[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5358159B2 - Manufacturing method of substrate having semiconductor thin film layer - Google Patents

Manufacturing method of substrate having semiconductor thin film layer Download PDF

Info

Publication number
JP5358159B2
JP5358159B2 JP2008286231A JP2008286231A JP5358159B2 JP 5358159 B2 JP5358159 B2 JP 5358159B2 JP 2008286231 A JP2008286231 A JP 2008286231A JP 2008286231 A JP2008286231 A JP 2008286231A JP 5358159 B2 JP5358159 B2 JP 5358159B2
Authority
JP
Japan
Prior art keywords
thin film
film layer
semiconductor
substrate
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008286231A
Other languages
Japanese (ja)
Other versions
JP2009027206A (en
Inventor
紀仁 河口
健一郎 西田
隆介 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2008286231A priority Critical patent/JP5358159B2/en
Publication of JP2009027206A publication Critical patent/JP2009027206A/en
Application granted granted Critical
Publication of JP5358159B2 publication Critical patent/JP5358159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method requiring no high-temperature heat treatment, with respect to a method of manufacturing a semiconductor integrated circuit, which couples a semiconductor wafer and a dielectric substrate and forms a semiconductor thin-film layer on the insulating substrate. <P>SOLUTION: The method comprises: a first step of forming the semiconductor thin-film layer on the semiconductor wafer; a second step of sticking the semiconductor wafer and the dielectric substrate to each other with the semiconductor thin-film layer therebetween; a third step of performing heat treatment after the second step; a fourth step of peeling the semiconductor thin-film layer on the dielectric substrate after the third step; a fifth step of irradiating the semiconductor thin-film layer with a laser light beam after the fourth step. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、半導体ウエハと透明な絶縁基板を用いて、半導体薄膜層を有する半導体基
板を製造する方法に関する。
The present invention relates to a method of manufacturing a semiconductor substrate having a semiconductor thin film layer using a semiconductor wafer and a transparent insulating substrate.

近年、LSI(大規模集積回路)デバイスの微細化が進む中で、より完全な素子間分離
、動作速度の高速化、高性能化が追求されており、これらの要求を満たす材料として絶縁
基板上にシリコンを形成したSOI(Silicon on Insulator)ウエ
ハが注目されている。また、このSOIウエハの製造方法として、イオン注入剥離法又は
スマートカット(登録商標)法と呼ばれる方法が、例えば非特許文献1に開示されている
In recent years, with the progress of miniaturization of LSI (Large Scale Integrated Circuit) devices, more complete element separation, higher operating speed, and higher performance have been pursued. Attention has been focused on SOI (Silicon on Insulator) wafers on which silicon is formed. Further, as a method for manufacturing this SOI wafer, a method called an ion implantation separation method or a smart cut (registered trademark) method is disclosed in Non-Patent Document 1, for example.

非特許文献1の製造方法は、図9に模式的に示すように、酸化工程(ステップ1)、注
入工程(ステップ2)、接合工程(ステップ3)、熱処理工程(ステップ4)、界面安定
化工程(ステップ5)、及び最終ポリッシング工程(ステップ6)からなる。
As schematically shown in FIG. 9, the manufacturing method of Non-Patent Document 1 includes an oxidation process (step 1), an injection process (step 2), a bonding process (step 3), a heat treatment process (step 4), and interface stabilization. It consists of a process (Step 5) and a final polishing process (Step 6).

酸化工程(ステップ1)では、ウエハA(シリコンウエハ)の表面を酸化し、SOI構
造における酸化膜を形成する。注入工程(ステップ2)では、水素イオンを注入して酸化
膜の下にシリコン層の厚さを決める剥離層(微小気泡層)を形成する。接合工程(ステッ
プ3)では、表面のクリーン度の高い別のウエハBを水素結合により接合する。熱処理工
程(ステップ4)では、熱処理により接合界面を強化すると共に、ウエハBを剥離層(微
小気泡層)をへき開面として剥離する。界面安定化工程(ステップ5)では、更に高い温
度で熱処理し接合界面を安定化させる。最終ポリッシング工程(ステップ6)では、表面
をポリッシングして表面粗さを低減し、SOIウエハが完成する。
このように形成したSOIウエハは、へき開面が良好な鏡面であり、SOI層の膜厚の
均一性の高いSOIウエハが比較的容易に得られる特徴がある。
In the oxidation step (step 1), the surface of the wafer A (silicon wafer) is oxidized to form an oxide film in the SOI structure. In the implantation step (step 2), hydrogen ions are implanted to form a release layer (microbubble layer) that determines the thickness of the silicon layer under the oxide film. In the bonding step (step 3), another wafer B having a high surface cleanness is bonded by hydrogen bonding. In the heat treatment step (step 4), the bonding interface is strengthened by the heat treatment, and the wafer B is peeled using the release layer (microbubble layer) as a cleavage plane. In the interface stabilization step (step 5), heat treatment is performed at a higher temperature to stabilize the bonding interface. In the final polishing step (step 6), the surface is polished to reduce the surface roughness, and the SOI wafer is completed.
The SOI wafer formed in this manner is a mirror surface having a good cleavage surface, and has a characteristic that an SOI wafer having a highly uniform SOI layer thickness can be obtained relatively easily.

一方、シリコン基板同士の結合ではなく、絶縁基板とシリコン基板を結合して作製する
SOIウエハの製造方法として、特許文献1が開示されている。
On the other hand, Patent Document 1 is disclosed as a method for manufacturing an SOI wafer in which an insulating substrate and a silicon substrate are bonded to each other instead of bonding silicon substrates.

特許文献1の「SOIウエーハの製造方法ならびにこの方法で製造されるSOIウエー
ハ」は、単結晶シリコンウエハを絶縁基板に密着させ、シリコン層を剥離してSOI層を
形成することによりSOIウエハを製造する方法において、図10に示す下記の工程順に
水素イオン注入、多段熱処理、薄膜化処理及び剥離処理をすることを特徴とするものであ
る。
Patent Document 1 “SOI Wafer Manufacturing Method and SOI Wafer Manufactured With This Method” manufactures an SOI wafer by adhering a single crystal silicon wafer to an insulating substrate and peeling the silicon layer to form an SOI layer. In this method, hydrogen ion implantation, multistage heat treatment, thinning treatment, and peeling treatment are performed in the following order shown in FIG.

(1)単結晶シリコンウエハのSOI層となる側の面から水素イオンまたは希ガスをI/
Iで注入する(イオン注入工程)。
(2)単結晶シリコンウエハのイオン注入面と絶縁基板を室温で密着させる(密着工程)

(3)100〜300℃で熱処理して仮接合させる(仮接合工程)。
(4)単結晶シリコン層をアルカリエッチングで厚さ100〜250μmにする(エッチ
ング工程)。
(5)350〜450℃で熱処理して本接合させる(本接合工程)。
(6)単結晶シリコン層を研削,研磨して50μm以下の厚さにする(研削・研磨工程)

(7)500℃以上に加熱してイオン注入層をへき界面として剥離し、単結晶シリコン層
の厚さを0.5μm以下のSOI層にする(剥離工程)。
(8)SOI層表面を鏡面研磨する(鏡面研磨工程)。
(9)800℃以上の熱処理を加えて結合強度を高める(熱処理工程)。
特許文献1の方法によるSOIウエハは、絶縁基板上に単結晶シリコンウエハを結合し
たものであるため、基板が完全な絶縁体であり、キャリアの移動度が基板に影響されず、
極めて高くなる特徴を有する。
(1) Hydrogen ions or rare gas is supplied from the surface of the single crystal silicon wafer that becomes the SOI layer to I /
I is implanted (ion implantation step).
(2) Adhering the ion implantation surface of the single crystal silicon wafer and the insulating substrate at room temperature (adhesion process)
.
(3) It heat-processes at 100-300 degreeC, and is temporarily joined (temporary joining process).
(4) The single crystal silicon layer is made to have a thickness of 100 to 250 μm by alkali etching (etching step).
(5) A heat treatment is performed at 350 to 450 ° C. to perform main bonding (main bonding step).
(6) Grinding and polishing the single crystal silicon layer to a thickness of 50 μm or less (grinding / polishing process)
.
(7) Heat to 500 ° C. or higher to peel the ion-implanted layer as a peeling interface, and form an SOI layer having a single crystal silicon layer thickness of 0.5 μm or less (peeling step).
(8) The SOI layer surface is mirror polished (mirror polishing process).
(9) Heat treatment at 800 ° C. or higher is applied to increase the bond strength (heat treatment step).
Since the SOI wafer according to the method of Patent Document 1 is obtained by bonding a single crystal silicon wafer on an insulating substrate, the substrate is a complete insulator, and the mobility of carriers is not affected by the substrate.
It has extremely high characteristics.

また、関連するSOIウエハの製造方法として、特許文献2が開示されている。
特許文献2の「半導体ウエハ及びその製作法」は、図11に示すように、半導体層24
a,24bと絶縁層20bとが交互に2周期以上周期的に積層された積層構造を有する半
導体ウエハであって、前記絶縁層の少なくとも1層がイオン注入された酸素により形成さ
れたものであることを特徴とするものである。なおこの図で、20aは酸素イオン注入層
、22aは水素イオン注入層(微小気泡層)、26は貼り合わせウエハ、28はSOIウ
エハである。
Further, Patent Document 2 is disclosed as a related SOI wafer manufacturing method.
The “semiconductor wafer and manufacturing method thereof” of Patent Document 2 is shown in FIG.
a, 24b and insulating layer 20b are semiconductor wafers having a laminated structure in which two or more periods are alternately laminated, wherein at least one of the insulating layers is formed by ion-implanted oxygen. It is characterized by this. In this figure, 20a is an oxygen ion implanted layer, 22a is a hydrogen ion implanted layer (microbubble layer), 26 is a bonded wafer, and 28 is an SOI wafer.

L.Di Cioccio, "Silicon carbide on insulator formation by the Smart-cut process", Materials Science and Engineering B46 (1997) 349-356.L. Di Cioccio, “Silicon carbide on insulator formation by the Smart-cut process”, Materials Science and Engineering B46 (1997) 349-356.

特開平11−145438号公報、「SOIウエーハの製造方法ならびにこの方法で製造されるSOIウエーハ」JP-A-11-145438, “SOI Wafer Manufacturing Method and SOI Wafer Manufactured by this Method” 特開2001−210810号公報、「半導体ウエハ及びその製作法」Japanese Patent Laid-Open No. 2001-210810, “Semiconductor Wafer and Manufacturing Method Thereof”

上述した特許文献1の方法において、絶縁基板として透明なガラス基板を用いる場合、
SOI層とガラス基板を強固に結合するためには、SOI層及びガラス基板を炉内におい
て800℃以上で熱処理する必要がある。そのため、ガラス基板の構成材料として融点の
低いものを用いることができず、ガラス基板の構成材料は例えば石英等のように800℃
よりも高い融点を有するものに限られ、さまざまな構成材料からなる絶縁基板を半導体基
板の製造に用いることができないとともに、半導体基板の製造コストが高くなる問題点が
あった。
言い換えれば、従来の半導体基板の製造方法は、半導体薄膜と透明絶縁基板との接合強
度を高めるため、通常1000℃以上の熱処理が必要であった。そのため、石英ガラスな
どの高融点絶縁基板を用いる必要があり、製造コストが高くなっていた。
In the method of Patent Document 1 described above, when a transparent glass substrate is used as the insulating substrate,
In order to firmly bond the SOI layer and the glass substrate, it is necessary to heat-treat the SOI layer and the glass substrate in a furnace at 800 ° C. or higher. Therefore, it is not possible to use a glass substrate having a low melting point, and the glass substrate is made of, for example, 800 ° C. such as quartz.
However, the insulating substrate made of various constituent materials cannot be used for manufacturing the semiconductor substrate, and the manufacturing cost of the semiconductor substrate is increased.
In other words, the conventional method for manufacturing a semiconductor substrate usually requires heat treatment at 1000 ° C. or higher in order to increase the bonding strength between the semiconductor thin film and the transparent insulating substrate. For this reason, it is necessary to use a high-melting point insulating substrate such as quartz glass, which increases the manufacturing cost.

また、上述した従来の方法において、SOI層とガラス基板における構成材料の線膨張
係数差によって、SOI層とガラス基板を強固に結合する際にSOI層に割れが生じない
ように、SOIウエハを薄膜化している。しかし、従来の方法では、微小気泡層をへき開
面としてSiウエハを薄膜状に剥離する前に、仮接合工程とエッチング工程が必要となる
。そのため、半導体基板の製造のための工程が増え、半導体基板の製造作業が煩雑化して
、作業時間が長くなる問題点があった。
Further, in the conventional method described above, the SOI wafer is thinned so that the SOI layer is not cracked when the SOI layer and the glass substrate are firmly bonded due to the difference in the linear expansion coefficient between the constituent materials of the SOI layer and the glass substrate. It has become. However, in the conventional method, a temporary bonding step and an etching step are required before the Si wafer is peeled into a thin film using the microbubble layer as a cleavage plane. For this reason, there are problems that the number of steps for manufacturing the semiconductor substrate is increased, the semiconductor substrate manufacturing operation becomes complicated, and the operation time becomes long.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の第
1の目的は、SOI層とガラス基板を強固に結合するために、800℃を超える高温での
熱処理を必要とせず、ガラス基板の構成材料として融点の低いものを用いることができ、
これにより、半導体基板の製造コストを下げることができる半導体基板の製造方法を提供
することにある。
また、本発明の第2の目的は、微小気泡層をへき開面としてSiウエハを薄膜状に剥離
する前の、仮接合工程とエッチング工程が不要であり、これにより半導体基板の製造工程
を減らし、半導体基板の製造作業を簡略化して、作業時間を短縮化できる半導体基板の製
造方法を提供することにある。
The present invention has been made to solve such problems. That is, the first object of the present invention is to use a material having a low melting point as a constituent material of the glass substrate without requiring heat treatment at a high temperature exceeding 800 ° C. in order to firmly bond the SOI layer and the glass substrate. Can
Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor substrate that can reduce the manufacturing cost of the semiconductor substrate.
In addition, the second object of the present invention is that a temporary bonding step and an etching step are not required before the Si wafer is peeled into a thin film with the microbubble layer as a cleavage plane, thereby reducing the manufacturing process of the semiconductor substrate, An object of the present invention is to provide a method of manufacturing a semiconductor substrate that can simplify the manufacturing operation of the semiconductor substrate and reduce the operation time.

本発明によれば、半導体ウエハと透明な絶縁基板を用いて、半導体薄膜層を有する半導
体基板を製造する半導体基板の製造方法において、
前記半導体ウエハに半導体薄膜層を形成する薄膜形成工程と、
前記薄膜形成工程後に、前記半導体ウエハと前記絶縁基板の表面を洗浄し、基板の一面
を貼り合わせる貼合わせ工程と、
前記貼合わせ工程後に、熱処理により前記貼合わせ面の接合強度を高める熱処理工程と

前記熱処理工程後に、前記半導体薄膜層を絶縁基板上に剥離させる剥離工程と、
前記剥離工程後に、絶縁基板に、レーザ光を前記半導体薄膜層側または前記透明な絶縁
基板側から照射して前記半導体薄膜層の結晶品質を改善するとともに、前記半導体薄膜層
と前記透明な絶縁基板を強固に結合させるレーザ光照射工程と、を備えていることを特徴
とする半導体基板の製造方法が提供される。
According to the present invention, in a semiconductor substrate manufacturing method for manufacturing a semiconductor substrate having a semiconductor thin film layer using a semiconductor wafer and a transparent insulating substrate,
A thin film forming step of forming a semiconductor thin film layer on the semiconductor wafer;
After the thin film forming step, the semiconductor wafer and the surface of the insulating substrate are washed, a bonding step of bonding one surface of the substrate,
After the bonding step, a heat treatment step for increasing the bonding strength of the bonding surface by heat treatment,
A peeling step of peeling the semiconductor thin film layer on the insulating substrate after the heat treatment step;
After the peeling step, the insulating substrate is irradiated with laser light from the semiconductor thin film layer side or the transparent insulating substrate side to improve the crystal quality of the semiconductor thin film layer, and the semiconductor thin film layer and the transparent insulating substrate There is provided a method for manufacturing a semiconductor substrate, comprising: a laser beam irradiation step for firmly bonding the two.

上記本発明の方法によれば、レーザ光照射工程でレーザ光を照射して半導体薄膜層の結
晶品質を改善するので、800℃を超える高温での熱処理を必要とせず、ガラス基板の構
成材料として融点の低いものを用いることができる。またこのレーザ光照射工程において
、レーザ光を前記半導体薄膜層側または前記透明な絶縁基板側から照射するので、半導体
薄膜層又は透明な絶縁基板で吸収されずに透過したレーザ光で薄膜層を選択的に加熱でき
るので、絶縁基板上に半導体薄膜層を強固に結合させることができる。
According to the method of the present invention, the crystal quality of the semiconductor thin film layer is improved by irradiating the laser beam in the laser beam irradiating step. Those having a low melting point can be used. In this laser light irradiation step, the laser light is irradiated from the semiconductor thin film layer side or the transparent insulating substrate side, so that the thin film layer is selected by the laser light transmitted without being absorbed by the semiconductor thin film layer or the transparent insulating substrate. Therefore, the semiconductor thin film layer can be firmly bonded on the insulating substrate.

本発明の好ましい実施形態によれば、前記薄膜形成工程は、前記半導体ウエハの表面に
親水性の酸化膜を形成し、その後、水素イオン、水素分子イオン、希ガスイオンまたはこ
れらの複合イオンを1E16/cm〜1E17/cmの範囲のドープ量で注入する。
なお、半導体薄膜層の厚さは、このドープの際の加速電圧を変化させることにより、任意
に設定することができる。
According to a preferred embodiment of the present invention, in the thin film forming step, a hydrophilic oxide film is formed on the surface of the semiconductor wafer, and then hydrogen ions, hydrogen molecular ions, rare gas ions, or complex ions thereof are converted into 1E16. Implantation is performed at a dope amount in the range of / cm 2 to 1E17 / cm 2 .
The thickness of the semiconductor thin film layer can be arbitrarily set by changing the acceleration voltage during the doping.

また、前記薄膜形成工程は、前記半導体ウエハの表面に多孔質構造を形成し、その上に
前記半導体ウエハと同種のエピタキシャル層を成長させ、さらに、エピタキシャル層の表
面に親水性の酸化膜を形成してもよい。
In the thin film forming step, a porous structure is formed on the surface of the semiconductor wafer, an epitaxial layer of the same type as the semiconductor wafer is grown thereon, and a hydrophilic oxide film is formed on the surface of the epitaxial layer. May be.

前記貼合わせ工程は、室温で貼り合わせた前記半導体ウエハと絶縁基板を500℃以下
の温度で加熱し、かつ前記半導体ウエハに正電圧、前記透明な絶縁基板に負電圧を印加し
て半導体ウエハと絶縁基板とを強固に貼り合わせるのが好ましい。
In the bonding step, the semiconductor wafer and the insulating substrate bonded together at room temperature are heated at a temperature of 500 ° C. or lower, and a positive voltage is applied to the semiconductor wafer and a negative voltage is applied to the transparent insulating substrate. It is preferable that the insulating substrate is firmly attached.

また、前記熱処理工程において、前記半導体ウエハの温度が400℃を超えない温度で
熱処理することで、半導体ウエハと絶縁基板の界面の存在するOH基が一部除去され、半
導体ウエハと絶縁基板との接合を強化することができる。
Further, in the heat treatment step, the semiconductor wafer is heat-treated at a temperature not exceeding 400 ° C., whereby a part of OH groups present at the interface between the semiconductor wafer and the insulating substrate is removed, and the semiconductor wafer and the insulating substrate are removed. Bonding can be strengthened.

前記剥離工程において、前記半導体ウエハと絶縁基板を600℃以下の温度で熱処理し
て行うことで、注入されたイオンが拡散、凝集そして膨張することで半導体薄膜層が絶縁
基板上に形成させる。
In the peeling step, the semiconductor wafer and the insulating substrate are heat-treated at a temperature of 600 ° C. or lower, so that the implanted ions diffuse, aggregate, and expand to form a semiconductor thin film layer on the insulating substrate.

前記剥離工程において、ウォータージェットを前記半導体ウエハの表面の多孔質構造に
吹き付けることで、半導体薄膜層が絶縁基板上に形成させる。
In the peeling step, the semiconductor thin film layer is formed on the insulating substrate by spraying a water jet onto the porous structure on the surface of the semiconductor wafer.

前記レーザ光、前記レーザ光の光エネルギーが前記半導体ウエハおよび薄膜に十分に吸
収されるように、予め前記レーザ光の波長を選択するのがよい。
The wavelength of the laser beam is preferably selected in advance so that the laser beam and the optical energy of the laser beam are sufficiently absorbed by the semiconductor wafer and the thin film.

前記半導体ウエハは、Siウエハ、GaNウエハ、GaAsウエハ、SiCウエハ、I
nPウエハ、GaPのいずれかの半導体ウエハであるのがよい。
The semiconductor wafer is a Si wafer, a GaN wafer, a GaAs wafer, a SiC wafer, I
The semiconductor wafer may be either an nP wafer or a GaP semiconductor wafer.

前記透明な絶縁基板は、前記半導体ウエハと熱膨張係数が同じまたは同程度の絶縁基板
であるのがよい。
The transparent insulating substrate may be an insulating substrate having the same or similar thermal expansion coefficient as the semiconductor wafer.

前記透明な絶縁基板は、表面に親水性の酸化膜が形成されている、ことが好ましい。
前記レーザ光がパルスレーザの場合、前記半導体ウエハの融点を超える温度で加熱し、
前記半導体薄膜を結晶化させる、ことが好ましい。
The transparent insulating substrate preferably has a hydrophilic oxide film formed on the surface.
When the laser beam is a pulse laser, heating at a temperature exceeding the melting point of the semiconductor wafer,
It is preferable to crystallize the semiconductor thin film.

前記半導体ウエハの融点での蒸気圧が大気圧を超え、前記レーザ光を照射して溶融させ
て結晶化させる場合において、前記蒸気圧を超える圧力の不活性ガス雰囲気にて行うこと
により、半導体薄膜層の分解を抑制しかつ半導体薄膜層の結晶品質を改善するとともに、
半導体薄膜層と前記透明な絶縁基板を強固に結合させることができる。
When the vapor pressure at the melting point of the semiconductor wafer exceeds atmospheric pressure and is melted and crystallized by irradiation with the laser beam, the semiconductor thin film is formed in an inert gas atmosphere at a pressure exceeding the vapor pressure. While suppressing the decomposition of the layer and improving the crystal quality of the semiconductor thin film layer,
The semiconductor thin film layer and the transparent insulating substrate can be firmly bonded.

前記レーザ照射工程は、前記半導体薄膜層が転写された絶縁基板を600℃以下の温度
に加熱することで、半導体薄膜層の吸収係数が上昇するため、レーザ光の出力を下げるこ
とができる。
In the laser irradiation step, by heating the insulating substrate onto which the semiconductor thin film layer is transferred to a temperature of 600 ° C. or lower, the absorption coefficient of the semiconductor thin film layer is increased, so that the output of laser light can be reduced.

融点における蒸気圧が大気圧を超える前記半導体ウエハにおいて、前記レーザ光照射前
に前記レーザ光を透過する薄膜を形成することが好ましい。
In the semiconductor wafer having a vapor pressure at the melting point exceeding atmospheric pressure, a thin film that transmits the laser light is preferably formed before the laser light irradiation.

上述した本発明の方法によれば、半導体ウエハと絶縁基板の熱膨張係数が同等かそれに
近い特性のものであるため、貼り合せ工程後の熱処理により、半導体ウエハが割れること
なく、半導体薄膜層を形成することができる。
また、レーザ光は薄膜層のみを吸収し、絶縁基板を透過するため、絶縁基板の直接加熱
に寄与するものではなく、また、薄膜層と絶縁基板を強固に結合するまでの加熱時間を極
めて短くできるため、絶縁基板の構成材料が例えば石英等の高い融点を有する高価なもの
に限られず、融点の低い安価なものも絶縁基板として用いることができるとともに、半導
体基板の製造コストの低下を図ることができる。
According to the method of the present invention described above, since the thermal expansion coefficients of the semiconductor wafer and the insulating substrate are equal or close to those characteristics, the semiconductor thin film layer is formed without cracking the semiconductor wafer by heat treatment after the bonding process. Can be formed.
In addition, since the laser light absorbs only the thin film layer and passes through the insulating substrate, it does not contribute to the direct heating of the insulating substrate, and the heating time until the thin film layer and the insulating substrate are firmly bonded is extremely short. Therefore, the constituent material of the insulating substrate is not limited to an expensive one having a high melting point, such as quartz, and an inexpensive one having a low melting point can be used as the insulating substrate, and the manufacturing cost of the semiconductor substrate can be reduced. Can do.

従って本発明は、SOI層とガラス基板を強固に結合するために、800℃を超える高
温での熱処理を必要とせず、ガラス基板の構成材料として融点の低いものを用いることが
でき、これにより、半導体基板の製造コストを下げることができ、かつ微小気泡層をへき
開面としてSiウエハを薄膜状に剥離する前の、仮接合工程とエッチング工程が不要であ
り、これにより半導体基板の製造工程を減らし、半導体基板の製造作業を簡略化して、作
業時間を短縮化できる、等の優れた効果を有する。
Therefore, the present invention does not require heat treatment at a high temperature exceeding 800 ° C. in order to firmly bond the SOI layer and the glass substrate, and a material having a low melting point can be used as a constituent material of the glass substrate. The manufacturing cost of the semiconductor substrate can be reduced, and the temporary bonding process and the etching process are not required before the Si wafer is peeled into a thin film using the microbubble layer as a cleavage plane, thereby reducing the manufacturing process of the semiconductor substrate. It has excellent effects such as simplifying the semiconductor substrate manufacturing operation and shortening the operation time.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通
する部分には同一の符号を付し、重複した説明を省略する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

以下、本発明の実施形態について、図面を参照して説明する。
図1は、本発明による半導体基板の製造方法のフロー図である。
図1に示すように、本発明の半導体基板の製造方法は、半導体ウエハ1と透明な絶縁基
板2を用いて、絶縁基板2上に半導体ウエハの半導体薄膜層3を有する半導体基板4を製
造する方法である。
この例において、半導体ウエハ1はSiウエハであり、透明な絶縁基板2はガラス基板
である。また以下、半導体ウエハの半導体薄膜層3をSOI薄膜層、半導体基板4をSO
I薄膜層ウエハと呼ぶ。
図1に示すように、本発明の半導体基板の製造方法は、薄膜形成工程S1、貼合わせ工
程S2、熱処理工程S3、剥離工程S4、及びレーザ光照射工程S5を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart of a method for manufacturing a semiconductor substrate according to the present invention.
As shown in FIG. 1, the semiconductor substrate manufacturing method of the present invention uses a semiconductor wafer 1 and a transparent insulating substrate 2 to manufacture a semiconductor substrate 4 having a semiconductor thin film layer 3 of the semiconductor wafer on the insulating substrate 2. Is the method.
In this example, the semiconductor wafer 1 is a Si wafer, and the transparent insulating substrate 2 is a glass substrate. Further, hereinafter, the semiconductor thin film layer 3 of the semiconductor wafer is the SOI thin film layer, and the semiconductor substrate 4 is the SO thin film layer.
It is called an I thin film layer wafer.
As shown in FIG. 1, the manufacturing method of the semiconductor substrate of this invention is equipped with thin film formation process S1, bonding process S2, heat treatment process S3, peeling process S4, and laser beam irradiation process S5.

薄膜形成工程S1では、半導体ウエハ1にイオンを注入して半導体薄膜層を形成する。
すなわち、この例において、Siウエハ1に表面1aから水素イオン5(或いは水素分子
イオン、希ガスイオンまたはこれらの複合イオン)を注入することにより、Siウエハ1
の内部に表面1aに対して平行な微小気泡層6を形成する。ここで、イオン注入の加速電
圧を制御することにより、Siウエハ表面1aから所定の深さ位置に微小気泡層6(剥離
層)を形成することができる。
In the thin film forming step S1, ions are implanted into the semiconductor wafer 1 to form a semiconductor thin film layer.
That is, in this example, by injecting hydrogen ions 5 (or hydrogen molecular ions, rare gas ions, or complex ions thereof) from the surface 1a into the Si wafer 1,
A microbubble layer 6 parallel to the surface 1a is formed in the inside of the substrate. Here, by controlling the acceleration voltage of ion implantation, the microbubble layer 6 (peeling layer) can be formed at a predetermined depth position from the Si wafer surface 1a.

貼合わせ工程S2では、薄膜形成工程S1の後に、半導体ウエハ1と絶縁基板2の表面
を洗浄し、基板の一面を貼り合わせる。すなわち、上述した薄膜形成工程が終了した後に
、Siウエハ1とガラス基板2を洗浄する。洗浄後、Siウエハの表面1aとガラス基板
2の一面2aを貼り合わせる。
In the bonding step S2, after the thin film forming step S1, the surfaces of the semiconductor wafer 1 and the insulating substrate 2 are cleaned, and one surface of the substrate is bonded. That is, after the thin film formation process described above is completed, the Si wafer 1 and the glass substrate 2 are cleaned. After cleaning, the surface 1a of the Si wafer and the one surface 2a of the glass substrate 2 are bonded together.

熱処理工程S3では、貼合わせ工程S2の後に、熱処理により貼合わせ面の接合強度を
高める。すなわち、この例において、貼合わせ工程S2が終了した後に、300℃以上、
400℃以下(例えば300℃、1時間)の温度条件で貼り合わせ処理したSiウエハ1
とガラス基板2に熱処理を行う。Siウエハ1とガラス基板2の熱膨張係数は、同等がそ
れに近い特性であるため、熱膨張差によりSiウエハ1が割れることはない。例えば、2
93Kにおいて石英の熱膨張係数が約0.5×10-6に対し、シリコンは約3.65×
10-6、パイレックス(登録商標)ガラスは約2.8×10-6である。
In the heat treatment step S3, the bonding strength of the bonding surface is increased by heat treatment after the bonding step S2. That is, in this example, after the bonding step S2 is finished,
Si wafer 1 bonded together under a temperature condition of 400 ° C. or lower (for example, 300 ° C. for 1 hour)
The glass substrate 2 is heat treated. Since the thermal expansion coefficients of the Si wafer 1 and the glass substrate 2 are similar to each other, the Si wafer 1 is not broken by a difference in thermal expansion. For example, 2
At 93K, the coefficient of thermal expansion of quartz is about 0.5 × 10 −6, whereas silicon is about 3.65 ×
10 −6 , Pyrex® glass is about 2.8 × 10 −6 .

剥離工程S4では、熱処理工程S3の後に、半導体薄膜層を絶縁基板上に剥離させる。
すなわち、この例において、低温熱処理工程S3が終了した後に、400℃以上、600
℃以下(例えば、550℃、1時間)の条件で貼り合わせ処理したSiウエハ1とガラス
基板2に熱処理を行う。これによって、微小気泡層6をへき開面としてSiウエハ1を薄
膜状に剥離する。
In the peeling step S4, the semiconductor thin film layer is peeled off on the insulating substrate after the heat treatment step S3.
That is, in this example, after the low-temperature heat treatment step S3 is completed, the temperature is 400 ° C. or higher, 600
A heat treatment is performed on the Si wafer 1 and the glass substrate 2 that have been bonded together at a temperature of ℃ or lower (for example, 550 ° C. for 1 hour). As a result, the Si wafer 1 is peeled off into a thin film using the microbubble layer 6 as a cleavage plane.

なお、上述した薄膜形成工程の代わりに、半導体ウエハの表面に多孔質構造を形成し、
その上に半導体ウエハと同種のエピタキシャル層を成長させ、さらに、エピタキシャル層
の表面に親水性の酸化膜を形成する工程としてもよい。
またこの場合、剥離工程を、ウォータージェットを半導体ウエハの表面の多孔質構造に
吹き付けて、半導体薄膜を得るのがよい。
In addition, instead of the above-described thin film forming step, a porous structure is formed on the surface of the semiconductor wafer,
An epitaxial layer of the same type as that of the semiconductor wafer may be grown thereon, and a hydrophilic oxide film may be formed on the surface of the epitaxial layer.
In this case, it is preferable to obtain a semiconductor thin film by spraying a water jet onto the porous structure on the surface of the semiconductor wafer in the peeling step.

レーザ光照射工程S5では、剥離工程S4の後に、絶縁基板に、レーザ光を半導体薄膜
層側または透明な絶縁基板側から照射して前記半導体薄膜層の結晶品質を改善するととも
に、前記半導体薄膜層と前記透明な絶縁基板を強固に結合させる。
すなわち、この例において、剥離工程S4が終了した後に、レーザ照射装置(図示省略
)によってレーザ光(例えば、YAGレーザの2倍波)7をSOI薄膜層3側またはガラ
ス基板2側から照射する。これによって、SOI薄膜層3とガラス基板を強固に結合する
。なお、レーザ光7はSOI薄膜層全面に照射するように行う。
In the laser beam irradiation step S5, after the peeling step S4, the insulating substrate is irradiated with laser light from the semiconductor thin film layer side or the transparent insulating substrate side to improve the crystal quality of the semiconductor thin film layer, and the semiconductor thin film layer And the transparent insulating substrate are firmly bonded.
That is, in this example, after the peeling step S4 is completed, a laser beam (for example, a double wave of YAG laser) 7 is irradiated from the SOI thin film layer 3 side or the glass substrate 2 side by a laser irradiation device (not shown). Thereby, the SOI thin film layer 3 and the glass substrate are firmly bonded. Note that the laser beam 7 is applied to the entire surface of the SOI thin film layer.

ここで、レーザ光7を外側からガラス基板2に向かって照射することによって、SOI
薄膜層3およびガラス基板2の界面のみを局部的に加熱でき、また、SOI薄膜層3とガ
ラス基板2を強固に結合するまでの加熱時間(レーザ光7の照射時間)を極めて短くでき
る。例えば、本発明の実施形態では、加熱時間は数百ナノ秒である。一方、レーザ光7を
外側から透明なガラス基板2に向かって照射しても、大部分のレーザ光7はガラス基板2
を透過して、ガラス基板2の直接加熱に寄与するものではない。
Here, by irradiating the laser beam 7 from the outside toward the glass substrate 2, the SOI is obtained.
Only the interface between the thin film layer 3 and the glass substrate 2 can be locally heated, and the heating time (irradiation time of the laser beam 7) until the SOI thin film layer 3 and the glass substrate 2 are firmly bonded can be extremely shortened. For example, in an embodiment of the invention, the heating time is a few hundred nanoseconds. On the other hand, even if the laser beam 7 is irradiated from the outside toward the transparent glass substrate 2, most of the laser beam 7 is emitted from the glass substrate 2.
Does not contribute to the direct heating of the glass substrate 2.

以下にシリコン単結晶薄膜の実施例を説明する。
(1)試料準備
Siウエハは4インチ径、厚さ525μm、p型、面方位(100)、抵抗値0.5〜
40Ωで100nm厚の熱酸化膜付きのものを用いた。ガラスウエハは、HOYA製NA
35の無アルカリガラスを用い、4インチ径、厚さ0.7mmにものを作製し、500n
mのSiO膜をスパッタ成膜した。
(2)薄膜形成処理
酸化膜付Siウエハに水素イオン(H)を加速電圧100kV、注入量5E16cm
-2、入射角度0°(ウエハ表面に対して直交方向)で注入した。
(3)貼り合わせ処理
Siウエハおよびガラスウエハに対してSCIおよびSC2レベルのRCA洗浄を実施
し、洗浄後、大気中、室温で貼り合わせた。
(4)Si薄膜の剥離処理および剥離後熱処理
Si薄膜の剥離は、Siウエハ同士を貼り合わせた試料に対して550℃、1時間の熱
処理で、Siウエハとガラスウエハを貼り合わせた試料に対しては500℃、1時間の熱
処理で行った。
Si薄膜の剥離後、窒素雰囲気で550℃、4時間の熱処理を実施し、レーザ照射用試
料とした。
(5)レーザ照射工程
YLFレーザ(最大出力20W、波長527nm、繰り返し周波数1kHz)を光源と
して用い、試料をステージに載せ、搬送しながら照射した。
照射条件は、レーザ出力:4〜15W、ステージ搬送速度:3mm/秒、試料温度:室
温で実施した。
Examples of the silicon single crystal thin film will be described below.
(1) Sample preparation The Si wafer has a diameter of 4 inches, a thickness of 525 μm, a p-type, a plane orientation (100), and a resistance value of 0.5 to
The one with 40Ω and 100 nm thick thermal oxide film was used. Glass wafer is NA made by HOYA
Using 35 alkali-free glass, make a 4 inch diameter, 0.7mm thick, 500n
m SiO 2 film was formed by sputtering.
(2) Thin film formation treatment Hydrogen ions (H + ) are accelerated to a silicon wafer with an oxide film at an acceleration voltage of 100 kV and an injection amount of 5E16 cm.
-2 , implantation was performed at an incident angle of 0 ° (in a direction perpendicular to the wafer surface).
(3) Bonding treatment SCI and SC2 level RCA cleaning was performed on the Si wafer and the glass wafer, and after cleaning, they were bonded together in the atmosphere at room temperature.
(4) Si thin film peeling treatment and post-peeling heat treatment The Si thin film peeling is performed on a sample obtained by bonding a Si wafer and a glass wafer by heat treatment at 550 ° C. for 1 hour on a sample obtained by bonding Si wafers together. The heat treatment was performed at 500 ° C. for 1 hour.
After peeling off the Si thin film, heat treatment was performed at 550 ° C. for 4 hours in a nitrogen atmosphere to obtain a sample for laser irradiation.
(5) Laser irradiation process Using a YLF laser (maximum output 20 W, wavelength 527 nm, repetition frequency 1 kHz) as a light source, the sample was placed on the stage and irradiated while being conveyed.
Irradiation conditions were laser output: 4 to 15 W, stage conveyance speed: 3 mm / second, and sample temperature: room temperature.

図2は、レーザ出力とラマンの半値幅との関係図である。比較のため、市販のSOIウ
エハと比較した。その結果、レーザ出力10W以上で処理されたガラス基板上の薄膜が4
.16cm-1を示し、市販のSOIウエハ3.95cm-1に近いレベルまで結晶品質を
高めることができた。なお、現在、ガラス基板上に形成できる多結晶シリコンのラマンの
半値幅は、5.1〜6 cm-1程度である。
FIG. 2 is a graph showing the relationship between the laser output and the half width of Raman. For comparison, it was compared with a commercially available SOI wafer. As a result, 4 thin films on the glass substrate treated with a laser output of 10 W or more were obtained.
. It indicates 16cm -1, and can improve the crystal quality to a level close to the commercial SOI wafer 3.95cm -1. Currently, the half-value width of Raman of polycrystalline silicon that can be formed on a glass substrate is about 5.1 to 6 cm −1 .

図3は、レーザ出力と薄膜表面の最高到達温度との関係図であり、熱解析により求めた
ものである。その結果、薄膜のラマンの半値幅が4.16cm-1になるレーザ出力では
、シリコンの融点以上であり、シリコンがレーザにより溶融、再結晶化していることが判
明した。
本試験のように、パルスレーザを用い、半導体ウエハの融点を超える温度で加熱し、半
導体薄膜を結晶化させることにより、半導体ウエハを溶融し、再結晶化することで、結晶
品質を高めることができる。
FIG. 3 is a relationship diagram between the laser output and the maximum temperature reached on the surface of the thin film, and is obtained by thermal analysis. As a result, it was found that the laser output at which the half-value width of Raman of the thin film was 4.16 cm −1 was equal to or higher than the melting point of silicon, and that silicon was melted and recrystallized by the laser.
As in this test, by using a pulse laser and heating at a temperature exceeding the melting point of the semiconductor wafer to crystallize the semiconductor thin film, the semiconductor wafer is melted and recrystallized, thereby improving the crystal quality. it can.

図4は、剥離工程S4により、無アルカリガラス基板上へ剥離させたSi薄膜のラマン
分光の測定結果を示す。この図において、横軸は波数、縦軸はラマン強度(相対強度)で
ある。また、図中の実線は本発明の方法による半導体基板、破線は比較のための、単結晶
シリコンウエハの結果である。
この図から、本発明の方法による半導体基板(無アルカリガラス基板上のSi薄膜)の
ラマン半値幅は、4.9cm−1、単結晶シリコンウエハのラマン半値幅は、4.6cm
−1であり、無アルカリガラス基板上のSi薄膜の結晶品質がほぼ単結晶シリコンウエハ
の品質を保持していることがわかった。
FIG. 4 shows the measurement result of Raman spectroscopy of the Si thin film peeled off on the alkali-free glass substrate by the peeling step S4. In this figure, the horizontal axis represents the wave number, and the vertical axis represents the Raman intensity (relative intensity). Also, the solid line in the figure is the result of the semiconductor substrate by the method of the present invention, and the broken line is the result of the single crystal silicon wafer for comparison.
From this figure, the Raman half width of a semiconductor substrate (Si thin film on an alkali-free glass substrate) by the method of the present invention is 4.9 cm −1 , and the Raman half width of a single crystal silicon wafer is 4.6 cm.
Is -1, it was found that the crystal quality of the Si thin film on the non-alkali glass substrate holds the quality of the substantially single-crystal silicon wafer.

図5は、レーザ光の波長とガラスにおけるレーザ光の透過率との関係を示す図であり、
図6は、レーザ光の波長とシリコンにおけるレーザ光の吸収係数との関係を示す図である

レーザ光7がガラス基板2を十分に透過し、かつレーザ光7の光エネルギーがSiウエ
ハ1に十分に吸収されるように、予めレーザ光7の波長を選択することが望ましい。すな
わち、図5に示すようにレーザ光7の波長が380nm以上で2200nm以下の場合に
は、ガラスにおけるレーザ光7の透過率が90%になって、レーザ光7がガラス基板2を
十分に透過することが判明している。
また、Siのバンドギャップを光の波長に変換すると、1100nm程度であることも
あって、図6に示すようにレーザ光7の波長が780nm以下の場合であっても、レーザ
光7の光SiウエハがSiウエハ1に十分吸収される。従って、380nm以上で220
0nm以下のレーザ光7の波長を予め選択することよって、レーザ光7がガラス基板2を
十分に透過しかつレーザ光7の光SiウエハがSiウエハ1に十分に吸収されることを確
保できる。
FIG. 5 is a diagram showing the relationship between the wavelength of the laser beam and the transmittance of the laser beam in the glass.
FIG. 6 is a diagram showing the relationship between the wavelength of laser light and the absorption coefficient of laser light in silicon.
It is desirable to select the wavelength of the laser beam 7 in advance so that the laser beam 7 is sufficiently transmitted through the glass substrate 2 and the optical energy of the laser beam 7 is sufficiently absorbed by the Si wafer 1. That is, as shown in FIG. 5, when the wavelength of the laser beam 7 is not less than 380 nm and not more than 2200 nm, the transmittance of the laser beam 7 in the glass is 90%, and the laser beam 7 is sufficiently transmitted through the glass substrate 2. It has been found to be.
Further, when the band gap of Si is converted to the wavelength of light, it may be about 1100 nm, and even if the wavelength of the laser beam 7 is 780 nm or less as shown in FIG. The wafer is sufficiently absorbed by the Si wafer 1. Therefore, it is 220 at 380 nm or more.
By pre-selecting the wavelength of the laser beam 7 of 0 nm or less, it can be ensured that the laser beam 7 is sufficiently transmitted through the glass substrate 2 and the optical Si wafer of the laser beam 7 is sufficiently absorbed by the Si wafer 1.

また、前記絶縁基板と半導体ウエハの熱膨張係数は同等かそれに近い特性のものである
ことが望ましい。また、レーザ光7の発振は、パルスまたは連続発振のいずれでも差し支
えない。また、レーザ光は、SOI薄膜側からでもガラス基板側からでも照射しても差し
支えない。
なお、レーザ照射工程が終了した後に、薄膜層3の表面3aを鏡面研磨することが望ま
しい。
Further, it is desirable that the thermal expansion coefficients of the insulating substrate and the semiconductor wafer have the same or similar characteristics. Further, the laser beam 7 may be oscillated by either pulse or continuous oscillation. Further, the laser beam may be irradiated from the SOI thin film side or the glass substrate side.
In addition, it is desirable that the surface 3a of the thin film layer 3 is mirror-polished after the laser irradiation process is finished.

図7は、InPの温度と蒸気圧力の関係図である。この図において、横軸は1000/
T(Tは温度K)、縦軸は蒸気圧力(atm)であり、図中の2本の曲線は、異なる分子
構造を示している。
InPの融点は1333Kであり、この図の横軸0.75に相当し、蒸気圧力は、おお
よそ2〜10atmとなる。
このような場合、本発明では、半導体ウエハの融点での蒸気圧が大気圧を超え、前記レ
ーザ光を照射して溶融させて結晶化させる場合において、前記蒸気圧を超える圧力の不活
性ガス雰囲気にて行うことにより、半導体薄膜層の分解を抑制しかつ半導体薄膜層の結晶
品質を改善するとともに、半導体薄膜層と前記透明な絶縁基板を強固に結合させることが
できる。
FIG. 7 is a relationship diagram of InP temperature and vapor pressure. In this figure, the horizontal axis is 1000 /
T (T is temperature K), the vertical axis is vapor pressure (atm), and the two curves in the figure show different molecular structures.
The melting point of InP is 1333K, which corresponds to the horizontal axis of 0.75 in this figure, and the vapor pressure is approximately 2 to 10 atm.
In such a case, in the present invention, the vapor pressure at the melting point of the semiconductor wafer exceeds atmospheric pressure, and when the laser beam is irradiated to melt and crystallize, an inert gas atmosphere having a pressure exceeding the vapor pressure is used. By performing the above, it is possible to suppress the decomposition of the semiconductor thin film layer and improve the crystal quality of the semiconductor thin film layer, and to firmly bond the semiconductor thin film layer and the transparent insulating substrate.

図8は、単結晶シリコンの温度と吸収係数の関係図である。この図において、常温(3
00K)に対して600Kにおける吸収係数は約2倍となる。
本発明では、前記レーザ照射工程は、前記半導体薄膜層が転写された絶縁基板を600
℃以下の温度に加熱することで、半導体薄膜層の吸収係数が上昇するため、レーザ光の出
力を下げることができる。
FIG. 8 is a graph showing the relationship between the temperature of single crystal silicon and the absorption coefficient. In this figure, room temperature (3
00K), the absorption coefficient at 600K is approximately doubled.
In the present invention, in the laser irradiation step, an insulating substrate onto which the semiconductor thin film layer has been transferred is formed in 600.
Since the absorption coefficient of the semiconductor thin film layer is increased by heating to a temperature not higher than ° C., the output of the laser beam can be reduced.

以上のごとき、本発明の実施の形態によれば、レーザ光7は、SOI薄膜層3に吸収す
る以外は、透明なガラス基板2を透過するため、ガラス基板2の直接加熱に関与するもの
ではなく、また、SOI薄膜層3とガラス基板2を強固に結合するまでの加熱時間を極め
て短くできるため、SOI薄膜層3を接合する基板は、例えば石英等の高い融点を有する
高価なものに限られず、融点の低い安価なものも用いることができる。そのため、さまざ
まな構成材料からなるガラス基板2をSOI薄膜層ウエハ4の製造コストの低下を図るこ
とができる。
As described above, according to the embodiment of the present invention, since the laser beam 7 is transmitted through the transparent glass substrate 2 except being absorbed by the SOI thin film layer 3, it is not involved in the direct heating of the glass substrate 2. In addition, since the heating time until the SOI thin film layer 3 and the glass substrate 2 are firmly bonded can be extremely shortened, the substrate to which the SOI thin film layer 3 is bonded is not limited to an expensive one having a high melting point such as quartz. Inexpensive ones having a low melting point can also be used. Therefore, the manufacturing cost of the SOI thin film layer wafer 4 can be reduced for the glass substrate 2 made of various constituent materials.

また、本発明は、前述の発明の実施形態の説明に限るものではなく、例えば、半導体ウ
エハとして、Siウエハ、GaNウエハ、GaAsウエハ、SiCウエハ、InPウエハ
、GaPなどの半導体ウエハのいずれかを用いたり、透明なガラス基板2の代わりに透明
なプラスチック基板を用いる等、適宜の変更を行うことにより、その他さまざまな形態で
実施可能である。
Further, the present invention is not limited to the description of the above-described embodiments of the invention. For example, any one of semiconductor wafers such as Si wafer, GaN wafer, GaAs wafer, SiC wafer, InP wafer, and GaP is used as the semiconductor wafer. It can be implemented in various other forms by making appropriate changes such as using a transparent plastic substrate instead of the transparent glass substrate 2.

なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない
範囲で種々変更できることは勿論である。
In addition, this invention is not limited to the Example and embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明による半導体基板の製造方法のフロー図である。It is a flowchart of the manufacturing method of the semiconductor substrate by this invention. レーザ出力とラマンの半値幅との関係図である。It is a relationship figure of a laser output and the half value width of Raman. レーザ出力と薄膜表面の最高到達温度との関係図である。FIG. 4 is a relationship diagram between laser output and the maximum temperature reached on the surface of a thin film. 本発明の方法により無アルカリガラス基板上へ剥離させたSi薄膜のラマン分光の測定結果を示す図である。It is a figure which shows the measurement result of the Raman spectroscopy of Si thin film peeled on the alkali free glass substrate by the method of this invention. レーザ光の波長とガラスにおけるレーザ光の透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength of a laser beam, and the transmittance | permeability of the laser beam in glass. レーザ光の波長とシリコンにおけるレーザ光の吸収係数との関係を示す図である。It is a figure which shows the relationship between the wavelength of a laser beam, and the absorption coefficient of the laser beam in a silicon | silicone. InPの温度と蒸気圧力の関係図である。FIG. 4 is a relationship diagram of InP temperature and vapor pressure. 単結晶シリコンの温度と吸収係数の関係図である。FIG. 6 is a relationship diagram of temperature and absorption coefficient of single crystal silicon. 非特許文献1の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of a nonpatent literature 1. 特許文献1の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of patent document 1. 特許文献2の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of patent document 2.

符号の説明Explanation of symbols

1 半導体ウエハ(Siウエハ)、1a 表面、
2 透明な絶縁基板(ガラス基板)、2a 一面、
3 半導体薄膜層(SOI薄膜層)、4 半導体基板(SOI薄膜層ウエハ)、
5 水素イオン(或いは水素分子イオン、希ガスイオンまたはこれらの複合イオン)、
6 微小気泡層(剥離層)、7 レーザ光(YAGレーザの2倍波)
1 semiconductor wafer (Si wafer), 1a surface,
2 Transparent insulating substrate (glass substrate), 2a,
3 Semiconductor thin film layer (SOI thin film layer), 4 Semiconductor substrate (SOI thin film layer wafer),
5 Hydrogen ions (or hydrogen molecular ions, rare gas ions or complex ions thereof),
6 Microbubble layer (peeling layer), 7 Laser light (twice wave of YAG laser)

Claims (10)

表面に熱酸化膜が形成された半導体ウエハの内部に微小気泡層を形成する第1の工程と、
前記半導体ウエハとガラス基板とを、前記熱酸化膜と前記ガラス基板とが接するように貼り合わせる第2の工程と、
前記第2の工程後、熱処理を行う第3の工程と、
前記第3の工程後、前記半導体ウエハを前記微小気泡層において剥離して、前記ガラス基板上に半導体薄膜層を形成する第4の工程と、
前記第4の工程後、前記ガラス基板上の前記半導体薄膜層に対してレーザ光を照射する第5の工程とを備えており、
前記半導体ウエハとして、融点での蒸気圧が大気圧を超えるものを用い、
前記第5の工程において、前記蒸気圧を超える圧力の不活性ガス雰囲気にて前記レーザ光を照射することを特徴とする半導体薄膜層を有する基板の製造方法。
A first step of forming a microbubble layer inside a semiconductor wafer having a thermal oxide film formed on the surface;
A second step of bonding the semiconductor wafer and the glass substrate so that the thermal oxide film and the glass substrate are in contact with each other;
A third step of performing a heat treatment after the second step;
After the third step, a fourth step of peeling the semiconductor wafer in the microbubble layer to form a semiconductor thin film layer on the glass substrate;
And a fifth step of irradiating the semiconductor thin film layer on the glass substrate with a laser beam after the fourth step,
As the semiconductor wafer, the one whose vapor pressure at the melting point exceeds the atmospheric pressure,
In the fifth step, the laser light irradiation is performed in an inert gas atmosphere having a pressure exceeding the vapor pressure.
表面に熱酸化膜が形成された半導体ウエハの内部に剥離層を形成する第1の工程と、
前記半導体ウエハとガラス基板とを、前記熱酸化膜と前記ガラス基板とが接するように貼り合わせる第2の工程と、
前記第2の工程後、熱処理を行う第3の工程と、
前記第3の工程後、前記半導体ウエハを前記剥離層において剥離して、前記ガラス基板上に半導体薄膜層を形成する第4の工程と、
前記第4の工程後、前記ガラス基板上の前記半導体薄膜層に対してレーザ光を照射する第5の工程とを備えており、
前記半導体ウエハとして、融点での蒸気圧が大気圧を超えるものを用い、
前記第5の工程において、前記蒸気圧を超える圧力の不活性ガス雰囲気にて前記レーザ光を照射することを特徴とする半導体薄膜層を有する基板の製造方法。
A first step of forming a release layer inside a semiconductor wafer having a thermal oxide film formed on the surface;
A second step of bonding the semiconductor wafer and the glass substrate so that the thermal oxide film and the glass substrate are in contact with each other;
A third step of performing a heat treatment after the second step;
After the third step, a fourth step of peeling the semiconductor wafer at the release layer to form a semiconductor thin film layer on the glass substrate;
And a fifth step of irradiating the semiconductor thin film layer on the glass substrate with a laser beam after the fourth step,
As the semiconductor wafer, the one whose vapor pressure at the melting point exceeds the atmospheric pressure,
In the fifth step, the laser light irradiation is performed in an inert gas atmosphere having a pressure exceeding the vapor pressure.
請求項1に記載の第1の工程において、前記半導体ウエハにイオンをドープすることにより、前記微小気泡層を形成することを特徴とする半導体薄膜層を有する基板の製造方法。   The method for manufacturing a substrate having a semiconductor thin film layer, wherein the microbubble layer is formed by doping ions in the semiconductor wafer in the first step according to claim 1. 請求項2に記載の第1の工程において、前記半導体ウエハにイオンをドープすることにより、前記剥離層を形成することを特徴とする半導体薄膜層を有する基板の製造方法。   3. The method for manufacturing a substrate having a semiconductor thin film layer, wherein in the first step according to claim 2, the release layer is formed by doping ions into the semiconductor wafer. 請求項3又は4において、前記イオンは、水素イオン、水素分子イオン、希ガスイオン、またはこれらの複合イオンであることを特徴とする半導体薄膜層を有する基板の製造方法。   5. The method for manufacturing a substrate having a semiconductor thin film layer according to claim 3, wherein the ions are hydrogen ions, hydrogen molecular ions, rare gas ions, or complex ions thereof. 請求項1乃至5のいずれか一に記載の第5の工程において、前記レーザ光の照射により前記半導体薄膜層を溶融し、結晶化することで結晶品質を改善することを特徴とする半導体薄膜層を有する基板の製造方法。   6. The semiconductor thin film layer according to claim 5, wherein the semiconductor thin film layer is improved in crystal quality by melting and crystallizing the semiconductor thin film layer by irradiation with the laser beam. The manufacturing method of the board | substrate which has this. 請求項1乃至6のいずれか一に記載の第2の工程において、前記半導体ウエハと前記ガラス基板とを室温で貼り合わせた後、500℃以下の温度で加熱するとともに、前記半導体ウエハに正電圧を印加し、前記ガラス基板に負電圧を印加することを特徴とする半導体薄膜層を有する基板の製造方法。   7. The second step according to claim 1, wherein after the semiconductor wafer and the glass substrate are bonded together at room temperature, the semiconductor wafer is heated at a temperature of 500 ° C. or less, and a positive voltage is applied to the semiconductor wafer. And a negative voltage is applied to the glass substrate. A method for manufacturing a substrate having a semiconductor thin film layer. 請求項1乃至7のいずれか一に記載の第3の工程において、前記半導体ウエハの温度が400℃を超えない温度で前記熱処理を行うことを特徴とする半導体薄膜層を有する基板の製造方法。   8. The method for manufacturing a substrate having a semiconductor thin film layer, wherein in the third step according to any one of claims 1 to 7, the heat treatment is performed at a temperature at which the temperature of the semiconductor wafer does not exceed 400.degree. 請求項1乃至8のいずれか一に記載の第4の工程において、前記半導体ウエハ及び前記ガラス基板を600℃以下の温度で熱処理することにより、前記ガラス基板上に前記半導体薄膜層を剥離させることを特徴とする半導体薄膜層を有する基板の製造方法。   9. The fourth step according to claim 1, wherein the semiconductor thin film layer is peeled off the glass substrate by heat-treating the semiconductor wafer and the glass substrate at a temperature of 600 ° C. or less. A method for manufacturing a substrate having a semiconductor thin film layer. 請求項1乃至9のいずれか一に記載の第5の工程において、前記ガラス基板上の前記半導体薄膜層に対して前記レーザ光を照射する際に、前記ガラス基板を600℃以下の温度に加熱しながら行うことを特徴とする半導体薄膜層を有する基板の製造方法。   In the fifth step according to any one of claims 1 to 9, when the semiconductor thin film layer on the glass substrate is irradiated with the laser light, the glass substrate is heated to a temperature of 600 ° C or lower. A method for producing a substrate having a semiconductor thin film layer, wherein
JP2008286231A 2004-02-03 2008-11-07 Manufacturing method of substrate having semiconductor thin film layer Expired - Fee Related JP5358159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286231A JP5358159B2 (en) 2004-02-03 2008-11-07 Manufacturing method of substrate having semiconductor thin film layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004026584 2004-02-03
JP2004026584 2004-02-03
JP2008286231A JP5358159B2 (en) 2004-02-03 2008-11-07 Manufacturing method of substrate having semiconductor thin film layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005024838A Division JP5110772B2 (en) 2004-02-03 2005-02-01 Manufacturing method of substrate having semiconductor thin film layer

Publications (2)

Publication Number Publication Date
JP2009027206A JP2009027206A (en) 2009-02-05
JP5358159B2 true JP5358159B2 (en) 2013-12-04

Family

ID=40398647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286231A Expired - Fee Related JP5358159B2 (en) 2004-02-03 2008-11-07 Manufacturing method of substrate having semiconductor thin film layer

Country Status (1)

Country Link
JP (1) JP5358159B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5389627B2 (en) 2008-12-11 2014-01-15 信越化学工業株式会社 Manufacturing method of composite substrate with wide band gap semiconductor laminated

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620895A (en) * 1992-07-06 1994-01-28 Sony Corp Manufacture of soil substrate
JP3926862B2 (en) * 1995-12-09 2007-06-06 株式会社半導体エネルギー研究所 Semiconductor processing method and thin film transistor manufacturing method
JPH1197379A (en) * 1997-07-25 1999-04-09 Denso Corp Semiconductor substrate and its manufacture
JP3204188B2 (en) * 1997-12-09 2001-09-04 日本電気株式会社 Method for forming silicon thin film and apparatus for forming silicon thin film
JPH11307747A (en) * 1998-04-17 1999-11-05 Nec Corp Soi substrate and production thereof
JP3395661B2 (en) * 1998-07-07 2003-04-14 信越半導体株式会社 Method for manufacturing SOI wafer
JP4379943B2 (en) * 1999-04-07 2009-12-09 株式会社デンソー Semiconductor substrate manufacturing method and semiconductor substrate manufacturing apparatus
JP4653374B2 (en) * 2001-08-23 2011-03-16 セイコーエプソン株式会社 Manufacturing method of electro-optical device
JP2003234455A (en) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd Method for fabricating electronic device and electronic device
JP4759919B2 (en) * 2004-01-16 2011-08-31 セイコーエプソン株式会社 Manufacturing method of electro-optical device

Also Published As

Publication number Publication date
JP2009027206A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5110772B2 (en) Manufacturing method of substrate having semiconductor thin film layer
KR100972213B1 (en) Process for producing soi wafer and soi wafer
KR100279756B1 (en) Manufacturing method of semiconductor article
JP2005252244A5 (en)
CN101454875A (en) Semiconductor on insulator structure made using radiation annealing
JP6168143B2 (en) Method for manufacturing hybrid substrate
KR19990088324A (en) Process for manufacturing a semiconductor substrate as well as a semiconductor thin film, and multilayer substrate
JP2007184581A (en) Semiconductor on glass insulator prepared by using improved ion implatation process
JP5128761B2 (en) Manufacturing method of SOI wafer
JP2010538459A (en) Reuse of semiconductor wafers in delamination processes using heat treatment
US8703580B2 (en) Silicon on insulator (SOI) wafer and process for producing same
JP2006210898A (en) Process for producing soi wafer, and soi wafer
JP5496540B2 (en) Method for manufacturing semiconductor substrate
JP2006210899A (en) Process for producing soi wafer, and soi wafer
JP2010098167A (en) Method of manufacturing laminated wafer
JP3262470B2 (en) Semiconductor substrate and manufacturing method thereof
JP5292810B2 (en) Manufacturing method of SOI substrate
JP5358159B2 (en) Manufacturing method of substrate having semiconductor thin film layer
EP2804202A1 (en) Thermally oxidized heterogeneous composite substrate and method for manufacturing same
KR20080085693A (en) Soi wafer and manufacturing method thereof
JP2961522B2 (en) Substrate for semiconductor electronic device and method of manufacturing the same
JPH11330438A (en) Manufacture of soi wafer and soi wafer
JP3293767B2 (en) Semiconductor member manufacturing method
JP4624812B2 (en) Manufacturing method of SOI wafer
JP4594121B2 (en) Manufacturing method of SOI wafer and SOI wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees