[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5481613B2 - Resonant type electromagnetic wave absorber and manufacturing method thereof - Google Patents

Resonant type electromagnetic wave absorber and manufacturing method thereof Download PDF

Info

Publication number
JP5481613B2
JP5481613B2 JP2005266907A JP2005266907A JP5481613B2 JP 5481613 B2 JP5481613 B2 JP 5481613B2 JP 2005266907 A JP2005266907 A JP 2005266907A JP 2005266907 A JP2005266907 A JP 2005266907A JP 5481613 B2 JP5481613 B2 JP 5481613B2
Authority
JP
Japan
Prior art keywords
radio wave
metal
silicone resin
adhesive
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005266907A
Other languages
Japanese (ja)
Other versions
JP2007081119A (en
Inventor
永一 佐藤
隆司 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E&C Engineering K.K.
Original Assignee
E&C Engineering K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E&C Engineering K.K. filed Critical E&C Engineering K.K.
Priority to JP2005266907A priority Critical patent/JP5481613B2/en
Publication of JP2007081119A publication Critical patent/JP2007081119A/en
Application granted granted Critical
Publication of JP5481613B2 publication Critical patent/JP5481613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、吸収性能が安定し、耐久性を向上させた共振型電波吸収体とその製造方法に関するものである。   The present invention relates to a resonance type electromagnetic wave absorber having stable absorption performance and improved durability, and a method for manufacturing the same.

共振型の電波吸収体は、パラボラアンテナの性能向上や船舶マストなどに使用される場合が多く、その優れた耐久性からシリコーン樹脂にフェライト粉やカルボニル鉄粉などの磁性損失剤を分散させたものが使用されている。   Resonant type electromagnetic wave absorbers are often used to improve the performance of parabolic antennas and ship masts. Because of their excellent durability, magnetic loss agents such as ferrite powder and carbonyl iron powder are dispersed in silicone resin. Is used.

共振型電波吸収体は1層で構成すると、厚さが厚くなってしまうが、電波照射面の裏面を金属のような導電体にすると、電波吸収体を薄いシート状にすることができることが広く知られており、金属面などの導電体に貼って使用するのでない場合は、裏面に導電層として金属板や導電性シートを貼って使用される。   When the resonance type wave absorber is composed of one layer, the thickness becomes thick. However, if the back surface of the radio wave irradiation surface is made of a conductor such as a metal, the wave absorber can be formed into a thin sheet. When it is known and is not used by attaching to a conductor such as a metal surface, a metal plate or a conductive sheet is used as a conductive layer on the back surface.

しかし、共振型電波吸収体の電波吸収特性は材料の複素比誘電率と厚み、つまり電波が照射される面から導電層までの距離とを調整することによって決定されている。   However, the radio wave absorption characteristic of the resonance type radio wave absorber is determined by adjusting the complex relative permittivity and thickness of the material, that is, the distance from the surface irradiated with the radio wave to the conductive layer.

このような動作原理であるために、裏面に導電層を持たない電波吸収体を金属面に貼る場合、接着剤の厚みやエラストマーの性質を持つシリコーン樹脂製の電波吸収体を貼る時にかかる張力の違いによって伸びたりして、電波照射面から導体までの距離、つまり厚みが変化してしまい、設計通りの電波吸収性能が得られない場合があり、実際の使用時に、製造時に行った製品検査が意味をなさなくなる恐れがある。この傾向は最近になって頻繁に使用されるようになったミリ波領域のような短い波長の電波吸収体には特に顕著である。   Because of this principle of operation, when a radio wave absorber that does not have a conductive layer on the back side is pasted on a metal surface, the tension applied when a silicone resin radio wave absorber with adhesive thickness or elastomer properties is pasted. The distance from the radio wave irradiation surface to the conductor, that is, the thickness may change due to a difference, and the radio wave absorption performance as designed may not be obtained. There is a risk that it will make no sense. This tendency is particularly noticeable for a short-wavelength wave absorber such as the millimeter wave region, which has recently been used frequently.

金属のような導体以外に貼って使用する場合は、予め電波吸収体の裏面に金属シートなどの導電層を貼る必要があるが、電波吸収体吸収体製造時に金属箔などを貼って導電層を形成しておけば、製品検査工程でチェックされた電波吸収性能が、実際の使用時にも確保することができる。   When using a non-conductor conductor such as metal, it is necessary to paste a conductive layer such as a metal sheet on the back of the wave absorber in advance. If formed, the radio wave absorption performance checked in the product inspection process can be ensured even during actual use.

しかし、一般的にシリコーン樹脂は接着性が悪く、シリコーン系の接着剤でないと接着できない。また、シリコーン系接着剤の接着メカニズムは被着体の界面との化学反応によるとされており、シリコーン系の接着剤を溶剤などで希釈し過ぎると接着性が著しく低下するため、シリコーン樹脂を何かに接着する場合、シリコーン系の接着剤を粘性の高いまま使用しなければならない。   However, silicone resin generally has poor adhesiveness and cannot be bonded unless it is a silicone-based adhesive. In addition, the adhesive mechanism of silicone adhesive is said to be due to a chemical reaction with the interface of the adherend, and if the silicone adhesive is diluted too much with a solvent or the like, the adhesiveness is significantly reduced. When adhering to a crab, a silicone-based adhesive must be used with a high viscosity.

このため、電波吸収体製造時に導電層を貼る場合でもシリコーン樹脂部分を導電層に貼る際の接着層の厚み誤差が電波吸収性能への影響が無視できないほどの厚さになり、設計周波数よりも低周波数側へ吸収ピークがシフトしてしまったり、接着時に樹脂に張力をかけながら接着するために樹脂が伸ばされてしまうために成形時の厚さより薄くなってしまい、設計周波数よりも高周波数側へ吸収ピークがシフトしてしまったりするだけでなく、電波吸収性能そのものが低下するという難点があった。   For this reason, even when a conductive layer is applied at the time of manufacturing a radio wave absorber, the thickness error of the adhesive layer when the silicone resin part is applied to the conductive layer is so thick that the influence on the radio wave absorption performance cannot be ignored. The absorption peak shifts to the low frequency side, or the resin is stretched while applying tension to the resin at the time of bonding, so it becomes thinner than the thickness at the time of molding, so it is higher than the design frequency In addition to shifting the absorption peak, the radio wave absorption performance itself is degraded.

これらの傾向は、近年ITS関係などで、近年、使用が拡大しつつあるミリ波帯域で使用される電波吸収体、例えば、自動車衝突防止レーダー用に使用される76.5GHzなど、波長が短い帯域の電波吸収体において特に顕著であり、電波吸収性能の低下、製品検査工程で確認された性能の確保が困難、製造時の歩留まりが悪くなるなどの難点があった。   These trends are related to ITS in recent years, such as radio wave absorbers used in the millimeter-wave band, which has been increasingly used in recent years, such as 76.5 GHz used for automobile collision-preventing radar. In particular, there are problems such as a decrease in radio wave absorption performance, difficulty in securing performance confirmed in the product inspection process, and deterioration in manufacturing yield.

また、シリコーン樹脂を接着するための接着剤は、空気中の水分と反応するため、金属や金属蒸着シートを貼り付けた場合、接着剤が空気から遮断された状態になるため、接着剤が硬化するまでに相当な日数を必要とする。
特開2001-036280号公報
In addition, since the adhesive for bonding silicone resin reacts with moisture in the air, when the metal or metal deposition sheet is attached, the adhesive is cut off from the air, so the adhesive is cured. It takes a considerable number of days to do.
Japanese Patent Laid-Open No. 2001-036280

解決しようとする問題点は、耐候性が高いが難接着性のシリコーン樹脂製共振型電波吸収体の電波吸収性能を製品検査工程時のまま確保することと、製造時に金属シートなどの導体板に接着する際の厚みの安定性を向上させ、電波吸収性能を所望のままに確保して、歩留まりを高くする技術に存する。   The problem to be solved is to secure the radio wave absorption performance of the resonance type wave absorber made of silicone resin, which has high weather resistance but is difficult to adhere, as it is in the product inspection process. It exists in the technique of improving the stability of the thickness at the time of adhesion | attachment, ensuring radio wave absorption performance as desired, and raising a yield.

実際に使用する時に製品検査工程でチェックした通りの電波吸収性能を確保するためには、製品検査工程の前、つまり成形工程で予め金属シート、金属蒸着シート、金属板などの導電層と接着しておくことが望ましい。   In order to ensure the radio wave absorption performance as checked in the product inspection process when it is actually used, it is bonded to a conductive layer such as a metal sheet, a metal vapor-deposited sheet, or a metal plate in advance before the product inspection process, that is, in the molding process. It is desirable to keep it.

そこで、まず電波吸収体の裏面に貼るための金属箔、金属蒸着シート、金属板などに湿気硬化型のシリコーン樹脂系接着剤を予め塗布し、金属面と強固に接着したシリコーン樹脂硬化皮膜を形成させる。 Therefore, first apply a moisture-curing silicone resin adhesive to the metal foil, metal vapor-deposited sheet, metal plate, etc. to be attached to the back of the radio wave absorber to form a cured silicone resin film that adheres firmly to the metal surface. Let

こうして表面にシリコーン皮膜を形成させた金属箔、金属蒸着シート、金属板などの上に、縮合型シリコーン樹脂に、フェライト粉または、カルボニル鉄粉、若しくは導電性炭素粉などの電波損失剤と硬化剤を混合したものを流した後、所望の厚みのスペーサーを挟んだ上にポリプロンピレン製などの剥離シートを乗せて加圧成形するか、所望の厚みを得られるように隙間を調整したローラーの間を通すことによってシート状に成形する。 Radio wave loss agent and curing agent such as ferrite powder, carbonyl iron powder, or conductive carbon powder on metal foil, metal vapor-deposited sheet, metal plate, etc. with a silicone film formed on the surface in this way, on condensation type silicone resin After flowing a mixture of the above, a spacer with a desired thickness is sandwiched and a release sheet made of polypropylene or the like is placed on the sheet, and pressure forming is performed, or a roller whose gap is adjusted to obtain a desired thickness Formed into a sheet by passing through.

この工程で成形した縮合型シリコーン樹脂が硬化する際に、予め空気中の水分と反応して金属表面に形成されていたシリコーン樹脂硬化皮膜とが反応固着することで、結果的に裏面に金属層を有し、目的とする電波を吸収するために必要な厚みを調整したシリコーン樹脂製電波吸収体を得る。 When the condensation-type silicone resin molded in this step is cured, the silicone resin cured film that has been formed on the metal surface in advance by reacting with moisture in the air reacts and adheres, resulting in a metal layer on the back surface. A silicone resin radio wave absorber having a thickness adjusted to absorb the target radio wave is obtained.

ここで、縮合型シリコーン樹脂の代わりに付加型シリコーン樹脂を使用すると、導体面に形成された湿気硬化型シリコーン皮膜に触れた部分が硬化阻害を起き、導体面とシリコーン樹脂シートの接着ができないため、縮合型シリコーンを用いる必要がある。 Here, if an addition type silicone resin is used instead of a condensation type silicone resin, the portion that touched the moisture curable silicone film formed on the conductor surface will inhibit the curing, and the conductor surface and the silicone resin sheet cannot be bonded. It is necessary to use condensation type silicone.

本発明の方法によれば、耐候性は高いが、難接着性であるシリコーン樹脂製共振型電波吸収体に金属シート、金属蒸着シート、金属板などの導電層に対し、接着層の厚みを制御して接着することができる。このため、接着層の厚み誤差による電波吸収特性の変化が生じにくいことから、安定した電波吸収性能が得られ、後から導電層を接着する方法と比較して製品歩留まりが著しく向上する。また、使用時に非導電体に接着する場合でも、金属板などの導電体に接着する場合でも接着後の吸収特性に変化を生じないため、製品検査時の吸収性能を実際の使用時にも確保することが出来る。   According to the method of the present invention, the thickness of the adhesive layer is controlled with respect to a conductive layer such as a metal sheet, a metal vapor-deposited sheet, and a metal plate in a silicone resin resonance type radio wave absorber that has high weather resistance but is hardly adhesive. And can be bonded. For this reason, since the change of the radio wave absorption characteristics due to the thickness error of the adhesive layer is unlikely to occur, a stable radio wave absorption performance can be obtained, and the product yield is significantly improved as compared with the method of bonding the conductive layer later. In addition, even if it adheres to a non-conductor during use, or even when it adheres to a conductor such as a metal plate, the absorption characteristics after bonding do not change, ensuring absorption performance during product inspection even during actual use. I can do it.

また、電波吸収体そのものはシリコーン樹脂でも電波照射面の裏側自体は、金属若しくは、ポリエステルなどの樹脂であるため、使用する接着剤をシリコーン樹脂に限定されずにすむという利点もある。   Moreover, since the radio wave absorber itself is a silicone resin, the back side itself of the radio wave irradiation surface is a resin such as a metal or polyester, so that there is an advantage that the adhesive used is not limited to the silicone resin.

厚さ0.2mmのアルミシートに湿気硬化型シリコーン系接着剤である東芝シリコーン社製シリコーン系接着剤TSE388を薄く塗布し、24時間放置し、空気中の水分によって硬化させ、アルミシート表面にシリコーン皮膜を形成した。   A thin silicone adhesive TSE388 made by Toshiba Silicone Co., Ltd., which is a moisture curable silicone adhesive, is thinly applied to a 0.2 mm thick aluminum sheet, allowed to stand for 24 hours, cured by moisture in the air, and the surface of the aluminum sheet is silicone. A film was formed.

この方法で、シリコーン皮膜を形成したアルミシートを10枚作り、76.5GHz用の共振型電波吸収体を得る目的で、その上に1枚につき、東芝シリコーン社製縮合型シリコーン樹脂TSE352:100gに対し、BASF社製カルボニル鉄粉:300g、硬化剤CE61:1gを混合したものを流し、上にポリエチレン製の離型シートを乗せ、電波吸収体の厚みが1.12mmになるように隙間を調整した2本のローラーの間を通した後、80℃の乾燥器内で12時間静置して硬化させた。   With this method, ten aluminum sheets having a silicone film formed thereon were prepared, and a resonance type electromagnetic wave absorber for 76.5 GHz was obtained. On the other hand, a mixture of BASF carbonyl iron powder: 300 g and curing agent CE61: 1 g is poured, a polyethylene release sheet is placed on top, and the gap is adjusted so that the thickness of the wave absorber is 1.12 mm. After passing between the two rollers, it was allowed to stand in an oven at 80 ° C. for 12 hours to be cured.

12時間後、樹脂が硬化したところで、離型シートを剥がしてシート状となった電波吸収体の厚みをマイクロメータで測定したところ、10枚すべてが導電層を含めて1.15±0.01mmの範囲に納まっており、図1のように、アーチ法による反射減衰量も20±2dBの範囲に収まっていた。   After 12 hours, when the resin was cured, the release sheet was peeled off, and the thickness of the sheet-shaped radio wave absorber was measured with a micrometer. All 10 sheets including the conductive layer were 1.15 ± 0.01 mm. As shown in FIG. 1, the return loss by the arch method was also within the range of 20 ± 2 dB.

ポリエチレン製の離型シートの上に、東芝シリコーン社製縮合型シリコーン樹脂TSE352:100gに対し、BASF社製カルボニル鉄粉:300g、硬化剤CE61:1gを混合したものを流し、上にポリエチレン製の離型シートを乗せ、76.5GHz用の共振型電波吸収体を得る目的で、電波吸収体の厚みが1.12mmになるように隙間を調整した2本のローラーの間を通した後、80℃の乾燥器内で24時間硬化させた。   On the release sheet made of polyethylene, a mixture of carbonyl iron powder made by BASF: 300 g and curing agent CE61: 1 g was poured on a condensation silicone resin TSE352: 100 g made by Toshiba Silicone. For the purpose of obtaining a 76.5 GHz resonant electromagnetic wave absorber by placing a release sheet, after passing between two rollers whose gap was adjusted so that the thickness of the electromagnetic wave absorber was 1.12 mm, 80 Cured for 24 hours in a dryer at 0C.

24時間後、樹脂が硬化したところで、離型シートを剥がしてシート状となった電波吸収体に東芝シリコーン社製シリコーン系接着剤TSE388を塗布し、厚さ0.2mmのアルミシートを接着し、24時間硬化させた後、厚みをマイクロメータで測定したところ、1.19±0.04mmの範囲でバラついており、図2のような共振周波数のバラツキが認められ、1枚だけが15dB程度の反射減衰量であった。   Twenty-four hours later, when the resin was cured, the release sheet was peeled off to apply the sheet-shaped radio wave absorber with a silicone-based adhesive TSE388 manufactured by Toshiba Silicone, and an aluminum sheet having a thickness of 0.2 mm was bonded, After curing for 24 hours, the thickness was measured with a micrometer and found to vary in the range of 1.19 ± 0.04 mm. The variation in resonance frequency as shown in FIG. 2 was recognized, and only one sheet was about 15 dB. The return loss was.

実施例1と同様に、厚さ0.2mmのアルミシートに湿気硬化型シリコーン系接着剤である東芝シリコーン社製シリコーン系接着剤TSE388を薄く塗布し、24時間放置し、空気中の水分によって硬化させ、アルミシート表面にシリコーン皮膜を形成した。     As in Example 1, a silicone adhesive TSE388 manufactured by Toshiba Silicone Co., Ltd., which is a moisture-curing silicone adhesive, is thinly applied to an aluminum sheet having a thickness of 0.2 mm, left to stand for 24 hours, and cured by moisture in the air. To form a silicone film on the surface of the aluminum sheet.

この方法で、シリコーン皮膜を形成したアルミシートを10枚作り、その上に1枚につき、東芝シリコーン社製付加型シリコーン樹脂TSE3455T(A):100gに対し、BASF社製カルボニル鉄粉:300g、硬化剤TSE3455T(B):10gを混合したものを流し、上にポリエチレン製の離型シートを乗せ、電波吸収体の厚みが1.12mmになるように隙間を調整した2本のローラーの間を通した後、80℃の乾燥器内で24時間硬化させた。   By this method, ten aluminum sheets having a silicone film formed thereon are formed, and each of them is added to the silicone resin TSE3455T (A): 100 g manufactured by Toshiba Silicone Co., 300 g of carbonyl iron powder manufactured by BASF, cured. Agent TSE3455T (B): Pour 10 g of the mixture, put a polyethylene release sheet on top, and pass between two rollers with the gap adjusted so that the thickness of the wave absorber is 1.12 mm. And then cured for 24 hours in an oven at 80 ° C.

24時間後、樹脂が硬化したところで、離型シートを剥がしたが、アルミシートの表層部のシリコーン皮膜に触れている部分は硬化阻害を起こし、ベトベトした状態で接着していなかった。   After 24 hours, when the resin was cured, the release sheet was peeled off, but the portion of the aluminum sheet that was in contact with the silicone film was inhibited from curing and was not adhered in a sticky state.

耐候性は高いが、接着硬化までに時間がかかるシリコーン系接着剤でしか接着できないシリコーン樹脂製電波吸収体でありながら、予め電波照射面の裏面に金属やポリエステルなどの樹脂層を持つため、任意の接着剤で簡単に接着できるだけでなく、製造時に確認された電波吸収性能を実際の使用時にも確保できるだけでなく、接着層の厚みを制御しやすいことで、電波吸収性能が安定するため、ミリ波帯用のように、厚み制御が厳密な製品の歩留まりも向上させることができる。   Although it is a silicone resin radio wave absorber that has high weather resistance but can only be bonded with a silicone adhesive that takes a long time to bond and cure, it has a resin layer such as metal or polyester on the back side of the radio wave irradiation surface in advance. In addition to being able to easily adhere with the adhesives of the products, the radio wave absorption performance confirmed at the time of manufacture can be secured even during actual use, and the thickness of the adhesive layer can be easily controlled to stabilize the radio wave absorption performance. As in the wave band, the yield of products with strict thickness control can be improved.

当該特許の方法によって製造した76.5GHz用電波吸収体の吸収特性図。(実施例1)The absorption characteristic figure of the electromagnetic wave absorber for 76.5 GHz manufactured by the method of the said patent. Example 1 シート製造後にアルミシートを接着する方法で製造した76.5GHz用電波吸収体の吸収特性図。(実施例2)The absorption characteristic figure of the electromagnetic wave absorber for 76.5 GHz manufactured by the method of adhere | attaching an aluminum sheet after sheet manufacture. (Example 2)

Claims (1)

シリコーン樹脂に誘電損失剤、若しくは磁性損失剤、またはその両方の粉体を混合し、電波照射面の反対側に導電層を有する共振型電波吸収体を製造する際に、電波の反射体となる金属箔または、ポリエステル、塩化ビニル、ポリスチレン、ポリエチレンテレフタレートなど、金属を蒸着することが出来る樹脂フィルムにアルミニウム、銅、ニッケル、銀など電波の反射体となる金属を蒸着したシートの導電体表面に、予めシリコーン系接着剤を薄く塗布し、接着剤が硬化した後に、誘電損失剤または、磁性損失剤の粉体を混合した硬化前の縮合型シリコーン樹脂を乗せ、厚さを調整して成形することにより、硬化前の縮合型シリコーン樹脂と予め硬化した接着剤層と融着させ、電波吸収性能を安定的に制御することを特長とした共振型電波吸収体の製造方法。  When a dielectric loss agent or magnetic loss agent or both powders are mixed with silicone resin to produce a resonant wave absorber having a conductive layer on the opposite side of the radio wave irradiation surface, it becomes a wave reflector. Metal foil or polyester, vinyl chloride, polystyrene, polyethylene terephthalate, etc., on the surface of the conductor of a sheet in which a metal that is a radio wave reflector such as aluminum, copper, nickel, silver is deposited on a resin film on which metal can be deposited, Apply a thin silicone adhesive in advance, and after the adhesive has hardened, place the pre-cure condensation-type silicone resin mixed with dielectric loss agent or magnetic loss agent powder, and adjust the thickness before molding. Resonance-type radio wave characterized by stable control of radio wave absorption performance by fusing the pre-cured condensation-type silicone resin and the pre-cured adhesive layer Method of manufacturing the absorbent body.
JP2005266907A 2005-09-14 2005-09-14 Resonant type electromagnetic wave absorber and manufacturing method thereof Active JP5481613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266907A JP5481613B2 (en) 2005-09-14 2005-09-14 Resonant type electromagnetic wave absorber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266907A JP5481613B2 (en) 2005-09-14 2005-09-14 Resonant type electromagnetic wave absorber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007081119A JP2007081119A (en) 2007-03-29
JP5481613B2 true JP5481613B2 (en) 2014-04-23

Family

ID=37941099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266907A Active JP5481613B2 (en) 2005-09-14 2005-09-14 Resonant type electromagnetic wave absorber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5481613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048050A1 (en) 2021-09-24 2023-03-30 マクセル株式会社 Electromagnetic wave absorber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326000A (en) * 1989-06-23 1991-02-04 Yokohama Rubber Co Ltd:The Radio wave absorber
JP3446505B2 (en) * 1996-10-23 2003-09-16 信越化学工業株式会社 Primer composition
JP2001044687A (en) * 1999-07-29 2001-02-16 Nitto Denko Corp Wave absorber and its manufacture
JP2004296758A (en) * 2003-03-27 2004-10-21 Takechi Kogyo Gomu Co Ltd Millimeter wave absorber
DE10328843A1 (en) * 2003-06-26 2005-01-27 Wacker-Chemie Gmbh Primer for silicone rubber
JP2005158960A (en) * 2003-11-25 2005-06-16 Aichi Steel Works Ltd Radio wave absorber
JP4503271B2 (en) * 2003-11-28 2010-07-14 東レ・ダウコーニング株式会社 Method for producing silicone laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048050A1 (en) 2021-09-24 2023-03-30 マクセル株式会社 Electromagnetic wave absorber

Also Published As

Publication number Publication date
JP2007081119A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
TWI773656B (en) Electromagnetic wave absorber
US10784030B2 (en) Magnetic sheet, module comprising same, and portable device comprising same
JP6453295B2 (en) Electromagnetic wave absorber
CN110235537B (en) Electromagnetic wave absorbing sheet
EP1580235A4 (en) Resin composition, cured resin, cured resin sheet, laminate, prepreg, electronic part, and multilayer substrate
JP2005057093A (en) Radio wave absorber and method for manufacturing the same
JP7350048B2 (en) electromagnetic wave absorber
JP2008135485A (en) Radio wave absorber and manufacturing method therefor
US5541366A (en) Foam printed circuit substrates
TWI732836B (en) Electromagnetic wave shielding film
CN109659703A (en) A kind of broadband electro-magnetic wave absorption Meta Materials merged based on foam medium sill with metal structure
JP5481613B2 (en) Resonant type electromagnetic wave absorber and manufacturing method thereof
JP2019009396A (en) Electromagnetic wave shielding film and electronic component mounting substrate
KR102007608B1 (en) Electro Magnetic Shielding Materials Using Metal Foil and Process for Producing The Same
KR101498140B1 (en) Manufacturing method of cover layer for FPC and Manufacturing method of FPC and cover layer for FPC and FPC using the methods
JPH0258796B2 (en)
KR101310358B1 (en) Sintered Ferrite Powder, Electromagnetic Absorbing Sheet Assembly using the same and Method for making the Powder and the Assembly
JP4318333B2 (en) Radio wave absorbing building materials
WO2017104711A1 (en) Electromagnetic wave absorber
JPS62265799A (en) Manufacture of multilayer wave absorber
JP2016058565A (en) Film for electromagnetic shielding
CN211630732U (en) Composite wave-absorbing shielding material
CN211896770U (en) Flexible high-strength polyimide film adhesive tape
KR101925258B1 (en) Electro Magnetic Shielding Materials Having Metal Foil & Liner and Process for Producing The Same
JP2018170393A (en) Electromagnetic wave shielding film, and electronic component-mounted substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5481613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250