[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007205868A - Device and method for optical shape inspection - Google Patents

Device and method for optical shape inspection Download PDF

Info

Publication number
JP2007205868A
JP2007205868A JP2006024844A JP2006024844A JP2007205868A JP 2007205868 A JP2007205868 A JP 2007205868A JP 2006024844 A JP2006024844 A JP 2006024844A JP 2006024844 A JP2006024844 A JP 2006024844A JP 2007205868 A JP2007205868 A JP 2007205868A
Authority
JP
Japan
Prior art keywords
light source
rod
shaped light
plate material
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006024844A
Other languages
Japanese (ja)
Inventor
Yusuke Konno
雄介 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006024844A priority Critical patent/JP2007205868A/en
Publication of JP2007205868A publication Critical patent/JP2007205868A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape detection device and method for accurately detecting a shape by finding the gradient of the longitudinal direction of a plate without being affected by the gradient of the width direction of the plate or vertical movement of the plate in measuring the shape of the plate by photographing the virtual image of a bar-like light source reflected on the surface of the plate material. <P>SOLUTION: Outgoing light from the bar-like light source 3 is radiated to the conveyed plate material 1, the virtual image of the bar-like light source 3 reflected on the surface of the plate material is continuously sampled by an imaging means 3, the bar-like light source 3 is arranged perpendicularly to a conveying direction and width direction of the plate material 1, longitudinal positional information of the bar-like light source 3 is added to the outgoing light, and the shape of the plate material 1 is calculated based on the photographed image of the virtual image including the longitudinal positional information. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,圧延材等の帯状体の形状を光学的に検出する装置及び方法に関する。   The present invention relates to an apparatus and a method for optically detecting the shape of a strip such as a rolled material.

従来から,金属材料等の帯状体である板材(または板と記す)の製造工程において,光学的にその形状を検出する手段として種々の方法が用いられている。代表的な測定手段として板材の近傍に,板幅方向に照射する棒状光源及び撮像手段を配置して,板の表面に映った棒状光源の虚像を当該撮像手段で検出し,その像のゆがみから板の形状を算出する方法がある。この方法の一例として特許文献1や特許文献2がある。これらの文献では,板の幅方向の各位置において,板材が平面であった場合の像の位置を基準位置として,基準位置からの像の偏移量が板の傾きに比例することを利用して,平面に対する板の長手方向の傾きを幅方向各点ごとに求める。そして,この傾きを長手方向に積算して幅方向各点での板の表面に沿った長さを計算し,この長さの差から幅方向での伸び率の差などの板材の形状パラメータを計算している。   2. Description of the Related Art Conventionally, various methods have been used as means for optically detecting the shape in a manufacturing process of a plate material (or a plate) which is a band-shaped body such as a metal material. As a typical measurement means, a rod-shaped light source that irradiates in the width direction of the plate and an imaging means are arranged in the vicinity of the plate material, a virtual image of the rod-shaped light source reflected on the surface of the plate is detected by the imaging means, and the distortion of the image is detected. There is a method for calculating the shape of the plate. Examples of this method include Patent Document 1 and Patent Document 2. These documents use the fact that at each position in the width direction of the plate, the position of the image when the plate is a plane is the reference position, and the amount of deviation of the image from the reference position is proportional to the inclination of the plate. Thus, the inclination in the longitudinal direction of the plate with respect to the plane is obtained for each point in the width direction. Then, this inclination is integrated in the longitudinal direction to calculate the length along the surface of the plate at each point in the width direction, and the shape parameters of the plate material such as the difference in elongation in the width direction are calculated from the difference in length. I'm calculating.

特開平5−157536号公報JP-A-5-157536 特開平8−114425号公報JP-A-8-114425

しかしながら,上記従来例では,以下のような問題がある。
前記特許文献1では,実施例として棒状光源が板に対向してその幅方向に横断する形で設置されており,この配置では板の上下動が板の傾きの測定値にあまり影響しないことが実験的に示されているが,作業性の問題や板破断の時の安全性の問題から,このような光源の配置が難しい場合が多い。
However, the conventional example has the following problems.
In Patent Document 1, a rod-shaped light source is installed as an example so as to face the plate and cross in the width direction, and in this arrangement, the vertical movement of the plate does not significantly affect the measured value of the plate inclination. Although shown experimentally, it is often difficult to arrange such light sources due to workability problems and safety problems when the plate breaks.

前記特許文献2の実施例では,板の搬送方向と幅方向とに垂直に棒状光源が配置されているが,このような配置では後に示すように虚像の基準位置からの偏移量は,板の長手方向の傾き,幅方向の傾き,板の高さの3つに影響を受けるため,正確に板の長手方向の傾きを求めることができないという問題がある。   In the embodiment of Patent Document 2, a rod-shaped light source is arranged perpendicular to the conveying direction and the width direction of the plate. In such an arrangement, the deviation amount from the reference position of the virtual image is There is a problem that the inclination in the longitudinal direction of the plate cannot be obtained accurately because it is affected by the inclination in the longitudinal direction, the inclination in the width direction, and the height of the plate.

上記の問題を解決するため,本発明の目的は,板に垂直に棒状光源を配置する構成において,板の幅方向傾きや板の高さに影響を受けることなく,板の長手方向の傾きを求めて従来よりも高精度な形状を求めることである。   In order to solve the above problems, an object of the present invention is to reduce the inclination in the longitudinal direction of the plate without being affected by the inclination in the width direction of the plate or the height of the plate in the configuration in which the rod-shaped light source is arranged perpendicular to the plate. It is to obtain a shape with higher accuracy than before.

上記課題を解決するために,本発明では,搬送される板材に棒状光源からの出射光を照射して,前記板材面に映った前記棒状光源の虚像を画像として撮像手段で採取して,前記板材の形状を検出する光学的形状検出装置において,前記棒状光源は前記板材の脇に板材の搬送方向及び幅方向に垂直に配設され,且つ,出射光に棒状光源の長手方向位置情報を付加する手段を有するものであり,前記棒状光源の長手方向位置情報を含む前記画像に基づいて,板材の形状を演算する形状演算部を備えることを特徴とする光学的形状検出装置が提供される。   In order to solve the above-described problems, in the present invention, the plate material to be conveyed is irradiated with the emitted light from the rod-shaped light source, a virtual image of the rod-shaped light source reflected on the plate material surface is collected as an image by the imaging means, and In the optical shape detection device for detecting the shape of a plate material, the rod-shaped light source is disposed beside the plate material in a direction perpendicular to the conveying direction and the width direction of the plate material, and the longitudinal position information of the rod-shaped light source is added to the emitted light. There is provided an optical shape detection device comprising a shape calculation unit for calculating the shape of a plate based on the image including the longitudinal position information of the rod-shaped light source.

また,上記光学的形状検出装置において前記棒状光源の長手方向位置情報を付加する手段は,棒状光源の長手方向に出射光色を変化させ,前記撮像手段はカラーカメラとしても良い。   Further, in the optical shape detection device, the means for adding the longitudinal position information of the rod-shaped light source may change the emitted light color in the longitudinal direction of the rod-shaped light source, and the imaging means may be a color camera.

また,上記光学的形状検出装置において前記棒状光源の長手方向位置情報を付加する手段は,時刻変化につれて前記棒状光源の発光位置を棒状光源の長手方向に走査させ,前記撮像手段は前記発光位置を識別できる高速撮像が可能であることようにしても良い。   Further, in the optical shape detection device, the means for adding the longitudinal position information of the rod-shaped light source scans the light emission position of the rod-shaped light source in the longitudinal direction of the rod-shaped light source as time changes, and the imaging means detects the light emission position. High-speed imaging that can be identified may be possible.

そして,前記形状演算部は前記棒状光源内の各点Aの位置,及び点Aのそれぞれに対応する前記棒状光源の画像の点Bの位置に基づいて,前記板材の各点Cについて基準面に対する搬送方向の傾斜を算出し,前記板材の各点Cの傾斜に基づいて板材の形状を演算するものである。   Then, the shape calculation unit is configured to make reference to the reference plane for each point C of the plate based on the position of each point A in the rod-shaped light source and the position of the point B of the image of the rod-shaped light source corresponding to each point A. The inclination of the conveyance direction is calculated, and the shape of the plate material is calculated based on the inclination of each point C of the plate material.

また,上記課題を解決するために,本発明によれば,搬送される板材に棒状光源からの出射光を照射して,前記板材面に映った前記棒状光源の虚像を撮像手段で撮影することにより画像を採取して,前記板材の形状を検出する光学的形状検出方法において,前記棒状光源は前記板材の脇に板材の搬送方向及び幅方向に垂直に配設され,且つ,出射光に棒状光源の長手方向位置情報を付加する手段を有するものであり,前記棒状光源の長手方向位置情報を含む前記画像に基づいて,板材の形状を所定の演算で導出することを特徴とする光学的形状検出方法が提供される。   In order to solve the above-described problem, according to the present invention, a virtual image of the rod-shaped light source reflected on the plate material surface is photographed by an imaging unit by irradiating the plate material to be conveyed with light emitted from the rod-shaped light source. In the optical shape detection method for detecting the shape of the plate material by taking an image by the method, the rod-shaped light source is disposed beside the plate material in a direction perpendicular to the conveying direction and the width direction of the plate material, and is formed into a rod shape for the emitted light. An optical shape comprising means for adding longitudinal position information of a light source, wherein the shape of a plate material is derived by a predetermined calculation based on the image including the longitudinal position information of the rod-shaped light source A detection method is provided.

また,上記光学的形状検出方法において前記棒状光源の長手方向位置情報を付加する手段は,棒状光源の長手方向に出射光色を変化させ,前記撮像手段はカラーカメラとしても良い。   In the optical shape detection method, the means for adding the longitudinal position information of the rod-shaped light source may change the emitted light color in the longitudinal direction of the rod-shaped light source, and the imaging means may be a color camera.

また,上記光学的形状検出方法において前記棒状光源の長手方向位置情報を付加する手段は,前記棒状光源の発光位置を時刻変化につれて長手方向に走査させ,前記撮像手段は前記発光位置を識別できる高速撮像が可能であることようにしても良い。   In the optical shape detection method, the means for adding the longitudinal position information of the rod-shaped light source scans the light emission position of the rod-shaped light source in the longitudinal direction as time changes, and the imaging means can identify the light emission position at high speed. You may make it image-capable.

そして,前記所定の演算は前記棒状光源内の各点Aの位置,及び点Aのそれぞれに対応する前記棒状光源の画像の点Bの位置に基づいて,前記板材の各点Cについて基準面に対する搬送方向の傾斜を算出し,前記板材の各点Cの傾斜に基づいて板材の形状を演算するものである。   Then, the predetermined calculation is based on the position of each point A in the rod-shaped light source and the position of the point B of the image of the rod-shaped light source corresponding to each point A with respect to the reference plane for each point C of the plate material. The inclination of the conveyance direction is calculated, and the shape of the plate material is calculated based on the inclination of each point C of the plate material.

本発明によると,棒状光源の各位置から出射する光に,言わば位置を示すインデックスを付けることによって,当該棒状光源の画像に基づいて板材の形状を演算するようにしたので,棒状光源を板に垂直に配置した場合でも,板の高さや幅方向傾きに影響されること無く,板の長手方向傾きを従来よりも高精度に求めることができる。また棒状光源が板を横断しないため,作業性が良く,板破断の際にも装置が破損しないという利点がある。   According to the present invention, the shape of the plate material is calculated based on the image of the rod-shaped light source by adding an index indicating the position to the light emitted from each position of the rod-shaped light source. Even when it is arranged vertically, the inclination in the longitudinal direction of the plate can be obtained with higher accuracy than before without being affected by the inclination or inclination in the width direction of the plate. In addition, since the rod-shaped light source does not cross the plate, workability is good, and there is an advantage that the device is not damaged even when the plate is broken.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は,本発明の光学式形状検査装置を実施するための一実施形態の概略を示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an outline of an embodiment for carrying out the optical shape inspection apparatus of the present invention.

本実施の形態では,検査対象の板材が鋼板である場合について,鉄鋼の製造工程を水平方向に搬送する当該鋼板1の形状測定装置を詳細に説明する。ロール2により搬送される鋼板1の脇に,棒状光源3を凹凸の無い平坦な鋼板面の法線方向に(即ち,鋼板1の搬送方向及び幅方向の両方に対して垂直に)設置する。棒状光源3が鋼板1に映った虚像を撮像手段であるカラーCCDカメラ(以下カメラとする)4で撮像する。このとき,鋼板1が平坦なときに真っ直ぐな像が得られるように,カメラ4と棒状光源3のある点6を結ぶ線は鋼板1の搬送方向(鋼板1の長手方向)と直角であり,且つカメラ4の視線方向(視野の中心方向すなわち光軸)は棒状光源3の延長線と交わるように配置する。   In this Embodiment, the shape measuring apparatus of the said steel plate 1 which conveys the manufacturing process of steel in a horizontal direction is demonstrated in detail about the case where the board | plate material to be examined is a steel plate. Next to the steel plate 1 conveyed by the roll 2, the rod-shaped light source 3 is installed in the normal direction of the flat steel plate surface without unevenness (that is, perpendicular to both the conveying direction and the width direction of the steel plate 1). A virtual image reflected by the rod-shaped light source 3 on the steel plate 1 is picked up by a color CCD camera (hereinafter referred to as a camera) 4 which is an image pickup means. At this time, a line connecting the point 4 with the camera 4 and the rod-shaped light source 3 is perpendicular to the conveying direction of the steel plate 1 (longitudinal direction of the steel plate 1) so that a straight image can be obtained when the steel plate 1 is flat. In addition, the viewing direction of the camera 4 (the center direction of the visual field, that is, the optical axis) is arranged so as to intersect the extended line of the rod-shaped light source 3.

棒状光源3は,カメラ4で撮像した虚像の各点に対応するその長手方向位置を特定できるように,長手方向に沿ってその発光色を変化させておく。カメラ4で撮像された画像は,形状演算部5に送られ,撮像画像中での虚像位置及びそれに対応する棒状光源3の長手位置が求められる。さらに形状演算部5では,虚像位置及びそれに対応する棒状光源3の長手位置から鋼板1の長手方向傾きを演算により求め,その傾きを積算することで鋼板1の形状を求める。   The rod-shaped light source 3 changes its emission color along the longitudinal direction so that the longitudinal position corresponding to each point of the virtual image captured by the camera 4 can be specified. The image picked up by the camera 4 is sent to the shape calculation unit 5, and the virtual image position in the picked-up image and the corresponding longitudinal position of the rod-shaped light source 3 are obtained. Further, the shape calculation unit 5 calculates the inclination in the longitudinal direction of the steel sheet 1 from the virtual image position and the corresponding longitudinal position of the rod-shaped light source 3, and calculates the shape of the steel sheet 1 by integrating the inclinations.

<光学的形状測定の基本手順>
図2は,鋼板1の長手方向の位置Rにおける,幅方向のある点を含んだ鋼板長手方向の断面図である。本発明の光学式形状検査装置の形状測定の手順と原理を図1及び図2を用いて説明する。
(a)鋼板1の板幅方向各点Wiにおいて水平面に対する長手方向傾きqを求める。なお各点Wiは,鋼板1の板幅方向における適当な複数箇所の位置にある。図1では,その一例として,各点Wiを,鋼板1の両エッジ,中央,左右1/4幅位置の5点としている。
(b)カメラ4の撮像間隔Ts(典型的には1/60秒)に鋼板1の搬送速度Vdを乗算して測定ピッチLsを求め,この測定ピッチLsを用いて斜辺長Ldを求めそれをある区間分積算して,鋼板1の表面に沿った長さLを求める。
(c)幅方向各点Wi(例えば両エッジ,中央,左右1/4幅位置の5点)で鋼板1の表面に沿った長さL(i)をそれぞれ求めて,長さL(i)の幅方向での最小値L(imin)で各点の長さL(i)を割ることにより板の形状パラメータである幅方向各点Wiでの伸び率差を計算する。
<Basic procedure for optical shape measurement>
FIG. 2 is a cross-sectional view in the longitudinal direction of the steel sheet including a certain point in the width direction at a position R in the longitudinal direction of the steel sheet 1. The shape measurement procedure and principle of the optical shape inspection apparatus of the present invention will be described with reference to FIGS.
(A) The longitudinal inclination q with respect to the horizontal plane is determined at each point Wi in the plate width direction of the steel plate 1. Each point Wi is located at a plurality of appropriate positions in the plate width direction of the steel plate 1. In FIG. 1, as an example, each point Wi is set to five points on both edges, the center, and the left and right 1/4 width positions of the steel plate 1.
(B) Multiplying the imaging interval Ts (typically 1/60 second) of the camera 4 by the conveying speed Vd of the steel plate 1 to obtain the measurement pitch Ls, and using this measurement pitch Ls, the hypotenuse length Ld is obtained. The length L along the surface of the steel plate 1 is obtained by integrating for a certain section.
(C) The length L (i) along the surface of the steel plate 1 is obtained at each point Wi in the width direction (for example, five points at both edges, the center, and the left and right 1/4 width positions), and the length L (i) By dividing the length L (i) of each point by the minimum value L (imin) in the width direction, the difference in elongation at each point Wi in the width direction, which is the shape parameter of the plate, is calculated.

<撮像画像,鋼板の長手方向傾き,棒状光源上の位置,及びカメラ位置の関係>
図3にカメラ4で棒状光源3の虚像を撮影した画像を示す。図3で横方向が鋼板1長手方向,縦方向が幅方向に対応する。水平且つ平らな鋼板1の面を基準面として,棒状光源3の画像として実線で示した視野中心O’を通る垂直線が得られる。この直線を基準位置とする。一方,鋼板1が平らであり且つ長手方向に傾きを持っている場合,破線のように視野中心から偏移した斜線となる。
<Relationship between captured image, longitudinal inclination of steel sheet, position on bar light source, and camera position>
FIG. 3 shows an image obtained by photographing a virtual image of the rod-shaped light source 3 with the camera 4. In FIG. 3, the horizontal direction corresponds to the longitudinal direction of the steel sheet 1, and the vertical direction corresponds to the width direction. A vertical line passing through the visual field center O ′ indicated by a solid line as an image of the rod-shaped light source 3 is obtained using the horizontal and flat surface of the steel plate 1 as a reference plane. This straight line is set as a reference position. On the other hand, when the steel plate 1 is flat and has an inclination in the longitudinal direction, it becomes a diagonal line shifted from the center of the visual field as shown by a broken line.

図4は,以下の説明で用いる座標系の配置を示した図である。3次元座標系(x,y,z)の原点Oは水平且つ平らな鋼板1の中心(鋼板1の幅方向における中心)に位置し,xが板(鋼板1)の幅方向,yが板の搬送方向(長手方向),zが高さ方向の座標である。カメラ4は点Q(xq,
0, zq)に位置し,その向きは視野中心に3次元座標の原点Oが来るような視線方向とする。棒状光源3は鋼板1の横(y=0)で,原点Oから負の方向にxlだけ離れたところにz軸と平行に配置するものとする。
FIG. 4 is a diagram showing the arrangement of the coordinate system used in the following description. The origin O of the three-dimensional coordinate system (x, y, z) is located at the center of the horizontal and flat steel plate 1 (center in the width direction of the steel plate 1), x is the width direction of the plate (steel plate 1), and y is the plate In the transport direction (longitudinal direction), z is the coordinate in the height direction. Camera 4 has a point Q (xq,
0, zq), and the direction of the line of sight is such that the origin O of the three-dimensional coordinates is at the center of the visual field. The rod-like light source 3 is arranged beside the steel plate 1 (y = 0) and parallel to the z-axis at a distance of xl from the origin O in the negative direction.

今,原点Oを通りカメラ4の視線方向に垂直な平面I(スクリーン)を考えることにする。平面I上の座標系(s,t)を設ける。s軸は原点Oを通りy軸に平行な方向であり,t軸は原点Oを通りs軸に直交する方向である。カメラ4で撮影したとき,棒状光源3の虚像上のある点とカメラ4の位置である点Qとを結ぶ直線と,平面Iとの交点をV(s,t)とする。すなわち図4中の破線で表したように,棒状光源3上のある点P2(-xl,y2,z2)から出た光は板上の点P1(x1,y1,z1)で反射してカメラ位置Q(xq,0,zq)に達し,そのとき直線P1Qが平面I上の点V(s,t)を通ることになる。そこで,棒状光源3上の各点が鋼板1で反射されて,カメラ4の撮像面上に結像して撮像された棒状光源3の虚像の画像は,上記の平面I上の点Vの軌跡として考えることができる。原点Oを通りy軸(s軸)に平行にスケールを置いてカメラ4で撮像して画像の寸法校正をすることにより,棒状光源3の撮影画像から平面I上での棒状光源像の座標V(s,t)を求めることは容易である。   Now, a plane I (screen) passing through the origin O and perpendicular to the viewing direction of the camera 4 will be considered. A coordinate system (s, t) on the plane I is provided. The s-axis is a direction passing through the origin O and parallel to the y-axis, and the t-axis is a direction passing through the origin O and perpendicular to the s-axis. When the image is taken by the camera 4, the intersection of the plane I with a straight line connecting a certain point on the virtual image of the rod-shaped light source 3 and the point Q which is the position of the camera 4 is defined as V (s, t). That is, as shown by the broken line in FIG. 4, the light emitted from a certain point P2 (-xl, y2, z2) on the rod-like light source 3 is reflected by the point P1 (x1, y1, z1) on the plate, and the camera. The position Q (xq, 0, zq) is reached, and then the straight line P1Q passes through the point V (s, t) on the plane I. Therefore, each point on the rod-shaped light source 3 is reflected by the steel plate 1 and is imaged on the imaging surface of the camera 4 so that the virtual image of the rod-shaped light source 3 is captured by the locus of the point V on the plane I described above. Can be thought of as The coordinate V of the rod-shaped light source image on the plane I from the captured image of the rod-shaped light source 3 is calibrated by calibrating the image by placing the scale parallel to the y-axis (s-axis) and passing through the origin O. It is easy to find (s, t).

前記の配置において,平面I上にある座標V(s,t)が鋼板1の画像から与えられたときに,鋼板1の水平面に対する長手方向傾きを求めることは,鋼板1上の点P1における接平面のy方向傾きを求めることであり,点P1における鋼板1の接平面を式(1)のように表せば,y方向傾きqを求めることに相当する。傾きqが求められれば,上記の(a),(b),及び(c)の手順によって鋼板1の形状を表す伸び率差を導出することができる。   In the above arrangement, when the coordinates V (s, t) on the plane I are given from the image of the steel plate 1, the longitudinal inclination of the steel plate 1 with respect to the horizontal plane is determined by the contact at the point P1 on the steel plate 1. This is to obtain the inclination in the y direction of the plane. If the tangent plane of the steel plate 1 at the point P1 is expressed as in equation (1), this corresponds to obtaining the inclination in the y direction q. If the slope q is obtained, an elongation difference representing the shape of the steel sheet 1 can be derived by the procedures (a), (b), and (c) described above.

Figure 2007205868
Figure 2007205868

以下では,接平面パラメータp,q,rの導出方法を説明する。
式(1)の接平面パラメータp,q,rと平面I上の点V(s,t)の関係式は,カメラ位置Q(xq,0,zq)に入る光線を,Q→V→P1→P2のように逆向きに追跡することで次のように求められる。
Hereinafter, a method for deriving the tangent plane parameters p, q, and r will be described.
The relational expression between the tangent plane parameter p, q, r in the equation (1) and the point V (s, t) on the plane I indicates that the ray entering the camera position Q (xq, 0, zq) is Q → V → P1. → By tracing in the reverse direction as in P2, it is obtained as follows.

まず,平面I上の点V(s,t)を3次元座標系の座標でV(xv,yv,zv)と表す。(xv,yv,zv)と(s,t)の関係は,位置Q(xq,0,zq)の既知の座標値を用いて式(2)で表される。   First, a point V (s, t) on the plane I is expressed as V (xv, yv, zv) in the coordinates of the three-dimensional coordinate system. The relationship between (xv, yv, zv) and (s, t) is expressed by equation (2) using a known coordinate value of the position Q (xq, 0, zq).

Figure 2007205868
Figure 2007205868

そして,カメラ位置Q(xq,0,zq)と,式(2)で表される点Vとを結ぶ直線QV,及び式(1)の接平面(パラメータp,q,r)の交点として点P1の座標(x1,y1,z1)が関係づけられる。 Then, a point as an intersection of the straight line QV connecting the camera position Q (xq, 0, zq) and the point V expressed by the equation (2) and the tangent plane (parameter p, q, r) of the equation (1). The coordinates (x1, y1, z1) of P1 are related.

ところで,直線QVの方向ベクトルと接平面の法線ベクトル(パラメータp,q,rで表される)から,入射方向とは逆向きの光源へ向かうベクトルWが求められる。なお,鋼板1への入射光はP1を通り,方向ベクトル(−W)を持つ直線となる。この直線と,式(3)で表される棒状光源を含み,yz平面に平行な平面との交点としてP2(-xl,
y2, z2)が求められる。
By the way, a vector W toward the light source opposite to the incident direction is obtained from the direction vector of the straight line QV and the normal vector of the tangent plane (represented by parameters p, q, r). In addition, the incident light to the steel plate 1 passes through P1 and becomes a straight line having a direction vector (−W). As an intersection of this straight line and a plane parallel to the yz plane including the rod-shaped light source represented by Expression (3), P2 (−xl,
y2, z2) is required.

Figure 2007205868
Figure 2007205868

このようにして求められたy2とz2は接平面パラメータp,q,rの関数であるが,棒状光源3はy=0に位置しているため,P2のy座標y2も0である。従ってp,q,rは式(4)を満たさねばならない。   The y2 and z2 obtained in this way are functions of the tangential plane parameters p, q, r, but since the rod-like light source 3 is located at y = 0, the y coordinate y2 of P2 is also zero. Therefore, p, q, r must satisfy equation (4).

Figure 2007205868
Figure 2007205868

式(4)はs=0のときのみq=0と等価な条件式となり,虚像が画面中心にあるときには,y方向の傾きは無いという条件式を表す。s≠0の場合はこの条件を満たすp,q,rの組は無数に存在し,(p,q,r)空間内の式(4)で表される曲面上の任意の点になる。すなわち,p,q,及びrの中で,独立な変数は2つである。 Expression (4) is a conditional expression equivalent to q = 0 only when s = 0, and represents a conditional expression that there is no inclination in the y direction when the virtual image is at the center of the screen. In the case of s ≠ 0, there are an infinite number of pairs of p, q, r that satisfy this condition, and any point on the curved surface represented by Expression (4) in the (p, q, r) space. That is, there are two independent variables in p, q, and r.

図5に式(4)を(p,q,r)空間に図示した例を示す。これは,カメラ4は点Qの位置(xq=4000mm,zq=850mm),棒状光源3の位置(xl=3200mm),及び点Vの位置(s=10mm,t=0mm)のときの計算例である。   FIG. 5 shows an example in which equation (4) is illustrated in the (p, q, r) space. This is a calculation example when the camera 4 is at the position of the point Q (xq = 4000mm, zq = 850mm), the position of the rod-shaped light source 3 (xl = 3200mm), and the position of the point V (s = 10mm, t = 0mm) It is.

ここまでの説明で分かるように,鋼板1に写った光源像を観察する方式の光学的形状測定方法においては,像の基準位置からの偏移量(sとtで表される)と鋼板1の長手方向の傾きqの間には1対1の対応関係は無く,何らかの仮定又は追加情報がないと板の長手方向の傾きqを求めることはできない。   As can be understood from the above description, in the optical shape measuring method of the method of observing the light source image reflected on the steel plate 1, the deviation amount (represented by s and t) from the reference position of the image and the steel plate 1 There is no one-to-one correspondence between the longitudinal inclinations q of the plates, and the inclination q in the longitudinal direction of the plate cannot be obtained without any assumptions or additional information.

<従来技術である比較例>
特許文献2等に示された従来の方法では,幅方向の傾きpや上下動成分rを0と仮定して計算していることに相当する。例として,図4と同じカメラ・光源配置において,板が式(1)相当の平面で長手方向の傾きqが0.1で,基準位置から50mm浮き上がったp=0,q=0.1,r=50mmの場合に,幅方向の傾きpや上下動成分rを0と仮定して(p=0,r=0),式(4)を解き,qの板幅方向分布を求めた例を図6に示す。従来例に相当するp=0,r=0としたときのqには真値0.1に対して誤差が発生していることが分かる。
<Comparison example that is a prior art>
In the conventional method disclosed in Patent Document 2 and the like, this is equivalent to calculation assuming that the inclination p in the width direction and the vertical movement component r are zero. As an example, in the same camera / light source arrangement as in FIG. 4, the plate is a plane equivalent to equation (1), the longitudinal inclination q is 0.1, and p = 0, q = 0.1, r = 50mm lifted 50mm from the reference position In this case, assuming that the inclination p in the width direction and the vertical movement component r are 0 (p = 0, r = 0), the equation (4) is solved to obtain the plate width direction distribution of q in FIG. Show. It can be seen that there is an error with respect to the true value of 0.1 when p = 0 and r = 0, which corresponds to the conventional example.

<本発明の光学式形状検査装置におけるデータ処理方法>
これに対して本実施の形態では以下に説明するように,棒状光源3の長手方向位置情報を上記の追加情報として利用する。すなわち,平面I上のある像位置(s,t)に対応する棒状光源3上のz方向位置z2もp,q,rの関数であり,棒状光源3の長手方向に変化させた色を付ける等の手段でその測定値Cが得られたとすると式(5)が成立し,これも式(4)と同様に(p,q,r)空間内である曲面を規定する式となる。
<Data Processing Method in Optical Shape Inspection Apparatus of the Present Invention>
On the other hand, in this embodiment, as described below, the longitudinal position information of the rod-shaped light source 3 is used as the additional information. That is, the z-direction position z2 on the rod-shaped light source 3 corresponding to a certain image position (s, t) on the plane I is also a function of p, q, r, and a color changed in the longitudinal direction of the rod-shaped light source 3 is attached. Assuming that the measured value C is obtained by means such as, equation (5) is established, and this is an equation that defines a curved surface in the (p, q, r) space, as in equation (4).

Figure 2007205868
Figure 2007205868

従って,p,q,rの真値は式(4)と式(5)の交線上にあることになる。そこで式(4)と式(5)に鋼板1の上下動成分rをゼロと仮定してr=0と代入し,式(4)と式(5)を連立させて解くことでp,qを求めることができる。図5と同じ条件で式(4)と式(5)においてC=0とおいた場合の二つの曲面を図7に示す。これを見て分かるように,二つの曲面の交線はほぼq軸に直交しているため,r=0の仮定が真値とずれていてもそれによる誤差は主にpの誤差となって表れるため,qを精度良く求められる。図6と同じ条件でz2が求められたとして計算した場合のqの板幅方向分布を図8に示す。図8では,計算値と真値が殆ど重なって求められていることがわかる。   Therefore, the true values of p, q, and r are on the intersection line of equations (4) and (5). Therefore, assuming that the vertical motion component r of the steel sheet 1 is zero and substituting r = 0 in Equation (4) and Equation (5), p and q are solved by simultaneously solving Equation (4) and Equation (5). Can be requested. FIG. 7 shows two curved surfaces when C = 0 in the equations (4) and (5) under the same conditions as in FIG. As you can see, the intersecting line of the two curved surfaces is almost perpendicular to the q axis, so even if the assumption of r = 0 deviates from the true value, the error due to it is mainly the error of p. Since it appears, q can be obtained with high accuracy. FIG. 8 shows the distribution of q in the plate width direction when z2 is calculated under the same conditions as in FIG. FIG. 8 shows that the calculated value and the true value are almost overlapped.

本例では,特定の数値例について検討を行ったが,板圧延において現実的な範囲(|p| < 0.2, |q| < 0.2, 0 <
r < 200mm)においてz2が求められる場合には大きくqの精度が向上することを数値計算にて確認した。
In this example, a specific numerical example was examined. However, a practical range (| p | <0.2, | q | <0.2, 0 <
It was confirmed by numerical calculation that the accuracy of q is greatly improved when z2 is obtained at r <200mm).

<本発明における光源の形態>
z2を測定するためには,棒状光源3のz方向に沿って発光色を変えてカラーカメラからなるカメラ4で虚像を観察する方法がある。発光色をz方向で変化させるためには,例えば赤と緑の2色のLEDをz方向に配置し,近接して配置した白色半透明の拡散板で混色し,LEDの明るさをz方向で変化させる等の方法が使用できる。赤色の発光強度をIr(z),緑色をIg(z)とおき,zの最大値すなわち棒状光源3の上端をzmaxとおいた場合,式(6)のように発光強度を与えたとする。
<Form of Light Source in the Present Invention>
In order to measure z2, there is a method of observing a virtual image with the camera 4 comprising a color camera by changing the emission color along the z direction of the rod-shaped light source 3. In order to change the emission color in the z direction, for example, red and green LEDs are arranged in the z direction, mixed by a white translucent diffuser arranged in close proximity, and the brightness of the LED is changed in the z direction. You can use the method of changing with. If the red emission intensity is Ir (z), the green is Ig (z), and the maximum value of z, that is, the upper end of the rod-like light source 3 is set to zmax, the emission intensity is given as in equation (6).

Figure 2007205868
Figure 2007205868

カラーカメラでIrとIgが測定できるとすれば,IrとIgの比より,式(7)を用いてz2を測定することができる。   If Ir and Ig can be measured with a color camera, z2 can be measured from the ratio of Ir and Ig using equation (7).

Figure 2007205868
Figure 2007205868

その他のz2の測定方法として,棒状光源3の発光部を長手方向に走査させ,高速撮像が可能なカメラ4を用いて撮像することでz2を特定できるようにしても良い。具体的には時刻iでは棒状光源3上のz=ziを中心とする一部分のみを発光させ,時刻iで撮影した虚像に対応するz2の測定値はziとすればよい。この方法では,板幅方向全幅を同一時刻に測定できないという問題があり,用途に応じて使い分けるべきである。   As another method for measuring z2, z2 may be specified by scanning the light emitting portion of the rod-like light source 3 in the longitudinal direction and taking an image using the camera 4 capable of high-speed imaging. Specifically, at time i, only a part centered on z = zi on the rod-shaped light source 3 is caused to emit light, and the measured value of z2 corresponding to the virtual image photographed at time i may be zi. This method has the problem that the full width in the plate width direction cannot be measured at the same time, and should be used according to the application.

例えば鋼板1の圧延ラインにて搬送速度が1000m/分(16.7m/秒)の場合,通常のカラーカメラを用いた場合毎秒60回の撮影が可能であるため,長手方向測定ピッチLsは16.7
(m/秒)/ 60(回/秒)
= 0.28mとなり,実用上十分な値であるが,高強度かつ長寿命の多色光源を製作するのにはコストがかかるという問題がある。一方,発光部を走査させる場合には,同じピッチで測定する場合,数倍〜10倍のフレームレートの高速カメラが必要となるが,光源は単色で済むというメリットがある。
For example, when the conveying speed is 1000 m / min (16.7 m / sec) in the rolling line of the steel plate 1, 60 times per second can be taken with a normal color camera, so the longitudinal measurement pitch Ls is 16.7.
(m / sec) / 60 (times / sec)
= 0.28m, which is a practically sufficient value, but there is a problem that it is costly to produce a high-intensity and long-life multicolor light source. On the other hand, when scanning the light emitting unit, a high-speed camera with a frame rate several times to 10 times is required when measuring at the same pitch, but there is an advantage that the light source needs only a single color.

<形状演算部におけるデータ処理>
以上で説明した演算によって,形状演算部5ではカメラ4によって測定された画像に基づいて,V(s,t)とz2から鋼板1の幅方向各点iでの長手方向傾きq(i)が精度良く求められる。そして,引き続いて形状演算部5では形状パラメータの演算を以下の手順で行う。
(ア)鋼板1の搬送速度に撮影時間間隔を掛けて得られる測定ピッチLsから,幅方向各点iでの斜辺長Ld(i)をLs×√(1+q(i)2)にて求める。
(イ)これを数回〜10回繰り返してLd(i)を積算して,幅方向各点iでの板の表面に沿った長さL(i)を求める。
(ウ)L(i)のうちもっとも小さいものL(imin)を基準として,幅方向各点での伸び率差Δεiは,伸び差[L(i)− L(imin)] をL(imin)で割ることで求められ,これをディスプレイ等に出力する。上記伸び率差Δεi以外の波高さ等の形状パラメータも,上記L(i)に基づいて導出しても良い。
<Data processing in shape calculation unit>
Based on the calculation described above, the shape calculation unit 5 calculates the longitudinal inclination q (i) at each point i in the width direction of the steel sheet 1 from V (s, t) and z2 based on the image measured by the camera 4. It is required with high accuracy. Subsequently, the shape calculation unit 5 performs shape parameter calculation according to the following procedure.
(A) From the measurement pitch Ls obtained by multiplying the conveyance speed of the steel plate 1 by the shooting time interval, the hypotenuse length Ld (i) at each point i in the width direction is expressed as Ls × √ (1 + q (i) 2 ) Ask.
(A) Repeat this several times to 10 times and accumulate Ld (i) to obtain the length L (i) along the surface of the plate at each point i in the width direction.
(C) With L (imin) being the smallest of L (i) as a reference, the elongation difference Δεi at each point in the width direction is expressed as L (imin) It is obtained by dividing by, and this is output to a display or the like. Shape parameters such as wave heights other than the elongation difference Δεi may be derived based on the L (i).

本実施の形態においては,板材として鋼板を例とし,鋼板が水平方向に移送される場合の配置における光学式形状検査装置及び方法を説明した。板材として,鋼板のような金属板材は本より,棒状光源の反射画像を得るのに十分平滑な表面性状を有する帯状体も本発明の適用対象である。又は,板材が水平方向以外の方向に移送される製造工程においては,前記説明における基準面を板材の移送方向に読みかえて,本願発明の光学式形状検査装置及び方法を適用すれば良いことは明白である。また,カメラ以外にも,上記で説明した性能を有する公知の撮像素子を用いても良い。   In the present embodiment, a steel plate is taken as an example of the plate material, and the optical shape inspection apparatus and method in the arrangement when the steel plate is transferred in the horizontal direction have been described. As a plate material, a metal plate material such as a steel plate is a strip-shaped body having a sufficiently smooth surface property for obtaining a reflection image of a rod-shaped light source from a book, and is also an application target of the present invention. Or, in the manufacturing process in which the plate material is transferred in a direction other than the horizontal direction, it is obvious that the optical surface inspection apparatus and method of the present invention may be applied by replacing the reference plane in the above description with the plate material transfer direction. It is. In addition to the camera, a known imaging device having the above-described performance may be used.

さらに,形状演算部におけるデータ処理は,上記撮像手段で採取された画像について,画像処理を施して棒状光源像を抽出して(s,t)及びz2を検出する処理,及びこれら検出値に基づいて所望の形状パラメータを導出する処理は,コンピュータにおいて実行させるようにしても良い。   Further, the data processing in the shape calculation unit is based on processing for extracting (s, t) and z2 by performing image processing and extracting (s, t) and z2 for the image collected by the imaging means, and based on these detection values. Thus, the process of deriving a desired shape parameter may be executed by a computer.

本発明の一実施形態の概略を示す図である。It is a figure which shows the outline of one Embodiment of this invention. 鋼板の長手方向傾きから,鋼板表面に沿った長さを求める原理図である。It is a principle figure which calculates | requires the length along the steel plate surface from the longitudinal direction inclination of a steel plate. 鋼板が長手方向に傾いた場合の虚像の変化を示す図である。It is a figure which shows the change of a virtual image when a steel plate inclines to a longitudinal direction. カメラと鋼板と棒状光源の座標系を説明する図である。It is a figure explaining the coordinate system of a camera, a steel plate, and a rod-shaped light source. 式(4)の曲面を図示した図である。It is the figure which illustrated the curved surface of Formula (4). 従来の方法で測定誤差が発生する例を示す図である。It is a figure which shows the example which a measurement error generate | occur | produces by the conventional method. 式(4)と式(5)の曲面を重ねて図示した図である。It is the figure which illustrated the curved surface of Formula (4) and Formula (5) in piles. 本発明により測定誤差が減少する例を示す図である。It is a figure which shows the example which a measurement error reduces by this invention.

符号の説明Explanation of symbols

1…鋼板
2…ロール
3…棒状光源
4…カメラ
5…形状演算部
6…棒状光源上の点
q…板の長手方向傾き
Ls…長手方向測定ピッチ
Ld…斜辺長
L…板の表面に沿った長さ
O…3次元座標系の原点
Q…カメラ位置
P1…棒状光源像の鋼板状での反射位置
P2…虚像位置に対応する棒状光源上の位置
p…鋼板の幅方向傾き
r…鋼板の上下方向位置
DESCRIPTION OF SYMBOLS 1 ... Steel plate 2 ... Roll 3 ... Bar light source 4 ... Camera 5 ... Shape calculating part 6 ... Point q on bar light source ... Longitudinal inclination of plate
Ls: Longitudinal measurement pitch
Ld: Oblique side length L ... Length along the surface of the plate O ... Origin Q of the three-dimensional coordinate system ... Camera position P1 ... Reflection position P2 of the rod-shaped light source image on the steel plate shape ... Position on the rod-shaped light source corresponding to the virtual image position p: inclination in the width direction of the steel sheet r: vertical position of the steel sheet

Claims (8)

搬送される板材に,棒状光源からの出射光を照射して,前記板材面に映った前記棒状光源の虚像を画像として撮像手段で連続的に採取して,前記板材の形状を検出する光学的形状検出装置において,
前記棒状光源は前記板材の脇に前記板材の搬送方向及び幅方向に垂直に配設され,且つ,出射光に棒状光源の長手方向位置情報を付加する手段を有するものであり,
前記棒状光源の長手方向位置情報を含む前記画像に基づいて,前記板材の形状を演算する形状演算部を備えることを特徴とする光学的形状検出装置。
Optically detecting the shape of the plate material by irradiating the plate material to be conveyed with light emitted from the rod-shaped light source and continuously collecting virtual images of the rod-shaped light source reflected on the plate material surface as images. In the shape detection device,
The rod-shaped light source is disposed perpendicular to the conveying direction and the width direction of the plate material on the side of the plate material, and has means for adding longitudinal position information of the rod-shaped light source to the emitted light,
An optical shape detection device comprising: a shape calculation unit that calculates the shape of the plate material based on the image including the position information in the longitudinal direction of the rod-shaped light source.
前記棒状光源の長手方向位置情報を付加する手段は,棒状光源の長手方向に出射光色を変化させるものであり,
前記撮像手段はカラーカメラからなることを特徴とする請求項1に記載の光学的形状検査装置。
The means for adding the longitudinal position information of the rod-shaped light source is to change the emitted light color in the longitudinal direction of the rod-shaped light source,
The optical shape inspection apparatus according to claim 1, wherein the imaging unit is a color camera.
前記棒状光源の長手方向位置情報を付加する手段は,時刻変化につれて前記棒状光源の発光位置を棒状光源の長手方向に走査するものであり,
前記撮像手段は前記発光位置を所定の精度で識別できる高速撮像が可能であることを特徴とする請求項1に記載の光学的形状検出装置。
The means for adding the longitudinal position information of the bar light source scans the light emission position of the bar light source in the longitudinal direction of the bar light source as time changes,
The optical shape detection apparatus according to claim 1, wherein the imaging unit is capable of high-speed imaging capable of identifying the light emission position with a predetermined accuracy.
前記形状演算部は前記棒状光源内の各点Aの位置,及び点Aのそれぞれに対応する前記棒状光源の画像の点Bの位置に基づいて,前記板材の各点Cについて基準面に対する鋼板の長手方向の傾斜を算出し,
前記板材の各点Cの鋼板の長手方向の傾斜に基づいて板材の形状を演算することを特徴とする請求項1〜請求項3のうちのいずれか一項に記載の光学的形状検出装置。
Based on the position of each point A in the rod-shaped light source and the position of the point B of the image of the rod-shaped light source corresponding to each point A, the shape calculating unit Calculate the longitudinal slope,
The optical shape detection device according to any one of claims 1 to 3, wherein the shape of the plate material is calculated based on a longitudinal inclination of the steel plate at each point C of the plate material.
搬送される板材に,棒状光源からの出射光を照射して,前記板材面に映った前記棒状光源の虚像を撮像手段で撮影することにより画像を採取して,前記板材の形状を検出する光学的形状検出方法において,
前記棒状光源は前記板材の脇に板材の搬送方向及び幅方向に垂直に配設され,且つ,出射光に棒状光源の長手方向位置情報を付加する手段を有するものであり,
前記棒状光源の長手方向位置情報を含む前記画像に基づいて,板材の形状を所定の演算で導出することを特徴とする光学的形状検出方法。
An optical system for detecting the shape of the plate material by irradiating the plate material to be conveyed with light emitted from the rod-shaped light source and capturing a virtual image of the rod-shaped light source reflected on the plate material surface with an imaging means. In the automatic shape detection method,
The rod-shaped light source is disposed beside the plate material in a direction perpendicular to the conveying direction and the width direction of the plate material, and has means for adding longitudinal position information of the rod-shaped light source to the emitted light,
An optical shape detection method, wherein a shape of a plate material is derived by a predetermined calculation based on the image including longitudinal position information of the rod-shaped light source.
前記棒状光源の長手方向位置情報を付加する手段は,棒状光源の長手方向に出射光色を変化させるものであり,
前記撮像手段はカラーカメラからなることを特徴とする請求項5に記載の光学的形状検査方法。
The means for adding the longitudinal position information of the rod-shaped light source is to change the emitted light color in the longitudinal direction of the rod-shaped light source,
The optical shape inspection method according to claim 5, wherein the imaging unit is a color camera.
前記棒状光源の長手方向位置情報を付加する手段は,前記棒状光源の発光位置を時刻変化につれて長手方向に走査するものであり,
前記撮像手段は前記発光位置を所定の精度で識別できる高速撮像が可能であることを特徴とする請求項5に記載の光学的形状検出方法。
The means for adding the longitudinal position information of the rod-shaped light source scans the emission position of the rod-shaped light source in the longitudinal direction as time changes,
The optical shape detection method according to claim 5, wherein the imaging unit is capable of high-speed imaging capable of identifying the light emission position with a predetermined accuracy.
前記所定の演算は前記棒状光源内の各点Aの位置,及び点Aのそれぞれに対応する前記棒状光源の画像の点Bの位置に基づいて,前記板材の各点Cについて基準面に対する鋼板の長手方向の傾斜を算出し,
前記板材の各点Cの鋼板の長手方向の傾斜に基づいて板材の形状を演算することを特徴とする請求項5〜請求項7のうちのいずれか一項に記載の光学的形状検出方法。
The predetermined calculation is based on the position of each point A in the rod-shaped light source and the position of the point B of the image of the rod-shaped light source corresponding to each of the points A. Calculate the longitudinal slope,
The optical shape detection method according to any one of claims 5 to 7, wherein the shape of the plate material is calculated on the basis of the inclination in the longitudinal direction of the steel plate at each point C of the plate material.
JP2006024844A 2006-02-01 2006-02-01 Device and method for optical shape inspection Withdrawn JP2007205868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024844A JP2007205868A (en) 2006-02-01 2006-02-01 Device and method for optical shape inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024844A JP2007205868A (en) 2006-02-01 2006-02-01 Device and method for optical shape inspection

Publications (1)

Publication Number Publication Date
JP2007205868A true JP2007205868A (en) 2007-08-16

Family

ID=38485463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024844A Withdrawn JP2007205868A (en) 2006-02-01 2006-02-01 Device and method for optical shape inspection

Country Status (1)

Country Link
JP (1) JP2007205868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475427A (en) * 2016-09-12 2017-03-08 北京首钢股份有限公司 A kind of system and method for determining plate sheet and strip direction
JP2018058095A (en) * 2016-10-07 2018-04-12 東芝三菱電機産業システム株式会社 Tracking control device for rolling line
JP2019078565A (en) * 2017-10-20 2019-05-23 株式会社小矢部精機 Workpiece reading device
CN111103285A (en) * 2019-11-28 2020-05-05 荆门亿纬创能锂电池有限公司 Battery sealing detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475427A (en) * 2016-09-12 2017-03-08 北京首钢股份有限公司 A kind of system and method for determining plate sheet and strip direction
JP2018058095A (en) * 2016-10-07 2018-04-12 東芝三菱電機産業システム株式会社 Tracking control device for rolling line
JP2019078565A (en) * 2017-10-20 2019-05-23 株式会社小矢部精機 Workpiece reading device
CN111103285A (en) * 2019-11-28 2020-05-05 荆门亿纬创能锂电池有限公司 Battery sealing detection method

Similar Documents

Publication Publication Date Title
KR100753885B1 (en) Image obtaining apparatus
CN101825438B (en) Laser measuring device for measuring thickness of plate
CN102224412A (en) Device for examining defect of molded sheet
JP5418176B2 (en) Pantograph height measuring device and calibration method thereof
JP6875836B2 (en) Wire rope measuring device and method
TW201741620A (en) Three-dimensional measuring device
CN107683401A (en) Shape measuring apparatus and process for measuring shape
WO2019212042A1 (en) Screw shape measuring device and measuring method
JP2013213733A (en) Apparatus and method for inspecting object to be inspected
JP2007205868A (en) Device and method for optical shape inspection
JP2010025586A (en) Configuration determination method and configuration determination apparatus
JP6575232B2 (en) Steel plate shape measuring apparatus and method, and steel plate manufacturing apparatus and method using the same
JP5359038B2 (en) Line sensor elevation angle measuring device by image processing
TW201100747A (en) Method for detecting ream of light-transmitting platy object
TWI619560B (en) Steel plate measuring system and method thereof
JP2011033428A (en) Pantograph height measuring device
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method
JP2008304190A (en) Highly precise method and device for measuring displacement of object to be measured by laser reflected light
JP2008164338A (en) Position sensor
JP6864911B2 (en) Surface shape strain measuring device
JP2018132468A (en) Shape measuring system and shape measuring method
JP4760072B2 (en) X-ray inspection apparatus and X-ray inspection method
JP2010129800A (en) Detection method of alignment mark by interference pattern using interference optical system taken image, and device using the same
JP2018146401A (en) Controller for inspection device, inspection device, method for controlling inspection device, and program
JP2024109397A (en) Visual inspection device for battery outer package

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407