JP2009229253A - Measuring apparatus and quality determination method of dielectric loss tangent - Google Patents
Measuring apparatus and quality determination method of dielectric loss tangent Download PDFInfo
- Publication number
- JP2009229253A JP2009229253A JP2008075247A JP2008075247A JP2009229253A JP 2009229253 A JP2009229253 A JP 2009229253A JP 2008075247 A JP2008075247 A JP 2008075247A JP 2008075247 A JP2008075247 A JP 2008075247A JP 2009229253 A JP2009229253 A JP 2009229253A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric loss
- loss tangent
- frequency
- mhz
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
本発明は、誘電正接測定装置および誘電正接良否判定方法に関するもので、特に、半導体製造装置の内壁材(チャンバー)やマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリングをはじめとする部材や、液晶製造装置のステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等に好適に用いることができる耐食性部材の誘電正接を測定するための誘電正接測定装置および誘電正接良否判定方法に関する。 The present invention relates to a dielectric loss tangent measuring apparatus and a dielectric loss tangent pass / fail judgment method, in particular, members such as an inner wall material (chamber) of a semiconductor manufacturing apparatus, a microwave introduction window, a shower head, a focus ring, a shield ring, The present invention relates to a dielectric loss tangent measuring apparatus and a dielectric loss tangent pass / fail judgment method for measuring a dielectric loss tangent of a corrosion-resistant member that can be suitably used for a stage, a mirror, a mask holder, a mask stage, a chuck, a reticle, and the like of a liquid crystal manufacturing apparatus.
従来から、アルミナ質焼結体は耐熱性、耐薬品性、耐プラズマ性に優れ、さらに高周波領域での誘電正接(tanδ)が小さいことから、半導体、液晶用の高周波プラズマ装置用部材などに用いられている。 Conventionally, the alumina sintered body has excellent heat resistance, chemical resistance, and plasma resistance, and also has a low dielectric loss tangent (tan δ) in the high frequency region, so it is used for high frequency plasma device members for semiconductors and liquid crystals. It has been.
半導体、液晶製造装置用部材はエッチング、クリーニング用として使用される反応性の高いハロゲン系腐食ガスやそれらのプラズマと接触するため、高い耐腐食性が要求され、一般的に99.0質量%以上の高純度のアルミナ質焼結体が求められている。一方、高純度のアルミナ質焼結体となるにつれて焼結性の観点から誘電正接が増加し、これによりMHz帯での高周波の透過率が低下し、エネルギーロスの増加、発熱による部材の破損といった問題が発生することが知られている。 Semiconductor and liquid crystal manufacturing equipment members are in contact with highly reactive halogen-based corrosive gases used for etching and cleaning, and their plasmas, so high corrosion resistance is required. Generally, 99.0% by mass or more There is a need for a high-purity alumina sintered body. On the other hand, the dielectric loss tangent increases from the viewpoint of sinterability as it becomes a high-purity alumina sintered body, which decreases the high-frequency transmittance in the MHz band, increases energy loss, breaks the member due to heat generation, etc. Problems are known to occur.
アルミナ質焼結体の低損失化について、焼結助剤としてSiO2、CaO、MgOを含有させ、その含有量をコントロールし、ある範囲内とすることで、低温で焼成しつつ、高周波誘電特性を向上させたアルミナ質焼結体が知られている(例えば、特許文献1参照)。 For reducing the loss of the alumina sintered body, SiO 2 , CaO, and MgO are included as sintering aids, and the content is controlled to be within a certain range. There is known an alumina sintered body with improved sinter (see, for example, Patent Document 1).
この特許文献1では、アルミナ99.8〜99.9質量%と、残部が所定比率のSiO2、CaO、MgOからなる粒界相成分とからアルミナ質焼結体を構成し、測定周波数8GHzにおけるQ値が10000以上(誘電正接が0.0001以下)のマイクロ波共振器用等のアルミナ質焼結体が得られたことが記載されている。 In Patent Document 1, an alumina sintered body is composed of 99.8 to 99.9% by mass of alumina and a grain boundary phase component composed of SiO 2 , CaO, and MgO with a balance of a predetermined ratio, and at a measurement frequency of 8 GHz. It is described that an alumina sintered body for microwave resonators having a Q value of 10,000 or more (dielectric loss tangent is 0.0001 or less) was obtained.
特許文献1のようにSiO2、CaO、MgOを含有したアルミナ質焼結体では、測定周波数8GHzにおける誘電正接が0.0001以下のものが得られている。しかし、MHz帯での誘電正接が大きく、例えば、MHz帯の高周波が使用される半導体、液晶用の高周波プラズマ装置用部材等に用いた場合には、MHz帯における高周波の透過率が低下し、エネルギーロスの増加や、部材の破損といった問題が生じている。さらに近年ではMHz〜GHz帯での広い周波数範囲での用途があり、そこでの低誘電正接化が求められていた。
従来では、半導体、液晶用の高周波プラズマ装置用部材等に要求されるMHz帯での誘電正接はそれほど小さくなかったため、測定誤差は小さくても±30×10−4程度であるインピーダンスアナライザ(ヒューレットパッカード社製:HP−4291A)を用いて、周波数1MHz〜8.5GHzにおける範囲の誘電正接を直接測定することも可能であったが、近年では、10MHz〜1GHzにおける誘電正接を5×10−4以下とすることが要求されはじめており、従来のインピーダンスアナライザによる測定では、測定精度が極めて低く、周波数10MHz〜1GHzにおける正確な誘電正接が得られないという問題があった。 Conventionally, the dielectric loss tangent in the MHz band required for semiconductors, liquid crystal high-frequency plasma apparatus members, etc. has not been so small, and therefore an impedance analyzer (Hewlett Packard) that has a measurement error of about ± 30 × 10 −4. It was also possible to directly measure the dielectric loss tangent in the frequency range of 1 MHz to 8.5 GHz using a product made by company: HP-4291A). However, in recent years, the dielectric loss tangent at 10 MHz to 1 GHz is 5 × 10 −4 or less. In the measurement by the conventional impedance analyzer, there is a problem that the measurement accuracy is very low and an accurate dielectric loss tangent cannot be obtained at a frequency of 10 MHz to 1 GHz.
本発明は、測定周波数10MHz〜1GHz帯における誘電正接の良否を容易にかつ正確に判定できる誘電正接測定装置および誘電正接良否判定方法を提供することを目的とする。 An object of the present invention is to provide a dielectric loss tangent measuring apparatus and a dielectric loss tangent quality determination method that can easily and accurately determine the quality of a dielectric loss tangent in a measurement frequency band of 10 MHz to 1 GHz.
本発明者等は、周波数10MHz〜1GHzにおける誘電正接が、設定値、例えば5×10−4以下であるか否かを容易にかつ正確に判定できる方法について、鋭意検討した結果、10MHz〜1GHzにおける周波数領域の誘電損失を、測定精度の低いインピーダンスアナライザで直接測定することなく、数MHz帯における誘電正接と数GHz帯における誘電正接を測定し、例えば、測定周波数1MHzと8.5GHzにおける誘電正接の高い方が5×10−4以下である場合には良品として判定し、周波数10MHz〜1GHzにおける周波数の誘電正接を5×10−4以下と認定でき、測定周波数10MHz〜1GHHzにおける誘電正接の良否を容易にかつ正確に判定できることを見出し、本発明に至った。 As a result of earnestly examining the method for easily and accurately determining whether or not the dielectric loss tangent at a frequency of 10 MHz to 1 GHz is a set value, for example, 5 × 10 −4 or less, the inventors of the present invention have the results of 10 MHz to 1 GHz. Without directly measuring the frequency domain dielectric loss with an impedance analyzer with low measurement accuracy, the dielectric loss tangent in the several MHz band and the dielectric loss tangent in the several GHz band are measured. For example, the dielectric loss tangent at the measurement frequencies of 1 MHz and 8.5 GHz is measured. When the higher one is 5 × 10 −4 or less, it is determined as a non-defective product, and the dielectric loss tangent at a frequency of 10 MHz to 1 GHz can be recognized as 5 × 10 −4 or less, and the quality of the dielectric loss tangent at a measurement frequency of 10 MHz to 1 GHz is determined. The inventors have found that the determination can be easily and accurately, and have reached the present invention.
すなわち、本発明の誘電正接測定装置は、数MHz帯の周波数における試料の誘電正接を測定する第1測定部と、前記試料の数GHz帯の周波数における前記試料の誘電正接を測定する第2測定部と、前記第1測定部および前記第2測定部で測定された誘電正接の両方を表示する表示部とを具備することを特徴とする。 That is, the dielectric loss tangent measuring apparatus of the present invention includes a first measurement unit that measures a dielectric tangent of a sample at a frequency of several MHz band, and a second measurement that measures the dielectric loss tangent of the sample at a frequency of several GHz band of the sample. And a display unit for displaying both the dielectric loss tangent measured by the first measurement unit and the second measurement unit.
このような誘電正接測定装置では、試料の数MHz帯における誘電正接と数GHz帯における誘電正接を、第1測定部、第2測定部でそれぞれ測定することができ、これらの誘電正接の両方が表示部にそれぞれ表示される。これにより、表示部を確認することにより、測定された数MHz帯における誘電正接と数GHz帯における誘電正接のうち高い方の誘電正接が設定値以下、例えば5×10−4以下である場合には良品として判定し、周波数10MHz〜1GHzにおける周波数の誘電正接を5×10−4以下であると認定することが可能となり、周波数10MHz〜1GHzにおける誘電正接の良否を目視にて容易にかつ正確に判定できる。 In such a dielectric loss tangent measuring apparatus, the dielectric loss tangent of the sample in the several MHz band and the dielectric loss tangent in the several GHz band can be measured by the first measuring unit and the second measuring unit, respectively. Each is displayed on the display. Thereby, by checking the display unit, when the higher dielectric tangent of the measured dielectric loss tangent in the several MHz band and the dielectric loss tangent in the several GHz band is not more than a set value, for example, 5 × 10 −4 or less. It is possible to determine that the dielectric loss tangent of the frequency at a frequency of 10 MHz to 1 GHz is 5 × 10 −4 or less, and easily and accurately visually confirm whether the dielectric loss tangent at a frequency of 10 MHz to 1 GHz is good or bad. Can be judged.
また、本発明の誘電正接良否判定方法は、数MHz帯の周波数における試料の誘電正接および数GHz帯の周波数における前記試料の誘電正接を測定し、数MHz帯および数GHz帯の周波数における前記試料の誘電正接のいずれか高い方の誘電正接が設定値以下であるか否かを判定し、設定値以下である場合を良品として判定することを特徴とする。 Further, the dielectric loss tangent pass / fail judgment method of the present invention measures the dielectric loss tangent of the sample at a frequency of several MHz band and the dielectric loss tangent of the sample at a frequency of several GHz band, and the sample at a frequency of several MHz band and several GHz band. It is determined whether or not the higher one of the dielectric loss tangents is equal to or lower than a set value, and the case where it is equal to or lower than the set value is determined as a non-defective product.
このような誘電正接良否判定方法では、試料の数MHz帯における誘電正接および数GHz帯における誘電正接のいずれか高い方の誘電正接が設定値、例えば5×10−4以下であるか否かを判定し、5×10−4以下である場合には、10MHz〜1GHzの周波数における誘電正接が5×10−4以下であると認定でき、測定周波数10MHz〜1GHzにおける誘電正接の良否を容易にかつ正確に判定できる。 In such a dielectric loss tangent pass / fail judgment method, it is determined whether the higher one of the dielectric loss tangent in the several MHz band and the dielectric loss tangent in the several GHz band of the sample is a set value, for example, 5 × 10 −4 or less. determined, in the case where 5 × 10 -4 or less, can be recognized as a dielectric loss tangent at the frequency of 10MHz~1GHz is 5 × 10 -4 or less, easily and the quality of the dielectric loss tangent at a measuring frequency 10MHz~1GHz Can be judged accurately.
また、本発明の誘電正接良否判定方法は、数GHz帯の周波数における前記試料の誘電正接を測定した後、数MHz帯の周波数における前記試料の誘電正接を測定することを特徴とする。このような誘電正接良否判定方法では、例えば、先ず、ネットワーク・アナライザを用い、円盤状のアルミナ質焼結体からなる試料を治具にて挟持し、8.5GHzにおける誘電正接を求め、次に、同じ試料の上下面に電極を形成し、キャパシタンス・メータにて1MHzにおける誘電正接を求めることができ、試料加工を最小限にすることができ、測定周波数10MHz〜1GHzにおける誘電正接測定をさらに容易に行うことができる。 The dielectric loss tangent pass / fail determination method of the present invention is characterized by measuring the dielectric loss tangent of the sample at a frequency of several MHz band after measuring the dielectric loss tangent of the sample at a frequency of several GHz band. In such a dielectric loss tangent pass / fail judgment method, for example, first, using a network analyzer, a sample made of a disk-shaped alumina sintered body is sandwiched with a jig, and a dielectric loss tangent at 8.5 GHz is obtained. Electrodes can be formed on the upper and lower surfaces of the same sample, the dielectric loss tangent at 1 MHz can be obtained with a capacitance meter, sample processing can be minimized, and dielectric loss tangent measurement at a measurement frequency of 10 MHz to 1 GHz can be further facilitated. Can be done.
本発明の誘電正接測定装置では、試料の数MHz帯における誘電正接と数GHz帯における誘電正接を、第1測定部、第2測定部でそれぞれ測定することができ、これらの誘電正接の両方が表示部にそれぞれ表示される。これにより、表示部を確認することにより、測定された数MHz帯における誘電正接と数GHz帯における誘電正接のうち高い方の誘電正接が設定値以下、例えば5×10−4以下である場合には良品として判定し、周波数10MHz〜1GHzにおける周波数の誘電正接を設定値以下、例えば5×10−4以下であると認定することが可能となり、周波数10MHz〜1GHzにおける誘電正接の良否を目視にて容易にかつ正確に判定できる。 In the dielectric loss tangent measuring apparatus of the present invention, the dielectric loss tangent of the sample in the several MHz band and the dielectric loss tangent in the several GHz band can be measured by the first measuring unit and the second measuring unit, respectively. Each is displayed on the display. Thereby, by checking the display unit, when the higher dielectric tangent of the measured dielectric loss tangent in the several MHz band and the dielectric loss tangent in the several GHz band is not more than a set value, for example, 5 × 10 −4 or less. Is determined as a non-defective product, and the dielectric loss tangent of the frequency in the frequency range from 10 MHz to 1 GHz can be recognized as being lower than the set value, for example, 5 × 10 −4 or less. Easy and accurate judgment.
本発明の誘電正接良否判定方法では、試料の数MHz帯における誘電正接および数GHz帯における誘電正接のいずれか高い方の誘電正接が設定値以下、例えば5×10−4以下であるか否かを判定し、5×10−4以下である場合には、10MHz〜1GHzの周波数における誘電正接が5×10−4以下であると認定でき、測定周波数10MHz〜1GHzにおける誘電正接の良否を容易にかつ正確に判定できる。 In the dielectric loss tangent pass / fail judgment method of the present invention, whether the higher one of the dielectric loss tangent in the several MHz band and the dielectric loss tangent in the several GHz band of the sample is not more than a set value, for example, 5 × 10 −4 or less. determines, 5 if × 10 -4 or less may recognized as dielectric loss tangent at a frequency of 10MHz~1GHz is 5 × 10 -4 or less, easily the quality of the dielectric loss tangent at a measuring frequency 10MHz~1GHz And it can be determined accurately.
本発明の誘電正接測定装置を図1に基づいて説明する。 The dielectric loss tangent measuring apparatus of the present invention will be described with reference to FIG.
図1は、誘電正接測定装置を示すもので、この誘電正接測定装置は、試料の数MHz帯における誘電正接を測定する第1測定部11と、試料の数GHz帯における誘電正接を測定する第2測定部13とを具備して構成されている。 FIG. 1 shows a dielectric loss tangent measuring apparatus. This dielectric loss tangent measuring apparatus measures a dielectric loss tangent of a sample in a several GHz band and a first measuring unit 11 that measures the dielectric loss tangent of the sample in a several MHz band. 2 measuring unit 13.
この誘電正接測定装置は、架台15に、例えば、キャパシタンス・メータ(ヒューレットパッカード社製:HP−4278A)を具備する第1測定部11と、例えば、ネットワーク・アナライザ(アジレント・テクノロジー社製:8722ES)を具備する第2測定部13とが設けられており、架台15の上面は測定台17とされている。また、架台15の上面には、第1測定部11で測定された数MHzにおける誘電正接と、第2測定部13で測定された数GHzにおける誘電正接の両方とが表示される表示部19が設けられている。 This dielectric loss tangent measuring apparatus includes a first measuring unit 11 having a capacitance meter (manufactured by Hewlett Packard: HP-4278A) on the gantry 15 and a network analyzer (manufactured by Agilent Technologies: 8722ES). The second measuring unit 13 having the above structure is provided, and the upper surface of the gantry 15 is a measuring table 17. Further, on the upper surface of the gantry 15, a display unit 19 that displays both the dielectric loss tangent at several MHz measured by the first measurement unit 11 and the dielectric loss tangent at several GHz measured by the second measurement unit 13 is displayed. Is provided.
この表示部19には、数MHzと数GHzにおける誘電正接の両方と、さらに、数MHzと数GHzにおける誘電正接のうち高い方の誘電正接が表示されることが望ましい。 It is desirable that the display unit 19 displays both the dielectric loss tangent at several MHz and several GHz, and the higher one of the dielectric loss tangent at several MHz and several GHz.
測定台17には、図示しないが、試料をセットするセット台が配置されており、また、ネットワーク・アナライザの試料を挟持する測定用治具も具備している。さらに、キャパシタンス・メータの一対の接触端子も具備している。 Although not shown, the measurement table 17 is provided with a set table for setting a sample, and also includes a measurement jig for holding the network analyzer sample. In addition, a pair of contact terminals of the capacitance meter are also provided.
アルミナを99.3質量%以上含有するアルミナ質焼結体は、試料形状等にもよるがMHz帯の測定周波数を1MHzとした場合、同一形状の試料での空洞共振器法によるTE011モードの数GHz帯の共振周波数はほぼ8.5GHzであるため、以後は、数MHzを1MHz、数GHzを8.5GHzとして説明する。 The alumina sintered body containing 99.3% by mass or more of alumina is the number of TE011 modes by the cavity resonator method with the same shape sample when the measurement frequency in the MHz band is 1 MHz, although it depends on the sample shape and the like. Since the resonance frequency of the GHz band is approximately 8.5 GHz, hereinafter, description will be made assuming that several MHz is 1 MHz and several GHz is 8.5 GHz.
このような誘電正接測定装置では、試料の周波数1MHzと周波数8.5GHzにおける誘電正接を、一台の誘電正接測定装置の第1測定部11、第2測定部13でそれぞれ測定することができる。そして、周波数1MHzと周波数8.5GHzにおける誘電正接の両方がそれぞれ表示部19に表示されるため、周波数1MHzと周波数8.5GHzにおける誘電正接の高い方の誘電正接が設定値以下、例えば5×10−4以下であるか否かを目視にて容易に判定でき、5×10−4以下である場合には、10MHz〜1GHzの周波数における誘電正接を5×10−4以下であると認定でき、測定周波数10MHz〜1GHzにおける誘電正接の良否を容易にかつ正確に判定できる。尚、誘電正接の設定値は、任意に設定できるが、以降は誘電正接の設定値を5×10−4とした場合について説明する。 In such a dielectric loss tangent measuring apparatus, the dielectric loss tangent of the sample at a frequency of 1 MHz and a frequency of 8.5 GHz can be measured by the first measuring unit 11 and the second measuring unit 13 of one dielectric loss tangent measuring apparatus, respectively. Since both the dielectric loss tangent at the frequency 1 MHz and the frequency 8.5 GHz are displayed on the display unit 19, the higher dielectric loss tangent at the frequency 1 MHz and the frequency 8.5 GHz is equal to or lower than a set value, for example, 5 × 10. -4 easily be determined by a is whether a visual or less, in the case where 5 × 10 -4 or less can certify dielectric loss tangent at a frequency of 10MHz~1GHz and is 5 × 10 -4 or less, The quality of dielectric loss tangent at a measurement frequency of 10 MHz to 1 GHz can be easily and accurately determined. The setting value of the dielectric loss tangent can be arbitrarily set. Hereinafter, the case where the setting value of the dielectric loss tangent is set to 5 × 10 −4 will be described.
すなわち、従来、測定周波数1MHzにおける誘電正接は、キャパシタンス・メータ(HP−4278A)、測定周波数8.5GHzにおける誘電正接は、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行ない、測定誤差がそれぞれ±2×10−4以下、±0.1×10−4以下の精度の良い誘電正接が得られることが知られているが、半導体、液晶製造装置用部材に要求される1MHz〜8.5GHz、特に10MHz〜1GHzにおける周波数領域では、インピーダンスアナライザ(HP−4291A)による測定しかなく、その測定誤差は小さくても±30×10−4程度であり、近年において要求されている5×10−4以下の誘電正接については測定精度が極めて低い。 That is, conventionally, the dielectric loss tangent at a measurement frequency of 1 MHz is measured using a capacitance meter (HP-4278A), and the dielectric loss tangent at a measurement frequency of 8.5 GHz is measured using a cavity resonator method (network analyzer 8722ES). Are known to obtain accurate dielectric loss tangents of ± 2 × 10 −4 or less and ± 0.1 × 10 −4 or less, respectively, but 1 MHz to 8 required for semiconductor and liquid crystal manufacturing apparatus members .5 GHz, particularly in the frequency range from 10 MHz to 1 GHz, there is only measurement by an impedance analyzer (HP-4291A), and the measurement error is about ± 30 × 10 −4 even if it is small, 5 × 10 required in recent years. Measurement accuracy is very low for dielectric loss tangent of -4 or less.
そこで、本発明では、10MHz〜1GHzにおける周波数領域の誘電損失を、測定精度の低いインピーダンスアナライザで直接測定することなく、測定周波数1MHzと8.5GHzにおける誘電正接を測定し、測定周波数1MHzと8.5GHzにおける誘電正接の高い方の誘電正接が5×10−4以下の範囲にある場合には、測定周波数10MHz〜1GHzの間の周波数領域においても誘電正接を5×10−4以下であるため、その試料を良品として扱い、測定周波数10MHz〜1GHzにおける誘電正接を容易にかつ正確に判定できる。 Therefore, in the present invention, the dielectric loss tangent at the measurement frequency of 1 MHz and 8.5 GHz is measured without directly measuring the dielectric loss in the frequency range of 10 MHz to 1 GHz with an impedance analyzer with low measurement accuracy, and the measurement frequencies of 1 MHz and 8. since the dielectric loss tangent of the higher dielectric loss tangent in the 5GHz is the case in the range of 5 × 10 -4 or less, even in the frequency domain between the measured frequency 10MHz~1GHz is the dielectric loss tangent 5 × 10 -4 or less, The sample is treated as a good product, and the dielectric loss tangent at a measurement frequency of 10 MHz to 1 GHz can be easily and accurately determined.
本発明の誘電正接良否判定方法について説明する。試料の周波数1MHzと周波数8.5GHzにおける誘電正接をそれぞれ測定し、試料の周波数1MHzと周波数8.5GHzにおける誘電正接のうち高い方の誘電正接が5×10−4以下の範囲にある場合には、測定周波数10MHz〜1GHzの間の周波数領域においても誘電正接を5×10−4以下であるため、その試料を良品と判定する。 The dielectric loss tangent pass / fail judgment method of the present invention will be described. When the dielectric loss tangent of the sample at a frequency of 1 MHz and a frequency of 8.5 GHz is measured, and the higher one of the dielectric loss tangent of the sample at a frequency of 1 MHz and a frequency of 8.5 GHz is in the range of 5 × 10 −4 or less. In addition, since the dielectric loss tangent is 5 × 10 −4 or less even in the frequency region between the measurement frequencies of 10 MHz and 1 GHz, the sample is determined as a non-defective product.
具体的に説明すると、先ず、試料の周波数1MHzと周波数8.5GHzにおける誘電正接をそれぞれ測定する。測定は、上記したように、例えば、キャパシタンス・メータ(ヒューレットパッカード社製:HP−4278A)を具備する第1測定部11と、例えば、ネットワーク・アナライザ(アジレント・テクノロジー社製:8722ES)を具備する第2測定部13にて測定する。 Specifically, first, the dielectric loss tangent of the sample at a frequency of 1 MHz and a frequency of 8.5 GHz is measured. As described above, the measurement includes, for example, the first measurement unit 11 including a capacitance meter (manufactured by Hewlett Packard: HP-4278A) and, for example, a network analyzer (manufactured by Agilent Technologies: 8722ES). Measurement is performed by the second measuring unit 13.
キャパシタンス・メータによる測定は、JIS C2141に基づき、例えば円盤状の試料の上下面に直径37mmの電極を形成し、これらの電極に一対の接触端子をそれぞれ接触させ、測定することができる。 The measurement by the capacitance meter can be measured based on JIS C2141 by, for example, forming electrodes having a diameter of 37 mm on the upper and lower surfaces of a disk-shaped sample, and bringing a pair of contact terminals into contact with these electrodes.
ネットワーク・アナライザによる測定では、中央で分割した円筒空洞共振器の間に誘電体基板を挟んで構成される共振器のTE011モード共振特性より、比誘電率、誘電正接を算出することができる。ネットワーク・アナライザによる測定周波数は8.5GHzから多少ずれることがある。このずれはサンプル外形寸法精度や材料の誘電率バラツキから来るものであり、純度99.3%以上で十分に焼結したアルミナ質焼結体の場合、8.5±0.3GHzは見込まれる。 In the measurement by the network analyzer, the relative permittivity and the dielectric loss tangent can be calculated from the TE011 mode resonance characteristics of a resonator configured by sandwiching a dielectric substrate between cylindrical cavity resonators divided at the center. The frequency measured by the network analyzer may deviate slightly from 8.5 GHz. This deviation comes from the accuracy of the sample outer dimensions and the dielectric constant variation of the material. In the case of an alumina sintered body sufficiently sintered with a purity of 99.3% or more, 8.5 ± 0.3 GHz is expected.
試料の周波数1MHzと周波数8.5GHzにおける誘電正接は、ネットワーク・アナライザにより、周波数8.5GHzにおける誘電正接を測定し、この後、キャパシタンス・メータにより周波数1MHzにおける誘電正接を測定することが望ましい。 As for the dielectric loss tangent of the sample at a frequency of 1 MHz and a frequency of 8.5 GHz, it is desirable to measure the dielectric loss tangent at a frequency of 8.5 GHz with a network analyzer and then measure the dielectric loss tangent at a frequency of 1 MHz with a capacitance meter.
すなわち、例えば、先ず、ネットワーク・アナライザを用い、円盤状の試料を測定治具にて挟持し、8.5GHzにおける誘電正接を求め、次に、同じ試料の上下面に電極を形成し、キャパシタンス・メータにて1MHzにおける誘電正接を求めることができ、1個の試料で周波数1MHzと周波数8.5GHzにおける誘電正接を測定でき、試料加工を最小限にすることができ、測定周波数10MHz〜1GHzにおける誘電正接の良否判定をさらに容易に行うことができる。 That is, for example, first, using a network analyzer, a disk-shaped sample is sandwiched between measurement jigs to obtain a dielectric loss tangent at 8.5 GHz, and then electrodes are formed on the upper and lower surfaces of the same sample. The dielectric loss tangent at 1 MHz can be obtained by a meter, the dielectric loss tangent at a frequency of 1 MHz and a frequency of 8.5 GHz can be measured with one sample, sample processing can be minimized, and the dielectric at a measurement frequency of 10 MHz to 1 GHz. It is possible to more easily determine whether the tangent is good or bad.
試料の周波数10MHz〜周波数1GHzにおける誘電正接が、測定された周波数1MHzおよび周波数8.5GHzのうち高い方の誘電正接以下であると認定できる理由について説明する。 The reason why the dielectric loss tangent of the sample at the frequency of 10 MHz to the frequency of 1 GHz can be recognized as being equal to or lower than the higher one of the measured frequency of 1 MHz and the frequency of 8.5 GHz will be described.
例えば、アルミナ質焼結体の誘電正接を1MHzの周波数で測定し、5×10−4以下を確認することにより空間電荷分極、界面分極、双極子分極による誘電正接の増大が無いことを確認できる。しかもこれらの要因による誘電正接の増大によるピークは1MHzより低い周波数帯か、または近傍の数MHzの周波数にあるため、1MHzで5×10−4以下を確認することにより1GHz付近まではこれらの要因による誘電正接の増大は無いことを見込める。 For example, the dielectric loss tangent of the alumina sintered body is measured at a frequency of 1 MHz, and it can be confirmed that there is no increase in the dielectric loss tangent due to space charge polarization, interface polarization, and dipole polarization by confirming a value of 5 × 10 −4 or less. . Moreover, since the peak due to the increase in the dielectric loss tangent due to these factors is in a frequency band lower than 1 MHz or in the vicinity of several MHz, these factors are observed up to around 1 GHz by confirming 5 × 10 −4 or less at 1 MHz. It can be expected that there is no increase in dielectric loss tangent due to.
また、8.5GHzで誘電正接が5×10−4以下を確認することによりイオン分極による誘電正接の増大が無いことを確認できる。しかも、イオン分極による誘電正接の増大によるピークは8.5GHzより高い周波数帯または、近傍の数GHzの周波数で起こっており、8.5GHzで5×10−4以下を確認することにより1GHz付近まではイオン分極の要因による誘電正接の増大は無いことを見込める。 Further, by confirming that the dielectric loss tangent is 8.5 × 10 −4 or less at 8.5 GHz, it can be confirmed that there is no increase in dielectric loss tangent due to ion polarization. Moreover, the peak due to the increase of the dielectric loss tangent due to ion polarization occurs in a frequency band higher than 8.5 GHz or a frequency of several GHz nearby, and by confirming a frequency of 5 × 10 −4 or less at 8.5 GHz, it reaches about 1 GHz. Can be expected not to increase the dielectric loss tangent due to the factor of ion polarization.
よって、例えば、1MHzと8.5GHzにおける誘電正接のうち高い方の誘電正接が5×10−4以下であることを確認することによって、10MHz〜1GHzの間の周波数領域においても誘電正接が5×10−4以下であると認定することができる。 Thus, for example, by confirming that the higher dielectric tangent of the dielectric tangent at 1 MHz and 8.5 GHz is 5 × 10 −4 or less, the dielectric loss tangent is 5 × even in the frequency region between 10 MHz and 1 GHz. It can be recognized that it is 10 −4 or less.
以下、本発明の誘電正接良否判定方法を、アルミナ質焼結体からなる試料に適用した例について説明する。 Hereinafter, an example in which the dielectric loss tangent determination method of the present invention is applied to a sample made of an alumina sintered body will be described.
アルミナ質焼結体は、アルミナを99.3質量%以上、その他副成分を0.7質量%以下含有する。アルミナを99.3質量%以上含有することにより、焼結性の改善と同時にアルミナの優れた耐腐食性と機械的特性、電気特性を維持することが可能となる。副成分の量が0.7質量%以上となると、機械的・電気的特性の低下、耐食性の低下へと繋がる。よってアルミナは99.3質量%以上、副成分は0.7質量%以下とするのが好ましい。さらに半導体、液晶製造装置用部材として応用するためにはハロゲン系ガスのプラズマに対する耐食性に優れる必要があるため、アルミナは99.5質量%以上、副成分は0.5質量%以下とするのが好ましい。アルミナは、焼結性という観点から、99.9質量%以下であることが望ましい。 The alumina sintered body contains 99.3% by mass or more of alumina and 0.7% by mass or less of other subcomponents. By containing 99.3% by mass or more of alumina, it is possible to improve the sinterability and maintain the excellent corrosion resistance, mechanical properties, and electrical properties of alumina. When the amount of the auxiliary component is 0.7% by mass or more, it leads to a decrease in mechanical / electrical characteristics and a decrease in corrosion resistance. Therefore, it is preferable that alumina is 99.3% by mass or more and the auxiliary component is 0.7% by mass or less. Furthermore, in order to be applied as a member for semiconductor and liquid crystal manufacturing equipment, it is necessary to have excellent corrosion resistance against halogen-based plasma, so that alumina should be 99.5% by mass or more and subcomponents should be 0.5% by mass or less. preferable. Alumina is desirably 99.9% by mass or less from the viewpoint of sinterability.
アルミナ質焼結体は、アルミナ結晶粒子を主結晶粒子とし、元素としてSiおよびM(Mはアルカリ土類金属)を含有するアルミナ質焼結体であって、アルミナ結晶粒子の粒界にSi、Al、M(Mはアルカリ土類金属)およびO元素を含有する化合物からなる低損失の結晶相が存在する。図2に、アルミナ質焼結体の概略断面図を示す。符号1はアルミナ結晶粒子であり、符号2は、粒界である。 The alumina sintered body is an alumina sintered body containing alumina crystal particles as main crystal particles and containing Si and M (M is an alkaline earth metal) as an element, and Si at the grain boundaries of the alumina crystal particles. There is a low-loss crystal phase composed of a compound containing Al, M (M is an alkaline earth metal) and an O element. FIG. 2 shows a schematic cross-sectional view of the alumina sintered body. Reference numeral 1 is alumina crystal particles, and reference numeral 2 is a grain boundary.
一般的なアルミナ質焼結体では、焼結助剤として加えた副成分がアルミナ結晶粒子間にガラス、あるいは誘電正接の高い結晶として存在し、アルミナ質焼結体全体の誘電正接を増大させる傾向があった。しかしながら、アルミナ結晶粒子間に、Si、Al、M(Mはアルカリ土類金属)およびO元素を含有する化合物からなる低損失の結晶相を析出させると、この結晶相自身の誘電正接が低い為、アルミナ質焼結体全体のMHz帯での誘電正接を低下させることができる。 In general alumina sintered bodies, subcomponents added as sintering aids exist between the alumina crystal particles as glass or crystals with a high dielectric loss tangent, and tend to increase the dielectric loss tangent of the entire alumina sintered body. was there. However, if a low-loss crystal phase composed of a compound containing Si, Al, M (M is an alkaline earth metal) and O element is precipitated between the alumina crystal particles, the crystal phase itself has a low dielectric loss tangent. The dielectric loss tangent in the MHz band of the entire alumina sintered body can be reduced.
Si、Al、M(Mはアルカリ土類金属)およびO元素を含有する化合物からなる低損失の結晶相は、電気的特性の観点より、MAl2Si2O8(Mはアルカリ土類金属)であることが好ましく、本結晶の生成により誘電正接を低減できる。Si、Al、M(Mはアルカリ土類金属)およびO元素を含有する化合物からなる低損失の結晶相としては、他に、MAl2Si2O8(Mはアルカリ土類金属)の組成ではなく、化学量論組成から少しずれたものであっても良い。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどがあるが、誘電特性、焼結性の観点からマグネシウム、カルシウム、ストロンチウムが好ましい。中でも、とりわけ低誘電正接の観点から、ストロンチウムが好ましい。 A low-loss crystal phase composed of a compound containing Si, Al, M (M is an alkaline earth metal) and an O element is MAl 2 Si 2 O 8 (M is an alkaline earth metal) from the viewpoint of electrical characteristics. It is preferable that the dielectric loss tangent can be reduced by forming the present crystal. As a low-loss crystal phase composed of a compound containing Si, Al, M (M is an alkaline earth metal) and an O element, in addition, in the composition of MAl 2 Si 2 O 8 (M is an alkaline earth metal) It may be slightly deviated from the stoichiometric composition. Examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Magnesium, calcium, and strontium are preferable from the viewpoint of dielectric properties and sinterability. Among these, strontium is particularly preferable from the viewpoint of low dielectric loss tangent.
尚、MAl2Si2O8(Mはアルカリ土類金属)で表される化合物とは、Mの構成元素の一部が他の元素で置換されたものも含む概念である。 In addition, the compound represented by MAl 2 Si 2 O 8 (M is an alkaline earth metal) is a concept including those in which a part of the constituent elements of M is replaced with other elements.
耐食性部材は、産業機械用部品として用いられ、とりわけ半導体製造装置や液晶製造装置に用いられる大型で、厚みのある部材として好適に用いることができる。半導体製造装置用部材とは、半導体製造装置の内壁材(チャンバー)やマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリング等をいう。液晶製造装置用部材とは、ステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等をいう。 The corrosion-resistant member is used as a part for industrial machinery, and can be suitably used as a large and thick member used especially for a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus. The semiconductor manufacturing apparatus member refers to an inner wall material (chamber), a microwave introduction window, a shower head, a focus ring, a shield ring, and the like of the semiconductor manufacturing apparatus. The liquid crystal manufacturing apparatus member means a stage, a mirror, a mask holder, a mask stage, a chuck, a reticle, and the like.
このようなアルミナ質焼結体について、ネットワーク・アナライザにより、周波数8.5GHzにおける誘電正接を測定し、この後、キャパシタンス・メータにより周波数1MHzにおける誘電正接を測定する。測定周波数1MHzの誘電正接および測定周波数8.5GHzの誘電正接のいずれか高い方の誘電正接が5×10−4以下であることにより、周波数10MHz〜1GHzの間の周波数領域においても誘電正接を5×10−4以下と認定できるため、良品と判定することができ、測定周波数10MHz〜1GHzにおける誘電正接の良否を容易にかつ正確に判定できる。 With respect to such an alumina sintered body, the dielectric loss tangent at a frequency of 8.5 GHz is measured by a network analyzer, and then the dielectric loss tangent at a frequency of 1 MHz is measured by a capacitance meter. Since the higher one of the dielectric loss tangent of the measurement frequency 1 MHz and the dielectric loss tangent of the measurement frequency 8.5 GHz is 5 × 10 −4 or less, the dielectric loss tangent 5 is also obtained in the frequency region between the frequency 10 MHz to 1 GHz. Since it can be recognized as × 10 −4 or less, it can be determined as a non-defective product, and the quality of dielectric loss tangent at a measurement frequency of 10 MHz to 1 GHz can be determined easily and accurately.
まず、SiO2とSrCO3、CaCO3、BaCO3の粉末を、それぞれSiO2換算、SrO換算、CaO換算、BaO換算で表1に示す組成となるように秤量、混合して混合粉末を得た。この粉末を1000℃〜1300℃で熱処理し、アルミナボールミルにて48〜72時間粉砕を行ない、原料粉末を作製した。 First, powders of SiO 2 , SrCO 3 , CaCO 3 , and BaCO 3 were weighed and mixed to obtain compositions shown in Table 1 in terms of SiO 2 conversion, SrO conversion, CaO conversion, and BaO conversion to obtain a mixed powder. . This powder was heat-treated at 1000 ° C. to 1300 ° C. and pulverized in an alumina ball mill for 48 to 72 hours to produce a raw material powder.
純度が99.95質量%のAl2O3粉末に、前記のSiとSr、Ca、Baの原料粉末と、Mg(OH)2粉末をMgO換算で表1に示すような割合で添加し、これに所定量の水を加えアルミナボールミルにて48時間混合してスラリーとした。このスラリーにバインダーを加えて乾燥したのち、造粒し、この混合粉末を1t/cm2の圧力で金型成形して円柱状成形体(直径60mm×高さ30mm)を作製し、1680℃にて大気中にて焼成を行ない、直径50mm×高さ25mmのアルミナ質焼結体を得た。 To the Al 2 O 3 powder having a purity of 99.95% by mass, the raw material powder of Si, Sr, Ca, Ba and Mg (OH) 2 powder are added in a proportion as shown in Table 1 in terms of MgO. A predetermined amount of water was added thereto and mixed for 48 hours in an alumina ball mill to form a slurry. The slurry is added to the slurry, dried, granulated, and the mixed powder is molded at a pressure of 1 t / cm 2 to produce a cylindrical molded body (diameter 60 mm × height 30 mm). Then, firing was performed in the air to obtain an alumina sintered body having a diameter of 50 mm and a height of 25 mm.
得られた焼結体の高さ方向中央部から厚み1mmの試料を切り出して、密度、誘電正接を測定し、表2に記載した。密度はアルキメデス法にて測定した。 A sample having a thickness of 1 mm was cut out from the center in the height direction of the obtained sintered body, and the density and dielectric loss tangent were measured. The density was measured by the Archimedes method.
また、誘電正接は、1MHz、12MHz、8.5GHzにて行ない、それぞれキャパシタンス・メータ(HP−4278A)、インピーダンスアナライザ(HP−4291A)、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行なった。キャパシタンス・メータの測定誤差は±2×10−4以下であり、空洞共振器法の測定誤差は±0.1×10−4以下であるものの、インピーダンスアナライザの測定誤差は±30×10−4であるため、インピーダンスアナライザによる12MHzの誘電正接が5×10−4未満の場合には、<5と表1に記載した。 The dielectric loss tangent is measured at 1 MHz, 12 MHz, and 8.5 GHz, and measured using a capacitance meter (HP-4278A), impedance analyzer (HP-4291A), and cavity resonator method (network analyzer 8722ES). I did it. Although the measurement error of the capacitance meter is ± 2 × 10 −4 or less and the measurement error of the cavity resonator method is ± 0.1 × 10 −4 or less, the measurement error of the impedance analyzer is ± 30 × 10 −4. Therefore, when the 12 MHz dielectric loss tangent by the impedance analyzer is less than 5 × 10 −4 , it is described in Table 1 as <5.
尚、インピーダンスアナライザにより、1MHz〜1GHzにおける誘電正接の周波数依存性も確認した。その結果、今回のサンプルにおいて装置の精度上1MHz〜1GHzにおける誘電正接は、1〜10MHzと100MHz〜1GHzにおける誘電正接が高く、その間の周波数帯で低いという傾向があり、特に10〜100MHzにおける誘電正接が低いという傾向があった。また、10〜100MHzの周波数帯で誘電正接にピークはみられず、フラットな形状であった。 In addition, the frequency dependence of the dielectric loss tangent at 1 MHz to 1 GHz was also confirmed by an impedance analyzer. As a result, the dielectric loss tangent at 1 MHz to 1 GHz in this sample tends to be high at 1 to 10 MHz and 100 MHz to 1 GHz and low in the frequency band between them, particularly at 10 to 100 MHz. Tended to be low. Moreover, no peak was observed in the dielectric loss tangent in the frequency band of 10 to 100 MHz, and the shape was flat.
先ず、ネットワーク・アナライザを用い、直径50mm×厚み1mmの試料を治具にて挟持し、8.5GHzにおける誘電正接を求め、次に、インピーダンスアナライザを用い、上記直径50mm×厚み1mmの試料を治具にて挟持し、高周波電流電圧法により試料にかかる電流と電圧を測定しインピーダンスを求め、その値と試料厚み等から1MHz〜1GHzの比誘電率、誘電正接を算出し、代表値として12MHzにおける誘電正接を求め、この後、JIS C2141に基づき、上記直径50mm×厚み1mmの試料の上下面に電極を形成し、キャパシタンス・メータにて1MHzにおける誘電正接を求めた。 First, using a network analyzer, a sample having a diameter of 50 mm × thickness 1 mm is sandwiched by a jig to obtain a dielectric loss tangent at 8.5 GHz. Next, using an impedance analyzer, the sample having a diameter of 50 mm × thickness 1 mm is cured. The impedance is obtained by measuring the current and voltage applied to the sample by the high-frequency current-voltage method, and the relative dielectric constant and dielectric loss tangent of 1 MHz to 1 GHz are calculated from the value and the sample thickness. A dielectric loss tangent was determined, and thereafter electrodes were formed on the upper and lower surfaces of the sample having a diameter of 50 mm and a thickness of 1 mm based on JIS C2141, and the dielectric loss tangent at 1 MHz was determined with a capacitance meter.
また、各焼結体中の結晶相の分析は、透過型電子顕微鏡(TEM)を用いて、エネルギー分散型X線分光分析(EDS)と制限視野電子線回折により行ない、Si、Al、M(M=Mg、Ca、Sr、Ba)、O元素を含む化合物からなる低損失の結晶相である、MAl2Si2O8、の有無を表2に記載した。図3に、試料No.8の電子回折像を示した。 Moreover, the analysis of the crystal phase in each sintered body is performed by energy dispersive X-ray spectroscopy (EDS) and limited-field electron diffraction using a transmission electron microscope (TEM), and Si, Al, M ( Table 2 shows the presence or absence of MAl 2 Si 2 O 8, which is a low-loss crystal phase composed of a compound containing M = Mg, Ca, Sr, Ba) and O elements. In FIG. 8 electron diffraction images were shown.
さらに、アルミナ結晶粒子の平均粒径D50は、上記試料の走査型電子顕微鏡写真(500倍)について、0.0432mm2の範囲で、画像解析装置にて各結晶粒子の直径を求め、平均粒径D50を算出し、表2に記載した。 Further, the average particle diameter D 50 of the alumina crystal particles, the scanning electron micrograph of the sample (500 fold) in the range of 0.0432Mm 2, determine the diameter of each crystal grain in an image analyzer, the average particle calculating the diameter D 50, as described in Table 2.
表1、2より、アルミナ以外に副成分としてSi、M(Mg、Ca、Sr、Ba)、O元素を含む試料No.1〜10では、アルミナ結晶粒子間に、Si、Al、M(Mg、Ca、Sr、Ba)、O元素を含む化合物からなる結晶相が生成しており、誘電正接が8.5GHzにおいて5×10−4以下であるとともに、1MHzにおいて5×10−4以下、12MHzにおいても5×10−4以下の低損失であることがわかる。 From Tables 1 and 2, Sample No. containing Si, M (Mg, Ca, Sr, Ba) and O elements as subcomponents in addition to alumina. 1 to 10, a crystal phase composed of a compound containing Si, Al, M (Mg, Ca, Sr, Ba), O element is generated between alumina crystal particles, and the dielectric loss tangent is 5 × at 8.5 GHz. It can be seen that the loss is 10 × 4 −4 or less at 1 MHz and 5 × 10 −4 or less at 12 MHz.
従って、1MHzと8.5GHzにおける誘電正接の高い方の誘電正接が5×10−4である場合には、12MHzにおいても5×10−4であることがわかる。 Therefore, when higher dielectric loss tangent of dielectric loss tangent at 1MHz and 8.5GHz is 5 × 10 -4 is found it is 5 × 10 -4 at 12 MHz.
1・・・アルミナ結晶粒子
2・・・粒界
11・・・第1測定部
13・・・第2測定部
15・・・架台
17・・・測定台
19・・・表示部
DESCRIPTION OF SYMBOLS 1 ... Alumina crystal grain 2 ... Grain boundary 11 ... 1st measurement part 13 ... 2nd measurement part 15 ... Stand 17 ... Measurement stand 19 ... Display part
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008075247A JP2009229253A (en) | 2008-03-24 | 2008-03-24 | Measuring apparatus and quality determination method of dielectric loss tangent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008075247A JP2009229253A (en) | 2008-03-24 | 2008-03-24 | Measuring apparatus and quality determination method of dielectric loss tangent |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009229253A true JP2009229253A (en) | 2009-10-08 |
Family
ID=41244825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008075247A Pending JP2009229253A (en) | 2008-03-24 | 2008-03-24 | Measuring apparatus and quality determination method of dielectric loss tangent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009229253A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091563A (en) * | 2013-01-15 | 2013-05-08 | 广西电网公司电力科学研究院 | Calculation method of dielectric power factors of high-voltage electrical equipment |
JP2017134036A (en) * | 2016-01-29 | 2017-08-03 | シャープ株式会社 | Sensor IC |
-
2008
- 2008-03-24 JP JP2008075247A patent/JP2009229253A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091563A (en) * | 2013-01-15 | 2013-05-08 | 广西电网公司电力科学研究院 | Calculation method of dielectric power factors of high-voltage electrical equipment |
JP2017134036A (en) * | 2016-01-29 | 2017-08-03 | シャープ株式会社 | Sensor IC |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9382163B2 (en) | Amorphous dielectric film and electronic component | |
JP2017014034A (en) | Dielectric composition and electronic component | |
Shi et al. | Fabrication, sinterability and microwave dielectric properties of MgTiO3−(Ca0. 8Sr0. 2) TiO3 composite ceramics from nanosized powders | |
CN105753472A (en) | High-energy-storage-density barium potassium niobate based glass ceramic energy storage material and preparation as well as application | |
JP2008156202A (en) | Dielectric ceramic and capacitor | |
JP6352686B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member | |
JP6462449B2 (en) | High-frequency window member, semiconductor manufacturing device member, and flat panel display (FPD) manufacturing device member | |
JP5421092B2 (en) | Alumina sintered body | |
Dupuy et al. | Effect of phase homogeneity and grain size on ferroelectric properties of 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3 (BXT) lead-free ceramics | |
CN101898890A (en) | Aluminum oxide ceramic for semiconductor equipment and preparation technology thereof | |
You et al. | Enhanced energy storage performances of (Sr0. 7Bi0. 2) TiO3 ceramics through highly polarized Ba ions | |
JP2009229253A (en) | Measuring apparatus and quality determination method of dielectric loss tangent | |
JP6565377B2 (en) | Dielectric composition and electronic component | |
JP4969488B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member | |
JP5361141B2 (en) | Plasma processing apparatus member and plasma processing apparatus using the same | |
US11396481B2 (en) | Dielectric composition and electronic component | |
US20230174429A1 (en) | Sintered material, semiconductor manufacturing apparatus including the same, and method of manufacturing the sintered material | |
US8247337B2 (en) | Alumina sintered article | |
JP6015012B2 (en) | Electrostatic chuck member | |
JP5435932B2 (en) | Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator | |
JP5371372B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member | |
JP5371373B2 (en) | Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member | |
KR101200385B1 (en) | Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator | |
JP4544934B2 (en) | Plasma processing equipment | |
JP5247294B2 (en) | Ceramic support member and dielectric resonator using the same |