[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5011773B2 - Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness - Google Patents

Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness Download PDF

Info

Publication number
JP5011773B2
JP5011773B2 JP2006083362A JP2006083362A JP5011773B2 JP 5011773 B2 JP5011773 B2 JP 5011773B2 JP 2006083362 A JP2006083362 A JP 2006083362A JP 2006083362 A JP2006083362 A JP 2006083362A JP 5011773 B2 JP5011773 B2 JP 5011773B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
low
yield ratio
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006083362A
Other languages
Japanese (ja)
Other versions
JP2006299413A (en
Inventor
勝己 中島
力 上
一典 大澤
泰康 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006083362A priority Critical patent/JP5011773B2/en
Publication of JP2006299413A publication Critical patent/JP2006299413A/en
Application granted granted Critical
Publication of JP5011773B2 publication Critical patent/JP5011773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、特に原油、ガスなどのパイプライン、水道配管、建築・土木用の柱などに好適な、低温靭性に優れた低降伏比電縫鋼管の製造方法に関するものである。   The present invention relates to a method for producing a low yield ratio electric resistance welded steel pipe excellent in low temperature toughness, particularly suitable for pipelines of crude oil, gas, etc., water pipes, columns for construction and civil engineering.

電縫鋼管、スパイラル鋼管、継目無鋼管、UOE鋼管、プレスベンド鋼管などの炭素鋼鋼管あるいは低合金鋼鋼管は、大量にかつ安定して製造できるため、その優れた経済性や溶接施工性とあいまって、原油、ガスなどのラインパイプや水道配管などのような流体輸送用配管あるいは建築・土木用の柱として広く用いられている。
しかしながら、大地震が発生した場合、これら鋼管の長手方向には引張りおよび圧縮の大きな力が繰り返し加わり、外径/管厚比がある程度大きな鋼管では局部座屈を起こし、場合によっては円周方向のき裂の発生や破断に至ることがある。
Carbon steel pipes or low alloy steel pipes such as ERW steel pipes, spiral steel pipes, seamless steel pipes, UOE steel pipes, and press bend steel pipes can be manufactured in large quantities and stably. It is widely used as fluid transportation piping such as oil and gas line pipes and water pipes, or as pillars for construction and civil engineering.
However, when a large earthquake occurs, large tensile and compressive forces are repeatedly applied in the longitudinal direction of these steel pipes, causing local buckling in steel pipes with a large outer diameter / thickness ratio, and in some cases in the circumferential direction It can lead to cracking and fracture.

一般的に、鋼材に冷間加工を加えると加工硬化により降伏応力と引張強さ、特に降伏応力が上昇して、降伏比が高くなり、塑性変形吸収能が低下するといわれている。特に電縫鋼管の場合、コイル板幅方向(管円周方向)の降伏比は造管時に曲げ加工が施され、板での最終材質評価試験時の平板への展開によるバウシンガー効果により、母材の降伏比よりも低くなることがあるが、コイル長手方向(管軸方向)は、バウシンガー効果を期待することができないので降伏比の低い鋼管を得ることはできない。
降伏比の低い鋼管の製造方法としては、例えば、特許文献1に、耐震性能として降伏応力と引張強さの比である降伏比を小さくするための建築用鋼管の製造方法が開示されているが、熱間圧延後、再加熱したり、焼き入れたり、また造管時に焼き戻したりと熱処理工程が複雑である。
Generally, it is said that when cold working is applied to a steel material, the yield stress and tensile strength, particularly the yield stress, are increased by work hardening, the yield ratio is increased, and the plastic deformation absorption capacity is decreased. In particular, in the case of ERW steel pipe, the yield ratio in the coil plate width direction (circumferential direction of the pipe) is bent at the time of pipe making, and due to the Bauschinger effect due to the development on the flat plate during the final material evaluation test on the plate, Although it may be lower than the yield ratio of the material, a steel pipe with a low yield ratio cannot be obtained in the coil longitudinal direction (tube axis direction) because the Bauschinger effect cannot be expected.
As a method of manufacturing a steel pipe having a low yield ratio, for example, Patent Document 1 discloses a method of manufacturing a steel pipe for building to reduce the yield ratio, which is the ratio of yield stress and tensile strength, as earthquake resistance. The heat treatment process is complicated after re-heating, quenching, and tempering during pipe making after hot rolling.

また、特許文献2には、C:0.10〜0.18%と炭素含有量の多い素材を780℃以上の温度域で最終仕上熱延を行った後、空冷で冷却する方法が開示されているが、板厚が12mm以上と厚く、かつ炭素含有量の多い鋼を空冷で冷却した場合、冷却速度が遅いため鋼組織はフェライトと粗大なパーライト組織になり、低温靭性や耐サワー性が極めて劣悪な素材となってしまい、ラインパイプなどの高機能が要求される鋼管などには適用できない。
特開平3−173719号公報 特開平5−156357号公報
Patent Document 2 discloses a method in which a material having a high carbon content with C: 0.10 to 0.18% is subjected to final finish hot rolling in a temperature range of 780 ° C. or higher and then cooled by air cooling. However, when steel with a large plate thickness of 12 mm or more and a high carbon content is cooled by air cooling, the steel structure becomes ferrite and a coarse pearlite structure because the cooling rate is slow, and low temperature toughness and sour resistance are achieved. It becomes an extremely poor material and cannot be applied to steel pipes that require high functionality such as line pipes.
JP-A-3-173719 JP-A-5-156357

したがって本発明の目的は、上記従来技術の課題を解決し、低温靭性に優れるとともに、大地震の際などに軸方向に作用する圧縮や曲げ応力に対して局部座屈を起こしにくい塑性変形吸収能を有する低降伏比電縫鋼管の製造方法を提供することにある。   Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, and has excellent low-temperature toughness, and is also capable of absorbing plastic deformation that is less likely to cause local buckling against axially acting compressive and bending stresses during large earthquakes. It is providing the manufacturing method of the low yield ratio electric resistance welded steel pipe which has these.

上記課題を解決するための本発明の要旨は以下の通りである。
[1]質量%で、C:0.01〜0.09%、Si:0.50%以下、Mn:2.5%以下、Al:0.01〜0.10%、Nb:0.005〜0.10%を含有し、さらに、下記(1)式を満足するようにMo:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下のうちの1種または2種以上を含有し、残部が鉄および不可避的不純物からなるスラブを熱間圧延し、5℃/s以上の冷却速度で500〜650℃まで冷却して巻き取り、この温度範囲で10分以上滞留させてから500℃未満の温度に冷却して熱延鋼板とし、該熱延鋼板を造管することを特徴とする低温靭性に優れた低降伏比電縫鋼管の製造方法。
Mneq(%)=Mn+0.26Si+3.5P+1.30Cr+0.37Ni+2.67Mo≧2.0% …(1)
The gist of the present invention for solving the above problems is as follows.
[1] By mass%, C: 0.01 to 0.09%, Si: 0.50% or less, Mn: 2.5% or less, Al: 0.01 to 0.10%, Nb: 0.005 -0.10%, and Mo: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5 so as to satisfy the following formula (1) % Or less, hot-rolled slab consisting of iron and inevitable impurities, and cooled to 500 to 650 ° C. at a cooling rate of 5 ° C./s or more. The low-yield ratio ERW steel pipe excellent in low temperature toughness, characterized in that it is retained in this temperature range for 10 minutes or more and then cooled to a temperature of less than 500 ° C. to form a hot-rolled steel sheet, and pipes the hot-rolled steel sheet Manufacturing method.
Mneq (%) = Mn + 0.26Si + 3.5P + 1.30Cr + 0.37Ni + 2.67Mo ≧ 2.0% (1)

[2]上記[1]の製造方法において、スラブがさらに、質量%で、Ti:0.1%以下、V:0.1%以下、Zr:0.1%以下のうちの1種または2種以上を含有することを特徴とする低温靭性に優れた低降伏比電縫鋼管の製造方法。
[3]上記[1]または[2]の製造方法において、スラブが、質量%で、Mo:0.5%以下、Cr:0.5%以下を含有することを特徴とする低温靭性に優れた低降伏比電縫鋼管の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、造管時に、管長手方向に10%以下の圧縮歪み、または5%以下の引張歪みを付与することを特徴とする低温靭性に優れた低降伏比電縫鋼管の製造方法。
[2] In the production method of [1] above, the slab is further mass%, Ti: 0.1% or less, V: 0.1% or less, Zr: 0.1% or less, or one or two A method for producing a low yield ratio ERW steel pipe excellent in low temperature toughness, characterized by containing at least a seed.
[3] In the production method of [1] or [2], the low-temperature toughness is characterized in that the slab contains, by mass%, Mo: 0.5% or less and Cr: 0.5% or less. A low yield ratio ERW steel pipe manufacturing method.
[4] In the production method according to any one of [1] to [3], a low temperature characterized by imparting a compressive strain of 10% or less or a tensile strain of 5% or less in the longitudinal direction of the tube during pipe forming. A method for producing low yield ratio electric resistance welded steel pipe with excellent toughness.

本発明によれば、低温靭性、特に溶接熱影響部靭性に優れ、かつ高い塑性変形吸収能を有する低降伏比電縫鋼管を製造することができる。したがって、本発明法により得られた電縫鋼管を用いることにより、大地震が発生した際に、原油、ガスなどのラインパイプや水道配管の破損と内部流体の流出、あるいは高速道路の橋脚柱の破断による倒壊などの災害を防ぐことができ、また寒冷地に敷設されても脆性破壊の危険を回避することができる。   ADVANTAGE OF THE INVENTION According to this invention, the low yield ratio ERW steel pipe which is excellent in low temperature toughness, especially a weld heat affected zone toughness, and has a high plastic deformation absorptivity can be manufactured. Therefore, by using the electric resistance welded steel pipe obtained by the method of the present invention, when a large earthquake occurs, line pipes and water pipes such as crude oil and gas are damaged and internal fluids flow out, or the pier column of the highway Disasters such as collapse due to breakage can be prevented, and the risk of brittle fracture can be avoided even when laid in a cold region.

本発明者等は、鋭意検討を重ねた結果、鋼の成分組成と熱間圧延条件を最適化し、特定の鋼組織に制御することによって、低温靭性に優れた低降伏比電縫鋼管を製造できることを見出し、本発明を完成させた。
すなわち、本発明の電縫鋼管の製造方法は、質量%で、C:0.01〜0.09%、Si:0.50%以下、Mn:2.5%以下、Al:0.01〜0.10%、Nb:0.005〜0.10%を含有し、さらに、下記(1)式を満足するようにMo:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下のうちの1種または2種以上を含有し、
Mneq(%)=Mn+0.26Si+3.5P+1.30Cr+0.37Ni+2.67Mo≧2.0% …(1)
さらに必要に応じてTi:0.1%以下、V:0.1%以下、Zr:0.1%以下のうちの1種または2種以上を含有し、残部が鉄および不可避的不純物からなるスラブを熱間圧延し、5℃/s以上の冷却速度で500〜650℃まで冷却して巻き取り、この温度範囲で10分以上滞留させてから500℃未満の温度に冷却し、これにより得られた、母相がベイニティック・フェライトであって、かつマルテンサイトの体積率が3%以上、さらに必要に応じて残留オーステナイトの体積率が1%以上である組織を有する熱延鋼板を造管するものである。また、この造管時には、管長手方向に10%以下の圧縮歪み、または5%以下の引張歪みを付与することが好ましい。
As a result of intensive studies, the present inventors have been able to produce a low yield ratio ERW steel pipe excellent in low temperature toughness by optimizing the composition of steel and hot rolling conditions and controlling it to a specific steel structure. The present invention was completed.
That is, the manufacturing method of the ERW steel pipe of the present invention is, in mass%, C: 0.01 to 0.09%, Si: 0.50% or less, Mn: 2.5% or less, Al: 0.01 to 0.10%, Nb: 0.005 to 0.10%, and Mo: 0.5% or less, Cu: 0.5% or less, Ni: 0 to satisfy the following formula (1) 0.5% or less, Cr: containing one or more of 0.5% or less,
Mneq (%) = Mn + 0.26Si + 3.5P + 1.30Cr + 0.37Ni + 2.67Mo ≧ 2.0% (1)
Further, if necessary, it contains one or more of Ti: 0.1% or less, V: 0.1% or less, Zr: 0.1% or less, and the balance is made of iron and inevitable impurities. The slab is hot-rolled, cooled to 500 to 650 ° C. at a cooling rate of 5 ° C./s or more, wound up in this temperature range for 10 minutes or more, and then cooled to a temperature of less than 500 ° C. A hot rolled steel sheet having a structure in which the parent phase is bainitic ferrite, the martensite volume fraction is 3% or more, and the retained austenite volume fraction is 1% or more, if necessary. It is something to be tubed. Moreover, at the time of this pipe making, it is preferable to give a compressive strain of 10% or less or a tensile strain of 5% or less in the longitudinal direction of the tube.

本発明は、上記のように鋼の成分組成と製造条件を限定することにより、大地震の際に軸方向に作用する圧縮や曲げ応力に対して局部座屈を起こしにくく、パイプライン、水道配管、建築・土木用の柱などに好適な耐震性に優れた鋼管を得ることができる。
本発明の成分組成および製造条件について、以下に具体的に説明する。
By limiting the composition of steel and production conditions as described above, the present invention is less likely to cause local buckling against compressive and bending stress acting in the axial direction in the event of a large earthquake. In addition, it is possible to obtain a steel pipe excellent in earthquake resistance suitable for a pillar for construction and civil engineering.
The component composition and production conditions of the present invention will be specifically described below.

(1)成分組成について
以下、成分組成の限定理由について説明する。なお、成分組成における各元素の含有量は、全て質量%を意味する。
(C:0.01〜0.09%)
C量が0.01%未満では、結晶粒が粗大化することによって固溶C量が増大し、降伏比が高くなる。一方、0.09%を超えると、鋼の組織において粗大なパーライトが生成しやすくなり、低温靭性が劣化する。このためC量は0.01〜0.09%とする。
(Si:0.5%以下)
Si量が0.5%を超えると電縫溶接時に酸化物が生成しやすくなり、溶接熱影響部靭性が劣化する。このためSi量は0.5%以下、好ましくは0.3%以下とする。
(1) About component composition Hereinafter, the reason for limitation of a component composition is demonstrated. In addition, all content of each element in a component composition means the mass%.
(C: 0.01-0.09%)
When the amount of C is less than 0.01%, the crystal grains become coarse, so that the amount of solid solution C increases and the yield ratio increases. On the other hand, if it exceeds 0.09%, coarse pearlite is easily generated in the steel structure, and the low-temperature toughness deteriorates. Therefore, the C amount is set to 0.01 to 0.09%.
(Si: 0.5% or less)
If the Si content exceeds 0.5%, oxides are likely to be generated during ERW welding, and the weld heat affected zone toughness deteriorates. Therefore, the Si content is 0.5% or less, preferably 0.3% or less.

(Mn:2.5%以下)
Mnは鋼の強度確保に有効な元素であるが、2.5%を超えて添加すると溶接熱影響部靭性が劣化する。このためMn量は2.5%以下とする。なお、低温変態相をより安定して生成させるには、Mn量を1.15%超とすることが好ましい。
(Al:0.01〜0.10%)
Alは製鋼段階での脱酸剤として用いられる他、歪み時効の原因であるNを固定するのに有効な元素であり、0.01%以上含有するように添加する必要がある。但し、0.10%超の含有量になるような添加は、溶鋼コストを不必要に上昇させるので好ましくなく、また、鋼中酸化物を増加させて母材および電縫溶接部の靭性を低下させたり、加熱炉中で表層に窒化を引き起こし降伏比の増加をもたらすおそれもある。このためAl量は0.01〜0.10%、好ましくは0.02〜0.05%とする。
(Mn: 2.5% or less)
Mn is an element effective for ensuring the strength of steel, but if added over 2.5%, the weld heat affected zone toughness deteriorates. For this reason, the amount of Mn is 2.5% or less. In order to more stably generate the low temperature transformation phase, the Mn content is preferably more than 1.15%.
(Al: 0.01-0.10%)
In addition to being used as a deoxidizer in the steelmaking stage, Al is an element effective for fixing N, which is the cause of strain aging, and needs to be added so as to contain 0.01% or more. However, the addition of more than 0.10% is not preferable because it unnecessarily raises the cost of molten steel, and also increases the oxide in the steel and lowers the toughness of the base metal and the ERW weld. Or cause nitridation of the surface layer in a heating furnace, leading to an increase in yield ratio. For this reason, the Al content is 0.01 to 0.10%, preferably 0.02 to 0.05%.

(Nb:0.005〜0.10%)
Nbは、熱延中もしくは熱延終了後にNbCを析出させ、かつ鋼の再結晶挙動、粒成長を抑制して、結晶粒を微細化、ベイニティック・フェライト化し、強度上昇を促すとともに、靭性を確保するのに有効な元素であることから必須元素とした。その効果を出すためには0.005%以上含有する必要がある。但し、0.10%超の含有は溶鋼コストを上昇させるとともに、熱延の変形抵抗が大きくなるため好ましくない。また、溶接時の析出物の粗大化を招き、溶接熱影響部靭性を損なうおそれもある。このためNb量は0.005〜0.10%、好ましくは0.02〜0.07%とする。
(Nb: 0.005-0.10%)
Nb precipitates NbC during hot rolling or after hot rolling and suppresses the recrystallization behavior and grain growth of steel, refines the crystal grains, turns into bainitic ferrite, promotes strength increase, and toughness It is an essential element because it is an effective element for ensuring the above. In order to exhibit the effect, it is necessary to contain 0.005% or more. However, the content exceeding 0.10% is not preferable because it increases the cost of molten steel and increases the deformation resistance of hot rolling. Moreover, the coarsening of the precipitate at the time of welding may be caused, and there exists a possibility of impairing the heat-affected zone toughness. Therefore, the Nb content is 0.005 to 0.10%, preferably 0.02 to 0.07%.

(Mo:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下)
Mo、Cu、Ni、Crは、鋼板の強度上昇に有効な元素である。いずれも0.5%を超える添加は、溶接性および溶接熱影響部靭性の劣化を招く。このためMo:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下のうちの1種以上を添加する。
また、上記元素群のなかで、Crはγ相安定化に寄与し、低温変態生成物を生成しやすくし、低降伏比化に有効な元素である。また、Moも低温変態生成物の生成と低降伏比化に寄与する元素である。したがって、Mo:0.5%以下、Cr:0.5%以下を複合添加することが特に好ましく、より好ましい添加量はMo:0.3%以下、Cr:0.3%以下である。また、これらの含有量は、Moについては0.05%以上、特に好ましくは0.10%以上、Crについては0.10%以上、特に好ましくは0.15%以上とすることが望ましい。
(Mneq(%)=Mn+0.26Si+3.5P+1.30Cr+0.37Ni+2.67Mo:2.0%以上)
Mneq(%)を2.0%以上としたのは、2.0%未満では熱延後にマルテンサイトを生成し、85%以下の低降伏比化を図ることができないからである。従って、本発明ではMneq(%)を2.0%以上とした。また、より確実に降伏比を85%以下としたい場合には2.2%以上とするのが望ましい。
(Mo: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less)
Mo, Cu, Ni and Cr are effective elements for increasing the strength of the steel sheet. In any case, addition exceeding 0.5% causes deterioration of weldability and weld heat-affected zone toughness. Therefore, at least one of Mo: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, and Cr: 0.5% or less is added.
Of the above element groups, Cr contributes to the stabilization of the γ phase, facilitates the formation of low-temperature transformation products, and is an effective element for reducing the yield ratio. Mo is also an element that contributes to the formation of a low-temperature transformation product and a low yield ratio. Therefore, it is particularly preferable to add Mo: 0.5% or less and Cr: 0.5% or less, and more preferable addition amounts are Mo: 0.3% or less and Cr: 0.3% or less. These contents are desirably 0.05% or more, particularly preferably 0.10% or more for Mo, and 0.10% or more, particularly preferably 0.15% or more for Cr.
(Mneq (%) = Mn + 0.26Si + 3.5P + 1.30Cr + 0.37Ni + 2.67Mo: 2.0% or more)
The reason why Mneq (%) is set to 2.0% or more is that if it is less than 2.0%, martensite is generated after hot rolling, and a low yield ratio of 85% or less cannot be achieved. Therefore, in the present invention, Mneq (%) is set to 2.0% or more. Moreover, when it is desired to more surely make the yield ratio 85% or less, it is desirable to set it to 2.2% or more.

本発明では、さらに、鋼管の強度や靭性などの目標に応じて、以下の選択元素のうちの1種以上を含有させてもよい。
(Ti:0.1%以下、V:0.1%以下、Zr:0.1%以下)
Ti、V、Zrは微細な炭窒化物を形成し、鋼の靭性および強度を上昇させる元素である。しかし、Ti:0.1%、V:0.1%、Zr:0.1%を超える添加は、溶接熱影響部靭性を劣化させる。したがって、Ti:0.1%以下、V:0.1%以下、Zr:0.1%以下のうちの1種以上を添加する。また、好ましくはそれぞれ0.05%以下とするのがよい。
In the present invention, one or more of the following selective elements may be further contained in accordance with targets such as the strength and toughness of the steel pipe.
(Ti: 0.1% or less, V: 0.1% or less, Zr: 0.1% or less)
Ti, V, and Zr are elements that form fine carbonitrides and increase the toughness and strength of steel. However, addition exceeding Ti: 0.1%, V: 0.1%, Zr: 0.1% deteriorates the weld heat affected zone toughness. Accordingly, at least one of Ti: 0.1% or less, V: 0.1% or less, and Zr: 0.1% or less is added. Further, it is preferable that the content of each be 0.05% or less.

その他、不純物元素として混入するP、Sについては、本発明で特に限定するものではないが、Pは粒界に偏析して粒界強度を弱め、溶接熱影響部靭性を劣化させる。このためP量は0.03%以下であることが好ましい。また、Sは0.01%を超えて含有すると溶接熱影響部靭性を劣化させる。したがって、S量は0.01%以下、好ましくは0.005%以下とすることが望ましい。   In addition, P and S mixed as impurity elements are not particularly limited in the present invention, but P segregates at the grain boundaries to weaken the grain boundary strength and deteriorate the weld heat affected zone toughness. Therefore, the P amount is preferably 0.03% or less. Moreover, when S exceeds 0.01%, the weld heat-affected zone toughness is deteriorated. Therefore, the S content is 0.01% or less, preferably 0.005% or less.

(2)製造条件等について
以下に望ましい製造条件について説明する。
(熱延後の冷却速度:5℃/s以上)
熱延後の冷却速度を5℃/s以上としたのは、冷却速度が5℃/s未満では、γ→α変態が高温で開始するため、生成するフェライト組織がポリゴナルフェライトとなり、強度および靭性の確保が難しくなるからである。したがって、母相組織をベイニティック・フェライトにして強度と靭性を確保するためには、5℃/s以上の冷却速度とする必要がある。
但し、冷却速度が45℃/sを超えると冷却過程でγ/αの二相分離が十分に行われず、所望の低温変態生成物が得られにくくなる。このため低温変態生成物の生成の観点からは、冷却速度は45℃/s以下が望ましい。
(2) Manufacturing conditions, etc. Desirable manufacturing conditions are described below.
(Cooling rate after hot rolling: 5 ° C / s or more)
The reason why the cooling rate after hot rolling was set to 5 ° C./s or more is that when the cooling rate is less than 5 ° C./s, the γ → α transformation starts at a high temperature, and thus the ferrite structure to be formed becomes polygonal ferrite. This is because it becomes difficult to ensure toughness. Therefore, a cooling rate of 5 ° C./s or more is required to make the matrix structure bainitic ferrite to ensure strength and toughness.
However, if the cooling rate exceeds 45 ° C./s, two-phase separation of γ / α is not sufficiently performed in the cooling process, and it becomes difficult to obtain a desired low-temperature transformation product. For this reason, from the viewpoint of producing a low-temperature transformation product, the cooling rate is desirably 45 ° C./s or less.

(熱延後の巻取り温度:500〜650℃)
熱延後の巻取り温度を500〜650℃としたのは、500℃未満で巻取ると低温変態生成物のほとんどがベイナイト組織となり、強度確保と低降伏比化が困難になるからである。一方、650℃を超えると靭性によくないパーライト組織が生成してしまう。したがって、ベイナイト、パーライトの生成ノーズを回避し、主な低温変態生成物をマルテンサイトにするためには、熱延後の巻取り温度を500〜650℃とする必要がある。また、より好ましい巻取り温度は520〜630℃である。
(巻取り後の冷却条件:巻取り後、10分以上滞留させてから500℃未満に冷却)
巻取り後、10分以上滞留させてから500℃未満の温度に冷却する理由は、10分未満の滞留では、ベイナイトの生成ノーズを通過し、低温変態生成物のほとんどがベイナイト組織となってしまい、低降伏比化に有利なマルテンサイト、残留オーステナイトが得られなくなってしまうからである。
(Taking-up temperature after hot rolling: 500 to 650 ° C.)
The reason for setting the coiling temperature after hot rolling to 500 to 650 ° C. is that when the coil is wound at less than 500 ° C., most of the low-temperature transformation product becomes a bainite structure, and it becomes difficult to ensure the strength and reduce the yield ratio. On the other hand, when the temperature exceeds 650 ° C., a pearlite structure which is not good in toughness is generated. Therefore, in order to avoid the formation nose of bainite and pearlite and to change the main low temperature transformation product to martensite, it is necessary to set the coiling temperature after hot rolling to 500 to 650 ° C. Moreover, a more preferable winding temperature is 520-630 degreeC.
(Cooling condition after winding: after winding, stay for 10 minutes or more and then cool to below 500 ° C)
The reason for cooling to a temperature of less than 500 ° C. after being retained for 10 minutes or more after winding is that the retention time of less than 10 minutes passes through the bainite generation nose and most of the low-temperature transformation product becomes a bainite structure. This is because martensite and retained austenite, which are advantageous for lowering the yield ratio, cannot be obtained.

(熱延板組織)
本発明において得られる熱延板組織は、母相(体積率で50%超の相)がベイニティック・フェライトで、残部が低温変態相からなり、この低温変態相としてマルテンサイトの体積率が3%以上、さらに必要に応じて残留オーステナイトの体積率が1%以上の組織である。
ここで、ベイニティック・フェライトは、ベイナイト組織が転位密度の高いラス状組織を持った下部組織を有しており、組織内に鉄の炭化物を有していない点で、ベイナイト組織とは明らかに異なる。また、転位密度がないか或いは極めて少ない下部組織を有するポリゴナル・フェライト組織、或いは細かいサブグレイン等の下部組織を持った準ポリゴナル・フェライト組織とも異なっている。
(Hot rolled sheet structure)
In the hot-rolled sheet structure obtained in the present invention, the parent phase (phase with a volume ratio of more than 50%) is bainitic ferrite, and the remainder is a low-temperature transformation phase, and the volume fraction of martensite is the low-temperature transformation phase. 3% or more, and if necessary, the volume ratio of retained austenite is 1% or more.
Here, bainitic ferrite has a substructure with a lath-like structure with a high dislocation density in the bainite structure, and is clear from the bainite structure in that it does not have iron carbide in the structure. Different. Also, it is different from a polygonal ferrite structure having a substructure with little or no dislocation density, or a quasi-polygonal ferrite structure having a substructure such as fine subgrains.

母相をベイニティック・フェライトとし、低温変態生成物のうちマルテンサイトの体積率を3%以上、必要に応じて残留オーステナイトの体積率を1%以上としたのは、強度と靭性を確保するためであり、マルテンサイトの体積率が3%未満、或いは均一伸びをプラスアルファして造管時の歪み量が多い場合でも、加工硬化による急激な応力増加を抑制し、降伏比の上昇を軽減したい場合、残留オーステナイトの体積率が1%未満では、目的とする低降伏比化が困難である。低温変態生成物の中には一部ベイナイトが含まれていても特に問題はない。なお、過剰なマルテンサイトは低温靱性を損なうため、マルテンサイトの体積率は20%以下、望ましくは10%以下とすることが好ましい。また、残留オーステナイトは造管歪によってマルテンサイトに変態するので、同様に過剰なマルテンサイトによって低温靱性を損なわないようにするため、残留オーステナイトの体積率は10%以下、望ましくは5%以下とすることが好ましい。   The parent phase is bainitic ferrite, and the volume fraction of martensite in the low-temperature transformation product is 3% or more, and if necessary, the volume fraction of retained austenite is 1% or more to ensure strength and toughness. For this reason, even when the volume ratio of martensite is less than 3%, or when the amount of strain during pipe making is large due to the addition of uniform elongation, a rapid increase in stress due to work hardening is suppressed, and the increase in yield ratio is reduced. If the volume ratio of retained austenite is less than 1%, it is difficult to achieve the desired low yield ratio. There is no particular problem even if some of the low temperature transformation products contain bainite. In addition, since excessive martensite impairs low temperature toughness, the volume ratio of martensite is preferably 20% or less, and preferably 10% or less. In addition, since the retained austenite is transformed into martensite due to tube-forming strain, the volume ratio of retained austenite is 10% or less, preferably 5% or less in order not to impair the low temperature toughness due to excessive martensite. It is preferable.

(造管条件)
電縫鋼管は、基本的に通常の方法で製造する。すなわち、例えば、鋼帯をケージロールフォーミングで成形し、電気抵抗溶接を行い、内外面のビード研削を施した後、ポストアニーラにて熱処理を付与し、サイジングを行う。
造管時、降伏比の増大を防止する目的から圧縮予歪みを付与することは、バウシンガー効果を利用して低降伏比化を図る上で有効な手段であるが、無理に10%超の圧縮歪み或いは5%超の引張歪を付与すると、加工硬化によって降伏比が上昇してしまうので、そのような圧縮歪みまたは引張歪の付与は避けることが好ましい。このため造管時に管長手方向に付与する圧縮歪みは10%以下、好ましくは5%以下とすることが望ましい。同じく引張歪みは5%以下とするのが望ましい。
なお、本発明の製造方法は電縫鋼管に限らず、UOE鋼管やスパイラル鋼管、プレスベンド鋼管など種々の素材の方法にも採用することもできる。
(Pipe making conditions)
The ERW steel pipe is basically manufactured by a usual method. That is, for example, a steel strip is formed by cage roll forming, electric resistance welding is performed, bead grinding of the inner and outer surfaces is performed, heat treatment is applied by a post-annealer, and sizing is performed.
Giving compression pre-strain for the purpose of preventing an increase in yield ratio during pipe making is an effective means for reducing the yield ratio using the Bauschinger effect, but forcibly exceeds 10%. If compressive strain or tensile strain exceeding 5% is applied, the yield ratio increases due to work hardening, so it is preferable to avoid applying such compressive strain or tensile strain. For this reason, it is desirable that the compressive strain applied in the longitudinal direction of the pipe during pipe making is 10% or less, preferably 5% or less. Similarly, the tensile strain is desirably 5% or less.
In addition, the manufacturing method of this invention can also be employ | adopted also for the method of various raw materials, such as not only an ERW steel pipe but a UOE steel pipe, a spiral steel pipe, and a press bend steel pipe.

表1に本発明鋼及び比較鋼の成分組成を示す。表2および表3には、各製造方法で鋼管素材を製造し、外径18インチの電縫鋼管にした後、溶接部から管周方向180°部(素材コイルの幅中央部)の管軸方向(素材コイルの圧延方向)の材料特性を示した。
引張特性は小型丸棒引張試験片を用いて測定した。ここで降伏比とは、0.5%歪み時の応力/引張強さの比を言い、降伏比が85%以下のものを“良好”、85%超のものを“不良”とする。
Table 1 shows the composition of the steels of the present invention and the comparative steel. Tables 2 and 3 show that the steel pipe material is manufactured by each manufacturing method and made into an ERW steel pipe having an outer diameter of 18 inches, and then the pipe shaft in the circumferential direction of 180 ° from the welded portion (the center portion of the width of the material coil). The material characteristics in the direction (rolling direction of the material coil) are shown.
Tensile properties were measured using small round bar tensile specimens. Here, the yield ratio refers to the ratio of stress / tensile strength at 0.5% strain. The yield ratio is 85% or less as “good” and the yield ratio exceeding 85% as “bad”.

鋼板のミクロ組織は、鋼板の圧延方向断面を走査型電子顕微鏡にて観察することにより調査した。倍率3000倍の断面組織写真を用いて、画像解析により任意に設定した100mm四方の正方形領域内に存在するマルテンサイトの占有面積率を求め、マルテンサイトの体積率とした。
また、残留オーステナイト量は、鋼板を板厚方向の中心面まで研磨し、板厚中心面での回折X線強度測定により求めた。入射X線にはMoKα線を使用し、残留オーステナイト相の{111}、{200}、{220}、{311}各面の回折X線強度比を求め、これらの平均値を残留オーステナイトの体積率とした。
The microstructure of the steel sheet was investigated by observing a cross section in the rolling direction of the steel sheet with a scanning electron microscope. Using a cross-sectional structure photograph at a magnification of 3000 times, the area ratio of martensite existing in a 100 mm square area set arbitrarily by image analysis was determined and used as the volume ratio of martensite.
The amount of retained austenite was obtained by polishing the steel plate to the center plane in the plate thickness direction and measuring the diffraction X-ray intensity at the plate thickness center plane. MoKα rays are used as incident X-rays, and the diffracted X-ray intensity ratios of the {111}, {200}, {220}, and {311} surfaces of the retained austenite phase are determined, and the average value of these is calculated as the volume of retained austenite. Rate.

母材および溶接熱影響部靭性はJIS Z 2202の4号試験片を用いシャルピー衝撃試験で評価し、JIS Z 2242で示される破面遷移温度で示した。なお、破面遷移温度が−50℃以下のものを“良好”、−50℃超を“不良”とする。
表1〜表3から明らかなように、本発明条件を満足する鋼管は降伏比が低く、かつ良好な溶接熱影響部靭性を有している。
これに対して比較例は、降伏比と溶接熱影響部靭性の少なくとも一方が劣っている。
Base metal and weld heat affected zone toughness were evaluated by Charpy impact test using No. 4 test piece of JIS Z 2202, and indicated by fracture surface transition temperature indicated by JIS Z 2242. A fracture surface transition temperature of −50 ° C. or lower is defined as “good”, and a temperature above −50 ° C. is defined as “bad”.
As is apparent from Tables 1 to 3, steel pipes satisfying the conditions of the present invention have a low yield ratio and good weld heat affected zone toughness.
On the other hand, the comparative example is inferior in at least one of the yield ratio and the weld heat affected zone toughness.

Figure 0005011773
Figure 0005011773

Figure 0005011773
Figure 0005011773

Figure 0005011773
Figure 0005011773

Claims (4)

質量%で、C:0.01〜0.09%、Si:0.50%以下、Mn:2.5%以下、Al:0.01〜0.10%、Nb:0.005〜0.10%を含有し、さらに、下記(1)式を満足するようにMo:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下のうちの1種または2種以上を含有し、残部が鉄および不可避的不純物からなるスラブを熱間圧延し、5℃/s以上の冷却速度で500〜650℃まで冷却して巻き取り、この温度範囲で10分以上滞留させてから500℃未満の温度に冷却して熱延鋼板とし、該熱延鋼板を造管することを特徴とする低温靭性に優れた低降伏比電縫鋼管の製造方法。
Mneq(%)=Mn+0.26Si+3.5P+1.30Cr+0.37Ni+2.67Mo≧2.0% …(1)
In mass%, C: 0.01 to 0.09%, Si: 0.50% or less, Mn: 2.5% or less, Al: 0.01 to 0.10%, Nb: 0.005 to 0.005. 10% is contained, and Mo: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less so as to satisfy the following formula (1) A slab containing one or more of them, the balance being iron and unavoidable impurities is hot-rolled, cooled to 500 to 650 ° C. at a cooling rate of 5 ° C./s or more, and taken up at this temperature. A method for producing a low yield ratio ERW steel pipe excellent in low temperature toughness, characterized in that the hot rolled steel sheet is cooled by cooling to a temperature of less than 500 ° C. after being retained for 10 minutes or more in the range, and the hot rolled steel sheet is piped .
Mneq (%) = Mn + 0.26Si + 3.5P + 1.30Cr + 0.37Ni + 2.67Mo ≧ 2.0% (1)
スラブがさらに、質量%で、Ti:0.1%以下、V:0.1%以下、Zr:0.1%以下のうちの1種または2種以上を含有することを特徴とする請求項1に記載の低温靭性に優れた低降伏比電縫鋼管の製造方法。   The slab further contains, by mass%, one or more of Ti: 0.1% or less, V: 0.1% or less, Zr: 0.1% or less. 2. A method for producing a low yield specific electric resistance welded steel pipe excellent in low temperature toughness according to 1. スラブが、質量%で、Mo:0.5%以下、Cr:0.5%以下を含有することを特徴とする請求項1または2に記載の低温靭性に優れた低降伏比電縫鋼管の製造方法。   The slab contains, by mass%, Mo: 0.5% or less and Cr: 0.5% or less. The low yield specific electric resistance steel pipe excellent in low temperature toughness according to claim 1 or 2 Production method. 造管時に、管長手方向に10%以下の圧縮歪み、または5%以下の引張歪みを付与することを特徴とする請求項1〜3のいずれかに記載の低温靭性に優れた低降伏比電縫鋼管の製造方法。   The low yield specific electricity excellent in low temperature toughness according to any one of claims 1 to 3, wherein a compressive strain of 10% or less or a tensile strain of 5% or less is imparted in the longitudinal direction of the tube during pipe forming. Manufacturing method of sewn steel pipe.
JP2006083362A 2005-03-24 2006-03-24 Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness Active JP5011773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083362A JP5011773B2 (en) 2005-03-24 2006-03-24 Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005086764 2005-03-24
JP2005086764 2005-03-24
JP2006083362A JP5011773B2 (en) 2005-03-24 2006-03-24 Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JP2006299413A JP2006299413A (en) 2006-11-02
JP5011773B2 true JP5011773B2 (en) 2012-08-29

Family

ID=37468052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083362A Active JP5011773B2 (en) 2005-03-24 2006-03-24 Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP5011773B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223379B2 (en) * 2007-03-08 2013-06-26 新日鐵住金株式会社 High strength hot rolled steel sheet for spiral pipe with excellent low temperature toughness and method for producing the same
JP5195469B2 (en) * 2009-01-30 2013-05-08 Jfeスチール株式会社 Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5390922B2 (en) * 2009-04-20 2014-01-15 株式会社神戸製鋼所 Low yield ratio high toughness steel plate
JP4741715B2 (en) * 2009-06-11 2011-08-10 新日本製鐵株式会社 High strength steel pipe and manufacturing method thereof
JP5333118B2 (en) * 2009-09-25 2013-11-06 Jfeスチール株式会社 High-strength ERW steel pipe for steel pipe pile and manufacturing method thereof
JP5742123B2 (en) * 2010-07-16 2015-07-01 Jfeスチール株式会社 High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
CN102172619A (en) * 2010-12-31 2011-09-07 武汉钢铁(集团)公司 Hot rolling process capable of improving high-grade thick pipeline steel fracture toughness
JP5679114B2 (en) * 2011-02-24 2015-03-04 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5776398B2 (en) * 2011-02-24 2015-09-09 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
CN103687975B (en) * 2011-07-20 2016-01-20 杰富意钢铁株式会社 The low yield ratio, high strength hot-rolled steel sheet of excellent in low temperature toughness and manufacture method thereof
WO2014041801A1 (en) 2012-09-13 2014-03-20 Jfeスチール株式会社 Hot-rolled steel sheet and method for manufacturing same
US20150232970A1 (en) 2012-09-13 2015-08-20 Jfe Steel Corporation Hot-rolled steel sheet and method for manufacturing the same
JP5783229B2 (en) 2013-11-28 2015-09-24 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
CN112662933A (en) * 2020-11-24 2021-04-16 莱芜钢铁集团银山型钢有限公司 Preparation method of low-temperature impact toughness-resistant wind power steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066750B2 (en) * 1983-11-02 1994-01-26 新日本製鐵株式会社 Method for producing high strength ERW oil well steel pipe with excellent low temperature toughness
JPS6148518A (en) * 1984-08-15 1986-03-10 Nippon Steel Corp Manufacture of hot rolled steel plate
JPH05320775A (en) * 1992-05-22 1993-12-03 Kawasaki Steel Corp Production of electric resistance welded steel tube excellent in low temperature toughness
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP2006299414A (en) * 2005-03-24 2006-11-02 Jfe Steel Kk Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness

Also Published As

Publication number Publication date
JP2006299413A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP5011773B2 (en) Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
TWI558823B (en) Hot rolled steel sheet and method of manufacturing same
CA2749409C (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6237961B1 (en) High strength hot-rolled steel sheet for ERW steel pipe and method for producing the same
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP4905240B2 (en) Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance
JP5499734B2 (en) Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5644982B1 (en) ERW welded steel pipe
JP5630026B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP2006299414A (en) Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
WO2013099192A1 (en) High-tension hot rolled steel sheet and method for manufacturing same
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
WO2020202334A1 (en) Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP2019116659A (en) Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP5998670B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
WO2020202333A1 (en) Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
JP5521484B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5011773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250