[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5446476B2 - 埋込磁石型同期電動機のロータ - Google Patents

埋込磁石型同期電動機のロータ Download PDF

Info

Publication number
JP5446476B2
JP5446476B2 JP2009131856A JP2009131856A JP5446476B2 JP 5446476 B2 JP5446476 B2 JP 5446476B2 JP 2009131856 A JP2009131856 A JP 2009131856A JP 2009131856 A JP2009131856 A JP 2009131856A JP 5446476 B2 JP5446476 B2 JP 5446476B2
Authority
JP
Japan
Prior art keywords
rotor
short
magnetic
circuit
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009131856A
Other languages
English (en)
Other versions
JP2010279215A (ja
Inventor
大記 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009131856A priority Critical patent/JP5446476B2/ja
Publication of JP2010279215A publication Critical patent/JP2010279215A/ja
Application granted granted Critical
Publication of JP5446476B2 publication Critical patent/JP5446476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ロータコアの内部に磁極を形成する複数の永久磁石を埋め込んだ構成の埋込磁石型同期電動機のロータに関する。
従来、埋込磁石型同期電動機のロータにおいて、隣り合う異極の永久磁石の間に非磁性部を設けるとともに、1つの磁極を形成する永久磁石の磁石中心軸(d軸)付近にコア材を配置することで、d軸インダクタンスがq軸インダクタンスよりも大となる順突極型の特性が得られるようにしたものが知られている(例えば、特許文献1参照。)。この特許文献1に記載のロータを用いた埋込磁石型同期電動機は、永久磁石による磁石磁界を強める方向のd軸電流(強め界磁電流)の通電によりリラクタンストルクが得られるので、効率的な運転を実現する電動機として期待が寄せられている。
特開2006−81377号公報
しかしながら、上記の特許文献1に記載のロータを用いた埋込磁石型同期電動機では、無負荷時において、磁石磁束がステータコアを流れることの影響によりステータコアにおける磁束の変動が発生し、この磁束変動が大きくなると鉄損を増大させるために、電動機のさらなる効率向上を図る上で障害となるといった問題があった。
本発明は、以上のような従来技術の問題点に鑑みて創案されたものであって、電動機のさらなる効率向上を図ることが可能な埋込磁石型同期電動機のロータを提供することを目的としている。
本発明に係る埋込磁石型同期電動機のロータは、各磁極ごとに永久磁石を複数の磁石部に分割するコア材を配置して、このコア材により永久磁石の短絡磁束が流れる短絡磁路を構成する。このコア材による短絡磁路は、各磁極のd軸中央部に対して、トルク発生方向にオフセットした位置に設けるとともに、短絡磁路は、ロータが発生させる誘起電圧が最大となる位相から電気角45度トルク発生方向の後方側にずれた位置が磁路の平均的中心位置となるように設けるようにする。
本発明に係る埋込磁石型同期電動機のロータによれば、無負荷時には磁石磁束の多くを短絡磁束としてロータ内部で循環させてステータコアにおける磁束変動を有効に抑制することができるようになるため、電動機の効率を向上させることができる。
第1の実施形態の強め界磁ロータを模式的に示す図であり、1つの極対部分を拡大して示したロータ展開図である。 短絡磁路をd軸中央部からトルク発生方向の前方側にオフセットした位置に配置することで、強め界磁領域のみに短絡磁路が設けられることを説明する図である。 短絡磁路の最適な位置を説明する図である。 第1の実施形態の強め界磁ロータの変形例を模式的に示す図である。 第1の実施形態の強め界磁ロータの全体像を示す図であり、(a)は各磁極ごとに1つの短絡磁路を設けた場合のロータ平面図、図5(b)は各磁極ごとに3つの短絡磁路を設けた場合のロータ平面図である。 第2の実施形態の強め界磁ロータを模式的に示す図であり、1つの極対部分を拡大して示したロータ展開図である。 第2の実施形態の強め界磁ロータにおけるループコイルによる閉回路の構成を示す簡易回路図である。 第2の実施形態の強め界磁ロータの作用を説明する図であり、(a)は無負荷時に短絡磁路の弱め界磁側及び強め界磁側を流れる磁束量を示す図、(b)は有負荷時に短絡磁路の弱め界磁側及び強め界磁側を流れる磁束量を示す図である。 第2の実施形態の強め界磁ロータの全体像を示す平面図である。 第3の実施形態の強め界磁ロータを模式的に示す図であり、1つの極対部分を拡大して示したロータ展開図である。 第3の実施形態の強め界磁ロータにおけるループコイルによる閉回路の構成を示す簡易回路図である。 第3の実施形態の強め界磁ロータにおける強め界磁側ループコイルの鎖交磁束と弱め界磁側ループコイルの鎖交磁束との関係を示すグラフ図である。 第4の実施形態の強め界磁ロータを模式的に示す図であり、1つの極対部分を拡大して示したロータ展開図である。 第4の実施形態の強め界磁ロータにおけるループコイルによる閉回路の構成を示す簡易回路図である。 第4の実施形態の強め界磁ロータにおける強め界磁側ループコイルの鎖交磁束と弱め界磁側ループコイルの鎖交磁束との関係を示すグラフ図である。 第5の実施形態の強め界磁ロータを模式的に示す図であり、1つの極対部分を拡大して示したロータ展開図である。 第5の実施形態の強め界磁ロータにおけるループコイルによる閉回路の構成を示す簡易回路図であり、(a)は強め界磁側のループコイルが開放された状態を示す図、(b)は弱め界磁側のループコイルにより閉回路が構成された状態を示す図である。
[埋込磁石型同期電動機の概要]
まず、埋込磁石型同期電動機の概要を説明する。埋込磁石型同期電動機は、ロータコア内部に埋め込まれた永久磁石の位置に合わせてステータ(固定子)から発生する磁束に応じてロータ(回転子)が回転する構造の電動機であり、マグネットトルクのほかにリラクタンストルクも利用できるため、高効率の電動機として広く普及している。埋込磁石型同期電動機のステータは、電流を通電することによって磁束を発生させるステータコイルと、当該ステータコイルへの通電により発生した磁束を高密度・高効率で流すステータコアとを有する。ステータの構造としては、特にステータコアに対するステータコイルの巻き方から、全節・分布巻きの構造と、短節・集中巻きの構造が挙げられ、本発明は、ステータの構造が短節・集中巻きとされた埋込磁石型同期電動機を対象とする。
一方、埋込磁石型同期電動機のロータは、ステータの内側にエアギャップを介して回転自在に配置されたロータコアと、当該ロータコアの周方向に沿って交互に極性を変えて並ぶように配置された複数の磁極を形成する永久磁石とを有する。埋込磁石型同期電動機のロータとしては、磁極を形成する各永久磁石の磁石中心軸(磁石磁束座標軸)であるd軸方向のインダクタンスLdよりも、隣り合う異極の永久磁石間を通る軸(磁石磁束座標軸と直交する軸)であるq軸方向のインダクタンスLqの方が大きい、いわゆる逆突極型のロータが一般的であるが、近年では、隣り合う異極の永久磁石の間に空気層などの非磁性部を設けるとともに、各磁極のd軸付近にコア材を配置して、d軸インダクタンスLdがq軸インダクタンスLqよりも大となる順突極型として、強め界磁電流の通電によりリラクタンストルクが得られるようにしたロータ(以下、強め界磁ロータという。)も用いられるようになってきている。本発明は、この埋込磁石型同期電動機に用いられる強め界磁ロータに対して適用される。
[第1の実施形態]
図1は、本発明を適用した強め界磁ロータの一例を模式的に示す図であり、ロータ周方向に隣り合って配置されたN極永久磁石1及びS極永久磁石2からなる1つの極対部分を拡大して示したロータ展開図である。
本実施形態の強め界磁ロータにおいて、各磁極を形成するN極永久磁石1とS極永久磁石2は、それぞれロータ周方向の中途位置にコア材3が介在されることで、磁石部1a,1b、2a,2bに分割されたかたちでロータコア4の内部に埋め込まれている。すなわち、N極側の磁極を形成するN極永久磁石1は、コア材3を介してロータ周方向に並ぶように配置された磁石部1a及び磁石部1bから構成され、S極側の磁極を形成するS極永久磁石2は、コア材3を介してロータ周方向に並ぶように配置された磁石部2a及び磁石部2bから構成されている。また、N極永久磁石1とS極永久磁石2の間の磁石端部間の領域に非磁性部である空気層5が設けられることでq軸方向の磁気抵抗が高められており、これにより、d軸インダクタンスLdがq軸インダクタンスLqよりも大となる順突極型の特性が得られるようになっている。
各永久磁石1,2を磁石部1a,1b、2a,2bに分割するコア材3は、永久磁石1,2の磁石磁束を各磁極ごとに短絡させるように設けられている。つまり、これらコア材3は、永久磁石1,2を挟んだロータコア4の内径側と外径側とを接続するように設けられており、このコア材3によって、永久磁石1,2の短絡磁束が流れる短絡磁路SPが構成されている。なお、隣り合う磁極の永久磁石1,2は、ロータコア4の内径側のコア材により磁気的に結合されており、このロータコア4内径側のコア材により、ステータコイルに鎖交する磁石磁束の主磁束成分が流れる主磁路MPが構成されている。
また、特に本実施形態の強め界磁ロータでは、短絡磁路SPを構成するコア材3が、各磁極を形成する永久磁石1,2のd軸中央部に対してトルク発生方向の前方側にオフセットした位置に設けられている。ここで、d軸中央部とは、無負荷時にロータが発生させる誘起電圧(より厳密には誘起電圧波形の基本波成分)がゼロとなる位置であり、永久磁石1,2の磁石中心に相当する位置である。また、トルク発生方向とは、埋込磁石型同期電動機としてのトルク(力)を発生させる方向であり、埋込磁石型動機電動機をモータとして駆動に用いる場合はロータ回転方向と一致した方向、埋込磁石型動機電動機をジェネレータとして電力回生に用いる場合はロータ回転方向と逆向きの方向である。
本実施形態の強め界磁ロータでは、以上のように、短絡磁路SPを構成するコア材3を永久磁石1,2のd軸中央部に対してトルク発生方向の前方側にオフセットした位置に配置することで、図2に示すように、ロータにおける強め界磁領域と弱め界磁領域のうちで、強め界磁領域のみに短絡磁路SPが設けられるようにしている。なお、ここで強め界磁領域とは、ステータコイルへの通電により発生するステータ10からの磁束が磁石磁束を強める方向に作用する領域であり、弱め界磁領域とは、ステータコイルへの通電により発生するステータ10からの磁束が磁石磁束を弱める方向に作用する領域である。
以上のように構成される本実施形態の強め界磁ロータでは、これを用いた埋込磁石型同期電動機の無負荷時、つまりステータコイルに電流を流していないときには、永久磁石1,2の磁石磁束の多くが短絡磁路SPを流れて各磁極ごとに短絡するため、ステータ側から見た磁石磁束、つまりステータコイルに鎖交する主磁束成分は低減される。一方、ステータコイルに対して通電を行うと、各磁極ごとに配置されている短絡磁路SPには強め界磁磁束が作用して磁石磁束がステータ側へと吸引されるため、ステータコイルに通電する強め界磁電流の強さに応じて短絡磁路SPを流れる短絡磁束が低減され、結果として、ステータコイルに鎖交する磁石磁束の主磁束成分が増加することになる。
以上のように、本実施形態の強め界磁ロータを用いた埋込磁石型同期電動機では、ステータコイルへの通電を行っていない無負荷時においては、磁石磁束の多くが短絡磁束となってステータコイルに鎖交する磁石磁束が低減されるので、磁石磁束がステータコアを流れることによって発生するステータ鉄損を有効に低減することができる。よって、本実施形態の強め界磁ロータを用いた埋込磁石型同期電動機では、低負荷領域での効率を改善することができる。また、高速領域においては、磁石磁束によって増大するステータコイルの線間誘起電圧を許容電圧内に抑えるために弱め界磁制御により磁石磁束を弱める必要があるが、本実施形態の強め界磁ロータを用いた埋込磁石型同期電動機は、低負荷・高速領域においてステータコイルに鎖交する磁石磁束が低減しているため、弱め界磁電流を低く抑えて銅損を低減することが可能となり、高速領域での効率を改善することができる。また、本実施形態の強め界磁ロータを用いた埋込磁石型同期電動機では、ステータコイルへの通電を行うことで、ロータ内部で循環していた短絡磁束をステータコイルに鎖交する主磁束成分へと効率よく変換することができるので、最大電流を通電したときには磁石磁束が短絡していない状態と同等の高トルクを出力することが可能である。すなわち、本実施形態の強め界磁ロータを用いた埋込磁石型同期電動機は、低負荷・高速領域の効率を改善しながら、高トルク領域の効率を、磁石磁束の短絡のない電動機と同等とすることができる。
ところで、本実施形態の強め界磁ロータにおいては、各磁極の永久磁石1,2を構成する2つの磁石部1a,1b、2a,2bのうち、トルク発生方向の前方側に位置する磁石部1b、2bには強め界磁磁束のみが作用し、弱め界磁磁束は作用しない。したがって、トルク発生方向の前方側に位置する磁石部1b、2bは、トルク発生方向の後方側に位置する磁石部1a、2aと比較して減磁に対する耐力(パーミアン係数)が高く、その分、磁石サイズを小さくすることができる。このような観点から、本実施形態の強め界磁ロータにおいては、図3に示すように、トルク発生方向の前方側に位置する磁石部1b、2bの磁石厚(磁化方向の厚み)T1を、トルク発生方向の後方側に位置する磁石部1a、2aの磁石厚T2よりも小さくすることが望ましい。これにより、トータルの磁石量を低減してコストの削減を図ることが可能となる。
また、本実施形態の強め界磁ロータでは、上述したように、各磁極ごとの短絡磁路SPが、永久磁石1,2のd軸中央部に対してトルク発生方向の前方側にオフセットした位置に設けられるようにしているが、その最適位置は、図3に示すように、ロータが発生させる誘起電圧が最大となる位相をq軸中央部としたときに、q軸中央部から電流位相(β角)が電気角45度分だけトルク発生方向の後方側にずれた(遅角した)位置となる。すなわち、本実施形態の強め界磁ロータでは、無負荷時にトルク発生方向の前方側の磁石磁束がステータコイルに鎖交せずにロータ内部で循環するため、無負荷誘起電圧が最大となるロータ位相(q軸の位相)が、幾何学的に決まる異極の永久磁石1,2間の中心部よりも、トルク発生方向の後方側へとずれることになる。したがって、幾何学的に決まる異極の永久磁石1,2間の中心部を基準とするのではなく、無負荷誘起電圧が最大となるq軸中央部を基準として、このq軸中央部からトルク発生方向の後方側に電気角45度ずれた位置、つまりd軸中央部からβ角45°Eの位置に磁路中心が位置するように、短絡磁路SPを設けることによって、β角0°Eの位置にてステータコイルに通電したときに、短絡磁路SPに作用するリラクタンストルクが最大となる上、磁石磁束によるトルクも最大となるため、最大トルク値を増大することが可能となる。
また、各磁極ごとの短絡磁路SPを構成するコア材3は、無負荷時に各永久磁石1,2の磁石磁束を短絡させるのに十分なサイズで永久磁石1,2に介在されていればよく、逆に、磁石磁束の短絡によって飽和しないほどに大きなサイズのコア材3が永久磁石1,2に介在した構成とすると、スペース利用効率の悪化を招くことになる。ここで、各磁極ごとの短絡磁路SPの磁路幅W1が、d軸中央部よりもトルク発生方向の前方側に配置されている磁石部1b、2bの幅W2よりも大きいと、短絡磁路SPは磁石磁束の短絡により磁気飽和することがない。したがって、本実施形態の強め界磁ロータでは、図3に示すように、各磁極ごとの短絡磁路SPの磁路幅W1を、磁石部1b、2bの幅W2よりも小さくしておくことが望ましい。これにより、スペース利用効率の悪化を招くことなく、無負荷時に各磁極の磁石磁束を適切に短絡させることができる。
なお、以上は、各磁極ごとに1つの短絡磁路SPを設けた構造を前提として説明したが、例えば図4に示すように、各磁極ごとに複数の箇所で永久磁石1,2を分割するようにコア材3を配置して、各磁極ごとに複数の短絡磁路SPを設けるようにしてもよい。この場合は、各磁極に設けられた全ての短絡磁路SPが、d軸中央部に対してトルク発生方向の前方側にオフセットした位置に設けられるようにし、これら複数の短絡磁路SPの平均的中心位置が、ロータが発生させる無負荷誘起電圧が最大となるq軸中央部からトルク発生方向の後方側に電気角45度ずれた位置となるようにすればよい。また、スペース利用効率の悪化を招くことなく無負荷時に各磁極の磁石磁束を適切に短絡させるためには、各磁極ごとに、複数の短絡磁路SPの総幅が、d軸中央部よりもトルク発生方向の前方側に配置されている磁石部の総幅よりも小さくなるようにすればよい。
本実施形態の強め界磁ロータの全体像の一例を図5に示す。なお、この図5では、N極永久磁石1とS極永久磁石2とをロータコア4の周方向に沿って交互に3つずつ配置した例を例示しており、図5(a)は各磁極ごとに1つの短絡磁路を設けた場合のロータ平面図、図5(b)は各磁極ごとに3つの短絡磁路を設けた場合のロータ平面図である。
この図5に示す強め界磁ロータは、ロータコア4を構成する電磁鋼板の積層体に対して、打ち抜き加工等によって空気層5となる半円状の空隙を等間隔で形成するとともに、2つの半円状の空隙の間の領域に永久磁石1,2を収容するための磁石収容部をそれぞれ形成し、各磁石収容部内に永久磁石1,2を挿入することで作製される。このように、本実施形態の強め界磁ロータは、比較的簡便な工程で作製することができる。
[第2の実施形態]
次に、本発明の第2の実施形態について説明する。図6は、本実施形態の強め界磁ロータを模式的に示す図であり、ロータ周方向に隣り合って配置されたN極永久磁石1及びS極永久磁石2からなる1つの極対部分を拡大して示したロータ展開図である。
本実施形態の強め界磁ロータは、磁気回路を対称形状とすることで、埋込磁石型同期電動機の運転方向(駆動時か電力回生時か)に関わらず、埋込磁石型同期電動機の効率向上を図れるようにしたものである。すなわち、上述した第1の実施形態の強め界磁ロータは、永久磁石1,2のd軸中央部よりもトルク発生方向の前方側となる位置にのみコア材3を配置して短絡磁路SPを設けるようにしており、磁気回路が回転非対称となっているため、埋込磁石型同期電動機の運転方向が常に一定であれば効率向上を実現できるが、埋込磁石型同期電動機の運転方向が切り替わってトルク発生方向が反転する場合には、効率悪化を招くことになる。そこで、本実施形態の強め界磁ロータでは、図6に示すように、各磁極を形成する永久磁石1,2のd軸中央部に対してトルク発生方向の前方側にオフセットした位置と、トルク発生方向の後方側にオフセットした位置とにそれぞれ短絡磁路SPを構成するコア材3を配置し、隣り合う異極の磁極間で短絡磁路SPを接続する構成とすることで、磁気回路が対称形状となるようにしている。
具体的には、N極永久磁石1のトルク発生方向前方側に位置する短絡磁路SPのコア材3と、S極永久磁石2のトルク発生方向後方側に位置する短絡磁路SPのコア材3とを一体のコア材で構成し、これらの磁極間で短絡磁路SPを接続する。同様に、N極永久磁石1のトルク発生方向後方側に位置する短絡磁路SPのコア材3と、S極永久磁石2のトルク発生方向前方側に位置する短絡磁路SPのコア材3とを一体のコア材で構成し、これらの磁極間で短絡磁路SPを接続する。これら隣り合う異極の磁極間で短絡磁路SPを接続する一体のコア材は、ロータコア4の内径側及び外径側にてそれぞれ磁気障壁となる空隙部20により他のコア材から分離され、この短絡磁路SPを接続する一体のコア材よりもロータコア4の内径側及び外径側のコア材が、それぞれ磁石磁束の主磁束成分が流れる主磁路MCとなる。なお、ロータコア4の最外径部では、コア材が分離されることなく一体化されており、このロータコア4の最外径部が、主磁路MCと短絡磁路SPとを接続する接続部となっている。
本実施形態の強め界磁ロータでは、以上のような磁気回路の構成によって、ステータコイルへの通電を行っていない無負荷時においては、磁石磁束の多くが主磁路MPを通る磁束とは逆向きに短絡磁路SPを流れ、隣り合う異極の磁極間で短絡する短絡磁束となる。したがって、第1の実施形態の強め界磁ロータと同様に、埋込磁石型同期電動機の低負荷・高速領域における効率を改善することができる。
一方、ステータコイルに対して通電する有負荷時においては、第1の実施形態の強め界磁ロータと同様の効果を得るには、ステータからの磁束により永久磁石1,2の短絡磁束を主磁束成分へと変換して、短絡磁路SPを流れる磁束を低減させる必要がある。しかしながら、本実施形態の強め界磁ロータでは、上述したように強め界磁領域から弱め界磁領域に跨って短絡磁路SPが設けられているため、ステータコイルへの通電により短絡磁路SPの強め界磁側に位置する部分では短絡磁束を弱めることができるが、弱め界磁側に位置する部分では逆に短絡磁束が強まってしまう。そこで、本実施形態の強め界磁ロータでは、ステータが集中巻きの構成の場合は短絡磁路SPに流れる磁束は交流であることを利用し、弱め界磁側の短絡磁路SPを流れる短絡磁束をループコイル21を用いて低減させるようにしている。
具体的には、図6に示すように、各磁極の短絡磁路SPを構成するコア材3に、閉回路を構成するループコイル21を巻回する。そして、このループコイル21に対して、図6及び図7に示すように、短絡磁路SPに磁石磁束を打ち消す方向の磁束が流れたときのみ当該磁束をキャンセルする方向でループコイル21に電流が流れるように、ダイオード22を取り付ける。このような構成により、弱め界磁側の短絡磁路SPでは、ステータコイルへの通電により発生する磁界に反発する方向にループコイル21が磁束を発生させるため、短絡磁路SPを流れる短絡磁束を低減させることができる。一方、強め界磁側では、ステータコイルへの通電により発生する磁界を強める方向でループコイル21が磁束を発生させるため、主磁束が増加する。これは、等価的に弱め界磁側のリラクタンスが低下し、強め界磁側のリラクタンスが向上したことと同等となり、これによりリラクタンストルクが発生して総合トルクが増加することになる。
以上のように、本実施形態の強め界磁ロータは、第1の実施形態の強め界磁ロータと同様に埋込磁石型同期電動機の低負荷・高速領域の効率を改善し、さらに高トルク領域の効率については、第1の実施形態よりも改善することができる。しかも、本実施形態の強め界磁ロータは、上述したように磁気回路が対称形状となっているため、埋込磁石型同期電動機の運転方向が切り替わった場合でも同等の効率改善を実現することができる。
図8は、本実施形態の強め界磁ロータの作用を説明する図であり、(a)は無負荷時に短絡磁路SPの弱め界磁側及び強め界磁側を流れる磁束量を示し、(b)は有負荷時に短絡磁路SPの弱め界磁側及び強め界磁側を流れる磁束量を示している。なお、図8(a)及び(b)では、ロータコア4の外径側に向かう方向の磁束を正、ロータコア4の内径側に向かう方向の磁束を負とし、弱め界磁側の短絡磁路SPを流れる磁束量の変化を細線のグラフ、強め界磁側の短絡磁路SPを流れる磁束量の変化を太線のグラフでそれぞれ表している。また、図8(b)では、短絡磁路SPを構成するコア材3に上述したダイオード22付きのループコイル21を巻回していない場合の磁束量の変化を実線のグラフ、ダイオード22付きのループコイル21を巻回した場合の磁束量の変化を破線のグラフとしている。
本実施形態の強め界磁ロータにおいては、図8(a)に示すように、ステータコイルへの通電を行っていない無負荷時には、弱め界磁側はロータコア4の外径方向、強め界磁側はロータコア4の内径方向に向かって短絡磁路SPを磁束が流れるので、短絡磁路SPを流れる磁束がロータ内部で循環することになる。したがって、磁石磁束の多くが短絡磁束となってステータコイルに鎖交する磁石磁束が低減されるため、磁石磁束がステータコアを流れることによって発生するステータ鉄損を有効に低減することができ、埋込磁石型同期電動機の低負荷領域での効率を改善することができる。また、ステータ側に流れる磁石磁束が低下しているため、弱め界磁電流を低減することができ、高速領域での効率を改善することができる。
ここで、ダイオード22付きのループコイル21を有しない構成の場合、ステータコイルに対して通電を行った有負荷時には、短絡磁路SPの弱め界磁側及び強め界磁側に図8(b)の実線のグラフで示すような交流の磁束が流れることになる。この有負荷時に短絡磁路SPを流れる交流の磁束を平均化すると、強め界磁側はほぼ0wbになるが、弱め界磁側は約0.1wbとなることが分かる。これは、短絡磁路SPの強め界磁側では、ステータが発生する磁束によってロータ内部の短絡磁束がキャンセルされているが、短絡磁路SPの弱め界磁側では、ステータが発生する磁束がロータ内部の短絡磁束を強める方向に作用しているためである。この状態では、マイナス方向のリラクタンストルクが発生してしまうため、総合トルクが低下して電動機の効率低下に繋がる。
これに対して、短絡磁路SPを構成するコア材3に上述したダイオード22付きのループコイル21を巻回した構成の場合、ステータコイルへの通電時には、図8(b)の破線のグラフで示すように、短絡磁路SPの弱め界磁側ではロータコア4の外径方向に向かう磁束が弱まり、逆に、短絡磁路SPの強め界磁側ではロータコア4の外径方向に向かう磁束が強まる。これにより、強め界磁側に多くの磁束が流れて正のリラクタンストルクが発生し、総合トルクが増加して高いトルク出力を得ることが可能となる。さらに、この構成では、ステータコイルの通電により短絡磁路SP内に発生するAC成分の磁束がループコイル21によりフィルタリングされるため、ロータ鉄損を低減することができる。
本実施形態の強め界磁ロータの全体像の一例を図9に示す。なお、この図9では、N極永久磁石1とS極永久磁石2とをロータコア4の周方向に沿って交互に3つずつ配置し、各磁極ごとに2つの短絡磁路SPを設けて隣接する磁極の短絡磁路を接続した例を例示している。
この図9に示す強め界磁ロータは、ロータコア4を構成する電磁鋼板の積層体に対して、打ち抜き加工等によって空気層5となる半円状の空隙を等間隔で形成するとともに、2つの半円状の空隙の間の領域に、各磁極ごとの永久磁石1,2を収容するための磁石収容部をそれぞれ3つずつ形成する。また、各磁極の磁石収容部間の領域から隣接する磁極の磁石収容部間の領域に亘って、ロータの内径側及び外径側で一対の空隙部20となる円弧状の空隙を形成する。そして、各磁極の磁石収容部内に永久磁石1,2を挿入するとともに、空隙部20となる一対の空隙内にループコイル21となる線材を巻き込んでダイオード22(図示せず)を取り付けることで作製される。このように、本実施形態の強め界磁ロータは、比較的簡便な工程で作製することができる。
[第3の実施形態]
次に、本発明の第3の実施形態について説明する。図10は、本実施形態の強め界磁ロータを模式的に示す図であり、ロータ周方向に隣り合って配置されたN極永久磁石1及びS極永久磁石2からなる1つの極対部分を拡大して示したロータ展開図である。また、図11は、本実施形態の強め界磁ロータにおける閉回路の構成を示す簡易回路図である。
本実施形態の強め界磁ロータは、上述した第2の実施形態の強め界磁ロータと同様に、磁気回路を対称形状として磁束フィルタリング用のループコイル21を設けた構造であるが、隣接する磁極間でループコイル21を直列に接続するようにした点が第2の実施形態と異なっている。具体的には、本実施形態の強め界磁ロータでは、図10及び図11に示すように、N極側の磁極とこの磁極に対してトルク発生方向の前方側に位置するS極側の磁極とに着目したときに、N極磁極においてトルク発生方向の前方側(つまり強め界磁領域)に位置する短絡磁路SPに対応するループコイル21aと、S極磁極においてトルク発生方向の後方側(つまり弱め界磁領域)に位置する短絡磁路SPに対応するループコイル21bとを直列接続して閉回路を構成する。そして、これら直列接続した2つのループコイル21a,21bに対して、短絡磁路SPに磁石磁束を打ち消す方向の磁束が流れたときのみ当該磁束をキャンセルする方向でこれらループコイル21a,21bに電流が流れるように、1つのダイオード22を接続する。
以上のように構成される本実施形態の強め界磁ロータでは、強め界磁側のループコイル21aと弱め界磁側のループコイル21bとを異極の磁極間で直列接続しているため、ステータコイルに対して通電を行った有負荷時に、第2の実施形態で説明した正のリラクタンストルクは得られない。つまり、強め界磁側のループコイル21aと弱め界磁側のループコイル21bとを異極の磁極間で直列接続すると、図12に示すように、強め界磁側のループコイル21aに鎖交する磁束(図中の破線で示すグラフ)と、弱め界磁側のループコイル21bに鎖交する磁束(図中の一点鎖線で示すグラフ)とが同相であるため、これらループコイル21a,21b内に有効的に電流が発生し、双方のループコイル21a,21bの磁束を平均化する作用がある。このため、強め界磁側と弱め界磁側とで短絡磁路SPを流れる磁束が平均化されることとなり、第2の実施形態で説明したリラクタンストルクは発生しない。したがって、本実施形態の強め界磁ロータでは、有負荷時に得られるトルク出力は第2の実施形態の強め界磁ロータと比較して若干低下するものの、ステータが発生する磁束の作用で短絡磁路SPを流れる短絡磁束が低減されるので、短絡のない電動機と同等のトルク出力を得ることは可能である。なお、無負荷時に磁石磁束の多くが短絡磁束となって短絡磁路SPを流れることによる効果は、第2の実施形態と同等である。
また、本実施形態の強め界磁ロータでは、強め界磁側のループコイル21aと弱め界磁側のループコイル21bとを異極の磁極間で直列接続し、これら2つのループコイル21a,21bの閉回路でダイオード22を共通化しているため、必要なダイオード22の個数が半減し、その分、コストの削減を実現することができる。
[第4の実施形態]
次に、本発明の第4の実施形態について説明する。図13は、本実施形態の強め界磁ロータを模式的に示す図であり、ロータ周方向に隣り合って配置されたN極永久磁石1及びS極永久磁石2からなる1つの極対部分を拡大して示したロータ展開図である。また、図14は、本実施形態の強め界磁ロータにおける閉回路の構成を示す簡易回路図である。
本実施形態の強め界磁ロータは、上述した第2及び第3の実施形態の強め界磁ロータと同様に、磁気回路を対称形状として磁束フィルタリング用のループコイル21を設けた構造であるが、同一の磁極内の2つのループコイル21を直列に接続するようにした点が第2及び第3の実施形態と異なっている。具体的には、本実施形態の強め界磁ロータでは、図13及び図14に示すように、N極側の磁極のトルク発生方向前方側(つまり強め界磁領域)に位置する短絡磁路SPに対応するループコイル21aと、同一の磁極内でトルク発生方向の後方側(つまり弱め界磁領域)に位置する短絡磁路SPに対応するループコイル21cとを直列接続して閉回路を構成する。そして、これら直列接続した2つのループコイル21a,21cに対して、短絡磁路SPに磁石磁束を打ち消す方向の磁束が流れたときのみ当該磁束をキャンセルする方向でこれらループコイル21a,21cに電流が流れるように、1つのダイオード22を接続する。
同様に、S極側の磁極のトルク発生方向前方側(つまり強め界磁領域)に位置する短絡磁路SPに対応するループコイル21dと、同一の磁極内でトルク発生方向の後方側(つまり弱め界磁領域)に位置する短絡磁路SPに対応するループコイル21bとを直列接続して閉回路を構成する。そして、これら直列接続した2つのループコイル21d,21bに対して、短絡磁路SPに磁石磁束を打ち消す方向の磁束が流れたときのみ当該磁束をキャンセルする方向でこれらループコイル21d,21bに電流が流れるように、1つのダイオード22を接続する。
以上のように構成される本実施形態の強め界磁ロータでは、同一の磁極内で強め界磁側のループコイル21a(21d)と弱め界磁側のループコイル21c(21b)とを直列接続しているため、マイナス方向のリラクタンストルクが若干発生する。つまり、同一の磁極内で強め界磁側のループコイル21a(21d)と弱め界磁側のループコイル21c(21b)とを直列接続すると、図15に示すように、強め界磁側のループコイル21a(21d)に鎖交する磁束の変動(図中の破線で示すグラフ)と、弱め界磁側のループコイル21c(21b)に鎖交する磁束の変動(図中の一点鎖線で示すグラフ)とが約90度Eオフセットしているため、一部の磁束変動がこれら直列接続されたループコイル21a(21d),21c(21b)内でキャンセルされ、ループコイル21a(21d),21c(21b)に電流が発生しない。そして、電流が発生しない分については短絡磁路SP内部で磁束変動が発生してしまうため、マイナス方向のリラクタンストルクが若干発生することになる。したがって、本実施形態の強め界磁ロータでは、有負荷時に得られるトルク出力は第3の実施形態の強め界磁ロータと比較して若干低下するが、ループコイル21を同一の磁極内で直列接続するため、コイルエンド部を短くすることができ、その分、銅損を低減することが可能となる。なお、無負荷時に磁石磁束の多くが短絡磁束となって短絡磁路SPを流れることによる効果は、第2及び第3の実施形態と同等である。
また、本実施形態の強め界磁ロータでは、第2の実施形態と同様に、2つのループコイル21を直列接続した閉回路でダイオード22を共通化しているため、必要なダイオード22の個数が半減し、その分、コストの削減を実現することができる。
[第5の実施形態]
次に、本発明の第5の実施形態について説明する。図16は、本実施形態の強め界磁ロータを模式的に示す図であり、ロータ周方向に隣り合って配置されたN極永久磁石1及びS極永久磁石2からなる1つの極対部分を拡大して示したロータ展開図である。また、図17は、本実施形態の強め界磁ロータにおける閉回路の構成を示す簡易回路図である。
本実施形態の強め界磁ロータは、上述した第2乃至第4の実施形態の強め界磁ロータと同様に、磁気回路を対称形状として磁束フィルタリング用のループコイル21を設けた構造であるが、各ループコイル21ごとに閉回路が構成されるようにし、埋込磁石型同期電動機の駆動状態に応じてループコイル21を開閉するスイッチ23を設けるようにした点が、第2乃至第4の実施形態と異なっている。具体的には、図16及び図17に示すように、N極側の磁極のトルク発生方向前方側(つまり強め界磁領域)に位置する短絡磁路SPに対応するループコイル21aに対して、第2乃至第4の実施形態と同様のダイオード22を接続し、これらループコイル21aとダイオード22の回路中にさらにスイッチ23を設ける。また、N極側の磁極のトルク発生方向後方側(つまり弱め界磁領域)に位置する短絡磁路SPに対応するループコイル21cにダイオード22を接続し、これらループコイル21cとダイオード22の回路中にさらにスイッチ23を設ける。S極側の磁極においても同様に、ループコイル21d,21bに各々ダイオード22を接続するとともにスイッチ23を設ける。
以上のように構成される本実施形態の強め界磁ロータでは、各ループコイル21ごとに設けたスイッチ23によって各ループコイル21を開閉できるので、ループコイル21による磁束のフィルタリングを、埋込磁石型同期電動機の駆動状態に応じて最適なかたちで実施することが可能となる。すなわち、ステータコイルへの通電時に強め界磁側の短絡磁路SPを流れてループコイル21a(21d)に鎖交する交流の磁束は、上述したように平均するとほぼ0wbになるため、強め界磁側のループコイル21a(21d)は開放していてもよい。一方、ステータコイルへの通電時に弱め界磁側の短絡磁路SPを流れてループコイル21c(21b)に鎖交する交流の磁束は、平均値が弱め界磁磁束となるため、ループコイル21c(21b)によって鎖交磁束の平均値を0wb付近まで低下させないと、マイナス方向のリラクタンストルクが発生してトルク出力の低下を招くことになる。そこで、強め界磁側のループコイル21a(21d)は開放し、弱め界磁側のループコイル21c(21b)のみが閉回路を構成するように各スイッチ23を制御する。これにより、トルク出力の低下を招くことなく、強め界磁側のループコイル21a(21d)に流れる電流を抑制して銅損を低減することが可能となる。なお、強め界磁側と弱め界磁側は、埋込磁石型同期電動機の運転方向(駆動時か電力回生時か)によって入れ替わることになるが、運転方向の切り替えに応じて各スイッチ23のオン/オフを反転させるようにすればよい。
また、埋込磁石型同期電動機を弱め界磁制御で運転する際は、弱め界磁側の短絡磁路SPを流れる磁束がステータからの磁界によって吸引され始めるため、ループコイル21の有無による出力トルクの差はほとんど発生しない。そこで、弱め界磁制御時には、全てのスイッチ23をオフして全てのループコイル21を開放する。これにより、ループコイル21に流れる電流を抑制して銅損を低減することが可能となる。
以上、本発明の適用例として第1乃至第5の実施形態の強め界磁ロータを具体的に説明したが、上記の各実施形態により開示した内容が本発明の技術的範囲を限定するものではなく、この開示から容易に導きうる様々な変形、変更、代替技術なども本発明の技術的範囲に含まれることは勿論である。
1 N極永久磁石
1a,1b 磁石部
2 S極永久磁石
2a,2b 磁石部
3 コア材
4 ロータコア
5 空気層
10 ステータ
21(21a〜21d) ループコイル
22 ダイオード
23 スイッチ
MP 主磁路
SP 短絡磁路

Claims (9)

  1. ステータコアに対してステータコイルが集中巻きで巻回されて構成されるステータと、ロータコアの内部に磁極を形成する複数の永久磁石が埋め込まれ、各磁極の磁束方向軸であるd軸方向のインダクタンスが当該d軸と直交する軸であるq軸方向のインダクタンスよりも大きくされたロータとを備える埋込磁石型同期電動機のロータであって、
    各磁極ごとに少なくとも1箇所以上、前記永久磁石を複数の磁石部に分割するようにコア材が配置されて、当該コア材により前記永久磁石の短絡磁束が流れる短絡磁路が構成されているとともに、
    前記短絡磁路は、前記複数の磁石部からなる各磁極のd軸中央部に対してトルク発生方向にオフセットした位置に設けられ
    前記短絡磁路は、ロータが発生させる誘起電圧が最大となる位相から電気角45度トルク発生方向の後方側にずれた位置が磁路の平均的中心位置となるように設けられていることを特徴とする埋込磁石型同期電動機のロータ。
  2. 前記短絡磁路により分割された前記永久磁石の複数の磁石部のうち、トルク発生方向の前方側に位置する磁石部は、トルク発生方向の後方側に位置する磁石部と比較して、磁化方向の厚みが小さいことを特徴とする請求項1に記載の埋込磁石型同期電動機のロータ。
  3. 前記短絡磁路の各磁極ごとの総幅が、各磁極ごとの永久磁石のうちでd軸中央部よりもトルク発生方向の前方側に配置されている磁石部の総幅よりも小さくされていることを特徴とする請求項1または2に記載の埋込磁石型同期電動機のロータ。
  4. 前記短絡磁路は、前記複数の磁石部からなる各磁極のd軸中央部に対してトルク発生方向の前方側にオフセットした位置と、トルク発生方向の後方側にオフセットした位置とにそれぞれ設けられ、隣り合う異極の磁極間で前記短絡磁路が接続されているとともに、
    各短絡磁路を構成するコア部材に閉回路を構成するループコイルがそれぞれ巻回され、前記短絡磁路に磁石磁束を弱める方向の磁束が流れたときのみ当該磁束をキャンセルする方向で前記ループコイルに電流が流れるようにダイオードが設けられていることを特徴とする請求項1乃至のいずれか一項に記載の埋込磁石型同期電動機のロータ。
  5. 電動機の駆動状態に応じて前記ループコイルを開閉するスイッチが設けられていることを特徴とする請求項に記載の埋込磁石型同期電動機のロータ。
  6. 前記ステータコイルへの通電時には、1つの磁極内でトルク発生方向の後方側に位置する短絡磁路に対応するループコイルが閉回路を構成し、トルク発生方向の前方側に位置する短絡磁路に対応するループコイルは開放されることを特徴とする請求項に記載の埋込磁石型同期電動機のロータ。
  7. 弱め界磁制御時には全てのループコイルが開放されることを特徴とする請求項に記載の埋込磁石型同期電動機のロータ。
  8. ある磁極を第1極とし、当該第1極に対してトルク発生方向の前方側に隣接する異極の磁極を第2極としたときに、前記第1極においてトルク発生方向の前方側に位置する短絡磁路に対応するループコイルと、前記第2極においてトルク発生方向の後方側に位置する短絡磁路に対応するループコイルとが直列に接続されていることを特徴とする請求項乃至のいずれか一項に記載の埋込磁石型同期電動機のロータ。
  9. 1つの磁極内でトルク発生方向の後方側に位置する短絡磁路に対応するループコイルと、トルク発生方向の前方側に位置する短絡磁路に対応するループコイルとが直列に接続されていることを特徴とする請求項乃至のいずれか一項に記載の埋込磁石型同期電動機のロータ。
JP2009131856A 2009-06-01 2009-06-01 埋込磁石型同期電動機のロータ Active JP5446476B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131856A JP5446476B2 (ja) 2009-06-01 2009-06-01 埋込磁石型同期電動機のロータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131856A JP5446476B2 (ja) 2009-06-01 2009-06-01 埋込磁石型同期電動機のロータ

Publications (2)

Publication Number Publication Date
JP2010279215A JP2010279215A (ja) 2010-12-09
JP5446476B2 true JP5446476B2 (ja) 2014-03-19

Family

ID=43425638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131856A Active JP5446476B2 (ja) 2009-06-01 2009-06-01 埋込磁石型同期電動機のロータ

Country Status (1)

Country Link
JP (1) JP5446476B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209623B1 (ko) * 2011-05-19 2012-12-07 전자부품연구원 회전자 및 그를 갖는 lspm 모터
KR101209643B1 (ko) * 2011-05-19 2012-12-07 전자부품연구원 크기가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
KR101209631B1 (ko) * 2011-05-19 2012-12-07 전자부품연구원 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
JP5944267B2 (ja) * 2012-08-10 2016-07-05 アイチエレック株式会社 回転子および電動機
JP6377543B2 (ja) * 2014-11-21 2018-08-22 株式会社神戸製鋼所 磁石埋込型回転電機
WO2016080192A1 (ja) * 2014-11-21 2016-05-26 株式会社神戸製鋼所 磁石埋込型回転電機
CN113396531A (zh) * 2019-02-12 2021-09-14 三菱电机株式会社 旋转电机的转子及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278900A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2004260888A (ja) * 2003-02-25 2004-09-16 Meidensha Corp 回転電機の回転子

Also Published As

Publication number Publication date
JP2010279215A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5159577B2 (ja) 永久磁石式回転電機
JP5085071B2 (ja) 永久磁石式回転電機の回転子
US9692265B2 (en) Variable magnetic flux-type rotary electric machine
JP5446476B2 (ja) 埋込磁石型同期電動機のロータ
WO2009154007A1 (ja) 永久磁石式回転電機
WO2010098006A1 (ja) 磁束量可変回転電機システム
EP3534496B1 (en) Permanent magnet motor
JP2010004673A (ja) 永久磁石式回転電機
JP2008136298A (ja) 回転電機の回転子及び回転電機
JP7076188B2 (ja) 可変磁力モータ
US11283314B2 (en) Motor
JP2010004671A (ja) 永久磁石回転式電機
JP2014064413A (ja) ロータおよび回転電機
JP2012175738A (ja) 永久磁石式回転電機
JP5355055B2 (ja) 永久磁石式回転電機
CN107078617B (zh) 双定子型旋转器
JP2019154232A (ja) 回転子および回転電機
JP5198178B2 (ja) 永久磁石式回転電機及び永久磁石電動機ドライブシステム
JP4580683B2 (ja) 永久磁石式リラクタンス型回転電機
JP3704881B2 (ja) 永久磁石併用同期回転機およびその駆動方法
JP5802487B2 (ja) 永久磁石式回転電機
JP5515413B2 (ja) 埋込磁石型同期電動機のロータ
JP2002186244A (ja) 永久磁石型リニアモータ
JP2013162612A (ja) 電動回転機
JP2010093929A (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150