JP4705479B2 - Bead shape detection method and apparatus - Google Patents
Bead shape detection method and apparatus Download PDFInfo
- Publication number
- JP4705479B2 JP4705479B2 JP2006012416A JP2006012416A JP4705479B2 JP 4705479 B2 JP4705479 B2 JP 4705479B2 JP 2006012416 A JP2006012416 A JP 2006012416A JP 2006012416 A JP2006012416 A JP 2006012416A JP 4705479 B2 JP4705479 B2 JP 4705479B2
- Authority
- JP
- Japan
- Prior art keywords
- bead
- function
- point
- cross
- toe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は、溶接ビードにおけるビード形状の検出方法及び装置に関する。 The present invention relates to a method and an apparatus for detecting a bead shape in a weld bead.
例えば、UO鋼管は溶接鋼管の一つであり、図14に示すようにして製造される。後の溶接工程で開先となる厚鋼板の幅方向端部を切削加工した後、Cプレスにて端部を曲げ、UプレスにてU字型に曲げ加工した後に、Oプレスにより端部を突き合わせた後、仮付け溶接、内面溶接、外面溶接の順で溶接され、最終的に鋼管内側から鋼管を広げる拡管工程を経て真円状のパイプに成形される。 For example, the UO steel pipe is one of welded steel pipes and is manufactured as shown in FIG. After cutting the end in the width direction of the thick steel plate that will be the groove in the subsequent welding process, the end is bent with the C press, bent into the U shape with the U press, and then the end with the O press. After the butting, welding is performed in the order of tack welding, inner surface welding, and outer surface welding, and finally formed into a round pipe through a pipe expanding process of expanding the steel pipe from the inside of the steel pipe.
UO鋼管等の溶接部の盛り上がりは溶接ビード(以下では「ビード」と記す)あるいは余盛と呼ばれている。ビードの幅や高さ並びにビード周辺部に対するビードの盛り上がり方は溶接部強度に関係があり、各工程においてビード形状を定量的に把握しておくことは、UO鋼管の品質管理上重要である。 The rise of a welded portion such as a UO steel pipe is called a weld bead (hereinafter referred to as “bead”) or extra build. The width and height of the bead and the way the bead rises around the bead periphery are related to the strength of the weld, and it is important for quality control of the UO steel pipe to quantitatively grasp the bead shape in each process.
従来からビード形状の測定は計器や専用治具を使って人手で行ってきている。ダイヤルゲージを用いたピーキング測定の方法を図13に示す。一定幅2Wの脚をもち中心にダイヤルゲージの針を配置した治具を使って、ダイヤルゲージの針を止端部に当てて治具の脚を結ぶ直線を基準線とした深さをピーキングとして測る。 Traditionally, bead shape measurement has been performed manually using instruments and special jigs. FIG. 13 shows a peaking measurement method using a dial gauge. Using a jig with a dial gauge needle centered on a leg with a constant width of 2 W, the depth with respect to the straight line connecting the jig leg as the reference line with the dial gauge needle applied to the toe is peaking measure.
しかしながら、ダイヤルゲージを用いたピーキング測定をはじめとする人手による方法は、手間と時間がかかるため測定箇所が限られ間欠的な測定となること、管軸方向の微妙な形状変化を見逃し易いこと、あるいは検査員間での個人差や検査員が同じでも作業時における検査員の主観によるところが大きいため、測定結果がばらつき再現性がないこと、という問題があった。 However, manual methods such as peaking measurement using a dial gauge are time-consuming and time-consuming, so the measurement location is limited and intermittent measurement, and it is easy to overlook subtle shape changes in the tube axis direction. Alternatively, there is a problem that even if the individual differences among the inspectors and the inspectors are the same, the measurement results have no variation reproducibility because they are largely dependent on the inspector's subjectivity at the time of work.
このためビード形状を自動検出する様々な方法や装置が提案されてきているが、中でも光学的方法は非接触で測定が可能である点で有用である。特許文献1に開示されている方法では、溶接ビードを上面と側面から撮像し、アナログ信号を画像の濃淡を表すディジタル信号に変換した後、濃淡画像の1ライン分の微分処理等のディジタル画像処理によって、画像の濃淡が急激に変化する点をビード部と母材部の境界(止端部)とするもので、光源が不要でカメラ撮像のみによるので装置構成は簡便である。
For this reason, various methods and apparatuses for automatically detecting the bead shape have been proposed. Among them, the optical method is useful in that measurement can be performed without contact. In the method disclosed in
しかしながら、ビード部と母材部間の明るさの差、あるいは境界における影や異物付着による明るさの違い等を仮定しているため、本来形状とは関係のないビード部や母材部の表面性状の違いによってビードを検出できない可能性があった。 However, because it assumes the difference in brightness between the bead part and the base material part, or the difference in brightness due to shadows or foreign matter adhering to the boundary, etc., the surface of the bead part or base material part has nothing to do with the original shape. There was a possibility that the bead could not be detected due to the difference in properties.
一方、被検査部に照射された光源像を撮像し、撮像された光源像の画素位置から鋼管の断面プロフィールを計測する方法としては、特許文献2に示すような光切断法やレーザ距離計による方法が挙げられる。被検査部に照射された光源像が撮像部に映るほど十分明るければ、断面形状そのものを高い精度で計測できる。
On the other hand, as a method of capturing a light source image irradiated on the part to be inspected and measuring the cross-sectional profile of the steel pipe from the pixel position of the captured light source image, an optical cutting method or a laser distance meter as shown in
光切断法やレーザ距離計で計測した鋼管の断面プロフィールからビード部を検出する場合、ビード部と周辺の母材部との境界である止端部でプロフィールの急激な変化があることを想定し、プロフィールを微分処理して止端部を検出することが考えられる。しかしながらUO鋼管の場合、特に外径の大きいものや拡管前のものについては周辺の母材部に対するビードの盛り上がりが小さいため止端部が判別しがたく、異物が付着している場合には異物周辺を止端部と間違えてしまう可能性がある。また、異物の影響を考慮して微分を行うディジタルフィルタを長く設定すると止端部が実際の位置よりビードの内側に検出されてしまうという問題点があった。 When detecting a bead part from the cross-sectional profile of a steel pipe measured by a light cutting method or a laser distance meter, it is assumed that there is a sudden change in the profile at the toe, which is the boundary between the bead part and the surrounding base metal part. It is conceivable to detect the toe portion by differentiating the profile. However, in the case of UO steel pipes, especially for pipes with large outer diameters or pipes that have not been expanded, it is difficult to distinguish the toe portion because the rise of the bead with respect to the surrounding base metal part is small. The surrounding area may be mistaken for the toe. In addition, if a long digital filter for differentiation is set in consideration of the influence of foreign matter, there is a problem in that the toe is detected inside the bead from the actual position.
本発明は、以上に述べた従来技術の課題を解決するべく発明されたものであり、ビードの立上りがなだらかでビードの高さが低くても、光切断法やレーザ距離計等の光学的手段で得た鋼管の断面プロフィールから、従来よりも精度よくビード形状を検出できるようにすることを目的とする。 The present invention was invented to solve the above-described problems of the prior art, and optical means such as an optical cutting method and a laser distance meter even when the bead rises gently and the bead height is low. An object of the present invention is to detect the bead shape with higher accuracy than the conventional one from the cross-sectional profile of the steel pipe obtained in the above.
本発明によるビード形状検出方法は、被検査体の溶接部を横断するように、該溶接部に線状光を照射又は点状光を照射して走査して、前記被検査体の表面の光線軌跡に基づいて光学的手法により前記被検査体の断面プロフィールを得て、該断面プロフィールからビード形状を検出するビード形状検出方法であって、前記断面プロフィールから、該断面プロフィールを円弧に近似させて該円弧の曲率中心と曲率半径Rとを求め、該曲率中心と前記被検査体断面の各点を結ぶ距離Dを該曲率半径Rから差し引いた値R−Dが最大になる点をピーク探索して仮のビード頂点の座標を算出するステップと、前記仮のビード頂点を含む第1の所定の幅の範囲において、前記断面プロフィールを予め定めた第1の関数である円弧で近似するステップと、前記仮のビード頂点を基準に所定の距離だけ離れた位置を開始点として外側の第2の所定の幅において、前記断面プロフィールを予め定めた第2の関数で、前記仮のビード頂点の左側と右側のそれぞれについて近似するステップと、前記第1の関数と前記第2の関数の交点をビードの止端点として算出するステップと、前記止端点の座標並びに前記第1の関数及び前記第2の関数に基づいて、ビード形状を算出するステップとを有する点に特徴を有する。
本発明によるビード形状検出装置は、被検査体の溶接部を横断するように、該溶接部に線状光を照射又は点状光を照射して走査して、前記被検査体の表面の光線軌跡に基づいて光学的手法に前記被検査体の断面プロフィールを得て、該断面プロフィールからビード形状を検出するビード形状検出装置であって、前記断面プロフィールから、該断面プロフィールを円弧に近似させて該円弧の曲率中心と曲率半径Rとを求め、該曲率中心と前記被検査体断面の各点を結ぶ距離Dを該曲率半径Rから差し引いた値R−Dが最大になる点をピーク探索して仮のビード頂点の座標を算出する手段と、前記仮のビード頂点を含む第1の所定の幅の範囲において、前記断面プロフィールを予め定めた第1の関数である円弧で近似する手段と、前記仮のビード頂点を基準に所定の距離だけ離れた位置を開始点として外側の第2の所定の幅において、前記断面プロフィールを予め定めた第2の関数で、前記仮のビード頂点の左側と右側のそれぞれについて近似する手段と、前記第1の関数と前記第2の関数の交点をビードの止端点として算出する手段と、前記止端点の座標並びに前記第1の関数及び前記第2の関数に基づいて、ビード形状を算出する手段とを備えた点に特徴を有する。
In the bead shape detection method according to the present invention, the beam on the surface of the object to be inspected is scanned by irradiating the welded part with linear light or spot light so as to cross the welded part of the object to be inspected. wherein by an optical method based on the locus to obtain a cross-sectional profile of the object to be inspected, a bead shape detecting method for detecting the bead shape from the cross section profile, from the cross-sectional profile, by approximating the the cross section profile arc The center of curvature of the arc and the radius of curvature R are obtained, and a peak search is performed for a point where the value RD obtained by subtracting the distance D connecting the center of curvature and each point of the cross section of the inspection object from the radius of curvature R is maximum. calculating the coordinates of the bead apex of the provisional Te, the range of the first predetermined width including the beads apex of the temporary, a step of approximating a circular arc which is a first function which defines the cross-sectional profile in advance, in front A second function that predetermines the cross-sectional profile at a second predetermined width outside with a position separated by a predetermined distance from the temporary bead vertex as a starting point, and the left and right sides of the temporary bead vertex. , A step of calculating an intersection point of the first function and the second function as a toe point of the bead, a coordinate of the toe point, the first function, and the second function And a step of calculating a bead shape on the basis thereof.
The bead shape detection device according to the present invention scans the welded portion by irradiating the welded portion with linear light or spot light so as to cross the welded portion of the subject to be inspected. wherein the optical technique based on the locus to obtain a cross-sectional profile of the object to be inspected, a bead shape detection device for detecting the bead shape from the cross section profile, from the cross-sectional profile, by approximating the the cross section profile arc The center of curvature of the arc and the radius of curvature R are obtained, and a peak search is performed for a point where the value RD obtained by subtracting the distance D connecting the center of curvature and each point of the cross section of the inspection object from the radius of curvature R is maximum. means for calculating the coordinates of the bead apex of the provisional Te, the range of the first predetermined width including the beads apex of the temporary, means for approximating a circular arc which is a first function which defines the cross-sectional profile in advance, The temporary bead A second function that predetermines the cross-sectional profile in a second predetermined width outside starting from a position separated by a predetermined distance with respect to the point, for each of the left and right sides of the temporary bead vertex Based on the means for approximating, the means for calculating the intersection of the first function and the second function as the toe point of the bead, the coordinates of the toe point, the first function and the second function, And a means for calculating a bead shape.
本発明によれば、これまで困難であったなだらかなビード形状の自動的な計測が可能になる。そして、例えば溶接鋼管において、人手による間欠的な測定では見逃しがちの管軸方向の微妙な形状変化を全長にわたって計測可能になり、各製造工程におけるビード形状の造り込みや品質管理へ反映することにより全長における品質保証が実現できることになる。 According to the present invention, it is possible to automatically measure a gentle bead shape, which has been difficult until now. And, for example, in welded steel pipes, it is possible to measure subtle changes in the shape of the pipe axis, which are often overlooked by manual measurement, and reflect this in the manufacturing and quality control of the bead shape in each manufacturing process. Quality assurance over the entire length can be realized.
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、本発明にかかるビード形状検出装置の第1の実施の形態の構成を、溶接鋼管を例に示す概略図である。1は測定対象の溶接鋼管(一部のみを図示する)である。また、2はレーザ光源等の投光手段、5はカメラ等の撮像手段、6は信号処理制御装置であり、溶接鋼管1の内側に投光手段2と撮像手段5を入れて内面のビード10の形状を検出する場合の様子を示している。信号処理制御装置は、本発明でいう各手段として機能する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a schematic view showing a configuration of a first embodiment of a bead shape detection device according to the present invention, taking a welded steel pipe as an example.
本実施の形態では、測定対象の溶接鋼管を水平な測定台上に、ビードが底になるようにおいて形状測定する。測定台上においてビード方向と直交する方向すなわちビードを横断する方向をx軸、測定台に直交する方向をy軸として、以下では説明の便宜上定める。なお、測定時にビードが底ではないときには、ビードの接平面を想定して基準面(水平面)として取り扱えることは明らかである。 In the present embodiment, the shape of the welded steel pipe to be measured is measured on a horizontal measurement table so that the bead is at the bottom. On the measurement table, the direction orthogonal to the bead direction, that is, the direction crossing the bead is defined as the x-axis, and the direction orthogonal to the measurement table is defined as the y-axis. In addition, when the bead is not the bottom at the time of measurement, it is clear that it can be handled as a reference plane (horizontal plane) assuming a tangential plane of the bead.
投光手段1としては、例えばレーザやランプから発する光をシリンドリカルレンズやプリズム等を用いて、測定対象上の照射位置で線状に収束するような線状光源を用いるか、あるいは照射位置で点状に収束するような点状ビームを、回転制御されたポリゴンミラーでビードの幅方向に走査する走査式の点光源を用いる。線状光源を投光手段として用いる場合、図1の4は扇状に広げられた線状ビームを示し、測定対象であるビードを含む溶接鋼管1に照射されると表面形状に沿って光切断像3を形成する。走査式点光源を投光手段として用いる場合、図1の4は幅方向に走査された点状ビームの軌跡を示し、3は溶接鋼管1上の照射位置での点像の軌跡を示す。上記の照射光の線状軌跡がビードを横断するように照射するが、ビードの方向と直交する面内になるようにするのが測定精度上望ましい。
As the light projecting means 1, for example, a linear light source that converges light emitted from a laser or a lamp linearly at an irradiation position on a measurement object using a cylindrical lens, a prism, or the like, or a point at the irradiation position is used. A scanning point light source is used that scans a point beam that converges in a line shape in the width direction of the bead with a polygon mirror that is rotationally controlled. When a linear light source is used as the light projecting means, reference numeral 4 in FIG. 1 shows a fan-shaped linear beam. When the welded
撮像手段5として、例えばCCDカメラを用いて、光切断像あるいは点像の軌跡を撮像する。信号処理制御装置6では撮像手段5から撮像された光切断像あるいは点像の軌跡を取り込み、画像処理手段によって細線化処理等を施して像の写る画素位置を求める。そして、投光手段2、撮像手段5、及び測定対象の光学的配置によって決まる定数と像の写る画素位置から、ビードを含む鋼管表面の輪郭形状を断面プロフィールとして求める。
For example, a CCD camera is used as the
信号処理制御装置6では、撮像手段5からの像の取り込みと画像処理、及び後述するビード形状検出にかかる計算のほか、投光手段1の照射時間や撮像手段5の露光時間等の制御も行う。
The signal
図2は、本発明にかかるビード形状検出装置における第2の実施の形態の構成を溶接鋼管を例に示す概略図である。図2の5'は走査式点光源とPSD(位置検出器)が一体となったレーザ距離計のような測距手段であり、測距手段自体から三角測量方式により測定対象である溶接鋼管1の表面までの距離を直接測ることができる。図2において4はビードの幅方向に走査された測距手段5'の走査式点光源から発する点状ビームの軌跡を示し、3は溶接鋼管1上の照射位置での点像の軌跡を示す。測距手段5'により溶接鋼管1の表面までの距離は計算済みなので、信号処理制御装置6では断面プロフィールを計算するための画像処理は不要である。すなわち本実施の形態の場合、信号処理制御装置6では測距手段5'からの距離データの取り込み、距離データに基づいた断面プロフィールの計算、後述するビード形状検出にかかる計算、及び測距手段5'の制御を行う。
FIG. 2 is a schematic view showing the configuration of the second embodiment of the bead shape detection apparatus according to the present invention by taking a welded steel pipe as an example. 2 ′ in FIG. 2 is a distance measuring means such as a laser distance meter in which a scanning point light source and a PSD (position detector) are integrated, and the welded
以下では溶接鋼管1の断面プロフィールからビード形状を検出する計算手順と計算方法について説明する。図3(a)の横軸(x軸)はビード幅方向の測定位置を示し水平方向とも呼ぶことにする。また、縦軸(y軸)は凹凸を示す。○は離散データとして得られた断面プロフィールの測定点を模式的に表しており、実線は離散データから求めた断面プロフィールの近似関数を表す。
Below, the calculation procedure and calculation method which detect a bead shape from the cross-sectional profile of the welded
図3(b)は溶接鋼管1の断面プロフィールからビード形状を検出するための計算手順を示す。図1にも合わせて示すように10はビード部、11は止端部、12はビード周辺部である。まず断面プロフィールを表す離散データに対して後述する極大点探索により仮のビード頂点を求める(ステップS101)。次に仮のビード頂点を基準としてビード幅より狭い範囲WCのビード部を第1の関数で近似する(ステップS102)。仮のビード頂点を基準にビード外側の範囲WL(左側)、WR(右側)の周辺部をそれぞれ第2の関数で近似する(ステップS103)。第1の関数と第2の関数の交点を止端点として求める(ステップS104)。止端点座標と第1の関数と第2の近似関数からビード幅、ビード高さ、止端角、ピーキング、オフセット等のビード形状を計算する(ステップS105)。図15にビード形状を表すこれらのパラメータを図示する。なお、ピーキングは正確にはビード近傍の形状であるが、簡単のためビード形状の一つに含める。
FIG. 3B shows a calculation procedure for detecting the bead shape from the cross-sectional profile of the welded
ステップS101における仮のビード頂点の探索方法について説明する。図4(a)に示すように、一定幅の探索窓内の断面プロフィールデータに対して窓中央部のある点が探索窓内のどのデータより大きい場合にこの点を極大点とし、探索窓内の周囲の点に対する極大点の高さも同時に求めておく。探索窓を幅方向に移動させながら仮のビード頂点の候補である極大点をいくつか求める。極大点のうち、窓内の周囲の点に対する極大点の高さが最大の点を仮のビード頂点とする。ビードの頂点付近がつぶれて平らになっていて仮のビード頂点候補が複数見つかる場合はそれらの水平方向における位置の重心を仮のビード頂点とする。 The temporary bead vertex searching method in step S101 will be described. As shown in FIG. 4A, when a point at the center of the window is larger than any data in the search window with respect to the cross-sectional profile data in the search window having a constant width, this point is set as a maximum point and The height of the maximum point with respect to the surrounding points is also obtained at the same time. While moving the search window in the width direction, several local maximum points that are candidates for temporary bead vertices are obtained. Among the maximum points, a point having the maximum height of the maximum point with respect to surrounding points in the window is set as a temporary bead vertex. When a plurality of temporary bead vertex candidates are found near the top of the bead and are flattened, the center of gravity of the positions in the horizontal direction is set as the temporary bead vertex.
図4(b)に示すように、ビードが斜めに配置されている場合は鉛直方向の極大値が見つからない場合もある。この場合、まず鋼管の断面プロフィールを最小二乗法により円弧に近似させて曲率中心と曲率半径Rを求め、鋼管の曲率中心と鋼管断面の各点を結ぶ距離Dを差し引いた値R−Dを求めると図4(c)に示すようになる。次に半径方向の偏差R−Dが最大になる点をピーク探索して仮のビード頂点を見つける。最小二乗法により円弧近似する方法は以下に述べるビード部の円弧近似方法に現れる計算方法と同じである。 As shown in FIG. 4B, when the beads are arranged obliquely, the maximum value in the vertical direction may not be found. In this case, first, the cross-sectional profile of the steel pipe is approximated to an arc by the least square method to obtain the center of curvature and the radius of curvature R, and the value RD obtained by subtracting the distance D connecting the center of curvature of the steel pipe and each point of the cross section of the steel pipe is obtained. As shown in FIG. Next, a peak search is performed for a point where the radial deviation RD is maximized to find a temporary bead apex. The method of approximating the arc by the least square method is the same as the calculation method appearing in the arc approximation method of the bead portion described below.
ステップS102とステップS103で行う第1の関数と第2の関数による近似方法について説明する。x軸とy軸をそれぞれを鋼管の幅方向と高さ方向として、断面プロフィールを表す離散データの座標を(xi,yi)とする。最小二乗法によれば、近似関数f(x)の形として例えば以下のようにn次多項式を仮定した場合、下式(1)の二乗残差Eを最小にする係数[am](m=0,1、・・・、n)に関する下式(2)の連立方程式を解いて近似関数を求められる。 An approximation method using the first function and the second function performed in steps S102 and S103 will be described. The x-axis and y-axis are the steel pipe width direction and height direction, respectively, and the coordinates of the discrete data representing the cross-sectional profile are (x i , y i ). According to the least squares method, assuming a n-th order polynomial as in the form for example the following approximation function f (x), the coefficient to minimize the squared residuals E of the following formula (1) [a m] ( m = 0, 1,..., N), an approximate function can be obtained by solving the simultaneous equations of the following expression (2).
近似関数として円弧を仮定した場合、下式(3)の二乗残差Eを最小にする係数[a,b,c]に関する下式(4)の連立方程式を解いて近似関数を求められる。 When an arc is assumed as the approximate function, the approximate function can be obtained by solving the simultaneous equations of the following expression (4) regarding the coefficient [a, b, c] that minimizes the square residual E of the following expression (3).
第1の近似関数と第2の近似関数はビード部と周辺部の断面プロフィールを考慮して次数を決める。第1の近似関数と第2の近似関数としてそれぞれ円弧と直線(1次多項式)又は放物線(2次多項式)を用いる簡便な方法については後ほど説明する。また、平均的なビードの大きさや周辺部の曲率は鋼管の種類(外径と厚み、材質)により変わるため、第1の関数と第2の関数で最小二乗近似するデータの範囲WC(ビード部)、WL(ビード左側)、WR(ビード右側)は、ビード形状の実績データを積み上げながら鋼管の種類ごとに設定する。 The first approximate function and the second approximate function determine the order in consideration of the cross-sectional profiles of the bead portion and the peripheral portion. A simple method using an arc and a straight line (first order polynomial) or a parabola (second order polynomial) as the first approximation function and the second approximation function will be described later. In addition, since the average bead size and the peripheral curvature vary depending on the type of steel pipe (outer diameter, thickness, and material), the data range WC (bead portion) that approximates the least squares using the first function and the second function. ), WL (bead left side), and WR (bead right side) are set for each type of steel pipe while accumulating the bead-shaped result data.
ステップS104の第1の関数f(x)と第2の関数g(x)の交点はf(x)=g(x)を解いて得られる。次数により代数学的解法かNewton法のような数値解法を用いる。左右についてそれぞれ方程式を解いて止端点の座標を求める。 The intersection of the first function f (x) and the second function g (x) in step S104 is obtained by solving f (x) = g (x). Depending on the order, an algebraic solution or a numerical solution such as Newton's method is used. Solve the equations for the left and right sides to find the coordinates of the toes.
ステップS105の止端点座標と第1の近似関数と第2の近似関数からビード幅、ビード高さ、止端角、ピーキング、オフセット等のビード形状を計算する方法について説明する。 A method for calculating a bead shape such as a bead width, a bead height, a toe angle, peaking, and an offset from the toe point coordinates, the first approximate function, and the second approximate function in step S105 will be described.
図5及び下式(5)に示すように、ビード幅は第1の関数と第2の関数の交点である左右の止端点座標(xL,yL)と(xR,yR)の間の距離として計算する。 As shown in FIG. 5 and the following equation (5), the bead width is determined by the left and right toe point coordinates (x L , y L ) and (x R , y R ) that are the intersections of the first function and the second function. Calculate as the distance between.
ビード高さhは、下式(6)に示すように、左右の止端点座標を結ぶ直線ax+by+c=0から第1の関数上の点(x,y)までの距離のうち最大値を与える点、すなわち真のビード頂点までの距離として計算する。 The bead height h is a point giving the maximum value among the distances from the straight line ax + by + c = 0 connecting the left and right toe point coordinates to the point (x, y) on the first function, as shown in the following formula (6). I.e., the distance to the true bead apex.
真のビード頂点上での接線の傾きは左右の止端点座標を結ぶ直線の傾きと等しいので、その座標は下式(7)を解くことで計算できる。 Since the slope of the tangent line on the true bead apex is equal to the slope of the straight line connecting the left and right toe point coordinates, the coordinates can be calculated by solving the following equation (7).
図6は止端角の計算方法を示している。左止端角θLは下式(8)のように左止端点における第1の関数f(x)の接線の傾き角αLと第2の関数gL(x)の接線の傾き角βLから求められる。 FIG. 6 shows a method for calculating the toe angle. The left toe angle θ L is the tangent slope angle α L of the first function f (x) and the tangent slope angle β of the second function g L (x) at the left toe point as shown in the following equation (8). Calculated from L.
右止端角θRは下式(9)のように右止端点における第1の関数f(x)の接線の傾き角αRと第2の関数gR(x)の接線の傾き角βRから求められる。 The right toe angle θ R is the tangent slope angle α R of the first function f (x) and the tangent slope angle β of the second function g R (x) at the right toe point as shown in the following equation (9). Calculated from R.
図7(a)はオフセットの計算方法を示している。第1の関数上での真のビード頂点における法線と左止端点における第2の関数の接線との交点をOLとし、右止端点における第2の関数の接線との交点をORとして、オフセットを線分OLORの長さとして求める。第1の関数上での真のビード頂点における法線の傾きは90°に近いので、図7(b)に示すように、真あるいは仮のビード頂点から下ろした垂線と左止端点における第2の関数の接線との交点をOLとし、右止端点における第2の関数の接線との交点をORとして、オフセットを線分OLORの長さとして求めてもよい。 FIG. 7A shows an offset calculation method. The intersection of the normal at the true bead vertex on the first function and the tangent of the second function at the left toe is O L, and the intersection of the second function tangent at the right toe is O R , it obtains the offset as the length of the line segment O L O R. Since the slope of the normal line at the true bead vertex on the first function is close to 90 °, as shown in FIG. 7B, the vertical line dropped from the true or temporary bead vertex and the second at the left toe point. the intersection between the tangent line of the function and O L, the intersection of the tangent line of the second function in the right stop end point as O R, may be determined offset as the length of the line segment O L O R.
図8は近似的なピーキングの計算方法を示している。止端点を中心に幅方向Wの距離にある断面プロフィール上の左右の点をA、Bとし、その直線ABの中点をCとする。中点Cから止端点までの距離を近似的なピーキングΔy0として求める。直線ABが水平線(x軸)から角度αをもって傾いている場合、近似的なピーキングとしてΔyを下式(10)によって計算してもよい。 FIG. 8 shows an approximate peaking calculation method. The left and right points on the cross-sectional profile at a distance in the width direction W around the toe point are A and B, and the midpoint of the straight line AB is C. The distance from the middle point C to the toe point is obtained as an approximate peaking Δy 0 . When the straight line AB is inclined with respect to the horizontal line (x axis) at an angle α, Δy may be calculated by the following equation (10) as approximate peaking.
(実施例)
第1の近似関数として円弧を、第2の近似関数として直線を用いた場合について実際の近似結果も含め具体的に説明する。止端点の座標は下式(11)のように(x,y)に関して円弧と直線の式を連立させて解けばよいため、結果的に2次方程式の解として簡単に求めることができる。
(Example)
A case where an arc is used as the first approximation function and a straight line is used as the second approximation function will be specifically described including the actual approximation result. The coordinates of the toe point can be easily obtained as a solution of the quadratic equation as a result of solving the equation of the arc and the line with respect to (x, y) as shown in the following equation (11).
図9はビード高さの計算方法を示している。ビード部を近似する円弧の曲率中心から左右止端点の中点までの距離dを求めた後、円弧の曲率半径rから距離dを差し引いてh=r−dによってビード高さhを計算できる。 FIG. 9 shows a method for calculating the bead height. After obtaining the distance d from the center of curvature of the arc approximating the bead portion to the midpoint of the left and right toe points, the bead height h can be calculated by subtracting the distance d from the radius of curvature r of the arc and h = rd.
図10は止端角の計算方法を示している。止端点における円弧の接線の傾き角αL、αRは、止端点と円弧の曲率中心(x0,y0)を結ぶ直線が鉛直方向となす角に等しいため、下式(12)で簡単に計算できる。 FIG. 10 shows a method for calculating the toe angle. Since the inclination angles α L and α R of the arc tangent at the toe point are equal to the angle formed by the straight line connecting the toe point and the center of curvature of the arc (x 0 , y 0 ) with the vertical direction, the following equation (12) is used. Can be calculated.
図11にUO鋼管の断面プロフィールを円弧と直線によって近似した結果を、図12に上記の方法により計算したビード高さ、止端角、ピーキングの測定結果を示す。 FIG. 11 shows the result of approximating the cross-sectional profile of the UO steel pipe with an arc and a straight line, and FIG. 12 shows the measurement results of the bead height, toe angle and peaking calculated by the above method.
次に第1の近似関数として円弧を、第2の近似関数として放物線(2次多項式)を用いた場合について実際の近似結果も含め具体的に説明する。止端点の座標は下式(13)のように(x,y)に関して円弧と直線の式を連立させて解けばよいため、結果的に4次方程式の解として比較的簡単に求めることができる。 Next, the case where an arc is used as the first approximation function and a parabola (second-order polynomial) is used as the second approximation function will be specifically described including the actual approximation results. Since the coordinates of the toe point may be solved by combining the arc and straight line equations with respect to (x, y) as in the following equation (13), it can be relatively easily obtained as a solution of the quaternary equation. .
4次方程式はNewton法等の数値解法でも解けるがFerrariやEulerの解の公式を使って解くこともできる。図16、17にUO鋼管の断面プロフィールを円弧と直線又は放物線によって近似した結果を示す。図16(a)、(b)はビード外側の近似範囲が広い場合、図17(a)、(b)はビード外側の周辺部の曲がっている場合についての近似結果の例である。このようにビード外側の近似範囲を広い場合、あるいは周辺部の曲がりが大きい場合については放物線による近似が有効である。 Quaternary equations can be solved by numerical methods such as Newton's method, but they can also be solved using the Ferrari and Euler solution formulas. 16 and 17 show the results of approximating the cross-sectional profile of a UO steel pipe with an arc and a straight line or a parabola. FIGS. 16A and 16B are examples of approximation results when the outside approximate range of the bead is wide, and FIGS. 17A and 17B are examples of approximation results when the periphery of the bead outside is bent. As described above, when the approximate range outside the bead is wide, or when the bend of the peripheral portion is large, the approximation by the parabola is effective.
本方法によればビード形状を簡易に高速に計算できるため、人手による間欠的な測定では捉えきれない管軸方向の微妙な変化を全長にわたって細かい間隔で測定することができる。溶接強度に影響のあるビード形状を各製造工程において測定し、データを蓄積することで溶接強度を保証できるビード形状の管理値を定めることが可能であり、造り込みや品質管理へ反映することにより全長における品質保証が可能になる。 According to the present method, the bead shape can be calculated easily and at high speed, so that a subtle change in the tube axis direction that cannot be captured by intermittent manual measurement can be measured at fine intervals over the entire length. By measuring the bead shape that affects the welding strength in each manufacturing process and accumulating data, it is possible to determine the control value of the bead shape that can guarantee the welding strength. Quality assurance over the entire length is possible.
1:溶接鋼管
2:線状レーザ光源あるいは走査式点状レーザ光源
3:光切断像
4:線状レーザビームあるいは走査式点状ビームの軌跡
5:カメラ
5':レーザ距離計
6:信号処理制御装置
1: welded steel pipe 2: linear laser light source or scanning point laser light source 3: light cut image 4: locus of linear laser beam or scanning point beam 5:
Claims (14)
前記断面プロフィールから、該断面プロフィールを円弧に近似させて該円弧の曲率中心と曲率半径Rとを求め、該曲率中心と前記被検査体断面の各点を結ぶ距離Dを該曲率半径Rから差し引いた値R−Dが最大になる点をピーク探索して仮のビード頂点の座標を算出するステップと、
前記仮のビード頂点を含む第1の所定の幅の範囲において、前記断面プロフィールを予め定めた第1の関数である円弧で近似するステップと、
前記仮のビード頂点を基準に所定の距離だけ離れた位置を開始点として外側の第2の所定の幅において、前記断面プロフィールを予め定めた第2の関数で、前記仮のビード頂点の左側と右側のそれぞれについて近似するステップと、
前記第1の関数と前記第2の関数の交点をビードの止端点として算出するステップと、
前記止端点の座標並びに前記第1の関数及び前記第2の関数に基づいて、ビード形状を算出するステップとを有することを特徴とするビード形状検出方法。 The welded portion is irradiated with linear light or spot light so as to traverse the welded portion of the object to be inspected, and is scanned by an optical method based on the ray trajectory on the surface of the object to be inspected. A bead shape detection method for obtaining a cross-sectional profile of an object to be inspected and detecting a bead shape from the cross-sectional profile,
From the cross-sectional profile, the cross-sectional profile is approximated to an arc to obtain a center of curvature and a radius of curvature R of the arc, and a distance D connecting the center of curvature and each point of the cross section of the inspection object is subtracted from the radius of curvature R. A peak search for a point where the obtained value RD is maximized to calculate the coordinates of a temporary bead vertex;
Approximating the cross-sectional profile with an arc that is a predetermined first function in a first predetermined width range including the temporary bead vertex;
A second function that predetermines the cross-sectional profile at a second predetermined outer width starting from a position separated by a predetermined distance with respect to the temporary bead apex, and a left side of the temporary bead apex. Approximating for each of the right side;
Calculating an intersection of the first function and the second function as a toe point of the bead;
A bead shape detecting method, comprising: calculating a bead shape based on the coordinates of the toe point and the first function and the second function.
前記第1の関数として円弧を、前記第2の関数として直線又は放物線を用いてビード形状を算出することを特徴とする請求項1〜4のいずれか1項に記載のビード形状検出方法。 The inspection object is a welded steel pipe;
The bead shape detection method according to claim 1, wherein the bead shape is calculated using an arc as the first function and a straight line or a parabola as the second function.
溶接鋼管の断面プロフィールを最小二乗法により円弧に近似させて曲率中心と曲率半径を求め、曲率半径から鋼管の曲率中心と鋼管断面の各点を結ぶ距離を差し引いた値が最大になる点をピーク探索して仮のビード頂点を算出することを特徴とする請求項1〜11のいずれか1項に記載のビード形状検出方法。 The inspection object is a welded steel pipe;
The center of curvature and radius of curvature are obtained by approximating the cross-sectional profile of a welded steel pipe to a circular arc by the least square method, and the peak at the point where the value obtained by subtracting the distance connecting the center of curvature of the pipe and each point of the pipe cross section from the radius of curvature is the peak. The bead shape detection method according to claim 1, wherein a temporary bead vertex is calculated by searching.
前記断面プロフィールから、該断面プロフィールを円弧に近似させて該円弧の曲率中心と曲率半径Rとを求め、該曲率中心と前記被検査体断面の各点を結ぶ距離Dを該曲率半径Rから差し引いた値R−Dが最大になる点をピーク探索して仮のビード頂点の座標を算出する手段と、
前記仮のビード頂点を含む第1の所定の幅の範囲において、前記断面プロフィールを予め定めた第1の関数である円弧で近似する手段と、
前記仮のビード頂点を基準に所定の距離だけ離れた位置を開始点として外側の第2の所定の幅において、前記断面プロフィールを予め定めた第2の関数で、前記仮のビード頂点の左側と右側のそれぞれについて近似する手段と、
前記第1の関数と前記第2の関数の交点をビードの止端点として算出する手段と、
前記止端点の座標並びに前記第1の関数及び前記第2の関数に基づいて、ビード形状を算出する手段とを備えたことを特徴とするビード形状検出装置。 Scanning by irradiating the welded part with linear light or spot light so as to cross the welded part of the object to be inspected, and applying the optical method based on the ray trajectory of the surface of the object to be inspected A bead shape detection device for obtaining a cross-sectional profile of an object to be inspected and detecting a bead shape from the cross-sectional profile,
From the cross-sectional profile, the cross-sectional profile is approximated to an arc to obtain a center of curvature and a radius of curvature R of the arc, and a distance D connecting the center of curvature and each point of the cross section of the inspection object is subtracted from the radius of curvature R. A peak search for a point where the obtained value RD becomes the maximum and calculating the coordinates of the temporary bead vertex;
Means for approximating the cross-sectional profile with an arc that is a predetermined first function within a range of a first predetermined width including the provisional bead apex;
A second function that predetermines the cross-sectional profile at a second predetermined outer width starting from a position separated by a predetermined distance with respect to the temporary bead apex, and a left side of the temporary bead apex. Means for approximating each of the right side;
Means for calculating an intersection of the first function and the second function as a toe point of the bead;
A bead shape detection device comprising: means for calculating a bead shape based on the coordinates of the toe point and the first function and the second function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006012416A JP4705479B2 (en) | 2006-01-20 | 2006-01-20 | Bead shape detection method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006012416A JP4705479B2 (en) | 2006-01-20 | 2006-01-20 | Bead shape detection method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007192721A JP2007192721A (en) | 2007-08-02 |
JP4705479B2 true JP4705479B2 (en) | 2011-06-22 |
Family
ID=38448537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006012416A Active JP4705479B2 (en) | 2006-01-20 | 2006-01-20 | Bead shape detection method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4705479B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108526713A (en) * | 2018-04-09 | 2018-09-14 | 佛山市宏石激光技术有限公司 | A method of it realizing weld seam detection in laser pipe cutter and evades automatically |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5177388B2 (en) * | 2008-02-15 | 2013-04-03 | 日本電気硝子株式会社 | Prism angle measurement method using optical surface approximation method and the same method |
JP5029419B2 (en) * | 2008-02-26 | 2012-09-19 | トヨタ自動車株式会社 | Weld bead inspection method and weld bead inspection device |
JP2009294093A (en) * | 2008-06-05 | 2009-12-17 | Topy Ind Ltd | Method and system for inspecting weld part |
JP4992848B2 (en) * | 2008-07-22 | 2012-08-08 | トヨタ自動車株式会社 | Weld bead inspection method and weld bead inspection device |
JP5758090B2 (en) * | 2010-08-11 | 2015-08-05 | コアテック株式会社 | Shape inspection apparatus and shape inspection method |
JP6360706B2 (en) * | 2014-03-10 | 2018-07-18 | 日本発條株式会社 | Shape measuring apparatus, program, recording medium, and method |
JP2016070810A (en) * | 2014-09-30 | 2016-05-09 | 三友工業株式会社 | Adhesive agent inspection device, adhesive agent coating device provided with adhesive agent inspection device, and adhesive agent inspection method |
JP6447220B2 (en) * | 2015-02-19 | 2019-01-09 | 大同特殊鋼株式会社 | Shape detection method for overlay welding |
KR101913705B1 (en) * | 2017-02-28 | 2018-11-01 | 홍익대학교 산학협력단 | Method and apparatus for measuring depth of materials attached to cylinder using line laser |
KR102111040B1 (en) * | 2018-06-21 | 2020-05-15 | 대우공업 (주) | MIG Welded bead inspection apparatus |
CN110108785B (en) * | 2019-05-17 | 2024-05-07 | 深圳市中昌探伤器材有限公司 | Weld joint recognition device and recognition method |
JP7264747B2 (en) * | 2019-06-27 | 2023-04-25 | 株式会社クボタ | Bending angle calculation method and calculation device |
CN111738985B (en) * | 2020-05-29 | 2024-04-02 | 长安大学 | Visual detection method and system for weld joint contour |
KR102562216B1 (en) * | 2021-11-29 | 2023-08-01 | 한국광기술원 | System for 3D shape inspection of weld bead and method thereof |
CN114054897B (en) * | 2021-12-14 | 2023-03-14 | 北京新风航天装备有限公司 | Robot intermittent welding method for linear welding seam |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001201327A (en) * | 2000-01-20 | 2001-07-27 | Nkk Corp | Shape and dimension measuring method and apparatus for weld zone |
JP2001208523A (en) * | 2000-01-24 | 2001-08-03 | Hitachi Constr Mach Co Ltd | Method and apparatus for detecting shape of welded bead |
JP2004181471A (en) * | 2002-11-29 | 2004-07-02 | Jfe Steel Kk | Method and device for detecting bead shape of electric resistance welded tube |
-
2006
- 2006-01-20 JP JP2006012416A patent/JP4705479B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001201327A (en) * | 2000-01-20 | 2001-07-27 | Nkk Corp | Shape and dimension measuring method and apparatus for weld zone |
JP2001208523A (en) * | 2000-01-24 | 2001-08-03 | Hitachi Constr Mach Co Ltd | Method and apparatus for detecting shape of welded bead |
JP2004181471A (en) * | 2002-11-29 | 2004-07-02 | Jfe Steel Kk | Method and device for detecting bead shape of electric resistance welded tube |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108526713A (en) * | 2018-04-09 | 2018-09-14 | 佛山市宏石激光技术有限公司 | A method of it realizing weld seam detection in laser pipe cutter and evades automatically |
Also Published As
Publication number | Publication date |
---|---|
JP2007192721A (en) | 2007-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4705479B2 (en) | Bead shape detection method and apparatus | |
KR100685206B1 (en) | Method and instrument for measuring bead cutting shape of electric welded tube | |
JP5217221B2 (en) | Method for detecting surface defect shape of welded portion and computer program | |
JPH03267745A (en) | Surface property detecting method | |
US8345094B2 (en) | System and method for inspecting the interior surface of a pipeline | |
JP5288297B2 (en) | Method for measuring the end shape of a threaded tube | |
KR102235832B1 (en) | Portable type welding inspection appatatus and inspection method | |
CN104697467A (en) | Weld appearance shape based on line laser scanning and surface defect detection method | |
US10704897B2 (en) | Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method | |
JP2008302428A (en) | Arc welding quality inspection method | |
JPH06241740A (en) | Electro-resistance welded tube weld beam defective cutting and defect detecting method | |
JP3858792B2 (en) | Method and apparatus for detecting bead shape of electric resistance welded pipe | |
JP4762851B2 (en) | Cross-sectional shape detection method and apparatus | |
JP4374845B2 (en) | Method and apparatus for detecting bead shape of ERW pipe | |
JP2572286B2 (en) | 3D shape and size measurement device | |
JP2012002605A (en) | Defect inspection method of welded surface | |
JP5367292B2 (en) | Surface inspection apparatus and surface inspection method | |
JP2000314707A (en) | Device and method for inspecting surface | |
JPH1054707A (en) | Distortion measuring method and distortion measuring device | |
JP2618303B2 (en) | ERW pipe welding bead cutting shape measurement method | |
KR20200001197U (en) | Device for inspecting inner surface of bore | |
JPH10311799A (en) | Method for detecting surface scratch of no-joint steel valve punching plug | |
JP3381420B2 (en) | Projection detection device | |
KR101953888B1 (en) | 3-dimensional inspect device for defect analysis and method for correcting position thereof | |
JPH06294748A (en) | Surface flaw inspection method at welded part of uo steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110311 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4705479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140318 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |