[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5217221B2 - Method for detecting surface defect shape of welded portion and computer program - Google Patents

Method for detecting surface defect shape of welded portion and computer program Download PDF

Info

Publication number
JP5217221B2
JP5217221B2 JP2007107599A JP2007107599A JP5217221B2 JP 5217221 B2 JP5217221 B2 JP 5217221B2 JP 2007107599 A JP2007107599 A JP 2007107599A JP 2007107599 A JP2007107599 A JP 2007107599A JP 5217221 B2 JP5217221 B2 JP 5217221B2
Authority
JP
Japan
Prior art keywords
section
cross
function
sectional profile
toe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007107599A
Other languages
Japanese (ja)
Other versions
JP2008267836A (en
Inventor
昇平 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007107599A priority Critical patent/JP5217221B2/en
Publication of JP2008267836A publication Critical patent/JP2008267836A/en
Application granted granted Critical
Publication of JP5217221B2 publication Critical patent/JP5217221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、鋼材等の金属の溶接部における表面欠陥形状の検出方法および装置に関し、特に、当該欠陥の深さや大きさ等を定量的に検出するのに好適な技術である。   The present invention relates to a method and apparatus for detecting a surface defect shape in a welded portion of a metal such as a steel material, and in particular, is a technique suitable for quantitatively detecting the depth and size of the defect.

例えば、長方形の鋼板をU字型に折り曲げた後、O字型に折り曲げ、さらに当該長方形の対向する辺同士を突合せ溶接して製作するUO鋼管等の断面プロフィール(断面の内側(上面)又は外側(下面)の外形を指す)において、溶接部の盛り上がりは溶接ビード(以下ではビードと記す)又は余盛と呼ばれている。又、ビードと母材との境界は止端部と呼ばれている。以下では、ビードと止端部の周辺とを合わせて溶接部と呼ぶことにする。   For example, after a rectangular steel plate is folded into a U-shape, it is folded into an O-shape, and the opposite sides of the rectangle are butt welded to produce a cross-sectional profile (inner side (upper surface) or outer side of the cross section). (Refers to the outer shape of the lower surface), the rise of the welded portion is called a weld bead (hereinafter referred to as a bead) or a surplus. The boundary between the bead and the base material is called a toe portion. Hereinafter, the bead and the periphery of the toe portion are collectively referred to as a welded portion.

ところで、ビードには複数の種類の欠陥が発生することが知られている。図3はUO鋼管内面の止端部11に発生する深い切れ込みであるアンダーカット111と呼ばれる欠陥のある部分を、ビード部10、母材(鋼板)12とともに示した溶接部近傍の斜視図である。図4は図3のUO鋼管の溶接部近傍を切断線A−A’でカットした断面図である。図5はUO鋼管内面のビード部10に発生する窪みであるアンダービード101と呼ばれる欠陥のある部分を模式的に示した図であり、図6は図5におけるUO鋼管の溶接部近傍を切断線B−B’でカットした断面を示した図である。アンダーカットやアンダービードなどの溶接欠陥は溶接部の強度に多大な影響を与え、拡管成形時に溶接部の割れを生じさせるので、欠陥の大きさや形状を拡管成形前に定量的に把握しておくことがUO鋼管の品質管理上重要である。又、鋼管以外の鋼材についても、溶接部の欠陥の大きさ(幅や深さ)や形状を定量的に検出する必要があることが多い。   Incidentally, it is known that a plurality of types of defects occur in the bead. FIG. 3 is a perspective view of the vicinity of the welded portion showing a defective portion called an undercut 111, which is a deep cut generated in the toe portion 11 on the inner surface of the UO steel pipe, together with a bead portion 10 and a base material (steel plate) 12. . FIG. 4 is a sectional view in which the vicinity of the welded portion of the UO steel pipe of FIG. 3 is cut along a cutting line A-A ′. FIG. 5 is a view schematically showing a defective portion called an under bead 101, which is a depression generated in the bead portion 10 on the inner surface of the UO steel pipe, and FIG. 6 is a cutting line near the welded portion of the UO steel pipe in FIG. It is the figure which showed the cross section cut by BB '. Welding defects such as undercuts and underbeads have a significant effect on the strength of the weld and cause cracks in the weld during pipe expansion forming, so the size and shape of the defect must be quantitatively grasped prior to pipe forming. This is important for quality control of UO steel pipes. In addition, for steel materials other than steel pipes, it is often necessary to quantitatively detect the size (width and depth) and shape of defects in the weld.

ところで、溶接部の形状を自動的に検出する様々な方法や装置が提案されてきている。中でも光学的方法は、比較的簡便な装置で、非接触で形状の測定が可能であることが多く有用である。特許文献1に開示されている光学的方法は、溶接ビード形状の良否を検出するもので、溶接ビードを上面と側面から撮像し、アナログ信号を画像の濃淡を表すディジタル信号に変換した後、濃淡画像の1ライン分のディジタル信号を微分処理などのディジタル画像処理によって、画像の濃淡が急激に変化する点を検出して欠陥とする。この方法は特別の光源が不要でカメラ撮像のみによるので装置構成は簡便である。しかしながら欠陥部での明るさの違いなどを仮定しているため、本来表面欠陥とは関係のないビード部や母材部の表面性状の違いによって欠陥を検出できないことがあった。さらに、当然のことであるが、欠陥の深さや形状を検出することはできなかった。   By the way, various methods and apparatuses for automatically detecting the shape of the weld have been proposed. Among them, the optical method is often useful because it can measure the shape in a non-contact manner with a relatively simple apparatus. The optical method disclosed in Patent Document 1 is to detect the quality of the weld bead shape. After the weld bead is imaged from the top and side surfaces, the analog signal is converted into a digital signal representing the density of the image, A digital signal processing such as differentiation processing is performed on a digital signal for one line of an image to detect a point at which the shading of the image changes abruptly to be a defect. Since this method does not require a special light source and only uses camera imaging, the apparatus configuration is simple. However, since a difference in brightness at the defect portion is assumed, the defect may not be detected due to a difference in the surface properties of the bead portion and the base material portion which is not originally related to the surface defect. Furthermore, as a matter of course, the depth and shape of the defect could not be detected.

又、被検査部に照射された光源像をカメラ等の撮像部で撮像して被検査部の画像を得て、当該画像の中での撮像された光源像の画素位置に基づいて、鋼管の断面プロフィールを計測する方法としては、特許文献2に開示されているような光切断法や、レーザ距離計などを使った三角測量法による方法が知られている。尚、以下では説明の便宜上、鋼管等の外形だけでなく、適宜、鋼管等の断面プロフィールの計測結果のデータをも、断面プロフィールという。   In addition, a light source image irradiated on the inspected part is captured by an imaging unit such as a camera to obtain an image of the inspected part, and based on the pixel position of the captured light source image in the image, the steel tube As a method for measuring the cross-sectional profile, a method using a light cutting method as disclosed in Patent Document 2 or a triangulation method using a laser distance meter or the like is known. In the following, for convenience of explanation, not only the outer shape of a steel pipe or the like but also the data of the measurement result of the cross-sectional profile of the steel pipe or the like is also referred to as a cross-sectional profile.

特許文献2に開示された技術では、溶接鋼管の一つに分類される電縫鋼管のビードの高さや立ち上がり角を求める方法を取り扱っている。一般に溶接部の表面は母材部よりも粗度が粗く光学的方法で得られた断面プロフィールはギザギザ状のノイズがのっている場合が多い。このため特許文献2に開示された技術では、電縫鋼管の断面プロフィール上において、ビード部に相当する領域を左右の2つの領域に分け、又ビード部より外側の母材部の領域に分けて、それぞれ別の関数で区分的に断面プロフィールを近似し、これらの関数の交点や微分係数からビードの高さや立ち上がり角を求めている。電縫鋼管の場合、圧接によりビード部に傾斜が緩やかな部分と急峻な部分があり、ビード部がいびつな形状であるため、ビード部を複数の関数で近似したほうが近似度は高くなる。   The technique disclosed in Patent Document 2 deals with a method for obtaining the height and rising angle of a bead of an electric resistance welded steel pipe classified as one of welded steel pipes. In general, the surface of the welded portion is rougher than the base metal portion, and the cross-sectional profile obtained by an optical method often has jagged noise. For this reason, in the technique disclosed in Patent Document 2, on the cross-sectional profile of the ERW steel pipe, the region corresponding to the bead portion is divided into two regions on the left and right, and the region of the base material portion outside the bead portion is divided. The cross-sectional profile is approximated in a piecewise manner using different functions, and the height and rise angle of the bead are obtained from the intersections and differential coefficients of these functions. In the case of an electric resistance steel pipe, the bead portion has a gentle slope and a steep portion due to pressure welding, and the bead portion has an irregular shape. Therefore, the approximation is higher when the bead portion is approximated by a plurality of functions.

他方、電縫鋼管の場合と異なり、UO鋼管の場合には溶接のための圧接に際しての開先形状の差に起因して、ビード部はなだらかな断面プロフィールを呈する。なだらかなビード部を特許文献2に開示された方法のように左右の領域に分けて近似すると、左右それぞれの領域では近似度はよいものの、両近似曲線が交わるビードの頂点付近で近似曲線の傾きが不連続になり、かえって近似曲線の本来の断面プロフィールからの差が大きくなる。また拡管成形前のUO鋼管は母材部において直線的な断面プロフィールを呈し、左右の母材部は突合せ部で段差を呈することもある。したがってUO鋼管のように、溶接部付近において、左右それぞれの母材部の表面形状が直線的で、且つ、段差がある場合に、特許文献2の方法で母材部を一つの関数で近似すると近似度が悪くなる。以上のように、ビード部がなだらかで左右の母材部の表面形状が直線的で段差を有する場合には、特許文献2による近似方法をそのまま適用することはできない。   On the other hand, unlike the case of an electric resistance welded steel pipe, in the case of a UO steel pipe, the bead portion exhibits a gentle cross-sectional profile due to the difference in the groove shape at the time of welding for welding. When the gentle bead portion is approximated by dividing it into left and right regions as in the method disclosed in Patent Document 2, the approximation degree is good in each of the left and right regions, but the slope of the approximate curve near the apex of the bead where both approximate curves intersect Becomes discontinuous, and on the contrary, the difference from the original cross-sectional profile of the approximate curve increases. Moreover, the UO steel pipe before pipe expansion forming may exhibit a linear cross-sectional profile at the base material portion, and the left and right base material portions may exhibit a step at the butt portion. Therefore, when the surface shape of each of the left and right base metal parts is linear and has a step in the vicinity of the welded part like a UO steel pipe, the base material part is approximated by one function by the method of Patent Document 2. The degree of approximation gets worse. As described above, when the bead portion is gentle and the surface shapes of the left and right base metal portions are linear and have a step, the approximation method according to Patent Document 2 cannot be applied as it is.

ところで、上記で例示したような光学的な手段によって測定した断面プロフィールから欠陥の深さを導出する場合、深さの原点である基準線を決める必要があるが、一般に被検査体の形状は平面ではなく定形ではないので、前もって欠陥の深さの基準線を定めることはできない。このため薄板のように幅方向の断面プロフィールが緩やかな場合は、断面プロフィールを最小二乗法で多項式近似して得られる近似曲線を欠陥の深さを測る上での基準線として用いることがよく行われる。しかしながら、被検査体が溶接鋼管の場合は、母材部と溶接部で断面プロフィールの変化の程度が大きく異なり、断面プロフィールを一つの関数で近似することはできないので、例えば特許文献2に記載されたように複数の関数で断面プロフィールを近似することもある。   By the way, when the depth of the defect is derived from the cross-sectional profile measured by the optical means as exemplified above, it is necessary to determine the reference line that is the origin of the depth. Since it is not a fixed shape, it is not possible to set a reference line for the depth of the defect in advance. For this reason, when the cross-sectional profile in the width direction is gentle like a thin plate, an approximate curve obtained by polynomial approximation of the cross-sectional profile by the least square method is often used as a reference line for measuring the depth of the defect. Is called. However, when the object to be inspected is a welded steel pipe, the degree of change in the cross-sectional profile differs greatly between the base metal part and the welded part, and the cross-sectional profile cannot be approximated by one function. As described above, the cross-sectional profile may be approximated by a plurality of functions.

ところが、アンダービードのような溶接部の溶接欠陥のように、その大きさが当該溶接部のビードと比較して同程度又は数分の1程度以上の大きさを有する場合、断面プロフィールを近似する当該溶接部近傍の範囲内に当該溶接欠陥の部分を含めると、求められる断面プロフィールを表す近似曲線が欠陥部分の断面プロフィールの値に大きく影響されて、当該欠陥の大きさや形状を過小評価してしまうという問題があった。   However, when the size of the weld is similar to that of a weld defect such as an underbead, or approximately a fraction of that of the weld bead, the cross-sectional profile is approximated. If the weld defect part is included in the vicinity of the weld, the approximate curve representing the required cross-sectional profile is greatly influenced by the value of the cross-sectional profile of the defect part, and the size and shape of the defect are underestimated. There was a problem that.

特開昭60−135705号公報JP-A-60-135705 特開2004−181471号公報JP 2004-181471 A 特開平7−40049号公報JP 7-40049 A

以上に述べた従来技術の問題点に鑑みて本発明は、溶接部に発生した欠陥の深さや幅等の大きさ又は形状のうち少なくとも一方を、断面プロフィールの測定データから従来よりも高精度に、且つ簡便に検出することを課題とする。   In view of the problems of the prior art described above, the present invention is capable of measuring at least one of the size and shape such as the depth and width of the defect generated in the welded portion with higher accuracy than conventional from the measurement data of the cross-sectional profile. And it makes it a subject to detect simply.

本願第1の発明の溶接部の表面欠陥形状検出方法は、溶接部を有する部材を被検査体として、該溶接部表面の欠陥を検出する溶接部の表面欠陥形状検出方法において、母材部を含む前記溶接部のビードの幅方向の所定の区間Lの断面プロフィールを導出する工程と、前記断面プロフィールについて、前記ビードの幅方向に対する傾斜の変化である変化度を導出する変化度算出工程と、前記断面プロフィールの変化度が所定の閾値よりも大きい複数の急変区間のうち、前記所定の区間Lの最も左外側にある急変区間と最も右外側の急変区間とを、それぞれ左側と右側の止端部区間として検出する止端部検出工程と、前記検出された左側の止端部区間と右側の止端部区間とに挟まれた内側の区間Mにおける前記断面プロフィールを、当該内側の区間Mのうち前記急変区間に属さない前記断面プロフィールのデータを用いて予め定めた第1の関数で近似するビード部近似工程と、前記左側の止端部区間より左外側、及び前記右側の止端部区間より右外側の前記断面プロフィールを、それぞれ予め定めた第2の関数、及び第3の関数で近似する母材部近似工程と、前記第1の関数と前記第2の関数との交点を左止端点とし、前記第1の関数と前記第3の関数との交点を右止端点として求める止端点算出工程と、前記左止端点及び前記右止端点を前記区間Lの区分点として、前記断面プロフィールのうち、前記第1の関数を前記左止端点と前記右止端点とで挟まれた区間全体に外挿のみか、又は外挿と内挿とを行い、前記第2の関数を前記左止端点より左外側の区間に外挿を行い、前記第3の関数を前記右止端点より右外側の区間に外挿を行って拡張し、これら第1の関数、第2の関数、及び第3の関数を連結して前記断面プロフィールを前記区間L全体で近似する区分的近似曲線を導出する近似断面プロフィール算出工程と、前記断面プロフィールと該区分的近似曲線との差分である偏差データを導出する偏差データ算出工程と、前記偏差データに基づいて欠陥の大きさ又は形状のうち少なくとも一方を評価する欠陥形状算出工程と、からなることを特徴とする。
According to a first aspect of the present invention, there is provided a surface defect shape detecting method for a welded portion, wherein a member having a welded portion is used as an inspection object, and a surface defect shape detecting method for a welded portion for detecting a defect on the surface of the welded portion. Including a step of deriving a cross-sectional profile of a predetermined section L in the width direction of the bead of the weld including, a degree-of-change calculation step of deriving a degree of change that is a change in inclination with respect to the width direction of the bead for the cross-sectional profile; Among a plurality of sudden change sections in which the degree of change of the cross-sectional profile is larger than a predetermined threshold, the leftmost and rightmost toes are designated as the leftmost and rightmost sudden change sections of the predetermined section L, respectively. The cross-sectional profile in the inner section M sandwiched between the toe part detecting step to detect as a section section and the detected left toe section section and right toe section section is defined as the inner section. A bead portion approximation step of approximating a first function predetermined by using the data of the cross-sectional profile that does not belong to the sudden change interval of the M, the left outer than the left toe portion section, and the right toe the cross-sectional profile of the outer right from part section, a second function that respective predetermined, and a base metal approximation step of approximating the third function, the intersection between said second function and said first function A left toe point, a toe point calculating step for obtaining an intersection point of the first function and the third function as a right toe point, and the left toe point and the right toe point as the dividing points of the section L, Of the cross-sectional profile, the first function is only extrapolated to the entire section sandwiched between the left toe point and the right toe point, or extrapolated and interpolated, and the second function is Extrapolate to the left outer section from the left toe point, The number is expanded by extrapolating the section to the right outside the right toe point, and the first, second, and third functions are connected to approximate the cross-sectional profile over the entire section L. An approximate cross-sectional profile calculating step for deriving a piecewise approximate curve, a deviation data calculating step for deriving deviation data that is a difference between the cross-sectional profile and the piecewise approximate curve, and a defect size based on the deviation data Or a defect shape calculation step for evaluating at least one of the shapes.

又、本願第の発明の溶接部の表面欠陥形状検出方法は、前記変化度算出工程は、前記断面プロフィールであるy座標点列S(n)(nは自然数)を2階差分処理して前記変化度を導出することを特徴とする。
In the method for detecting a surface defect shape of a welded portion according to the second aspect of the present invention, the degree-of-change calculation step performs second-order differential processing on the y-coordinate point sequence S (n) (n is a natural number) that is the cross-sectional profile. The degree of change is derived.

本願第3の発明の溶接部の表面欠陥形状検出をするコンピュータプログラムは、溶接部を有する部材を被検査体として、該溶接部表面の欠陥を検出する溶接部の表面欠陥形状検出をするコンピュータプログラムであって、母材部を含む前記溶接部のビードの幅方向の所定の区間Lの断面プロフィールを導出する処理と、前記断面プロフィールについて、前記ビードの幅方向に対する傾斜の変化である変化度を導出する変化度算出処理と、前記断面プロフィールの変化度が所定の閾値よりも大きい複数の急変区間のうち、前記所定の区間Lの最も左外側にある急変区間と最も右外側の急変区間とを、それぞれ左側と右側の止端部区間として検出する止端部検出処理と、前記検出された左側の止端部区間と右側の止端部区間とに挟まれた内側の区間Mにおける前記断面プロフィールを、当該内側の区間Mのうち前記急変区間に属さない前記断面プロフィールのデータを用いて予め定めた第1の関数で近似するビード部近似処理と、前記左側の止端部区間より左外側、及び前記右側の止端部区間より右外側の前記断面プロフィールを、それぞれ予め定めた第2の関数、及び第3の関数で近似する母材部近似処理と、前記第1の関数と前記第2の関数との交点を左止端点とし、前記第1の関数と前記第3の関数との交点を右止端点として求める止端点算出処理と、前記左止端点及び前記右止端点を前記区間Lの区分点として、前記断面プロフィールのうち、前記第1の関数を前記左止端点と前記右止端点とで挟まれた区間全体に外挿のみか、又は外挿と内挿とを行い、前記第2の関数を前記左止端点より左外側の区間に外挿を行い、前記第3の関数を前記右止端点より右外側の区間に外挿を行って拡張し、これら第1の関数、第2の関数、及び第3の関数を連結して前記断面プロフィールを前記区間L全体で近似する区分的近似曲線を導出する近似断面プロフィール算出処理と、前記断面プロフィールと該区分的近似曲線との差分である偏差データを導出する偏差データ算出処理と、前記偏差データに基づいて欠陥の大きさ又は形状のうち少なくとも一方を評価する欠陥形状算出処理と、をコンピュータに実行させる。 A computer program for detecting a surface defect shape of a welded part according to a third aspect of the present invention is a computer program for detecting a surface defect shape of a welded part that detects a defect on the surface of the welded part using a member having the welded part as an inspection object The process of deriving a cross-sectional profile of a predetermined section L in the width direction of the bead of the weld including the base material portion, and the degree of change that is a change in the inclination of the cross-sectional profile with respect to the width direction of the bead. Derivation degree calculation processing to be derived, and among a plurality of sudden change sections in which the change degree of the cross-sectional profile is larger than a predetermined threshold, a sudden change section on the left outermost side and a sudden change section on the right outermost side of the predetermined section L A toe detection process for detecting the left and right toe sections, and an inner section sandwiched between the detected left toe section and the right toe section, respectively. The cross-sectional profile in M, and the bead portion approximation process for approximating a first function predetermined by using the data of the cross-sectional profile that does not belong to the sudden change interval among the inner section M, the left toe A base material part approximating process for approximating the cross-sectional profile on the left outer side from the section and the right outer side from the right toe section by a predetermined second function and a third function, respectively; A toe point calculation process for obtaining an intersection point of a function and the second function as a left toe point and an intersection point of the first function and the third function as a right toe point, the left toe point and the right toe point With the end point as the division point of the section L, the first function of the cross-sectional profile is extrapolated only over the entire section sandwiched between the left stop point and the right stop point, or extrapolation and interpolation. And the second function is changed to Extrapolate to the left outer section from the toe point, and extend the third function by extrapolating to the right outer section from the right toe point. These first function, second function, and second Approximate section profile calculation processing for deriving a piecewise approximate curve that approximates the section profile over the entire section L by connecting the three functions, and deriving deviation data that is the difference between the section profile and the piecewise approximate curve And a defect shape calculation process for evaluating at least one of the size or shape of the defect based on the deviation data.

本発明は、溶接部上の欠陥部分を除いた断面プロフィールの測定データを用いて正常部の断面プロフィールを近似し、この近似曲線を欠陥の深さを測る上での基準線とするので、大きさが溶接部と同程度乃至その数分の一程度である、溶接部の表面欠陥の大きさ又は形状のうち少なくとも一方を、従来よりも精度よく簡便に評価し欠陥を検出することが可能となる。   The present invention approximates the cross-sectional profile of the normal part using the measurement data of the cross-sectional profile excluding the defective part on the weld, and uses this approximate curve as a reference line for measuring the depth of the defect. It is possible to detect a defect by evaluating at least one of the size or shape of the surface defect of the welded part with a higher accuracy and more easily than the conventional one, which is approximately the same as the welded part or about a fraction of that of the welded part. Become.

以下、本発明の溶接部の欠陥検出方法及び装置の実施するための形態を、図面を参照して詳細に説明する。なお、各図において、同一の部分を指し示すために同一の符号を用いて符合の重複をさけて、図の説明を明瞭にする。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out a defect detection method and apparatus for welds according to the present invention will be described in detail with reference to the drawings. In each figure, the same reference numerals are used to indicate the same parts, and the overlapping of the signs is avoided to clarify the description of the figures.

本実施するための形態では、溶接部の表面形状を測定するのに光切断法を用いて、溶接部の断面プロフィールを導出する方法を例に説明する。なお、溶接部の断面プロフィールは、光切断法やレーザ距離計による方法等の光学的方法で非接触に導出したものが好ましいが、接触式形状計等の他の方法で測定したものであっても良いことは明らかである。   In this embodiment, a method for deriving a cross-sectional profile of a welded part using an optical cutting method to measure the surface shape of the welded part will be described as an example. The cross-sectional profile of the weld is preferably derived in a non-contact manner by an optical method such as a light cutting method or a laser distance meter, but is measured by another method such as a contact-type shape meter. It is clear that it is also good.

<切断像の撮像>
図1は、光切断法により溶接部の断面プロフィールを測定する光切断法用光学系(斜視図)と信号処理系からなる装置の構成を、被検査体として溶接鋼管を例に示す概略図である。1は被検査体の溶接鋼管(一部のみを図示する)、2は被検査体の溶接部である検査部(すなわちビードを含む領域)を横断する方向に線状の投光パターン3を作成する投光手段(投光装置)、5は当該投光パターンを写して画像データを出力する撮像手段(撮像装置)、6は当該画像データを画像処理して、投光パターンが照射された表面部分の断面プロフィールを導出する断面プロフィール導出手段(画像処理装置)、及び7は当該断面プロフィールを基に欠陥の大きさや深さなど欠陥形状を導出する演算処理を実行するための信号処理制御装置である。この図1では、溶接鋼管1の内側に投光手段2と撮像手段5を入れて内面の断面プロフィールを測定する場合の配置を示している。本実施するための形態における断面プロフィールを導出する方法では、計算の便宜上、被検査体の溶接鋼管1の管軸方向をz軸に、管軸方向に垂直な断面をxy平面にとる座標系を用いるが、座標系は実施するときの検査部の形状に合わせて適宜決めれば良い。xy平面は、投光手段2から扇状に広がって射出される光の軌跡により生成される平面4と重なるようにし、当該平面4で扇状の射出広がりの中心方向をy軸にとる。なお、ビードが投光パターン3の中心部近くになるように配置するのがプロフィール測定上好ましい。xyz座標の原点Oの位置は撮影手段5の光軸方向とxy平面との交点とする。
<Capture of cut image>
FIG. 1 is a schematic diagram showing the configuration of an optical cutting method optical system (perspective view) for measuring a cross-sectional profile of a welded portion by a light cutting method and a signal processing system, taking a welded steel pipe as an example to be inspected. is there. 1 shows a welded steel pipe of the object to be inspected (only a part is shown), 2 creates a linear light projection pattern 3 in a direction crossing the inspection part (that is, the region including the bead) which is a welded part of the object to be inspected Projecting means (projecting apparatus) 5, imaging means (imaging apparatus) for copying the projected pattern and outputting image data, and 6, a surface on which the projected pattern is irradiated by image processing the image data A cross-sectional profile deriving means (image processing apparatus) for deriving a cross-sectional profile of the part, and 7 is a signal processing control apparatus for executing arithmetic processing for deriving a defect shape such as a defect size and depth based on the cross-sectional profile. is there. FIG. 1 shows an arrangement in which the light projecting means 2 and the imaging means 5 are placed inside the welded steel pipe 1 to measure the cross-sectional profile of the inner surface. In the method for deriving the cross-sectional profile in this embodiment, for convenience of calculation, a coordinate system is used in which the pipe axis direction of the welded steel pipe 1 of the object to be inspected is the z-axis and the cross section perpendicular to the pipe axis direction is the xy plane. Although the coordinate system is used, the coordinate system may be determined as appropriate in accordance with the shape of the inspection unit when it is implemented. The xy plane is overlapped with the plane 4 generated by the trajectory of light emitted from the light projecting means 2 in a fan shape, and the center direction of the fan-shaped emission spread in the plane 4 is taken as the y axis. In addition, it is preferable in terms of profile measurement to arrange the beads so that they are close to the center of the light projection pattern 3. The position of the origin O of the xyz coordinate is the intersection of the optical axis direction of the photographing means 5 and the xy plane.

図2は、図1に示した光切断法用光学系における光学配置をx軸方向に見た、投光手段2、撮像手段5、及びxyz座標の原点Oの位置関係を示す図である。51は撮像手段5の撮像面を、Opは撮像手段5の撮像レンズ(以下では単にレンズと記す)のレンズ中心(前側主点位置)、Oは座標軸の被検査体(物体)側にある座標軸の原点である(物体側原点と記す)。x軸と平行に撮像面51のX軸をとり、撮像面51内でX軸に垂直な軸をY軸とする。Ocは撮像面51の中心で、撮像面51XY平面の座標原点として像側座標原点と記す。以上に記載したように、像側座標原点Ocとレンズ中心Opを結ぶ直線の延長線が物体側の座標原点Oを通り、また物体側のx軸と像側のX軸とが平行になる。また撮像手段(撮像系)5の光軸方向OOcは投光手段1の光軸方向であるy軸に対して所定の角度θで、溶接部形状による投光パターン3の形状変化が検出し易いように配置する。なお、例えば、溶接鋼管の溶接部を下にして、水平面上において測定するときには当該水平面を基準面として、溶接部の幅方向の略中心の鉛直上方に投光手段2を配置して、扇状の射出光の中心方向すなわちy軸方向が鉛直方向になるように座標系を設定すると計算上便利であるので良い。   FIG. 2 is a diagram showing a positional relationship between the light projecting means 2, the imaging means 5, and the origin O of the xyz coordinates when the optical arrangement in the optical system for light cutting method shown in FIG. 1 is viewed in the x-axis direction. 51 is the imaging surface of the imaging means 5, Op is the lens center (front principal point position) of the imaging lens (hereinafter simply referred to as a lens) of the imaging means 5, and O is the coordinate axis on the object (object) side of the coordinate axis (Referred to as the object-side origin). The X axis of the imaging surface 51 is taken in parallel with the x axis, and the axis perpendicular to the X axis in the imaging surface 51 is taken as the Y axis. Oc is the center of the imaging surface 51 and is referred to as the image side coordinate origin as the coordinate origin of the imaging surface 51XY plane. As described above, an extension of a straight line connecting the image side coordinate origin Oc and the lens center Op passes through the object side coordinate origin O, and the object side x axis and the image side X axis are parallel to each other. Further, the optical axis direction OOc of the imaging means (imaging system) 5 is a predetermined angle θ with respect to the y axis that is the optical axis direction of the light projecting means 1, and it is easy to detect the shape change of the light projection pattern 3 due to the welded part shape. Arrange as follows. For example, when measuring on a horizontal plane with the welded portion of the welded steel pipe facing down, the light projecting means 2 is arranged vertically above the approximate center in the width direction of the welded portion with the horizontal plane as a reference plane. It is convenient for calculation if the coordinate system is set so that the center direction of the emitted light, that is, the y-axis direction is the vertical direction.

投光手段2としては、例えばレーザやランプ等を発光光源として、当該発光光源から発射される光をシリンドリカルレンズやプリズム等を用いて扇状に広げて射出し、被検査体1上の被検査部である照射位置で線状の投光パターン3に収束するような光源を用いる(以下では線状光源と記す)。又、例えば上記の発光光源を用いて、レンズ等を用いて照射位置で点状に収束するような光ビーム(点状ビームと記す)を、回転制御されたポリゴンミラーで溶接鋼管1のビード10を跨いで、管軸方向(z軸)に直交するx軸方向に走査して、線状の軌跡の投光パターン1を得る走査式の点光源を投光手段1としても良い(以下では走査式点光源と記す)。すなわち、線状光源を投光手段1として用いる場合、図1の4は扇状に広げられた線状ビームを示し、被検査体である溶接鋼管1の湾曲部に照射されると表面形状に沿って投光パターン3である光切断像を形成する。又、走査式点光源を投光手段1として用いる場合、図1の4は幅方向に走査された点状ビームの軌跡を示し、投光パターン3は溶接鋼管1上の照射位置での点像の軌跡を示す。本願では、いずれの投光パターン1も光切断像と記す。   As the light projecting means 2, for example, a laser or lamp is used as a light emitting light source, and light emitted from the light emitting light source is spread and emitted in a fan shape using a cylindrical lens, a prism, or the like. A light source that converges to the linear projection pattern 3 at the irradiation position is used (hereinafter referred to as a linear light source). In addition, for example, a light beam (referred to as a point beam) that converges in a dot shape at an irradiation position using the above-described light-emitting light source using a lens or the like is rotated to a bead 10 of the welded steel pipe 1 by a polygon mirror. A scanning point light source that scans in the x-axis direction orthogonal to the tube axis direction (z-axis) and obtains a light projection pattern 1 with a linear trajectory may be used as the light projecting means 1 (hereinafter referred to as scanning). This is referred to as an expression point light source). That is, when a linear light source is used as the light projecting means 1, 4 in FIG. 1 shows a linear beam spread in a fan shape, and follows the surface shape when irradiated to the curved portion of the welded steel pipe 1 which is an object to be inspected. Thus, a light section image as the light projection pattern 3 is formed. When a scanning point light source is used as the light projecting means 1, 4 in FIG. 1 shows the locus of a point beam scanned in the width direction, and the light projection pattern 3 is a point image at an irradiation position on the welded steel pipe 1. Shows the trajectory. In this application, all the light projection patterns 1 are described as a light cut image.

(第1の実施の態様)
<断面プロフィール導出>
撮像手段5として例えばCMOSカメラやCCDカメラなどのエリアセンサを用いて、被検査体上の投光パターン(光切断像)3を撮像して画像データとして出力する。なお、撮像手段5は、投光手段2の発光のタイミングを同期して光切断像を撮像するようにしても良い。図1の断面プロフィール導出手段6では撮像手段5から光切断像の位置情報(画像内の位置)と輝度情報(明るさ)からなる画像データを取り込む。断面プロフィール導出手段6では当該画像データに基づき被検査体の断面プロフィールを導出する。光切断像3の画素位置(画像内における各画素の相対位置情報)は、例えば撮像面上において各X座標での、Y軸方向の輝度分布を重みとするY軸方向の重心位置で表すことができるが、その具体的な方法の一例を以下に説明する。
(First Embodiment)
<Section profile derivation>
For example, an area sensor such as a CMOS camera or a CCD camera is used as the image pickup means 5 to pick up a light projection pattern (light-cut image) 3 on the inspection object and output it as image data. Note that the imaging unit 5 may capture the light section image in synchronization with the light emission timing of the light projecting unit 2. In the cross-sectional profile deriving unit 6 in FIG. 1, image data including position information (position in the image) and luminance information (brightness) of the light section image is taken in from the imaging unit 5. The cross-sectional profile deriving means 6 derives a cross-sectional profile of the object to be inspected based on the image data. The pixel position (relative position information of each pixel in the image) of the light section image 3 is expressed by the barycentric position in the Y-axis direction with the luminance distribution in the Y-axis direction as a weight at each X coordinate on the imaging surface, for example. An example of the specific method will be described below.

図11は撮像手段5で撮影され画像入力部に取り込まれた光切断像と、画像上のある水平位置nにおけるC-C’横断方向の輝度分布を示している。光切断像が写っている撮像画像の左下を原点にとり、撮像面上のX軸、Y軸に対応する画像上の座標軸をそれぞれIX軸、IY軸とする。IX方向の画素数をIH、IY方向の画素数をIV個とすると、撮像画像はIH×IV個の画素からなる。   FIG. 11 shows a light section image captured by the image pickup means 5 and taken into the image input unit, and a luminance distribution in the C-C ′ transverse direction at a certain horizontal position n on the image. The lower left of the captured image in which the light-cut image is captured is taken as the origin, and the coordinate axes on the image corresponding to the X axis and the Y axis on the imaging surface are defined as the IX axis and the IY axis, respectively. If the number of pixels in the IX direction is IH and the number of pixels in the IY direction is IV, the captured image is composed of IH × IV pixels.

撮像画像中の画素(n,k)(n=1,2,・・・、k=1,2,・・・)における輝度をBr(n,k)とすると、水平方向位置nにおけるIY軸方向の輝度分布を重みとするIY軸方向の重心位置G(n)は以下の式のように求められる。   If the luminance at the pixel (n, k) (n = 1, 2,..., K = 1, 2,...) In the captured image is Br (n, k), the IY axis at the horizontal position n The center-of-gravity position G (n) in the IY-axis direction using the luminance distribution in the direction as a weight is obtained as follows.

Figure 0005217221
Figure 0005217221

ただしΣはIY軸方向の画素について総和をとるが、IY軸方向の輝度が最大となる位置を中心として予め定められた範囲内にあり、かつ輝度Br(n,k)が予め定めた閾値以上になる条件を満たす場合のみδ(n,
k)は1、この条件を満たさない場合は0とする。
However, Σ is the sum for the pixels in the IY axis direction, but is within a predetermined range centered on the position where the luminance in the IY axis direction is maximum, and the luminance Br (n, k) is equal to or greater than a predetermined threshold value Δ (n,
k) is 1, and 0 if this condition is not satisfied.

以上の処理をIX軸の各位置n(n=0, 1, …, IH−1)で行い、座標(n, G(n))を画像上の断面プロフィールとすることができる。G(n)は整数ではないが撮像面上のXY座標に変換する場合のために整数化することなく実数のままにしておく。   The above processing is performed at each position n (n = 0, 1,..., IH−1) on the IX axis, and the coordinates (n, G (n)) can be used as a cross-sectional profile on the image. G (n) is not an integer, but is left as a real number without being converted into an integer for conversion to XY coordinates on the imaging surface.

撮像画像上の断面プロフィール(n, G(n))に対応する、撮像面上のXY平面上における断面プロフィール(X(n), Y(n))は、画素数がIH×IVの画像上の断面プロフィール(n,
G(n))に、撮像面のX方向およびY方向の画素サイズdXおよびdYをかけて以下の式のように求められる。
The cross-sectional profile (X (n), Y (n)) on the XY plane on the imaging surface corresponding to the cross-sectional profile (n, G (n)) on the captured image is on the image with the number of pixels IH × IV. Cross-sectional profile (n,
G (n)) is multiplied by pixel sizes dX and dY in the X direction and Y direction of the imaging surface to obtain the following equation.

Figure 0005217221
Figure 0005217221

撮像面上でのXY平面上における断面プロフィール(X(n), Y(n))は、実平面xy平面上の断面プロフィール(x(n), y(n))を射影して得られたものであるから、前者を座標変換することで後者を得ることができる。図2に示したような投光手段2、撮像手段5、及び被検査体1の光学的配置によって決まるこの座標変換の方法について詳細に説明する。   The cross-sectional profile (X (n), Y (n)) on the XY plane on the imaging surface was obtained by projecting the cross-sectional profile (x (n), y (n)) on the real plane xy plane. Therefore, the latter can be obtained by coordinate conversion of the former. The coordinate conversion method determined by the optical arrangement of the light projecting means 2, the imaging means 5, and the object to be inspected 1 as shown in FIG. 2 will be described in detail.

幾何光学におけるレンズの結像式から、図2においてレンズ中心Opから物体側原点Oまでの距離をL、レンズの焦点距離をfとすると、物体側原点Oにおいては、撮像面51に写る像に対する物体の倍率(横倍率)MはM=(L−f)/fで表される。厳密に言うと物体側原点Oからy軸方向にyの高さにある点Qにおいてはy・cosθだけ撮像面側に近くなるため、厳密な倍率M'はM'=M・(L−f−y・cosθ)/
(L−f)になる。しかしながら、本実施の形態の場合、視野幅すなわち撮像する領域の幅がビード幅の数倍の場合を想定しており、視野幅内でのビードおよび周辺の起伏yの範囲は小さいので、倍率MはM=(L−f)/fとして差し支えない。
From the lens imaging formula in geometrical optics, if the distance from the lens center Op to the object-side origin O in FIG. 2 is L and the focal length of the lens is f, the object-side origin O is for the image captured on the imaging surface 51. The magnification (lateral magnification) M of the object is represented by M = (L−f) / f. Strictly speaking, at the point Q at the height of y in the y-axis direction from the object side origin O, the exact magnification M ′ is M ′ = M · (L−f -Y ・ cosθ) /
(L−f). However, in the case of the present embodiment, it is assumed that the field of view width, that is, the width of the region to be imaged is several times the bead width, and the range of the bead and the surrounding undulation y within the field width is small, so the magnification M May be M = (L−f) / f.

原点Oを通る撮像面に垂直な平面へのxy平面上の点Q(x,y)の射影(x,ysinθ)は、その対応する撮像面XY上の像(X,Y)のM倍となるので、像側(撮像面側)から物体側(被検査体側)への座標変換式が、次式のように得られる。   The projection (x, ysinθ) of the point Q (x, y) on the xy plane onto the plane perpendicular to the imaging plane passing through the origin O is M times the corresponding image (X, Y) on the imaging plane XY. Therefore, a coordinate conversion equation from the image side (imaging surface side) to the object side (inspected object side) is obtained as the following equation.

Figure 0005217221
Figure 0005217221

(2)、(3)式と(4)、(5)式により、画像上の断面プロフィール座標(n, G(n))から実平面上の断面プロフィール座標(x(n), y(n))への変換は次式のようになる。   From (2), (3), (4), and (5), the cross-sectional profile coordinates (x (n), y (n The conversion to)) is as follows.

Figure 0005217221
Figure 0005217221

さらに、本実施の形態では、断面プロフィール導出手段6は、撮像手段5で得られた撮像画像の輝度値の分布から明るさを認識して、輝度値の分布の情報をもとに光切断像が明瞭に検出できるように、投光手段1の照射時間や撮像手段5の露光時間及び露光タイミングなどの撮像条件制御も行う。   Further, in the present embodiment, the cross-sectional profile deriving unit 6 recognizes the brightness from the luminance value distribution of the captured image obtained by the imaging unit 5, and based on the luminance value distribution information, the light section image Is also controlled such as the irradiation time of the light projecting means 1, the exposure time of the imaging means 5, and the exposure timing.

<表面欠陥の凹凸検出>
以下では、断面プロフィール導出手段6で溶接鋼管1の断面プロフィールの測定値を導出した後、信号処理制御装置7を構成する各データ処理部で行っている、表面欠陥の凹凸、大きさ、形状を検出する導出手順と導出方法について説明する。
<Detection of irregularities on surface defects>
In the following, the surface profile unevenness, size, and shape performed by each data processing unit constituting the signal processing control device 7 after the cross-sectional profile deriving means 6 derives the measured value of the cross-sectional profile of the welded steel pipe 1. A derivation procedure and a derivation method to be detected will be described.

図7は信号処理制御装置7において実行する、表面欠陥の凹凸、大きさ、及び形状を検出する各データ処理の構成と、データ処理された各データの流れのフローチャートの概略を示している。ここでは、上記のようにして得た、ディジタル=データである断面プロフィールを構成する離散点の集合について、各点の座標を座標点列(x(n), y(n))(n=0,
1, 2, …, N−1:Nは断面プロフィールを構成するデータ数N=IH)で表し、y座標点列y(n)をS(n)とも表すことにする。以下では図8〜図10を引用して説明する。なお、当該図においては、離散的な点の集合である座標点列を、間隔が狭いので連続する線で表現した。
FIG. 7 shows the outline of each data processing configuration for detecting irregularities, sizes, and shapes of surface defects, and a flowchart of the flow of each data processed in the signal processing control device 7. Here, with respect to the set of discrete points constituting the cross-sectional profile of digital = data obtained as described above, the coordinates of each point are expressed as a coordinate point sequence (x (n), y (n)) (n = 0 ,
1, 2,..., N−1: N is represented by the number of data constituting the cross-sectional profile N = IH), and the y coordinate point sequence y (n) is also represented by S (n). Hereinafter, description will be made with reference to FIGS. In the figure, the coordinate point sequence, which is a set of discrete points, is represented by a continuous line because the interval is narrow.

<処理フローの概略>
まず上記のようにして断面プロフィール導出手段6により、母材部を含む溶接部(ビード及びその周辺部)のビードの幅方向の所定の区間の断面プロフィールの座標点列(x(n), S(n))を断面プロフィールとして導出する(S601、断面プロフィール導出工程)。当該所定の区間はビード及びビードの両側でビードの幅と同程度以上の範囲を含むと、以下で説明する関数近似を高精度で行うために好ましい。その後以下の処理を実行する。
<Outline of processing flow>
First, as described above, the cross-sectional profile deriving means 6 uses the coordinate point sequence (x (n), S) of the cross-sectional profile of a predetermined section in the width direction of the bead of the welded part (bead and its peripheral part) including the base material part. (n)) is derived as a cross-sectional profile (S601, cross-sectional profile deriving step). It is preferable that the predetermined section includes a bead and a range equal to or larger than the bead width on both sides of the bead in order to perform the function approximation described below with high accuracy. Thereafter, the following processing is executed.

(S701)変化度算出工程にて、導出した断面プロフィールのy座標点列S(n)の、ビードの幅方向に対する(すなわちnについて)傾斜の変化度を表す変化度点列F(n)を算出する。y座標点列S(n)の変化度として、例えばディジタル信号処理の分野で用いられる2次微分フィルタをy座標点列S(n)にかけて得られるF(n)をとることができる。y座標点列S(n)の変化の大きい急変部で変化度点列F(n)の絶対値は大きい値をとる。   (S701) In the degree-of-change calculation step, the degree-of-change point sequence F (n) representing the degree of change in the inclination of the y-coordinate point sequence S (n) of the derived cross-sectional profile with respect to the bead width direction (that is, n) calculate. As the degree of change of the y coordinate point sequence S (n), for example, F (n) obtained by applying a secondary differential filter used in the field of digital signal processing to the y coordinate point sequence S (n) can be taken. The absolute value of the degree-of-change point sequence F (n) takes a large value at the sudden change portion where the change of the y-coordinate point sequence S (n) is large.

この2次微分フィルタの例としては、2a+1個のy座標点列S(n)を中心としてS(n)を含む2a+1個の離散点を使って次式で表される2階差分フィルタがある。ここでaは検出すべき変化度に応じた適切な値を設定する。   As an example of this second-order differential filter, 2a + 1 discrete points including S (n) centered on 2a + 1 y-coordinate point sequence S (n) are expressed by the following equation: There is a differential filter. Here, a is set to an appropriate value according to the degree of change to be detected.

Figure 0005217221
Figure 0005217221

ただし、生の測定値であるy座標点列S(n)を使うとノイズの影響が大きいので、2階差分処理の前処理として、S(n)を一旦平滑化し、さらに2階差分処理を行った後に得られる値を変化度点列F(n)とする、あるいは2階差分処理後さらに後処理として平滑化して得られた点列をF(n)とするなど、いろいろな方法が考えられる。上記特許文献3のように1階差分と平滑化を組み合わせて2階差分相当の処理を行う例もある。またSavitzky-Golay法のような平滑化と微分を同時に一つのフィルタで実現できる方法もある。ここでは連続関数における2次微分に相当する処理を離散点からなる断面プロフィールに対して適用したものを、広義に解釈して2階差分処理と呼ぶことにする。   However, if the y coordinate point sequence S (n), which is a raw measurement value, is used, the influence of noise is large. Therefore, as a pre-processing of the second-order difference processing, S (n) is once smoothed and further the second-order difference processing is performed. Various methods can be considered, such as setting the degree of change F (n) to be the value obtained after execution, or F (n) for the point sequence obtained by smoothing as post-processing after the second-order difference processing. It is done. There is also an example in which processing equivalent to the second-order difference is performed by combining the first-order difference and smoothing as in Patent Document 3 above. There is also a method such as Savitzky-Golay method that can simultaneously realize smoothing and differentiation with one filter. Here, what applied the process equivalent to the secondary differentiation in a continuous function with respect to the cross-sectional profile which consists of a discrete point will be interpreted in a broad sense, and will be called a 2nd-order difference process.

(S702)止端部検出工程にて、ビードの左右外側より変化度点列F(n)のピーク探索を行い、例えば図8の(b)に示したように、予め定めた閾値以上である区間を、左右の止端部に相当する二つの左右の区間(止端部区間と記す)IL、IRとして検出する。   (S702) In the toe portion detection step, a peak search of the degree-of-change point sequence F (n) is performed from the left and right outer sides of the bead, and, for example, as shown in FIG. The section is detected as two left and right sections (denoted as toe section sections) IL and IR corresponding to the left and right toe sections.

(S703)ビード部近似工程にて、左右の止端部IL, IRにはさまれた内側のビード部に相当する区間にある断面プロフィールデータ(x(n), y(n))を使って、最小二乗近似によりビード部を近似する。ただしF(n)の絶対値が予め定められた値より大きい急変区間に属するデータは最小二乗近似には用いない。欠陥のない正常なビード部の断面プロフィールを近似するにふさわしい第1の関数f(x)の関数形式を仮定し、正常部の断面プロフィールデータのみ使って最小二乗法により第1の関数を決定する。正常なビード部を近似する第1の関数形式と最小二乗法の方法については後に詳細に述べる。 (S703) Using the cross-sectional profile data (x (n), y (n)) in the section corresponding to the inner bead portion sandwiched between the left and right toe portions IL and IR in the bead portion approximation step. The bead portion is approximated by least square approximation. However, data belonging to a sudden change interval in which the absolute value of F (n) is larger than a predetermined value is not used for the least square approximation. Assuming a function form of the first function f 1 (x) suitable for approximating the cross-sectional profile of the normal bead part without defects, the first function is determined by the least square method using only the cross-sectional profile data of the normal part. To do. The first function form for approximating the normal bead part and the method of the least square method will be described in detail later.

(S704)母材部近似工程により、止端部の二区間IL、IRより外側の母材部分である範囲WL(左側)、WR(右側)の断面プロフィールデータ(x(n), y(n))を用いて、最小二乗近似により左右の母材部をそれぞれ近似する。左右の母材部の断面プロフィールを近似するにふさわしい第2、第3の関数f(x)、f(x)の関数形式を仮定し、最小二乗法により第2、第3の関数を決定する。左右の母材部を近似する第2、第3の関数形式と最小二乗法の方法については後に詳細に述べる。 (S704) Cross section profile data (x (n), y (n) in the range WL (left side) and WR (right side) which are the base metal parts outside the two sections IL and IR of the toe part by the base metal part approximating step. )) To approximate the left and right base metal parts by least square approximation. Assuming a function form of the second and third functions f 2 (x) and f 3 (x) suitable for approximating the cross-sectional profiles of the left and right base metal parts, the second and third functions are obtained by the least square method. decide. The second and third function forms that approximate the left and right base metal parts and the method of least squares will be described in detail later.

(S705)止端点算出工程により、第1の近似関数と第2の近似関数との交点を左止端点A(符号13)、第1の近似関数と第3の近似関数との交点を右止端点B(符号14)としてそれぞれの座標を算出する。尚、止端点とは、止端部(溶接止端部)の位置を示す代表的な点を意味する。   (S705) In the toe point calculation step, the intersection of the first approximate function and the second approximate function is the left toe point A (reference numeral 13), and the intersection of the first approximate function and the third approximate function is right-stopped. The respective coordinates are calculated as the end point B (reference numeral 14). In addition, a toe point means the typical point which shows the position of a toe end part (welding toe end part).

(S706)近似断面プロフィール算出工程にて、左右止端点ではさまれた区間I1、左側止端点より左外側の区間I2、および右側止端点より右外側区間I3でそれぞれ定義される第1、第2、第3の関数を使って、y座標点列S(n)に対応するx座標点列x(n)における近似関数の値T(n)を次式のように求める。   (S706) In the approximate cross-section profile calculation step, the first and second defined by the section I1 sandwiched between the left and right toe points, the section I2 on the left outer side from the left toe point, and the right outer section I3 from the right toe point, respectively. Using the third function, an approximate function value T (n) in the x coordinate point sequence x (n) corresponding to the y coordinate point sequence S (n) is obtained as follows.

Figure 0005217221
Figure 0005217221

すなわち、本工程においては、第1、第2、及び第3の関数を、それぞれ左側止端点より左外側の区間I2、右側止端点より右外側区間I3、及び、もしあれば左右の止端部区間の間の急変区間に外挿又は内挿して、各関数の値を決める。そして、区分的近似曲線としてT(n)を導出する。   That is, in this step, the first, second, and third functions are respectively set to the left outside section I2 from the left toe point, the right outside section I3 from the right toe point, and the left and right toe parts, if any. Extrapolate or interpolate between sudden intervals between intervals to determine the value of each function. Then, T (n) is derived as a piecewise approximate curve.

(S707)偏差データ算出工程にて、S(n)とT(n)との偏差データD(n)=S(n)−T(n)を計算する。   (S707) In the deviation data calculation step, deviation data D (n) = S (n) −T (n) between S (n) and T (n) is calculated.

(S708)欠陥形状算出工程にて、偏差データD(n)の大きさが予め定めた閾値以上の領域を欠陥として検出し、又、形状を評価する。   (S708) In the defect shape calculation step, an area where the magnitude of the deviation data D (n) is equal to or larger than a predetermined threshold is detected as a defect, and the shape is evaluated.

以上の処理フローを、欠陥のない正常部の場合、アンダーカット、及びアンダービードがある場合に適用した例の手順と処理結果を、図を使って具体的に説明する。   The procedure and processing results of an example in which the above processing flow is applied to a normal part having no defect, an undercut, and an underbead will be specifically described with reference to the drawings.

<正常部>
図8は欠陥のない正常部の処理結果を分かりやすく模式的に示したものである。図8(a)は抽出されたS(n)をy座標点列とする断面プロフィールを示す。図8(b)はS(n)を2階差分処理して得られるy座標点列F(n)を模式的に示しており、F(n)は形状の変化のある止端部において大きな値を示す。図8(b)において、F(n)の定められた閾値th以上のピークを有する区間を左右から内側に向かって探索・検出し、左右の止端部区間IL、IRとする。IL、IRではさまれた内側の領域WCにおいてはS(n)を用いて最小二乗法によって第1の関数で近似を行う。またWCより外側の左右の領域WL、WRにおいては、それぞれ最小二乗法により第2の関数及び第3の関数で近似する。
<Normal part>
FIG. 8 schematically shows the processing result of a normal part having no defect in an easy-to-understand manner. FIG. 8A shows a cross-sectional profile having the extracted S (n) as a y-coordinate point sequence. FIG. 8 (b) schematically shows a y-coordinate point sequence F (n) obtained by second-order differential processing of S (n), and F (n) is large at the toe where the shape changes. Indicates the value. In FIG. 8 (b), a section having a peak equal to or greater than a predetermined threshold th of F (n) is searched and detected from the left and the right to be the left and right toe sections IL and IR. In the inner region WC sandwiched between IL and IR, approximation is performed using the first function by the least square method using S (n). In the left and right regions WL and WR outside the WC, approximation is performed by the second function and the third function, respectively, by the least square method.

次に、ビード部を近似する第1の関数と左右母材部を近似する第2、第3の関数で表される曲線の交点をそれぞれ左右の止端点A,Bとして求める。左側止端点より左側の区間を第2の関数で、右側止端点より右側の区間を第3の関数で、左右止端点ではさまれた区間は第1の関数で、それぞれ近似して得られる図8(c)に示す区分的近似関数上のy座標点列をT(n)とする。   Next, intersection points of curves represented by a first function that approximates the bead portion and second and third functions that approximate the left and right base metal portions are obtained as left and right toe points A and B, respectively. The section to the left of the left toe point is the second function, the section to the right of the right toe point is the third function, and the section between the left and right toe points is the first function. The y coordinate point sequence on the piecewise approximation function shown in 8 (c) is defined as T (n).

生の断面プロフィールを表す図8(a)に示したy座標点列S(n)と、図8(c)に示した近似関数上のy座標点列T(n)との差D(n)=S(n)−T(n)をとり、最終的に図8(d)で示す偏差データD(n)を得る。正常部の場合D(n)の絶対値は小さく、検出すべき欠陥に対応する閾値U以下のため、欠陥は検出されない。   The difference D (n) between the y-coordinate point sequence S (n) shown in FIG. 8 (a) representing the raw cross-sectional profile and the y-coordinate point sequence T (n) on the approximate function shown in FIG. 8 (c). ) = S (n) −T (n), and finally, deviation data D (n) shown in FIG. 8D is obtained. In the case of the normal part, the absolute value of D (n) is small and is equal to or less than the threshold value U corresponding to the defect to be detected, so no defect is detected.

<アンダーカット>
図9はアンダーカットがある場合の処理結果をわかりやすく模式的に示したものである。図9(a)は抽出されたS(n)をy座標点列とする断面プロフィールを示す。図9(b)はS(n)を用いて2階差分処理して得られるy座標点列F(n)を模式的に示している。アンダーカットは止端部に発生するので、図9(b)の場合、2階差分処理した結果であるF(n)はアンダーカットのある左止端部においてより大きなピーク値を示す。
<Undercut>
FIG. 9 schematically shows the processing result when there is an undercut in an easy-to-understand manner. FIG. 9A shows a cross-sectional profile having the extracted S (n) as a y-coordinate point sequence. FIG. 9B schematically shows a y-coordinate point sequence F (n) obtained by second-order difference processing using S (n). Since an undercut occurs at the toe, in the case of FIG. 9B, F (n), which is the result of the second-order difference process, shows a larger peak value at the left toe with an undercut.

図9(b)において、正常部の場合と同様に定められた閾値th以上のピークを有する左右の止端部区間IL、IRを探索し、断面プロフィールの変化の大きい止端部のIL、IRを除いた区間のS(n)を使って、図9(c)で示される区分的近似関数上のy座標点列T(n)を求める。   In FIG. 9 (b), the left and right toe sections IL and IR having a peak equal to or greater than the threshold value th are searched in the same manner as in the normal part, and IL and IR at the toe part having a large change in cross-sectional profile. By using S (n) in the section excluding, a y coordinate point sequence T (n) on the piecewise approximation function shown in FIG. 9C is obtained.

図9(d)で正常部の場合と同様に偏差データD(n)=S(n)−T(n)を求めると、アンダーカットのある部分で絶対値の大きいD(n)が得られる。偏差データD(n)の絶対値が予め設定した閾値UC以上である区間の幅wとD(n)の絶対値の最大値hをそれぞれアンダーカットの幅、深さとしてアンダーカットを抽出できる。   When the deviation data D (n) = S (n) −T (n) is obtained in the same manner as in the normal portion in FIG. 9D, D (n) having a large absolute value is obtained in the portion with the undercut. . The undercut can be extracted by using the width w of the section where the absolute value of the deviation data D (n) is equal to or greater than the preset threshold UC and the maximum value h of the absolute value of D (n) as the undercut width and depth, respectively.

<アンダービード>
図10はアンダービードがある場合の処理結果を分かりやすく模式的に示したものである。図10(a)は抽出されたS(n)をy座標点列とする断面プロフィールを示す。図10(b)はS(n)を2階差分して得られるy座標点列F(n)を模式的に示しており、止端部以外にビード部においてアンダービードに対応したF(n)の絶対値が大きな値を示す部分が見られる。
<Underbead>
FIG. 10 schematically shows the processing result when there is an underbead in an easy-to-understand manner. FIG. 10A shows a cross-sectional profile having the extracted S (n) as a sequence of y coordinate points. FIG. 10 (b) schematically shows a y-coordinate point sequence F (n) obtained by subtracting S (n) from the second floor, and F (n) corresponding to the underbead in the bead portion other than the toe portion. The part where the absolute value of) shows a large value can be seen.

正常部の場合と同様に止端部区間IL、IRを求めた後、外側の区間WL、WRをそれぞれ第2、第3の関数で母材部を近似するところまでは同じであるが、アンダービードがあるビード部は、F(n)の絶対値が予め定められた閾値(例えば、th'の絶対値)以下の小さな値を示す区間WC1、WC2における断面プロフィールデータS(n)を使って、第1の関数により近似する。   After obtaining the toe sections IL and IR in the same way as in the normal section, the outer sections WL and WR are the same until the base material section is approximated by the second and third functions, respectively. The bead portion where the bead exists is obtained by using the cross-sectional profile data S (n) in the sections WC1 and WC2 in which the absolute value of F (n) indicates a small value less than a predetermined threshold value (for example, the absolute value of th '). Approximate by the first function.

図10(d)で正常部と同様に偏差データD(n)=S(n)−T(n)を求めると、アンダービードのある部分で絶対値の大きいD(n)が得られる。偏差データD(n)の絶対値が予め設定した閾値UB以上である区間の幅wとD(n)の絶対値の最大値hをそれぞれアンダービードの幅、深さとしてアンダービードを抽出できる。   When deviation data D (n) = S (n) −T (n) is obtained in the same manner as in the normal part in FIG. 10D, D (n) having a large absolute value is obtained in a portion where there is an underbead. Underbeads can be extracted by using the width w and the maximum value h of the absolute value of D (n) as the width w and the depth of the section where the absolute value of the deviation data D (n) is equal to or greater than a preset threshold UB.

<最小二乗法による関数近似方法の詳細>
次に、ビード部近似工程(S703)を行うビード部近似回路と、母材部近似工程(S704)を行う母材部近似回路と、で行う最小二乗法による関数近似方法について説明する。x軸とy軸をそれぞれを鋼管の幅方向と高さ方向として、断面プロフィールを表す離散データの座標を(xi, yi)、(yi=S(i))とする。最小二乗法によれば、近似関数f(x)の形として例えば以下のようにn次多項式を仮定した場合、
<Details of function approximation method by least square method>
Next, a function approximation method by the least square method performed by the bead portion approximation circuit that performs the bead portion approximation step (S703) and the base material portion approximation circuit that performs the base material portion approximation step (S704) will be described. The x-axis and y-axis are the steel pipe width direction and height direction, respectively, and the coordinates of the discrete data representing the cross-sectional profile are (xi, yi) and (yi = S (i)). According to the least square method, for example, assuming an n-order polynomial as the form of the approximate function f (x) as follows,

Figure 0005217221
Figure 0005217221

係数{am}、(m=0,1,…,n)に関する以下の連立方程式を解いて近似関数を求められる。 An approximate function can be obtained by solving the following simultaneous equations concerning the coefficients {a m }, (m = 0, 1,..., N).

Figure 0005217221
Figure 0005217221

近似関数として次式で表される円弧を仮定した場合、   Assuming an arc represented by the following equation as an approximate function:

Figure 0005217221
Figure 0005217221

係数{a, b, c}に関する以下の連立方程式を解いて近似関数を求められる。   An approximate function can be obtained by solving the following simultaneous equations for the coefficients {a, b, c}.

Figure 0005217221
Figure 0005217221

拡管成形前のUO鋼管の場合、断面プロフィールはビード部では緩やかな変化を示し、母材部では直線的な変化を示すので、ここではビード部を円弧で母材部を直線で近似している。   In the case of UO steel pipe before pipe expansion forming, the cross-sectional profile shows a gradual change in the bead part and a linear change in the base material part, so here the bead part is approximated by a circular arc and the base material part is approximated by a straight line. .

本発明の方法によれば、止端部や欠陥部における断面プロフィールの急変部を検出し、急変部を除いて断面プロフィールを関数近似するため、欠陥部のデータに影響を受けることなく断面プロフィールを近似できる。近似曲線データT(n)を欠陥の深さを測る基準線として、断面プロフィールデータS(n)からT(n)を差し引くことで欠陥の深さD(n)=S(n)−T(n)を精度よく求めることができる。   According to the method of the present invention, since the sudden change portion of the cross-sectional profile at the toe portion and the defect portion is detected and the cross-sectional profile is approximated by a function excluding the sudden change portion, the cross-sectional profile is not affected by the data of the defect portion. Can be approximated. Using the approximate curve data T (n) as a reference line for measuring the depth of the defect, subtracting T (n) from the cross-sectional profile data S (n), the depth of the defect D (n) = S (n) −T ( n) can be obtained accurately.

D(n)の符号が負で絶対値が欠陥検出閾値以上である部分を1、それ以外の部分に0を与える二値化処理を行って、長手方向に得られた偏差データ列も含め1の部分を連結処理する。幅方向、長手方向に2次元的に連結された欠陥部分が抽出でき、幅、深さ、長さなど欠陥の大きさ又は形状のうち少なくとも一方を正しく認識できる。   1 including the deviation data string obtained in the longitudinal direction by performing binarization processing in which the sign of D (n) is negative and the absolute value is equal to or greater than the defect detection threshold value is 1 and other parts are 0. This part is connected. Defect portions that are two-dimensionally connected in the width direction and the longitudinal direction can be extracted, and at least one of the size or shape of the defect such as width, depth, and length can be correctly recognized.

(第2の実施の態様)
上記の断面プロフィール導出手段6は、撮像手段5から撮像画像を取り込んでディジタルデータ化する画像取り込みボード、内蔵メモリ、HDDやDVD−RAM等の外部記録装置、キーボードやマウス等の入力装置、他の情報端末とのデータの送受信をするためのネットワーク=インターフェース、その他のI/Oボード、及びコンピュータ=ディスプレー等を具備するコンピュータで構成することができる(図示せず)。
(Second Embodiment)
The cross-sectional profile deriving unit 6 includes an image capturing board that captures a captured image from the image capturing unit 5 and converts it into digital data, an internal memory, an external recording device such as an HDD or a DVD-RAM, an input device such as a keyboard or a mouse, and the like. A network = interface for transmitting / receiving data to / from an information terminal = an interface, other I / O boards, and a computer = a computer having a display (not shown) can be used.

又、上記の信号処理制御装置7も同様にして、コンピュータで構成することができる。さらに、断面プロフィール導出手段6と信号処理装置7を一体化して、一台のコンピュータ=システムで構成するようにしても良い。   Similarly, the signal processing control device 7 can be configured by a computer. Furthermore, the cross-sectional profile deriving means 6 and the signal processing device 7 may be integrated to constitute a single computer = system.

そして、上記の断面プロフィールを導出する各処理(S601)、及び信号処理装置7で行うS701〜S708の工程の各処理、並びに撮像装置の制御のための処理をコンピュータに実行させるためのソフトウエアを上記のHDDや内蔵メモリにロードして実行させることにより、所望の溶接部の表面欠陥形状検出装置を実現することができ、又、溶接部の表面欠陥形状検出方法を実施することが可能となる。上記の処理によって得られる表面欠陥形状の測定結果を付属のコンピュータ=ディスプレー上に表示し、又、ネットワーク=インターフェースを通じて外部の溶接操業管理用コンピュータに伝送するようにしても良い。   Software for causing the computer to execute each process for deriving the above-described cross-sectional profile (S601), each process of S701 to S708 performed by the signal processing apparatus 7, and a process for controlling the imaging apparatus. By loading and executing the above-mentioned HDD or built-in memory, a surface defect shape detection device for a desired welded portion can be realized, and a surface defect shape detecting method for a welded portion can be implemented. . The measurement result of the surface defect shape obtained by the above processing may be displayed on an attached computer = display, or may be transmitted to an external welding operation management computer through a network = interface.

図12、図13、図14は、欠陥のない正常部、アンダーカット、アンダービードがある場合の処理結果を示している。   12, 13, and 14 show the processing results when there is a normal part without a defect, an undercut, and an underbead.

幅方向画素数IH=656、高さ方向画素数IV=484、画素サイズdX=dY=10μmのカメラにて、カメラを撮影角度θ=45°、作動距離L=207mmになるように配置し、内径895mmの鋼管内面の断面プロフィールを測定した。ビードは幅が20mm、高さが2mm程度、アンダーカットは幅が1.5mmで深さは0.5mm程度、アンダービードは幅が3mm、深さが0.7mm程度である。   With a camera having a width direction pixel number IH = 656, a height direction pixel number IV = 484, and a pixel size dX = dY = 10 μm, the camera is arranged so that the shooting angle θ = 45 ° and the working distance L = 207 mm. The cross-sectional profile of the inner surface of a steel pipe having an inner diameter of 895 mm was measured. The bead has a width of 20 mm and a height of about 2 mm, the undercut has a width of 1.5 mm and a depth of about 0.5 mm, and the underbead has a width of about 3 mm and a depth of about 0.7 mm.

各図の(a)は断面プロフィール導出手段6で導出された断面プロフィールと、変化度算出工程(S701)を行う変化度算出回路から出力された変化度である2階差分結果とを合わせて示している。   (A) of each figure shows the cross-sectional profile derived by the cross-sectional profile deriving means 6 and the second-order difference result which is the degree of change output from the degree-of-change calculating circuit performing the degree-of-change calculating step (S701). ing.

(b)は近似断面プロフィール算出工程(S706)を行う近似断面プロフィール算出回路から出力された近似断面プロフィールを前記断面プロフィールとともに示している。   (b) shows the approximate cross-section profile output from the approximate cross-section profile calculation circuit performing the approximate cross-section profile calculation step (S706) together with the cross-sectional profile.

(c)は偏差データ算出工程(S707)を行う偏差データ算出回路から出力された偏差データを前記断面プロフィールとともに示している。   (c) shows the deviation data output from the deviation data calculation circuit performing the deviation data calculation step (S707) together with the cross-sectional profile.

疵部のない正常なビードでは偏差データの凹凸はないが、アンダーカットとアンダービードでは疵の凹部に対応した偏差データを算出できた。アンダービードのように比較的大きい疵でも疵部の断面プロフィールに影響を受けることなく疵部を除いた断面プロフィールを近似でき、元の断面プロフィールとの偏差を算出することで、疵部に対応した凹部が的確に検出できた。   The normal bead without the heel has no unevenness in the deviation data, but the undercut and the underbead can calculate the deviation data corresponding to the dent in the heel. Even under comparatively large wrinkles such as under beads, it is possible to approximate the cross-sectional profile excluding the buttock without being affected by the cross-sectional profile of the buttock, and by calculating the deviation from the original cross-sectional profile, it corresponds to the buttock The concave portion could be accurately detected.

このように欠陥に相当する凹凸部分を偏差データとして算出でき、偏差データを長手方向に並べていけば、欠陥の形状を3次元的に捉えることが可能になる。   As described above, the uneven portion corresponding to the defect can be calculated as the deviation data, and if the deviation data is arranged in the longitudinal direction, the shape of the defect can be captured three-dimensionally.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明の溶接部の表面欠陥形状検出装置の実施の形態である、線状光源または点状光源を使った光切断法での全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure by the optical cutting method using a linear light source or a point light source which is embodiment of the surface defect shape detection apparatus of the welding part of this invention. 本発明の実施の形態での断面プロフィールの測定方法における、線状光源または点状光源を使った光切断法での光学配置と、物体側と像側の座標系を示す図である。It is a figure which shows the optical arrangement | positioning by the optical cutting method using a linear light source or a point light source, and the coordinate system of an object side and an image side in the measuring method of a cross-sectional profile in embodiment of this invention. 止端部に生ずるアンダーカットの一例を示す図である。It is a figure which shows an example of the undercut which arises in a toe part. 止端部に生ずるアンダーカットの一例の断面図である。It is sectional drawing of an example of the undercut produced in a toe part. ビード部に生ずるアンダービードの一例を示す図である。It is a figure which shows an example of the under bead which arises in a bead part. ビード部に生ずるアンダービードの一例の断面図である。It is sectional drawing of an example of the under bead produced in a bead part. 本発明の溶接部の表面欠陥形状検出方法の実施の形態における各工程のフローチャートである。It is a flowchart of each process in embodiment of the surface defect shape detection method of the welding part of this invention. 本溶接部の表面欠陥形状検出方法の実施の形態において、欠陥のない正常部の処理結果を説明する図である。In embodiment of the surface defect shape detection method of this weld part, it is a figure explaining the process result of the normal part without a defect. 本溶接部の表面欠陥形状検出方法の実施の形態において、アンダーカットのある場合の処理結果を説明する図である。In embodiment of the surface defect shape detection method of this welding part, it is a figure explaining the process result in case there exists an undercut. 本溶接部の表面欠陥形状検出方法の実施の形態において、アンダービードのある場合の処理結果を説明する図である。In embodiment of the surface defect shape detection method of this welding part, it is a figure explaining the process result in case there exists an under bead. 本溶接部の表面欠陥形状検出方法の実施の形態における、光切断像と輝度分布の関係を説明する図である。It is a figure explaining the relationship between the light cut image and luminance distribution in embodiment of the surface defect shape detection method of this welding part. 本溶接部の表面欠陥形状検出方法の実施例において、欠陥のない正常部の信号処理結果を説明する図である。It is a figure explaining the signal processing result of the normal part without a defect in the Example of the surface defect shape detection method of this welding part. 本溶接部の表面欠陥形状検出方法の実施例において、アンダーカットがある場合の信号処理結果を説明する図である。In the Example of the surface defect shape detection method of this welding part, it is a figure explaining the signal processing result in case there exists an undercut. 本溶接部の表面欠陥形状検出方法の実施例において、アンダービードがある場合の信号処理結果を説明する図である。In the Example of the surface defect shape detection method of this welding part, it is a figure explaining the signal processing result in case there exists an under bead.

符号の説明Explanation of symbols

1 溶接鋼管(被検査体)
2 投光装置(線状レーザ光源又は走査式点状レーザ光源)
3 光切断像(投光パターン)
4 線状レーザビームあるいは走査式点状ビームの軌跡(空中)
5 撮像装置
6 画像処理装置
7 信号処理制御装置
10 ビード部
11 止端部
12 母材(ビード外側の周辺部)
13 左止端点
14 右止端点
51 撮像面
101 アンダービード
111 アンダーカット
S601 断面プロフィール導出工程
S701 変化度算出工程
S702 止端部検出工程
S703 ビード部近似工程
S704 母材部近似工程
S705 止端点算出工程
S706 近似断面プロフィール算出工程
S707 偏差データ算出工程
S708 欠陥形状算出工程
1 Welded steel pipe (inspected object)
2 Projector (Linear laser light source or scanning point laser light source)
3 Light cut image (light projection pattern)
4 Trace of linear laser beam or scanning point beam (in the air)
DESCRIPTION OF SYMBOLS 5 Imaging device 6 Image processing device 7 Signal processing control device 10 Bead part 11 Stop end part 12 Base material (periphery part of bead outer side)
13 Left toe point 14 Right toe point 51 Imaging surface 101 Underbead 111 Undercut S601 Cross-sectional profile derivation step S701 Change degree calculation step S702 Toe part detection step S703 Bead part approximation step S704 Base material part approximation step S705 Toe point calculation step S706 Approximate cross section profile calculation step S707 Deviation data calculation step S708 Defect shape calculation step

Claims (3)

溶接部を有する部材を被検査体として、該溶接部表面の欠陥を検出する溶接部の表面欠陥形状検出方法において、
母材部を含む前記溶接部のビードの幅方向の所定の区間Lの断面プロフィールを導出する工程と、
前記断面プロフィールについて、前記ビードの幅方向に対する傾斜の変化である変化度を導出する変化度算出工程と、
前記断面プロフィールの変化度が所定の閾値よりも大きい複数の急変区間のうち、前記所定の区間Lの最も左外側にある急変区間と最も右外側の急変区間とを、それぞれ左側と右側の止端部区間として検出する止端部検出工程と、
前記検出された左側の止端部区間と右側の止端部区間とに挟まれた内側の区間Mにおける前記断面プロフィールを、当該内側の区間Mのうち前記急変区間に属さない前記断面プロフィールのデータを用いて予め定めた第1の関数で近似するビード部近似工程と、
前記左側の止端部区間より左外側、及び前記右側の止端部区間より右外側の前記断面プロフィールを、それぞれ予め定めた第2の関数、及び第3の関数で近似する母材部近似工程と、
前記第1の関数と前記第2の関数との交点を左止端点とし、前記第1の関数と前記第3の関数との交点を右止端点として求める止端点算出工程と、
前記左止端点及び前記右止端点を前記区間Lの区分点として、前記断面プロフィールのうち、前記第1の関数を前記左止端点と前記右止端点とで挟まれた区間全体に外挿のみか、又は外挿と内挿とを行い、前記第2の関数を前記左止端点より左外側の区間に外挿を行い、前記第3の関数を前記右止端点より右外側の区間に外挿を行って拡張し、これら第1の関数、第2の関数、及び第3の関数を連結して前記断面プロフィールを前記区間L全体で近似する区分的近似曲線を導出する近似断面プロフィール算出工程と、
前記断面プロフィールと該区分的近似曲線との差分である偏差データを導出する偏差データ算出工程と、
前記偏差データに基づいて欠陥の大きさ又は形状のうち少なくとも一方を評価する欠陥形状算出工程と、からなることを特徴とする溶接部の表面欠陥形状検出方法。
In the method for detecting the surface defect shape of a welded part, which detects a defect on the surface of the welded part, using a member having a welded part as an inspection object,
Deriving a cross-sectional profile of a predetermined section L in the width direction of the bead of the weld including the base material portion;
About the cross-sectional profile, a degree-of-change calculation step for deriving a degree of change that is a change in inclination with respect to the width direction of the bead;
Among a plurality of sudden change sections in which the degree of change of the cross-sectional profile is larger than a predetermined threshold, the leftmost and rightmost toes are designated as the leftmost and rightmost sudden change sections of the predetermined section L, respectively. A toe part detecting step to detect as a section,
The cross-sectional profile in the inner section M sandwiched between the detected left toe section and the right toe section section is the cross-sectional profile data not belonging to the sudden change section in the inner section M. A bead part approximating step for approximating with a first function predetermined using
A base material part approximating step for approximating the cross-sectional profiles on the left outer side from the left toe section and the right outer side from the right toe section by a predetermined second function and a third function, respectively. When,
A toe point calculation step for obtaining an intersection point between the first function and the second function as a left toe point, and obtaining an intersection point between the first function and the third function as a right toe point;
Using the left toe point and the right toe point as a division point of the section L, the first function of the cross-sectional profile is only extrapolated to the entire section sandwiched between the left toe point and the right toe point. Alternatively, extrapolation and interpolation are performed, and the second function is extrapolated to the left outer section from the left toe point, and the third function is extrapolated to the right outer section from the right toe point. Approximate cross-section profile calculating step for deriving a piecewise approximate curve that approximates the cross-sectional profile over the entire section L by connecting the first function, the second function, and the third function. When,
A deviation data calculating step for deriving deviation data that is a difference between the cross-sectional profile and the piecewise approximate curve;
And a defect shape calculation step for evaluating at least one of the size and shape of the defect based on the deviation data.
前記変化度算出工程は、前記断面プロフィールであるy座標点列S(n)(nは自然数)を2階差分処理して前記変化度を導出することを特徴とする請求項1に記載の溶接部の表面欠陥形状検出方法。   2. The welding according to claim 1, wherein the degree of change calculation step derives the degree of change by performing second-order difference processing on a y-coordinate point sequence S (n) (n is a natural number) that is the cross-sectional profile. Method for detecting the surface defect shape of a part. 溶接部を有する部材を被検査体として、該溶接部表面の欠陥を検出する溶接部の表面欠陥形状検出をするコンピュータプログラムであって、
母材部を含む前記溶接部のビードの幅方向の所定の区間Lの断面プロフィールを導出する処理と、
前記断面プロフィールについて、前記ビードの幅方向に対する傾斜の変化である変化度を導出する変化度算出処理と、
前記断面プロフィールの変化度が所定の閾値よりも大きい複数の急変区間のうち、前記所定の区間Lの最も左外側にある急変区間と最も右外側の急変区間とを、それぞれ左側と右側の止端部区間として検出する止端部検出処理と、
前記検出された左側の止端部区間と右側の止端部区間とに挟まれた内側の区間Mにおける前記断面プロフィールを、当該内側の区間Mのうち前記急変区間に属さない前記断面プロフィールのデータを用いて予め定めた第1の関数で近似するビード部近似処理と、
前記左側の止端部区間より左外側、及び前記右側の止端部区間より右外側の前記断面プロフィールを、それぞれ予め定めた第2の関数、及び第3の関数で近似する母材部近似処理と、
前記第1の関数と前記第2の関数との交点を左止端点とし、前記第1の関数と前記第3の関数との交点を右止端点として求める止端点算出処理と、
前記左止端点及び前記右止端点を前記区間Lの区分点として、前記断面プロフィールのうち、前記第1の関数を前記左止端点と前記右止端点とで挟まれた区間全体に外挿のみか、又は外挿と内挿とを行い、前記第2の関数を前記左止端点より左外側の区間に外挿を行い、前記第3の関数を前記右止端点より右外側の区間に外挿を行って拡張し、これら第1の関数、第2の関数、及び第3の関数を連結して前記断面プロフィールを前記区間L全体で近似する区分的近似曲線を導出する近似断面プロフィール算出処理と、
前記断面プロフィールと該区分的近似曲線との差分である偏差データを導出する偏差データ算出処理と、
前記偏差データに基づいて欠陥の大きさ又は形状のうち少なくとも一方を評価する欠陥形状算出処理と、
をコンピュータに実行させるためのコンピュータプログラム。
A computer program for detecting a surface defect shape of a welded part, which detects a defect on the surface of the welded part, using a member having a welded part as an inspection object
A process of deriving a cross-sectional profile of a predetermined section L in the width direction of the bead of the weld including the base material part;
About the cross-sectional profile, a degree-of-change calculation process for deriving a degree of change that is a change in inclination with respect to the width direction of the bead;
Among a plurality of sudden change sections in which the degree of change of the cross-sectional profile is larger than a predetermined threshold, the leftmost and rightmost toes are designated as the leftmost and rightmost sudden change sections of the predetermined section L, respectively. Toe detection processing to detect as a section,
The cross-sectional profile in the inner section M sandwiched between the detected left toe section and the right toe section section is the cross-sectional profile data not belonging to the sudden change section in the inner section M. A bead part approximation process for approximating with a first function determined in advance using
Base material part approximating process for approximating the cross-sectional profile of the left outer side from the left toe section and the right outer side from the right toe section by a predetermined second function and third function, respectively. When,
A toe point calculation process for obtaining an intersection point of the first function and the second function as a left toe point, and obtaining an intersection point of the first function and the third function as a right toe point;
Using the left toe point and the right toe point as a division point of the section L, the first function of the cross-sectional profile is only extrapolated to the entire section sandwiched between the left toe point and the right toe point. Alternatively, extrapolation and interpolation are performed, and the second function is extrapolated to the left outer section from the left toe point, and the third function is extrapolated to the right outer section from the right toe point. Approximate cross-section profile calculation processing for deriving a piecewise approximation curve that approximates the cross-section profile over the entire section L by connecting and extending the first function, the second function, and the third function. When,
Deviation data calculation processing for deriving deviation data that is a difference between the cross-sectional profile and the piecewise approximate curve;
Defect shape calculation processing for evaluating at least one of the size or shape of the defect based on the deviation data;
A computer program for causing a computer to execute.
JP2007107599A 2007-04-16 2007-04-16 Method for detecting surface defect shape of welded portion and computer program Active JP5217221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107599A JP5217221B2 (en) 2007-04-16 2007-04-16 Method for detecting surface defect shape of welded portion and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107599A JP5217221B2 (en) 2007-04-16 2007-04-16 Method for detecting surface defect shape of welded portion and computer program

Publications (2)

Publication Number Publication Date
JP2008267836A JP2008267836A (en) 2008-11-06
JP5217221B2 true JP5217221B2 (en) 2013-06-19

Family

ID=40047555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107599A Active JP5217221B2 (en) 2007-04-16 2007-04-16 Method for detecting surface defect shape of welded portion and computer program

Country Status (1)

Country Link
JP (1) JP5217221B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312144B2 (en) * 2009-03-30 2013-10-09 トヨタ自動車株式会社 Car body surface defect inspection method and car body surface defect inspection apparatus
JP5439008B2 (en) * 2009-03-31 2014-03-12 株式会社豊田中央研究所 High-temperature object shape measuring apparatus and shape measuring method
JP2010249598A (en) * 2009-04-14 2010-11-04 Honda Motor Co Ltd Three-dimensional shape measuring system and method
JP2011191161A (en) * 2010-03-15 2011-09-29 Nippon Sharyo Seizo Kaisha Ltd Weld zone undercut inspection device
JP5758090B2 (en) * 2010-08-11 2015-08-05 コアテック株式会社 Shape inspection apparatus and shape inspection method
JP6360706B2 (en) * 2014-03-10 2018-07-18 日本発條株式会社 Shape measuring apparatus, program, recording medium, and method
JP6846867B2 (en) * 2015-08-10 2021-03-24 日本製鉄株式会社 Pipe inner surface inspection device and pipe inner surface inspection method
JP6681759B2 (en) * 2016-03-23 2020-04-15 日立造船株式会社 Weld bead inspection system
JP2017187348A (en) * 2016-04-04 2017-10-12 新日鐵住金株式会社 Surface defect inspection system, method and program
KR101802812B1 (en) 2016-04-20 2017-11-29 주식회사 고영테크놀러지 Inspecting apparatus for product appearance and inspection method for product appearance using the same
JP7073732B2 (en) * 2018-01-16 2022-05-24 大同特殊鋼株式会社 Appearance evaluation method and appearance evaluation device for weld beads
JP7555042B2 (en) * 2020-03-05 2024-09-24 パナソニックIpマネジメント株式会社 Bead appearance inspection device, bead appearance inspection method, program, and bead appearance inspection system
CN112518072B (en) * 2020-11-23 2022-03-01 南京工程学院 Spatial intersecting curve weld joint structure modeling method based on line structure light vision
CN114252449B (en) * 2021-09-27 2023-10-24 上海电机学院 Aluminum alloy weld joint surface quality detection system and method based on line structured light
CN115945767B (en) * 2022-11-15 2024-05-28 厦门航天思尔特机器人系统股份公司 Self-adaptive welding system, method and device for groove welding
CN115870678B (en) * 2023-03-02 2023-08-18 成都熊谷加世电器有限公司 Posture adjusting system and method of internal welding machine, internal welding machine and storage medium
CN117571723B (en) * 2024-01-16 2024-07-12 宁德时代新能源科技股份有限公司 Method and system for detecting battery welding slag

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785946B2 (en) * 2001-05-09 2006-06-14 Jfeエンジニアリング株式会社 Thin plate lap welding copying method and welding apparatus therefor
JP2005207858A (en) * 2004-01-22 2005-08-04 Daido Steel Co Ltd Inspection method and inspection device for steel product surface defect

Also Published As

Publication number Publication date
JP2008267836A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5217221B2 (en) Method for detecting surface defect shape of welded portion and computer program
KR102056076B1 (en) Apparatus for weld bead detecting and method for detecting welding defects of the same
JP5672480B2 (en) Apparatus and method for determining shape of terminal end of bead
JP5758090B2 (en) Shape inspection apparatus and shape inspection method
JP4705479B2 (en) Bead shape detection method and apparatus
KR102235832B1 (en) Portable type welding inspection appatatus and inspection method
JP5418176B2 (en) Pantograph height measuring device and calibration method thereof
JP5385703B2 (en) Inspection device, inspection method, and inspection program
Jia et al. A 3D reconstruction method based on grid laser and gray scale photo for visual inspection of welds
WO2012057284A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, manufacturing method of structure, and structure manufacturing system
KR101236847B1 (en) Apparatus for Inspecting Welding Bead and Method thereof
KR101913705B1 (en) Method and apparatus for measuring depth of materials attached to cylinder using line laser
JP2004219154A (en) Surface shape measuring method of object and automatic welding device
JP6575087B2 (en) Trolley wire wear measuring device
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JP5136108B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP2005283267A (en) Through hole measuring device, method, and program for through hole measurement
JP2014102243A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and program for the same
JP2017181263A (en) Defect detection device
JP2572286B2 (en) 3D shape and size measurement device
JP2011033428A (en) Pantograph height measuring device
JP2007205868A (en) Device and method for optical shape inspection
JP6796348B1 (en) Shape inspection device and shape inspection method
JP7099067B2 (en) Inspection equipment
JP2006064453A (en) 3-dimensional geometry input device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350