of alumina powder is 0.05 to 0.32% by mass in terms of SiO 2 and Sr in terms of SrO. After mixing a raw material powder obtained by heat-treating a mixture containing Si source and Sr source in an amount of 0.01 to 0.16% by mass in the air, it is molded into a predetermined shape and fired in the air And
このようなアルミナ質焼結体の製法では、Sr源およびSi源を含有する混合物を大気中で熱処理し、SrとSiとが一部反応し合成された原料粉末を作製した上で、この粒界相を形成する原料粉末をアルミナ粉末に添加し、混合し、大気中で焼成するため、アルミナ粉末中に、粒界相を形成するための微量の原料粉末を十分に均一に混合することができ、焼成時に粒界相を形成する原料粉末が溶融し、アルミナ結晶粒子で構成される3重点に集合し、AlとSrおよびSiとが反応し、Si、Al、SrおよびO元素を含有する化合物からなる低損失の結晶相がアルミナ結晶粒子の3重点に存在することになる。
In such a method for producing an alumina sintered body, a mixture containing an Sr source and an Si source is heat-treated in the atmosphere to produce a raw material powder in which Sr and Si are partially reacted and synthesized. The raw material powder for forming the boundary phase is added to the alumina powder, mixed, and fired in the atmosphere. Therefore, a small amount of raw material powder for forming the grain boundary phase can be sufficiently uniformly mixed in the alumina powder. The raw material powder that forms the grain boundary phase at the time of firing melts and gathers at the triple point composed of alumina crystal particles, and Al, Sr, and Si react to contain Si, Al, Sr, and O elements A low-loss crystal phase composed of a compound exists at the triple point of the alumina crystal particles.
本発明の半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材は、上記のアルミナ質焼結体からなることを特徴とする。このような半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材では、MHz〜GHzの間の周波数領域において誘電正接が小さいため、MHz〜GHz帯での高周波の透過率を向上でき、エネルギーロスを低減し、発熱による部材の破損を抑制することができる。 The member for a semiconductor manufacturing apparatus, the member for a liquid crystal panel manufacturing apparatus, and the member for a dielectric resonator according to the present invention are made of the above-mentioned alumina sintered body. Such a member for a semiconductor manufacturing apparatus, a member for a liquid crystal panel manufacturing apparatus, and a member for a dielectric resonator have a small dielectric loss tangent in a frequency region between MHz and GHz, so that high-frequency transmittance in the MHz to GHz band is improved. Energy loss can be reduced, and damage to the member due to heat generation can be suppressed.
本発明のアルミナ質焼結体では、AlをAl2O3換算で99.3質量%以上含有するため、アルミナ本来の優れた耐腐食性と機械的特性、電気特性を維持することができるとともに、SiをSiO 2 換算で0.05〜0.32質量%、SrをSrO換算で0.01〜0.16質量%含有し、アルミナ結晶粒子で構成される3重点に、従来の粒界相成分からなるガラスではなく、Si、Al、SrおよびO元素を含有する低損失の結晶相が3重点のうち60%以上と多く存在するため、従来よりもMHz帯〜GHz帯で低損失のアルミナ質焼結体を得ることができる。
In the alumina sintered body of the present invention, since Al is contained in an amount of 99.3% by mass or more in terms of Al 2 O 3 , the original excellent corrosion resistance, mechanical properties, and electrical properties of alumina can be maintained. , Si is contained in 0.05 to 0.32 mass% in terms of SiO 2 , Sr is contained in 0.01 to 0.16 mass% in terms of SrO , and the conventional grain boundary phase is composed of triple points composed of alumina crystal particles. A low loss crystal phase containing Si, Al, Sr, and O elements, not glass composed of components, is present in more than 60% of the triple points, so that the loss of alumina in the MHz to GHz band is lower than before. A quality sintered body can be obtained.
また、本発明のアルミナ質焼結体の製法では、アルミナ粉末中に、粒界相を形成するための微量の原料粉末を十分に均一に混合することができ、焼成時に粒界相を形成する原料粉末が溶融し、アルミナ結晶粒子の3重点に集合し、AlとSrおよびSiとが反応し、Si、Al、SrおよびO元素を含有する低損失の結晶相がアルミナ結晶粒子の3重点に存在した組織とできる。 In the method for producing an alumina sintered body of the present invention, a small amount of raw material powder for forming a grain boundary phase can be sufficiently uniformly mixed in the alumina powder, and the grain boundary phase is formed during firing. The raw material powder melts, gathers at the triple point of the alumina crystal particles, Al reacts with Sr and Si, and the low-loss crystal phase containing Si, Al, Sr and O elements becomes the triple point of the alumina crystal particles. It can be an existing organization.
さらに、本発明の半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材では、MHz〜GHzの間の周波数領域において誘電正接が小さいため、MHz〜GHz帯での高周波の透過率を向上でき、エネルギーロスを低減し、発熱による部材の破損を抑制することができる。 Furthermore, in the semiconductor manufacturing device member, the liquid crystal panel manufacturing device member, and the dielectric resonator member of the present invention, the dielectric loss tangent is small in the frequency range between MHz and GHz, and therefore, the high frequency transmittance in the MHz to GHz band. Can be improved, energy loss can be reduced, and damage to the member due to heat generation can be suppressed.
本発明のアルミナ質焼結体は、アルミナ結晶粒子を主結晶粒子とし、元素としてSiおよびSrを含有するアルミナ質焼結体であって、アルミナ結晶粒子で構成される3重点にSi、Al、SrおよびO元素を含有する低損失の結晶相が存在する。図1に、アルミナ質焼結体の概略断面図を示す。符号1はアルミナ結晶粒子であり、符号2は3重点である。 The alumina sintered body of the present invention is an alumina sintered body containing alumina crystal particles as main crystal particles and containing Si and Sr as elements, wherein Si, Al, There is a low-loss crystalline phase containing Sr and O elements. FIG. 1 shows a schematic cross-sectional view of an alumina sintered body. Reference numeral 1 is alumina crystal particles, and reference numeral 2 is a triple point.
本出願において、アルミナ結晶粒子1で構成される3重点2とは、3個以上のアルミナ結晶粒子1で形成される粒界で、2つのアルミナ結晶粒子1で構成される2面間粒界5とは異なる。 In the present application, the triple point 2 constituted by the alumina crystal particles 1 is a grain boundary formed by three or more alumina crystal particles 1, and a two-plane grain boundary 5 constituted by two alumina crystal particles 1. Is different.
一般的なアルミナ質焼結体では、焼結助剤として加えた副成分がアルミナ結晶粒子間にガラス、あるいは誘電正接の高い結晶として存在し、アルミナ質焼結体全体の誘電正接を増大させる傾向があった。しかしながら、本願発明のように、アルミナ結晶粒子で構成される3重点に、Si、Al、SrおよびO元素を含有する低損失の結晶相を析出させると、この結晶相自身の誘電正接が低い為、アルミナ質焼結体全体のMHz帯〜GHz帯での誘電正接を低下させることができる。 In general alumina sintered bodies, subcomponents added as sintering aids exist between the alumina crystal particles as glass or crystals with a high dielectric loss tangent, and tend to increase the dielectric loss tangent of the entire alumina sintered body. was there. However, when a low-loss crystal phase containing Si, Al, Sr, and O elements is deposited on the triple point composed of alumina crystal particles as in the present invention, the crystal phase itself has a low dielectric loss tangent. Moreover, the dielectric loss tangent in the MHz band to the GHz band of the entire alumina sintered body can be reduced.
尚、上記したように、従来、Mg、Ca等のアルカリ土類金属が焼結助剤として知られていたが、アルカリ土類金属のうち、Sr、Baについてはイオン半径が大きいため、焼結助剤として用いられておらず、特に、Srについては、積極的に使用した例は存在しない。本発明では、特にSrについては、焼結助剤として用いるのではなく、低誘電正接の結晶相であるSrAl2Si2O8型結晶相を析出させるために用い、その低誘電正接の結晶相の存在により直接的にアルミナ質焼結体の誘電正接を低くできる。 In addition, as described above, alkaline earth metals such as Mg and Ca have been conventionally known as sintering aids, but among alkaline earth metals, Sr and Ba have a large ionic radius, so sintering. It is not used as an auxiliary agent, and in particular, there is no example of actively using Sr. In the present invention, in particular, Sr is not used as a sintering aid, but is used to precipitate SrAl 2 Si 2 O 8 type crystal phase which is a low dielectric loss tangent crystal phase. Therefore, the dielectric loss tangent of the alumina sintered body can be lowered directly.
Si、Al、SrおよびO元素を含有する低損失の結晶相は、電気的特性の観点より、SrAl2Si2O8型結晶であることが好ましく、本結晶の生成により誘電正接を低減できる。Si、Al、SrおよびO元素を含有する低損失の結晶相としては、他に、SrAl2Si2O8の定比組成ではなく、化学量論組成から少しずれたものであっても良い。尚、本発明においては、SrAl2Si2O8型結晶とは、構成元素の一部が他の元素で置換されたものも含む概念である。例えば、(Sr,Ca)Al2Si2O8等、SrAl2Si2O8の構成元素の一部が他の元素で置換されたものも含む概念である。 The low-loss crystal phase containing Si, Al, Sr, and O elements is preferably a SrAl 2 Si 2 O 8 type crystal from the viewpoint of electrical characteristics, and the generation of this crystal can reduce the dielectric loss tangent. As a low-loss crystal phase containing Si, Al, Sr and O elements, other than the stoichiometric composition of SrAl 2 Si 2 O 8 , it may be slightly deviated from the stoichiometric composition. In the present invention, the SrAl 2 Si 2 O 8 type crystal is a concept including one in which a part of the constituent elements is replaced with another element. For example, it is a concept that includes one in which some of the constituent elements of SrAl 2 Si 2 O 8 are substituted with other elements, such as (Sr, Ca) Al 2 Si 2 O 8 .
本発明では、アルミナ結晶粒子1で構成される3重点2のうち60%以上の3重点2に、元素としてSi、AlおよびSrを含有する化合物からなる結晶相が存在していることが望ましい。アルミナ結晶粒子1で構成される3重点2のうち60%以上の3重点2に結晶相が存在するとは、アルミナ質焼結体の任意断面の所定面積において、アルミナ結晶粒子1で構成される多数の3重点2のうちの少なくとも60%に、Si、AlおよびSrを含有する化合物からなる結晶相が存在していることを意味する。 In the present invention, it is desirable that a crystal phase composed of a compound containing Si, Al, and Sr as elements exists in the triple point 2 of 60% or more of the triple point 2 constituted by the alumina crystal particles 1. The crystal phase is present in the triple point 2 of 60% or more of the triple point 2 constituted by the alumina crystal particles 1. This means that a crystal phase composed of a compound containing Si, Al and Sr exists in at least 60% of the triple point 2 of the above.
本発明では、多数の3重点2のうちの少なくとも60%に、Si、AlおよびSrを含有する化合物からなる結晶相を存在せしめるために、後述するように、結晶相を構成する原料粉末を混合粉砕し、この混合粉末を仮焼し、Si、AlおよびSrを含有する化合物からなる結晶相を合成し、アルミナ粉末に添加している。または、Si、AlおよびSrを含有する化合物からなる結晶相を存在せしめるために、SiおよびSrの原料粉末を混合粉砕し、この混合粉末を仮焼し、これをアルミナ粉末に添加している。 In the present invention, at least 60% of the many triple points 2 are mixed with the raw material powder constituting the crystal phase, as will be described later, so that the crystal phase composed of the compound containing Si, Al and Sr exists. The mixed powder is pulverized and calcined to synthesize a crystal phase composed of a compound containing Si, Al and Sr and added to the alumina powder. Alternatively, in order to make a crystal phase composed of a compound containing Si, Al, and Sr exist, raw material powders of Si and Sr are mixed and pulverized, the mixed powder is calcined, and this is added to the alumina powder.
このように、低誘電正接の結晶相が3重点2のうち60%以上の3重点2に存在するため、アルミナ質焼結体の低誘電正接化をさらに図ることができる。1MHz〜8.5GHzの間の周波数領域においても誘電正接を低下させるためには、低誘電正接の結晶相が存在する粒界3重点2の比率は80%以上が好ましい。 Thus, since the low dielectric loss tangent crystal phase is present in the triple point 2 of 60% or more of the triple points 2, the alumina sintered body can be further reduced in the dielectric loss tangent. In order to reduce the dielectric loss tangent even in the frequency region between 1 MHz and 8.5 GHz, the ratio of the grain boundary triple point 2 where the crystal phase of the low dielectric loss tangent exists is preferably 80% or more.
また、本発明では、アルミナ結晶粒子1で構成される3重点2で、上記結晶相が存在していない3重点2には、元素としてSi、AlおよびSrを含有する非晶質相が存在しているか、もしくは、後述する結晶相が存在している。この元素としてSi、AlおよびSrを含有する非晶質相が存在する3重点は、実質的に存在しないか、任意断面の所定面積において50%以下とされている。 In the present invention, the triple point 2 composed of the alumina crystal particles 1 and the triple point 2 where the above crystal phase does not exist has an amorphous phase containing Si, Al and Sr as elements. Or a crystal phase to be described later exists. The triple point where an amorphous phase containing Si, Al, and Sr as elements exists does not substantially exist or is 50% or less in a predetermined area of an arbitrary cross section.
また、本発明のアルミナ質焼結体は、さらにMgAl2O4およびCaAl12O19で表される化合物からなる結晶相のうち少なくとも一種を含有することが望ましい。これらの結晶は、アルミナ結晶粒子1で構成される3重点2に存在している。これら結晶相を生成させることで、誘電正接を高くする非晶質相を減少させることができ、1MHz〜8.5GHzの領域において誘電正接を低下させることができる。特にMgAl2O4、CaAl12O19は、GHz帯での誘電正接が低いため、アルミナ質焼結体のGHz帯の誘電正接低下に有効である。 Moreover, it is desirable that the alumina sintered body of the present invention further contains at least one of crystal phases composed of compounds represented by MgAl 2 O 4 and CaAl 12 O 19 . These crystals are present at the triple point 2 composed of the alumina crystal particles 1. By generating these crystal phases, the amorphous phase that increases the dielectric loss tangent can be reduced, and the dielectric loss tangent can be lowered in the region of 1 MHz to 8.5 GHz. In particular, MgAl 2 O 4 and CaAl 12 O 19 have a low dielectric loss tangent in the GHz band, and are therefore effective in reducing the dielectric loss tangent in the GHz band of an alumina sintered body.
本発明のアルミナ質焼結体は、アルミナの結晶粒子の平均粒径D50が10μm未満とされている。このように平均粒径が小さいため、誘電正接は若干大きくなるが、焼結体強度を向上することができる。低い誘電正接を得るという観点から、アルミナ結晶粒子1の平均粒径D50は5μm以上が好ましい。尚、平均粒径D50とは、累積粒度分布の微粒側から累積50%の粒径をいう。 Alumina sintered body of the present invention has an average particle diameter D 50 of the crystal grains of alumina is less than 10 [mu] m. Since the average particle size is small in this way, the dielectric loss tangent is slightly increased, but the strength of the sintered body can be improved. From the viewpoint of obtaining a low dielectric loss tangent, the average particle diameter D 50 of the alumina crystal particles 1 is preferably 5 μm or more. Incidentally, the average particle diameter D 50, refers to the particle size of cumulative 50% fine particle side of the cumulative particle size distribution.
そして、本発明のアルミナ質焼結体は、AlをAl2O3換算で99.3質量%以上含有し、元素としてSiおよびSrを含有するものであるが、副成分として、SiおよびSrの他にMgを含むことができる。Mgは任意成分ではあるが、Mgを含有することにより、誘電正接等の電気特性を向上することができるとともに、焼結性を向上することができ、機械的強度を向上できる。 The alumina sintered body of the present invention contains Al in an amount of 99.3% by mass or more in terms of Al 2 O 3 and contains Si and Sr as elements. In addition, Mg can be contained. Mg is an optional component, but by containing Mg, electrical characteristics such as dielectric loss tangent can be improved, sinterability can be improved, and mechanical strength can be improved.
副成分としてSi、Mg、Sr以外にCaを含むことが望ましい。Caは必ずしも必要なものではないが、Mgと同様に添加することによって焼結性が改善されるため、電気的・機械的特性の観点から適量加えることが好ましい。Caを含む場合には、アルミナ結晶粒子間にSi、Al、Sr、Ca、O元素を含む低損失のSrAl2Si2O8型結晶相が形成する。この低損失結晶相は、電気的特性の観点より(Sr,Ca)Al2Si2O8で表される化合物であることが好ましい。(Sr,Ca)Al2Si2O8だけでなく、化学量論組成から少しずれたものであっても良い。 In addition to Si, Mg and Sr, it is desirable to contain Ca as a subcomponent. Although Ca is not necessarily required, it is preferably added in an appropriate amount from the viewpoint of electrical and mechanical properties since the sinterability is improved by adding it in the same manner as Mg. When Ca is contained, a low-loss SrAl 2 Si 2 O 8 type crystal phase containing Si, Al, Sr, Ca, and O elements is formed between the alumina crystal particles. This low-loss crystal phase is preferably a compound represented by (Sr, Ca) Al 2 Si 2 O 8 from the viewpoint of electrical characteristics. Not only (Sr, Ca) Al 2 Si 2 O 8 but also a slight deviation from the stoichiometric composition may be used.
本発明のアルミナ質焼結体は、AlをAl2O3換算で99.3質量%以上、その他副成分を0.7質量%以下含有することが望ましい。AlをAl2O3換算で99.3質量%以上含有することにより、焼結性の改善と同時にAl2O3の優れた耐腐食性と機械的特性、電気特性を維持することが可能となる。副成分の量が0.7質量%以上となると、機械的・電気的特性の低下、耐プラズマ性の低下へと繋がる。よってAlをAl2O3換算で99.3質量%以上、副成分は0.7質量%以下とするのが好ましい。 The alumina sintered body of the present invention preferably contains 99.3% by mass of Al in terms of Al 2 O 3 and 0.7% by mass or less of other subcomponents. By containing Al Al 2 O 3 in terms of 99.3% by mass or more, can maintain excellent corrosion resistance and mechanical properties at the same time Al 2 O 3 and improvement of the sinterability, the electrical characteristics Become. When the amount of the subcomponent is 0.7% by mass or more, it leads to a decrease in mechanical / electrical characteristics and a decrease in plasma resistance. Therefore, it is preferable that Al is 99.3% by mass or more in terms of Al 2 O 3 and the subcomponent is 0.7% by mass or less.
前記副成分は、焼結体中、SiをSiO2換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%、MgをMgO換算で0.01〜0.1質量%、CaをCaO換算で0.01〜0.16質量%含有することが好ましい。このような組成範囲とすることによって、Al2O3の焼結性向上とSi、Al、Sr、O元素を含む結晶の生成による機械的特性、電気的特性の改善が可能となる。 0.01 The subcomponent in the sintered body, 0.05-0.3 wt% of Si in terms of SiO 2, 0.01 to 0.16 wt% of Sr in terms of SrO, and Mg in terms of MgO It is preferable to contain 0.1 mass% and Ca 0.01-0.16 mass% in conversion of CaO. By setting it as such a composition range, it becomes possible to improve the sinterability of Al 2 O 3 and to improve the mechanical characteristics and electrical characteristics by generating crystals containing Si, Al, Sr, and O elements.
本発明のアルミナ質焼結体は、産業機械用部品として用いられ、とりわけ半導体製造装置や液晶パネル製造装置に用いられる大型で、厚みのある部材として好適に用いることができる。本発明における半導体製造装置用部材とは、半導体製造装置の内壁材(チャンバー)やマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリング等をいう。液晶パネル製造装置用部材とは、ステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等をいう。 The alumina-based sintered body of the present invention is used as a part for industrial machinery, and can be suitably used as a large and thick member used especially for a semiconductor manufacturing apparatus or a liquid crystal panel manufacturing apparatus. The member for a semiconductor manufacturing apparatus in the present invention means an inner wall material (chamber), a microwave introduction window, a shower head, a focus ring, a shield ring, or the like of the semiconductor manufacturing apparatus. A member for a liquid crystal panel manufacturing apparatus refers to a stage, a mirror, a mask holder, a mask stage, a chuck, a reticle, and the like.
特に、半導体や液晶パネルの製造装置用部材として応用するためには、ハロゲン系ガス下でのプラズマに対する耐食性に優れる必要があるため、AlをAl2O3換算で99.5質量%以上とするのが好ましい。焼結性という観点から、AlをAl2O3換算で99.9質量%以下であることが望ましい。なお、ハロゲン系ガスとしては、例えばSF6、CF4、CHF3、ClF3、NF3、C4F8、HF等のフッ素系ガス、Cl2、HCl、BCl3、CCl4等の塩素系ガス、或いはBr2、HBr、BBr3等の臭素系ガスなどがある。また、半導体、液晶パネルなどのエッチング効果を高めるために上記ハロゲン系ガスとともにAr等の不活性ガスを導入してプラズマを発生させることもある。 In particular, in order to be applied as a member for a semiconductor or liquid crystal panel manufacturing apparatus, it is necessary to have excellent corrosion resistance against plasma under a halogen-based gas, so Al is 99.5% by mass or more in terms of Al 2 O 3. Is preferred. From the viewpoint of sinterability, it is desirable that Al is 99.9% by mass or less in terms of Al 2 O 3 . Examples of the halogen-based gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , and HF, and chlorine-based gases such as Cl 2 , HCl, BCl 3 , and CCl 4. There is a gas or a bromine-based gas such as Br 2 , HBr, or BBr 3 . In order to enhance the etching effect of semiconductors, liquid crystal panels, etc., plasma may be generated by introducing an inert gas such as Ar together with the halogen-based gas.
さらに本発明のアルミナ質焼結体は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等としても用いられる。特に種々の誘電体共振器の支持体等の誘電体共振器用部材としても好適に使用できる。 Furthermore, the alumina sintered body of the present invention is also used as a dielectric resonator, a dielectric substrate for MIC, a waveguide or the like in a high frequency region such as a microwave or a millimeter wave. In particular, it can be suitably used as a dielectric resonator member such as a support for various dielectric resonators.
次に、本発明のアルミナ質焼結体の製法について説明する。低誘電正接のアルミナ質焼結体を得るには、アルミナ結晶粒子により構成される3重点に、MHz帯〜GHz帯での誘電正接の低い結晶相が生成することが重要である。焼結性向上による高密度化を達成することにより、さらに低誘電正接のアルミナ質焼結体を得ることができる。 Next, the manufacturing method of the alumina sintered body of this invention is demonstrated. In order to obtain an alumina sintered body having a low dielectric loss tangent, it is important that a crystal phase having a low dielectric loss tangent in the MHz band to the GHz band is generated at the triple point composed of alumina crystal particles. By achieving a higher density by improving the sinterability, an alumina sintered body having a lower dielectric loss tangent can be obtained.
本発明のアルミナ質焼結体の製法は、アルミナ粉末に、Si源とSr源とを混合して大気中で熱処理した原料粉末を混合し、この混合粉末を成形したのち、大気中で1500〜1800℃で焼成する。 In the method for producing an alumina sintered body of the present invention, the raw material powder obtained by mixing the Si source and the Sr source and heat-treating in the air is mixed with the alumina powder. Bake at 1800 ° C.
Sr源とSi源とを混合し焼成した原料粉末とは、Si源とSr源とを、例えばSrAl2Si2O8型結晶相を生成するように所定の比率で混合し、大気中500℃〜1400℃で熱処理(仮焼ともいう)することによって得られる粉末である。ここでいうSi源、Sr源としては、金属、酸化物、水酸化物、炭酸塩、硝酸塩等の塩類のいずれであっても良い。SiとSrの原料粉末を用いることで、アルミナ質焼結体中でのSiとSrの分布を均一なものとし、不均一な焼結組織をなくすことが可能となる。 The raw material powder obtained by mixing and firing the Sr source and the Si source is prepared by mixing the Si source and the Sr source at a predetermined ratio so as to generate, for example, an SrAl 2 Si 2 O 8 type crystal phase, and is 500 ° C. in the atmosphere. It is a powder obtained by heat treatment (also referred to as calcination) at ˜1400 ° C. The Si source and Sr source here may be any of metals, oxides, hydroxides, carbonates, nitrates, and other salts. By using the raw material powder of Si and Sr, the distribution of Si and Sr in the alumina sintered body can be made uniform, and the non-uniform sintered structure can be eliminated.
また、SiとSrの反応を優先的に起こし、アルミナ結晶粒子間にSiとSr、Al、O元素からなる誘電正接の低い結晶を生成することが可能となる。SiとSrの分布が不均一であると、非晶質相(ガラス)あるいは高誘電正接の結晶相が生成し、アルミナ質焼結体全体の誘電正接が増大する原因となる。 In addition, it is possible to preferentially cause the reaction between Si and Sr to generate a crystal having a low dielectric loss tangent composed of Si, Sr, Al, and O elements between alumina crystal particles. If the distribution of Si and Sr is not uniform, an amorphous phase (glass) or a crystalline phase having a high dielectric loss tangent is generated, which causes an increase in the dielectric loss tangent of the entire alumina sintered body.
尚、Si源とSr源とAl源とを、SrAl2Si2O8型結晶を生成するように所定の比率で混合し、大気中500℃〜1400℃で焼成し、直接SrAl2Si2O8型結晶を生成し、これをアルミナ粉末に添加することもできる。この場合には、より確実にSrAl2Si2O8型結晶をアルミナ質焼結体中に分散できる。 In addition, Si source, Sr source, and Al source are mixed at a predetermined ratio so as to produce SrAl 2 Si 2 O 8 type crystals, fired at 500 ° C. to 1400 ° C. in the atmosphere, and directly SrAl 2 Si 2 O. It is also possible to produce type 8 crystals and add them to the alumina powder. In this case, the SrAl 2 Si 2 O 8 type crystal can be more reliably dispersed in the alumina sintered body.
原料粉末には、Sr源とSi源以外に、Ca源を混合し仮焼する場合もある。Ca源としては、金属、酸化物、水酸化物、炭酸塩、硝酸塩等の塩類のいずれであっても良い。 The raw material powder may be calcined by mixing a Ca source in addition to the Sr source and the Si source. The Ca source may be any metal, oxide, hydroxide, carbonate, nitrate, or other salt.
アルミナ粉末に、上記Sr源とSi源、またはSr源とSi源とCa源とを混合し大気中で仮焼した原料粉末と、Mg源を含む原料粉末を混合し、大気中で焼成する場合もある。Mg源としては、金属、金属酸化物、金属水酸化物、金属炭酸塩などの塩類等を粉末あるいは水溶液等として使用することが可能である。 When the raw material powder obtained by mixing the Sr source and Si source or the Sr source, Si source and Ca source and calcining in the atmosphere with the alumina powder and the raw material powder containing the Mg source and firing in the air There is also. As the Mg source, it is possible to use salts such as metals, metal oxides, metal hydroxides, and metal carbonates as powders or aqueous solutions.
成形には、プレス成形、鋳込み、冷間静水圧成形、或いは冷間静水圧処理などの成形法が使用可能である。次に、得られた成形体を大気中で1500〜1800℃の温度範囲で焼成する。これにより高密度で、アルミナ結晶粒子で構成される3重点にSi、Sr、Al、O元素を含有する化合物からなる結晶相が生成したアルミナ質焼結体を作製することが可能となる。 For molding, a molding method such as press molding, casting, cold isostatic pressing, or cold isostatic pressing can be used. Next, the obtained molded body is fired in the temperature range of 1500 to 1800 ° C. This makes it possible to produce an alumina sintered body having a high density and a crystal phase made of a compound containing Si, Sr, Al, and O elements at the triple point composed of alumina crystal particles.
本発明のアルミナ質焼結体の誘電正接の測定法について説明する。 A method for measuring the dielectric loss tangent of the alumina sintered body of the present invention will be described.
焼結体を測定周波数1MHzと8.5GHzで誘電正接を測定し、1MHzで5×10−4以下、8.5GHzで5×10−4以下のものを良品として使うことにより、測定周波数1MHz〜8.5GHzの間の周波数領域においても誘電正接が5×10−4以下を見込むことができる。この方法により、誘電正接に関して高精度なキャパシタンス・メータ(ヒューレットパッカード社製:HP−4278A)とネットワークアナライザ(アジレント・テクノロジー社製:8722ES)を使用することができ、従来のインピーダンスアナライザでは保障できない1MHz〜8.5GHz帯における低誘電正接材料の設計が可能となる。 By measuring the dielectric loss tangent of the sintered body at a measurement frequency of 1 MHz and 8.5 GHz, and using a non-defective product of 5 × 10 −4 or less at 1 MHz and 5 × 10 −4 or less at 8.5 GHz, a measurement frequency of 1 MHz to A dielectric loss tangent can be expected to be 5 × 10 −4 or less even in a frequency region between 8.5 GHz. By this method, it is possible to use a highly accurate capacitance meter (Hewlett Packard: HP-4278A) and network analyzer (Agilent Technology: 8722ES) with respect to dielectric loss tangent, and 1 MHz that cannot be guaranteed by a conventional impedance analyzer. It is possible to design a low dielectric loss tangent material in the ˜8.5 GHz band.
JIS C2141に基づきキャパシタンス・メータで誘電正接を測定する際の寸法の試料を用いて、ネットワークアナライザで測定する際には、測定周波数は8.5GHzから多少ずれることがある。このずれはサンプル外形寸法精度や材料の誘電率バラツキから来るものであり、Al2O399.3%以上のアルミナ質焼結体の場合、8.5±0.3GHzは見込まれる。 When measuring with a network analyzer using a sample having a dimension when measuring the dielectric loss tangent with a capacitance meter based on JIS C2141, the measurement frequency may slightly deviate from 8.5 GHz. This deviation comes from the sample outer dimensional accuracy and the variation in the dielectric constant of the material. In the case of an alumina sintered body of Al 2 O 3 99.3% or more, 8.5 ± 0.3 GHz is expected.
すなわち、従来、測定周波数1MHzにおける誘電正接は、キャパシタンス・メータ(HP−4278A)、測定周波数8.5GHzにおける誘電正接は、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行ない、測定誤差がそれぞれ±2×10−4以下、±0.1×10−4以下の精度の良い誘電正接が得られることが知られているが、半導体、液晶パネル製造装置用部材に要求される1MHz〜8.5GHz、特に10MHz〜1GHzにおける周波数領域では、インピーダンスアナライザ(ヒューレットパッカード社製:HP−4291A)による測定しかなく、その測定誤差は小さくても±30×10−4程度であり、5×10−4以下の誘電正接については測定精度が極めて低い。 That is, conventionally, the dielectric loss tangent at a measurement frequency of 1 MHz is measured using a capacitance meter (HP-4278A), and the dielectric loss tangent at a measurement frequency of 8.5 GHz is measured using a cavity resonator method (network analyzer 8722ES). Are known to obtain accurate dielectric loss tangents of ± 2 × 10 −4 or less and ± 0.1 × 10 −4 or less, respectively, but from 1 MHz required for semiconductor and liquid crystal panel manufacturing apparatus members In the frequency region of 8.5 GHz, particularly 10 MHz to 1 GHz, there is only measurement using an impedance analyzer (HP-4291A, manufactured by Hewlett-Packard Company), and the measurement error is about ± 30 × 10 −4 even if it is small, 5 × 10 Measurement accuracy is very low for dielectric loss tangent of -4 or less.
そこで、1MHz〜8.5GHzにおける周波数領域の誘電損失を、測定精度の低いインピーダンスアナライザで直接測定することなく、測定周波数1MHzと8.5GHzにおける誘電正接を測定し、測定周波数1MHzと8.5GHzにおける誘電正接が5×10−4以下の範囲にある場合には、測定周波数1MHz〜8.5GHz、特には10〜100MHzの間の周波数領域においても誘電正接を5×10−4以下と認定でき、測定周波数1MHz〜8.5GHzにおける誘電正接を容易にかつ正確に測定することができる。 Therefore, the dielectric loss tangent at the measurement frequency of 1 MHz and 8.5 GHz is measured without directly measuring the dielectric loss in the frequency domain from 1 MHz to 8.5 GHz with an impedance analyzer with low measurement accuracy, and the measurement frequency at 1 MHz and 8.5 GHz is measured. When the dielectric loss tangent is in the range of 5 × 10 −4 or less, the dielectric loss tangent can be recognized as 5 × 10 −4 or less even in the frequency range between 1 MHz to 8.5 GHz, particularly 10 to 100 MHz, The dielectric loss tangent at a measurement frequency of 1 MHz to 8.5 GHz can be measured easily and accurately.
まず、SiO2とSrCO3、CaCO3の粉末を、それぞれSiO2換算で、SrO換算、CaO換算で表1に示す組成となるように秤量、混合して混合粉末を得た。この粉末を大気中1000℃〜1300℃で熱処理し、アルミナボールミルにて48〜72時間粉砕を行ない、原料粉末を作製した。 First, powders of SiO 2 , SrCO 3 , and CaCO 3 were weighed and mixed so as to have the compositions shown in Table 1 in terms of SiO 2 and in terms of SrO and CaO, respectively, to obtain a mixed powder. This powder was heat-treated at 1000 ° C. to 1300 ° C. in the atmosphere, and pulverized for 48 to 72 hours in an alumina ball mill to produce a raw material powder.
純度が99.95質量%のAl2O3粉末に、前記の原料粉末と、Mg(OH)2粉末をMgO換算で表1に示すような割合で添加し、これに所定量の水を加えアルミナボールミルにて48時間混合してスラリーとした。このスラリーにバインダーを加えて乾燥したのち、造粒し、この混合粉末を1t/cm2の圧力で金型成形して円柱状成形体(直径60mm×高さ30mm)を作製し、1600℃にて大気中にて焼成を行ない、直径50mm×高さ25mmのアルミナ質焼結体を得た。 Purity 99.95% by mass of Al 2 O 3 powder, the the raw material powder, the Mg (OH) 2 powder was added in an amount shown in Table 1 in terms of MgO, to which a predetermined amount of water was added The slurry was mixed for 48 hours with an alumina ball mill. The slurry is added to the slurry, dried, granulated, and the mixed powder is molded at a pressure of 1 t / cm 2 to produce a cylindrical molded body (diameter 60 mm × height 30 mm). Then, firing was performed in the air to obtain an alumina sintered body having a diameter of 50 mm and a height of 25 mm.
このアルミナ質焼結体の元素の定量分析を、ICP発光分光分析にて行い、表1に、AlをAl2O3換算、SiをSiO2換算で、SrをSrO換算、MgをMgO換算で、CaをCaO換算で記載した。尚、Al、Si、Sr、Mg、Ca以外の元素を残部とし、その量も記載した。残部は、主にNa2OとFe2O3であった。 Quantitative analysis of the elements of this alumina sintered body is performed by ICP emission spectroscopic analysis. In Table 1, Al is converted to Al 2 O 3 , Si is converted to SiO 2 , Sr is converted to SrO, and Mg is converted to MgO. , Ca is described in terms of CaO. In addition, elements other than Al, Si, Sr, Mg, and Ca are used as the balance, and the amounts are also described. The balance was mainly Na 2 O and Fe 2 O 3 .
また、X線回折測定により、表1の試料全てが、アルミナ結晶粒子を主結晶粒子とすることを確認した。さらに、MgAl2O4またはCaAl12O19で表される化合物からなる結晶相の有無について、X線回折測定により確認し、表2にスピネル等の存在有無として記載した。 Moreover, it was confirmed by X-ray diffraction measurement that all the samples in Table 1 had alumina crystal particles as main crystal particles. Furthermore, the presence / absence of a crystal phase composed of a compound represented by MgAl 2 O 4 or CaAl 12 O 19 was confirmed by X-ray diffraction measurement, and listed in Table 2 as the presence / absence of spinel or the like.
得られた焼結体の高さ方向中央部から厚み1mmの試料を切り出して、密度、誘電正接を測定し、表2に記載した。密度はアルキメデス法にて測定した。 A sample having a thickness of 1 mm was cut out from the center in the height direction of the obtained sintered body, and the density and dielectric loss tangent were measured. The density was measured by the Archimedes method.
また、誘電正接tanδは、1MHz、12MHz、8.5GHzにて行ない、それぞれキャパシタンス・メータ(HP−4278A)、インピーダンスアナライザ(HP−4291A)、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行なった。 The dielectric loss tangent tan δ is measured at 1 MHz, 12 MHz, and 8.5 GHz, and measured using a capacitance meter (HP-4278A), impedance analyzer (HP-4291A), and cavity resonator method (network analyzer 8722ES), respectively. Was done.
尚、インピーダンスアナライザにより、1MHz〜1GHzにおける誘電正接の周波数依存性も確認した。その結果、今回のサンプルにおいて装置の精度上1MHz〜1GHzにおける誘電正接は、1〜10MHzと100MHz〜1GHzにおける誘電正接が高く、その間の周波数帯で低いという傾向があり、特に10〜100MHzにおける誘電正接が低いという傾向があった。また、10〜100MHzの周波数帯で誘電正接にピークはみられず、フラットな形状であった。 In addition, the frequency dependence of the dielectric loss tangent at 1 MHz to 1 GHz was also confirmed by an impedance analyzer. As a result, the dielectric loss tangent at 1 MHz to 1 GHz in this sample tends to be high at 1 to 10 MHz and 100 MHz to 1 GHz and low in the frequency band between them, particularly at 10 to 100 MHz. Tended to be low. Moreover, no peak was observed in the dielectric loss tangent in the frequency band of 10 to 100 MHz, and the shape was flat.
先ず、ネットワーク・アナライザを用い、直径50mm×厚み1mmの試料を治具にて挟持し、8.5GHzにおける誘電正接を求め、次に、インピーダンスアナライザを用い、上記直径50mm×厚み1mmの試料を治具にて挟持し、12MHzにおける誘電正接を求め、この後、JIS C2141に基づき、上記直径50mm×厚み1mmの試料の上下面に電極を形成し、キャパシタンス・メータにて1MHzにおける誘電正接を求めた。 First, using a network analyzer, a sample having a diameter of 50 mm × thickness 1 mm is sandwiched by a jig to obtain a dielectric loss tangent at 8.5 GHz. Next, using an impedance analyzer, the sample having a diameter of 50 mm × thickness 1 mm is cured. The electrode was formed on the upper and lower surfaces of the sample having a diameter of 50 mm and a thickness of 1 mm based on JIS C2141, and the dielectric loss tangent at 1 MHz was obtained with a capacitance meter. .
また、各焼結体中の結晶相の分析は、透過型電子顕微鏡(TEM)を用いて、エネルギー分散型X線分光分析(EDS)と制限視野電子線回折により行ない、MAl2Si2O8型結晶相(MはSrおよびCaのうち少なくとも1種)の有無について粒界3重点を30箇所確認し、結晶相の発生割合と、非晶質相の発生割合を表2に記載した。また、表1にSrAl2Si2O8型結晶相の有無について記載した。 Moreover, the analysis of the crystal phase in each sintered body is performed by energy dispersive X-ray spectroscopic analysis (EDS) and limited-field electron diffraction using a transmission electron microscope (TEM), and MAl 2 Si 2 O 8 Regarding the presence or absence of the type crystal phase (M is at least one of Sr and Ca), 30 grain boundary triple points were confirmed, and the generation ratio of the crystal phase and the generation ratio of the amorphous phase are shown in Table 2. Table 1 shows the presence or absence of the SrAl 2 Si 2 O 8 type crystal phase.
尚、粒界3重点のものが非晶質相かどうかは、制限視野電子線回折により確認した。非晶質相は、Si、Al、Sr、O元素を含有していた。また、3重点における結晶相はMAl2Si2O8型結晶相であり、Mは、表2に示すように、SrまたはCaあるいはSrとCaであった。図2に、試料No.10の電子回折像を示した。 Whether the grain boundary triple point is an amorphous phase was confirmed by limited-field electron diffraction. The amorphous phase contained Si, Al, Sr, and O elements. In addition, the crystal phase at the triple point was MAl 2 Si 2 O 8 type crystal phase, and M was Sr or Ca or Sr and Ca as shown in Table 2. In FIG. Ten electron diffraction images were shown.
さらに、アルミナ結晶粒子の平均粒径D50について、上記試料の走査型電子顕微鏡写真(500倍)について、0.0432mm2の範囲で、画像解析装置にて各結晶粒子の直径を求め、平均粒径D50を算出し、表2に記載した。 Further, the average particle diameter D 50 of the alumina crystal grain, the scanning electron micrograph of the sample (500 fold) in the range of 0.0432Mm 2, determine the diameter of each crystal grain in an image analyzer, the average particle calculating the diameter D 50, as described in Table 2.
また、アルミナ質焼結体の曲げ強度をJIS R1601に準拠して測定し、表2に記載した。 Further, the bending strength of the alumina sintered body was measured according to JIS R1601, and listed in Table 2.
表1、2より、Al2O3以外に副成分としてSi、Sr、O元素を含む本発明の試料では、アルミナ結晶粒子間に、Si、Al、Sr、O元素を含む化合物からなる結晶相が生成しており、誘電正接が8.5GHzにおいて2.2×10−4以下であるとともに、1MHzにおいて29×10−4以下、12MHzにおいても5.1×10−4以下の低損失であることがわかる。 From Tables 1 and 2, in the sample of the present invention containing Si, Sr, and O elements as subcomponents in addition to Al 2 O 3 , the crystal phase composed of a compound containing Si, Al, Sr, and O elements between the alumina crystal particles. Is generated, and the dielectric loss tangent is 2.2 × 10 −4 or less at 8.5 GHz and low loss of 29 × 10 −4 or less at 1 MHz and 5.1 × 10 −4 or less at 12 MHz. I understand that.
また、Si、Al、SrおよびOの各元素を含有する結晶相が、アルミナ結晶粒子で構成される3重点のうち60%以上の3重点に存在する場合には、誘電正接がより小さくなっていることがわかる。さらに、アルミナ結晶粒子の平均粒径が9.8μm以下であるため、曲げ強度が350MPa以上となっていることがわかる。 In addition, when the crystal phase containing each element of Si, Al, Sr and O is present at a triple point of 60% or more of the three points formed of alumina crystal particles, the dielectric loss tangent becomes smaller. I understand that. Furthermore, since the average particle diameter of the alumina crystal particles is 9.8 μm or less, it can be seen that the bending strength is 350 MPa or more.
一方、比較例の試料No.13の試料は、下記のようにして作製した。純度が99.95質量%のAl2O3粉末に、SiO2粉末、CaCO3粉末、Mg(OH)2粉末を表1の試料No.13に示すような割合で添加し、これに所定量の水を加えボールミルにて48時間混合してスラリーとした。このスラリーにバインダーを加えて乾燥したのち、造粒し、この混合粉末を1t/cm2の圧力で金型成形して成形体(直径60mm×高さ30mm)を作製し、1600℃にて焼成を行なった。 On the other hand, Sample No. Thirteen samples were prepared as follows. The Al 2 O 3 powder having a purity of 99.95% by mass was mixed with SiO 2 powder, CaCO 3 powder, and Mg (OH) 2 powder in Sample No. 1 in Table 1. 13 was added at a ratio shown in FIG. 13, and a predetermined amount of water was added thereto and mixed for 48 hours by a ball mill to form a slurry. The slurry is added with a binder, dried, granulated, and the mixed powder is molded at a pressure of 1 t / cm 2 to produce a molded body (diameter 60 mm × height 30 mm) and fired at 1600 ° C. Was done.
得られた焼結体の高さ方向中央部(厚み1mm)を切り出して、上記実施例と同様の方法によって評価した。分析の結果、アルミナ結晶粒子間にはSiとCa、Al、O元素からなる結晶が生成していた。誘電正接の値は、8.5GHzでは1.4×10−4以下と低損失であったが、1MHzにおいて40×10−4、12MHzにおいて7×10−4と高く、MHz帯において誘電損失が高かった。 The central part (thickness 1 mm) in the height direction of the obtained sintered body was cut out and evaluated by the same method as in the above examples. As a result of analysis, crystals composed of Si, Ca, Al, and O elements were generated between the alumina crystal particles. The value of dielectric loss tangent was as low as 1.4 × 10 −4 or less at 8.5 GHz, but it was as high as 40 × 10 −4 at 1 MHz and 7 × 10 −4 at 12 MHz, and the dielectric loss was in the MHz band. it was high.
1・・・アルミナ結晶粒子
2・・・3重点
1 ... Alumina crystal particles 2 ... 3 points
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008301038A JP5435932B2 (en) | 2007-11-28 | 2008-11-26 | Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator |
KR1020107010888A KR101200385B1 (en) | 2007-11-28 | 2008-11-28 | Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator |
PCT/JP2008/071699 WO2009069770A1 (en) | 2007-11-28 | 2008-11-28 | Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007307350 | 2007-11-28 | ||
JP2007307350 | 2007-11-28 | ||
JP2008301038A JP5435932B2 (en) | 2007-11-28 | 2008-11-26 | Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009149501A JP2009149501A (en) | 2009-07-09 |
JP5435932B2 true JP5435932B2 (en) | 2014-03-05 |
Family
ID=40919114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008301038A Active JP5435932B2 (en) | 2007-11-28 | 2008-11-26 | Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5435932B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4969488B2 (en) * | 2008-02-26 | 2012-07-04 | 京セラ株式会社 | Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member |
JP5421092B2 (en) * | 2009-11-02 | 2014-02-19 | 京セラ株式会社 | Alumina sintered body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3082433B2 (en) * | 1992-04-27 | 2000-08-28 | 三菱マテリアル株式会社 | Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness |
JPH0616469A (en) * | 1992-06-30 | 1994-01-25 | Kyocera Corp | Alumina porcelain composition |
JP4012861B2 (en) * | 2003-07-29 | 2007-11-21 | 京セラ株式会社 | Ceramic package |
JP4762168B2 (en) * | 2006-02-24 | 2011-08-31 | 京セラ株式会社 | Alumina sintered body, member for processing apparatus using the same, and processing apparatus |
-
2008
- 2008-11-26 JP JP2008301038A patent/JP5435932B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009149501A (en) | 2009-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780932B2 (en) | Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus | |
JP6352686B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member | |
JP5421092B2 (en) | Alumina sintered body | |
JP4854420B2 (en) | Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body | |
JP2010235337A (en) | Dielectric ceramic and dielectric resonator | |
JP5435932B2 (en) | Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator | |
JP5128783B2 (en) | High frequency dielectric materials | |
JP4969488B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member | |
JP5361141B2 (en) | Plasma processing apparatus member and plasma processing apparatus using the same | |
JP3904874B2 (en) | Components for semiconductor manufacturing equipment | |
US8247337B2 (en) | Alumina sintered article | |
JP5371372B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member | |
JP5137358B2 (en) | Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body | |
US20230174429A1 (en) | Sintered material, semiconductor manufacturing apparatus including the same, and method of manufacturing the sintered material | |
KR101200385B1 (en) | Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator | |
JP5371373B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member | |
JP4579159B2 (en) | High frequency porcelain composition, method for producing the same, and planar high frequency circuit | |
JP2005272293A (en) | Aluminum oxide sintered body and members using the same for manufacturing semiconductor and liquid crystal manufacturing apparatuses | |
JP5247294B2 (en) | Ceramic support member and dielectric resonator using the same | |
JP2009126772A (en) | Dielectric ceramic and capacitor | |
JP2009229253A (en) | Measuring apparatus and quality determination method of dielectric loss tangent | |
JP2021138581A (en) | Ceramic sintered compact and manufacturing method thereof | |
JP2006089358A (en) | Aluminum oxide-based sintered compact, its manufacturing method, and semiconductor producing equipment using the same | |
TWI846187B (en) | Alumina sintered body and method for manufacturing the same | |
JPWO2006013981A1 (en) | Dielectric ceramic composition and dielectric ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5435932 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |