[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5136569B2 - Gel injector and method of manufacturing power module using the same - Google Patents

Gel injector and method of manufacturing power module using the same Download PDF

Info

Publication number
JP5136569B2
JP5136569B2 JP2010011364A JP2010011364A JP5136569B2 JP 5136569 B2 JP5136569 B2 JP 5136569B2 JP 2010011364 A JP2010011364 A JP 2010011364A JP 2010011364 A JP2010011364 A JP 2010011364A JP 5136569 B2 JP5136569 B2 JP 5136569B2
Authority
JP
Japan
Prior art keywords
gel
chamber
power module
ultrasonic vibration
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010011364A
Other languages
Japanese (ja)
Other versions
JP2011151214A (en
Inventor
保貴 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010011364A priority Critical patent/JP5136569B2/en
Publication of JP2011151214A publication Critical patent/JP2011151214A/en
Application granted granted Critical
Publication of JP5136569B2 publication Critical patent/JP5136569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Coating Apparatus (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

本発明はパワー半導体素子の封止などに用いられるゲルを注入するゲル注入器とそれを用いたパワーモジュールの製造方法に関する。   The present invention relates to a gel injector for injecting a gel used for sealing a power semiconductor element and a method for manufacturing a power module using the gel injector.

ケース内に端子やパワー半導体素子を備える構成のパワーモジュールがある。所望の電気的接続を得るために、端子やパワー半導体素子がはんだやワイヤで接続されると当該ケース内部にゲルが注入される。ゲルはケース内の絶縁性を高めることと、ケース内への異物などの侵入を防止することを目的に注入される。絶縁性を高める観点から、ゲルは水分や気泡などの不純物がない状態でパワー半導体素子などを封止することが望ましい。   There is a power module configured to include a terminal and a power semiconductor element in a case. In order to obtain a desired electrical connection, when terminals and power semiconductor elements are connected with solder or wires, gel is injected into the case. The gel is injected for the purpose of enhancing the insulating properties in the case and preventing the entry of foreign matter into the case. From the viewpoint of enhancing the insulating properties, it is desirable that the gel seals the power semiconductor element and the like in the absence of impurities such as moisture and bubbles.

たとえば、特許文献1にはゲルの中に混入した気泡を効率よく抜くことができる半導体装置についての記載がある。特許文献1には、ゲル状樹脂を覆うように配置される制振部材に貫通孔を設けることが開示されている。そしてこの貫通孔は実質的に円錐台形であり下方ほど断面積が大きい。これによりゲル状樹脂の気泡が貫通孔を抜ける過程でまとまり大きくなる。このようなゲル状樹脂の気泡は、真空装置により前述の貫通孔を経由して抜かれる。従って引用文献1に開示の技術によれば、ゲル状樹脂内の気泡低減効果を得ることができる。また、特許文献2から4にもゲルの品質向上などのための技術についての記載がある。   For example, Patent Document 1 describes a semiconductor device that can efficiently remove bubbles mixed in a gel. Patent Document 1 discloses that a through-hole is provided in a vibration damping member that is arranged so as to cover a gel-like resin. And this through-hole is substantially frustoconical, and the cross-sectional area is large toward the lower part. As a result, the gel-like resin bubbles are gathered and enlarged in the process of passing through the through holes. Such air bubbles of the gel-like resin are extracted by the vacuum device via the aforementioned through holes. Therefore, according to the technique disclosed in the cited document 1, an effect of reducing bubbles in the gel-like resin can be obtained. Patent Documents 2 to 4 also describe a technique for improving the quality of the gel.

特開2003−152136号公報JP 2003-152136 A 特開平11−040703号公報Japanese Patent Laid-Open No. 11-040703 特開平10−270609号公報JP-A-10-270609 特開平08−046093号公報Japanese Patent Laid-Open No. 08-046093

特許文献1に開示の技術では、ゲルで封止されるべき部分の気泡や水分の除去が不十分な場合がある。その結果、ゲルで封止されるべき部分に気泡や水分が残存し、製品の品質にばらつきが生じる問題があった。   In the technique disclosed in Patent Document 1, there are cases where removal of bubbles and moisture in a portion to be sealed with gel is insufficient. As a result, there is a problem that air bubbles and moisture remain in the portion to be sealed with the gel, resulting in variations in product quality.

特に、パワーモジュールのケース内はパワー半導体素子や電極端子、表面に回路(導体)パターンが形成された絶縁基板が配置され、それらは、はんだを使って相互に接続されている。このはんだの表面には「引け巣」などと呼ばれる数十ミクロン程度の溝や穴が生じるため凹凸が多く、鉛フリーはんだを用いる場合は顕著であった。そのような凹凸には水分や気泡がトラップされやすく、絶縁特性などの品質にばらつきが生じやすい問題があった。   In particular, in the case of the power module, a power semiconductor element, electrode terminals, and an insulating substrate having a circuit (conductor) pattern formed on the surface are arranged, and these are connected to each other using solder. Grooves and holes of about several tens of microns called “shrinkage cavities” are formed on the surface of the solder, and thus there are many irregularities, which is remarkable when lead-free solder is used. Such unevenness has a problem that moisture and bubbles are easily trapped, and variations in quality such as insulation characteristics tend to occur.

本発明は、上述のような課題を解決するためになされたもので、ゲルで封止されるべき部分の水分や気泡を除去することができるゲル注入器およびそれを用いたパワーモジュールの製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a gel injector capable of removing moisture and bubbles in a portion to be sealed with a gel, and a method of manufacturing a power module using the same. The purpose is to provide.

本願の発明にかかるゲル注入器は、チャンバーと、該チャンバーに取り付けられ該チャンバー内部にゲルを注入する注入ノズルと、該チャンバーと接続され該チャンバー内の減圧を行う真空ポンプと、該チャンバーと接続され該チャンバーに超音波振動を与える超音波発生器とを備えたことを特徴とする。   A gel injector according to the present invention includes a chamber, an injection nozzle that is attached to the chamber and injects a gel into the chamber, a vacuum pump that is connected to the chamber and depressurizes the chamber, and is connected to the chamber And an ultrasonic generator for applying ultrasonic vibration to the chamber.

本願の発明にかかるゲル注入器を用いたパワーモジュールの製造方法は、内部にパワー半導体素子を有するパワーモジュールをチャンバー内に設置する工程と、該チャンバー内を減圧し、かつ該チャンバーに超音波振動を印加する工程と、該減圧および、該超音波振動の印加を継続して、該パワー半導体素子を封止するように該パワーモジュールにゲルを注入する工程と、該ゲルを注入した後さらに所定時間該減圧および、該超音波振動の印加を継続する工程とを備えたことを特徴とする。   A method of manufacturing a power module using a gel injector according to the present invention includes a step of installing a power module having a power semiconductor element therein in a chamber, a pressure reduction in the chamber, and an ultrasonic vibration in the chamber. A step of injecting a gel into the power module so as to seal the power semiconductor element by continuing the application of the reduced pressure and the ultrasonic vibration, and a predetermined amount after injecting the gel A step of continuing the pressure reduction and application of the ultrasonic vibration for a period of time.

本発明によれば、パワーモジュール内部などにトラップされた水分や気泡を除去することができる。   According to the present invention, it is possible to remove moisture and bubbles trapped inside the power module.

実施形態のゲル注入器を説明する図である。It is a figure explaining the gel injector of embodiment. 実施形態のゲル注入器を用いたパワーモジュールの製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the power module using the gel injector of embodiment. チャンバー内でパワーモジュールのパワー半導体素子などをゲルで封止する方法を説明する図である。It is a figure explaining the method of sealing the power semiconductor element etc. of a power module with a gel in a chamber. ゲルによりパワー半導体素子などが封止されたパワーモジュールを説明する図である。It is a figure explaining the power module by which the power semiconductor element etc. were sealed with the gel.

実施の形態
実施形態は図1から図4を参照して説明する。なお、同一、対応する構成要素には同一の符号を付して複数回の説明を省略する場合がある。
Embodiments Embodiments will be described with reference to FIGS. 1 to 4. In addition, the same and corresponding components may be denoted by the same reference numerals, and a plurality of descriptions may be omitted.

図1は実施形態のゲル注入器10の概略図である。ゲル注入器10はチャンバー12を備える。チャンバー内部18はパワーモジュールへのゲル注入が行われる空間である。チャンバー内部18にゲル注入ができるように、チャンバー12にはゲル供給装置15に繋がる注入ノズル16が取り付けられる。さらに、チャンバー12にはチャンバー内部18の減圧を行う真空ポンプ(真空装置)14が取り付けされる。   FIG. 1 is a schematic view of a gel injector 10 of the embodiment. The gel injector 10 includes a chamber 12. The chamber interior 18 is a space in which gel is injected into the power module. An injection nozzle 16 connected to the gel supply device 15 is attached to the chamber 12 so that the gel can be injected into the chamber interior 18. Further, a vacuum pump (vacuum device) 14 for reducing the pressure inside the chamber 18 is attached to the chamber 12.

チャンバー12の底部20には振動伝達部材22が接続される。振動伝達部材22は例えば金属材料で形成される。振動伝達部材22は超音波発生器24と接続される。よって超音波発生器24が超音波振動を発生すると、振動伝達部材22を経由してチャンバー12(底部20)が超音波振動する。   A vibration transmission member 22 is connected to the bottom 20 of the chamber 12. The vibration transmission member 22 is made of, for example, a metal material. The vibration transmitting member 22 is connected to the ultrasonic generator 24. Therefore, when the ultrasonic generator 24 generates ultrasonic vibrations, the chamber 12 (bottom portion 20) vibrates ultrasonically via the vibration transmission member 22.

図2は実施形態のゲル注入器10を用いたパワーモジュールの製造方法について説明するフローチャートである。以後、図2に沿って実施形態のパワーモジュールの製造方法について説明する。まず、ステップ50にてパワーモジュールがチャンバー内部18の底部20に設置される。図3には、パワー半導体素子66などを有するパワーモジュールがチャンバー内部18の注入ノズル16下に設置された様子が記載されている。   FIG. 2 is a flowchart illustrating a method for manufacturing a power module using the gel injector 10 of the embodiment. Hereinafter, the method for manufacturing the power module of the embodiment will be described with reference to FIG. First, in step 50, the power module is installed on the bottom 20 of the chamber interior 18. FIG. 3 shows a state where a power module having a power semiconductor element 66 and the like is installed under the injection nozzle 16 inside the chamber 18.

ここで、実施形態におけるパワーモジュールの主要構成は以下の通りである。金属のベース板60上に絶縁基板64が固着される。絶縁基板64の表裏には金属の導体パターンが設けられており、表面の導体パターン上にIGBTやダイオードなどのパワー半導体素子66および金属の電極端子70が固着される。これらの固着には、多くの場合リフローはんだ付けなどを用いる。また、絶縁基板64の表面ではパワー半導体素子66や導体パターンとの間を電気的に接続するため、適宜にアルミなどのワイヤ68によるワイヤボンディングが行われる。そしてパワー半導体素子66などが搭載された絶縁基板64を囲繞する樹脂製のケース62がベース板60に接着剤などを用いて固着され、このケース62内にゲル72が充填されるものとなっている(図4参照)。   Here, the main configuration of the power module in the embodiment is as follows. An insulating substrate 64 is fixed on the metal base plate 60. A metal conductor pattern is provided on the front and back of the insulating substrate 64, and a power semiconductor element 66 such as an IGBT or a diode and a metal electrode terminal 70 are fixed on the conductor pattern on the surface. For these fixings, reflow soldering or the like is often used. Further, in order to electrically connect the power semiconductor element 66 and the conductor pattern on the surface of the insulating substrate 64, wire bonding using a wire 68 such as aluminum is appropriately performed. A resin case 62 surrounding the insulating substrate 64 on which the power semiconductor elements 66 and the like are mounted is fixed to the base plate 60 using an adhesive or the like, and the gel 72 is filled in the case 62. (See FIG. 4).

ステップ50による処理を終えるとステップ52へと処理が進められる。ステップ52ではチャンバー内部18を減圧し、かつチャンバー12に超音波振動を印加する。チャンバー内部18の減圧は真空ポンプ14を稼動させることで行う。減圧はチャンバー内部18が25℃、約13Pa(0.1Torr)以下となるように行うが特にこれに限定されない。ただし、この条件としては水(液体)が水蒸気(気体)になる環境まで減圧を行うことが水分除去のためには好ましく、例えば25℃の場合では2500Pa以下にする必要がある。一方チャンバー12(底部20)への超音波振動の印加は、前述のとおり超音波発生器24により振動伝達部材22を介して行われる。そして、チャンバー12(底部20)に設置されているパワーモジュールにも超音波振動が印加される。超音波振動の振動方向は図3において矢印で示すように水平方向の振動としているが特にこれに限定されない。   When the process in step 50 is completed, the process proceeds to step 52. In step 52, the pressure inside the chamber 18 is reduced, and ultrasonic vibration is applied to the chamber 12. The pressure inside the chamber 18 is reduced by operating the vacuum pump 14. The pressure reduction is performed so that the inside 18 of the chamber is 25 ° C. and about 13 Pa (0.1 Torr) or less, but is not particularly limited thereto. However, as this condition, it is preferable to reduce the pressure to an environment where water (liquid) becomes water vapor (gas) in order to remove moisture. For example, in the case of 25 ° C., it is necessary to set the pressure to 2500 Pa or less. On the other hand, application of ultrasonic vibration to the chamber 12 (bottom portion 20) is performed by the ultrasonic generator 24 via the vibration transmission member 22 as described above. Then, ultrasonic vibration is also applied to the power module installed in the chamber 12 (bottom 20). The vibration direction of the ultrasonic vibration is a horizontal vibration as shown by an arrow in FIG. 3, but is not particularly limited to this.

ステップ52による処理を終えるとステップ54へと処理が進められる。ステップ54では、前述の減圧を継続し、超音波振動の印加を維持した状態で、パワー半導体素子などを封止するようにパワーモジュールのケース62内にゲルを注入する。本実施形態では真空ポンプ14による減圧が進み目標値に到達した段階でゲル注入を行う。ゲルの注入はゲル供給装置15により制御され注入ノズル16から行う。ゲルとしては、耐絶縁性、耐熱性、耐寒性に優れるシリコーン樹脂などの高分子化合物が挙げられるが特に限定されない。   When the process in step 52 is completed, the process proceeds to step 54. In step 54, gel is injected into the case 62 of the power module so as to seal the power semiconductor element and the like while maintaining the above-described pressure reduction and maintaining the application of ultrasonic vibration. In the present embodiment, gel injection is performed when the pressure reduction by the vacuum pump 14 progresses and the target value is reached. The injection of the gel is controlled by the gel supply device 15 and is performed from the injection nozzle 16. Examples of the gel include, but are not particularly limited to, a high molecular compound such as a silicone resin having excellent insulation resistance, heat resistance, and cold resistance.

ステップ54による処理を終えるとステップ56へと処理が進められる。ステップ56では、ゲル注入後一定時間(例えば5分間程度)前述の減圧および超音波振動の印加を継続する。上述のステップを終えると図4に記載のようにゲル72がケース62内部に充填されたパワーモジュールが形成される。なお、パワーモジュールの組立て完成までには、以降、ゲル72を硬化させるための加熱処理が行われた後、ゲル72の上部を覆うエポキシ樹脂の充填・硬化や蓋の装着などが通常必要とされる。   When the process in step 54 is finished, the process proceeds to step 56. In step 56, the above-described decompression and application of ultrasonic vibration are continued for a certain time (for example, about 5 minutes) after gel injection. When the above steps are completed, a power module in which the gel 72 is filled in the case 62 as shown in FIG. 4 is formed. In the meantime, until the assembly of the power module is completed, after the heat treatment for curing the gel 72 is performed, it is usually necessary to fill and cure the epoxy resin covering the upper portion of the gel 72 and to attach a lid. The

本実施形態のゲル注入器およびそれを用いたパワーモジュールの製造方法によれば、パワーモジュール内部の凹凸などにトラップされた水分や気泡を低減することができる。すなわち、パワーモジュール内部の凹凸などにトラップされた水分や気泡は超音波発生器24からの超音波振動により振動する。この振動は、真空ポンプ14による減圧作用に伴った水分や気泡の除去を促進する。よって当該凹凸にトラップされた水分や気泡を低減できるから、パワーモジュールの品質ばらつきを回避できる。   According to the gel injector of this embodiment and the manufacturing method of a power module using the same, the water | moisture content and air bubble trapped by the unevenness | corrugation etc. inside a power module can be reduced. That is, moisture and bubbles trapped in the irregularities inside the power module vibrate due to ultrasonic vibration from the ultrasonic generator 24. This vibration promotes the removal of moisture and bubbles accompanying the pressure reducing action by the vacuum pump 14. Therefore, since moisture and air bubbles trapped in the unevenness can be reduced, quality variations of the power module can be avoided.

実施形態においてゲル注入前にパワーモジュールに対し超音波印加を行う(ステップ52)のは、パワーモジュールの凹凸にトラップされた水分を除去するためである。つまり、ゲル注入前においても、真空装置による水分除去は超音波振動によって促進される。   In the embodiment, the ultrasonic wave is applied to the power module before gel injection (step 52) in order to remove moisture trapped in the irregularities of the power module. That is, even before gel injection, moisture removal by the vacuum device is promoted by ultrasonic vibration.

また、実施形態においてゲル注入後にパワーモジュールに対して超音波印加を行う(ステップ56)のは、ゲルをパワーモジュールに接触させたことで生じる結露を除去するためである。一般に、パワーモジュールはゲル注入器による処理の前に熱乾燥が行われるため、ゲル注入開始時点で室温であるゲルに比べてやや高い温度(例えば、室温25℃の場合で、約30〜40℃程度)状態にパワーモジュールはある。したがって、ゲルとパワーモジュールには温度差があるため両者が接触すると当該温度差と減圧下で残った空気に含まれる水分により微小な結露が生じ、この結露はゲル中に吸収される可能性がある。しかし、本実施形態によればパワーモジュールにゲルを注入したあとも減圧および超音波振動の印加を継続する。よって上述の微小な結露によりゲル中に吸収された水分も除去することができる。   In the embodiment, the ultrasonic wave is applied to the power module after the gel injection (step 56) in order to remove dew condensation caused by bringing the gel into contact with the power module. In general, since the power module is thermally dried before the treatment by the gel injector, the temperature is slightly higher than that of the gel at room temperature at the start of gel injection (for example, about 30 to 40 ° C. at a room temperature of 25 ° C.). Degree) the power module is in the state. Therefore, since there is a temperature difference between the gel and the power module, minute condensation occurs due to the temperature difference and moisture contained in the air remaining under reduced pressure, and this condensation may be absorbed into the gel. is there. However, according to the present embodiment, the decompression and the application of ultrasonic vibration are continued even after the gel is injected into the power module. Therefore, moisture absorbed in the gel due to the above-mentioned minute condensation can also be removed.

このように、チャンバー内を減圧することに加えて、パワーモジュールに超音波振動を印加し、水分や気泡の除去を促進することが本発明の特徴である。よって本発明はゲルにより素子などを封止する場合に広く応用できる。   Thus, in addition to decompressing the inside of the chamber, it is a feature of the present invention that ultrasonic vibration is applied to the power module to promote the removal of moisture and bubbles. Therefore, the present invention can be widely applied to the case where an element is sealed with a gel.

本実施形態では真空ポンプ14による減圧が進み目標値に到達した段階でゲル注入を行うこととした。しかしながら、チャンバー12内の圧力が目標値に到達したあと一定時間ゲル注入開始を延長してもよい。これによりゲル注入前の確実な水分除去ができる。   In the present embodiment, the gel injection is performed when the pressure reduction by the vacuum pump 14 proceeds and reaches the target value. However, the start of gel injection may be extended for a certain time after the pressure in the chamber 12 reaches the target value. Thereby, reliable moisture removal before gel injection can be performed.

10 ゲル注入器、 12 チャンバー、 14 真空ポンプ、 15 ゲル供給装置、 16 注入ノズル、 18 チャンバー内部、 22 振動伝達部材、 24 超音波発生器   DESCRIPTION OF SYMBOLS 10 Gel injector, 12 chamber, 14 Vacuum pump, 15 Gel supply apparatus, 16 Injection nozzle, 18 Inside of chamber, 22 Vibration transmission member, 24 Ultrasonic generator

Claims (2)

チャンバーと、
前記チャンバーに取り付けられ前記チャンバー内部にゲルを注入する注入ノズルと、
前記チャンバーと接続され前記チャンバー内の減圧を行う真空ポンプと、
前記チャンバーと接続され前記チャンバーに超音波振動を与える超音波発生器とを備えたことを特徴とするゲル注入器。
A chamber;
An injection nozzle attached to the chamber and injecting a gel into the chamber;
A vacuum pump connected to the chamber and depressurizing the chamber;
A gel injector comprising an ultrasonic generator connected to the chamber and applying ultrasonic vibration to the chamber.
内部にパワー半導体素子を有するパワーモジュールをチャンバー内に設置する工程と、
前記チャンバー内を減圧し、かつ前記チャンバーに超音波振動を印加する工程と、
前記減圧および、前記超音波振動の印加を継続して、前記パワー半導体素子を封止するように前記パワーモジュールにゲルを注入する工程と、
前記ゲルを注入した後さらに所定時間前記減圧および、前記超音波振動の印加を継続する工程とを備えたことを特徴とするパワーモジュールの製造方法。
Installing a power module having a power semiconductor element inside the chamber;
Reducing the pressure in the chamber and applying ultrasonic vibration to the chamber;
Injecting gel into the power module so as to seal the power semiconductor element by continuing the application of the reduced pressure and the ultrasonic vibration;
A method of manufacturing a power module, comprising: a step of continuing the pressure reduction and application of the ultrasonic vibration for a predetermined time after the gel is injected.
JP2010011364A 2010-01-21 2010-01-21 Gel injector and method of manufacturing power module using the same Active JP5136569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011364A JP5136569B2 (en) 2010-01-21 2010-01-21 Gel injector and method of manufacturing power module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010011364A JP5136569B2 (en) 2010-01-21 2010-01-21 Gel injector and method of manufacturing power module using the same

Publications (2)

Publication Number Publication Date
JP2011151214A JP2011151214A (en) 2011-08-04
JP5136569B2 true JP5136569B2 (en) 2013-02-06

Family

ID=44537931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011364A Active JP5136569B2 (en) 2010-01-21 2010-01-21 Gel injector and method of manufacturing power module using the same

Country Status (1)

Country Link
JP (1) JP5136569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215793A (en) * 2016-08-26 2016-12-14 国网河南省电力公司电力科学研究院 A kind of ultrasound wave for natural esters insulating oil mixes vacuum stirring tank

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295581B2 (en) * 2013-10-04 2018-03-20 富士電機株式会社 Manufacturing method of electrical equipment
JP6112130B2 (en) 2015-03-25 2017-04-12 トヨタ自動車株式会社 Electrostatic nozzle, discharge device, and method for manufacturing semiconductor module
CN105126393B (en) * 2015-08-18 2017-07-14 安徽日正新源电气技术有限公司 Vacuum defoaming device
CN112313781B (en) * 2018-06-27 2024-05-24 三菱电机株式会社 Power module, method for manufacturing the same, and power conversion device
CN113916068B (en) * 2021-12-13 2022-04-12 成都瑞迪威科技有限公司 Overload-resistant encapsulating process for missile-borne products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144115A (en) * 1999-11-10 2001-05-25 Mitsumi Electric Co Ltd Method and apparatus for packaging integrated circuit
JP3934302B2 (en) * 2000-03-27 2007-06-20 ミナミ株式会社 Vacuum defoaming device for anti-corrosion fixing material applied to components of mounted printed wiring boards
JP5357667B2 (en) * 2009-08-24 2013-12-04 本田技研工業株式会社 Manufacturing method of electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215793A (en) * 2016-08-26 2016-12-14 国网河南省电力公司电力科学研究院 A kind of ultrasound wave for natural esters insulating oil mixes vacuum stirring tank
CN106215793B (en) * 2016-08-26 2019-01-18 国网河南省电力公司电力科学研究院 A kind of ultrasonic wave mixing vacuum stirring tank for natural esters insulating oil

Also Published As

Publication number Publication date
JP2011151214A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5136569B2 (en) Gel injector and method of manufacturing power module using the same
JP5989124B2 (en) Power semiconductor device
US20130056883A1 (en) Semiconductor device and method of manufacturing the same
JP6398270B2 (en) Semiconductor device
JP6705394B2 (en) Semiconductor module and inverter device
JP4783583B2 (en) Method for internal electrical insulation of a substrate for a power semiconductor module
JP2015207582A (en) Power semiconductor device and method of manufacturing the same
US10937708B2 (en) Power module and method of manufacturing the same
US20160049358A1 (en) Electronic circuit, production method thereof, and electronic component
CN104078454A (en) Semiconductor device
JP6645134B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5987297B2 (en) Method for manufacturing power semiconductor device
KR20020009486A (en) Flip-chip type semiconductor device having split voids within under-fill layer and its manufacturing method
JP2012134300A (en) Semiconductor device
JP2015220295A (en) Power module and manufacturing method of the same
JP6101507B2 (en) Manufacturing method of semiconductor device
JP2011187819A (en) Resin sealed power module and method of manufacturing the same
JP5826443B1 (en) Semiconductor device and manufacturing method thereof
JP5693427B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6295581B2 (en) Manufacturing method of electrical equipment
JP6891075B2 (en) Power semiconductor module
JP5957814B2 (en) Power module manufacturing method
JP2015076547A (en) Electronic apparatus and manufacturing method for the same
JP2002217523A (en) Method of manufacturing electronic device
JP2013016653A (en) Manufacturing method and manufacturing apparatus of solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5136569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250