[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5499734B2 - Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same - Google Patents

Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same Download PDF

Info

Publication number
JP5499734B2
JP5499734B2 JP2010016828A JP2010016828A JP5499734B2 JP 5499734 B2 JP5499734 B2 JP 5499734B2 JP 2010016828 A JP2010016828 A JP 2010016828A JP 2010016828 A JP2010016828 A JP 2010016828A JP 5499734 B2 JP5499734 B2 JP 5499734B2
Authority
JP
Japan
Prior art keywords
less
temperature
hot
phase
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010016828A
Other languages
Japanese (ja)
Other versions
JP2010196165A (en
Inventor
力 上
博士 中田
欣哉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010016828A priority Critical patent/JP5499734B2/en
Publication of JP2010196165A publication Critical patent/JP2010196165A/en
Application granted granted Critical
Publication of JP5499734B2 publication Critical patent/JP5499734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、原油、天然ガス等を輸送するラインパイプ用として、高靭性が要求される高強度電縫鋼管あるいは高強度スパイラル鋼管の素材用として好適な、板厚:22mm超の極厚高張力熱延鋼板およびその製造方法に係り、とくに低温靭性の向上に関する。   The present invention is suitable for use as a material for high-strength ERW steel pipes or high-strength spiral steel pipes that require high toughness for line pipes that transport crude oil, natural gas, etc. The present invention relates to a hot-rolled steel sheet and a manufacturing method thereof, and particularly relates to improvement of low-temperature toughness.

近年、石油危機以来の原油の高騰や、エネルギー供給源の多様化の要求などから、北海、カナダ、アラスカ等のような極寒地での石油、天然ガスの採掘およびパイプラインの敷設が活発に行われるようになっている。また、一旦は、開発が放棄された腐食性の強いサワーガス田等に対する開発も盛んとなっている。
さらに、パイプラインにおいては、天然ガスやオイルの輸送効率向上のため、大径で高圧操業を行う傾向となっている。パイプラインの高圧操業に耐えるため、輸送管(ラインパイプ)は厚肉の鋼管とする必要があり、厚鋼板を素材とするUOE鋼管が使用されるようになってきている。しかし、最近では、パイプラインの施工コストの更なる低減という強い要望や、UOE鋼管の供給能力不足などのために、鋼管の材料コスト低減の要求も強く、輸送管として、厚鋼板を素材とするUOE鋼管に代わり、生産性が高くより安価な、コイル形状の熱延鋼板(熱延鋼帯)を素材とした高強度電縫鋼管あるいは高強度スパイラル鋼管が用いられるようになってきた。
In recent years, oil and natural gas mining and pipeline construction have been actively carried out in extremely cold regions such as the North Sea, Canada and Alaska due to soaring crude oil since the oil crisis and the demand for diversified energy supply sources. It has come to be. Also, once the development has been abandoned, the development of a corrosive sour gas field, etc., has become active.
Furthermore, in the pipeline, in order to improve the transportation efficiency of natural gas and oil, there is a tendency to perform high-pressure operation with a large diameter. In order to withstand the high-pressure operation of the pipeline, the transport pipe (line pipe) needs to be a thick steel pipe, and a UOE steel pipe made of a thick steel plate has been used. However, recently, due to the strong demand for further reduction of pipeline construction costs and the lack of supply capacity of UOE steel pipes, there is a strong demand for reducing the material cost of steel pipes. Instead of UOE steel pipes, high-strength ERW steel pipes or high-strength spiral steel pipes made of coil-shaped hot-rolled steel sheets (hot-rolled steel strips), which are more productive and cheaper, have come to be used.

これら高強度鋼管には、ラインパイプの破壊を防止する観点から、優れた低温靭性を保持することが要求されている。このような高強度と高靭性とを兼備した鋼管を製造するために、鋼管素材である鋼板では、熱間圧延後の加速冷却を利用した変態強化や、Nb、V、Ti等の合金元素の析出物を利用した析出強化等による高強度化と、制御圧延等を利用した組織の微細化等による高靭性化が図られてきた。   These high-strength steel pipes are required to maintain excellent low-temperature toughness from the viewpoint of preventing line pipe breakage. In order to produce a steel pipe having both such high strength and high toughness, in steel sheets that are steel pipe materials, transformation strengthening using accelerated cooling after hot rolling and alloying elements such as Nb, V, Ti, etc. Strengthening by precipitation strengthening using precipitates and toughness by microstructure refinement using controlled rolling have been attempted.

また、硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプでは、高強度、高靭性などの特性に加えて、耐水素誘起割れ性(耐HIC性)、耐応力腐食割れ性などのいわゆる耐サワー性にも優れることが要求される。
このような要求に対し、例えば特許文献1には、C:0.005〜0.030%未満、B:0.0002〜0.0100%を含み、Ti:0.20%以下およびNb:0.25%以下のうちから選ばれる1種または2種を(Ti+Nb/2)/C:4以上を満足するように含み、さらにSi、Mn、P、S、Al、Nを適正量含有する鋼を熱間圧延後、5〜20℃/sの冷却速度で冷却し、550℃超〜700℃の温度範囲で巻き取り、組織がフェライトおよび/またはベイニティックフェライトからなるとともに、粒内の固溶C量が1.0〜4.0ppmである、靭性に優れた低降伏比高強度熱延鋼板の製造方法が提案されている。特許文献1に記載された技術では、厚み方向、長さ方向における材質の不均一を伴うことなく、靭性、溶接性、耐サワー性に優れ、かつ低降伏比を有する高強度熱延鋼板を得ることができるとしている。しかし、特許文献1に記載された技術では、粒内の固溶C量が1.0〜4.0ppmであるため、円周溶接時の入熱で、結晶粒成長が起こりやすく、溶接熱影響部が粗大粒になり、円周溶接部の溶接熱影響部の靭性低下が起こりやすいという問題がある。
In addition, in line pipes used for transporting crude oil and natural gas containing hydrogen sulfide, in addition to characteristics such as high strength and high toughness, so-called hydrogen-induced crack resistance (HIC resistance), stress corrosion crack resistance, and so on It is required to have excellent sour resistance.
In response to such a request, for example, Patent Document 1 includes C: 0.005 to less than 0.030%, B: 0.0002 to 0.0100%, Ti: 0.20% or less, and Nb: 0.25% or less. Two kinds are included so as to satisfy (Ti + Nb / 2) / C: 4 or more, and further steel containing an appropriate amount of Si, Mn, P, S, Al, N is hot-rolled, and then 5 to 20 ° C./s. Toughness, cooled at a cooling rate of 550 ° C and wound up in a temperature range of more than 550 ° C to 700 ° C, the structure is composed of ferrite and / or bainitic ferrite, and the amount of solid solution C in the grain is 1.0 to 4.0 ppm A method for producing a high-strength hot-rolled steel sheet having a low yield ratio and an excellent strength has been proposed. With the technique described in Patent Document 1, a high-strength hot-rolled steel sheet having excellent toughness, weldability, and sour resistance and having a low yield ratio is obtained without causing material unevenness in the thickness direction and the length direction. You can do that. However, in the technique described in Patent Document 1, since the amount of solid solution C in the grains is 1.0 to 4.0 ppm, crystal grain growth is likely to occur due to heat input during circumferential welding, and the weld heat affected zone is coarse. There exists a problem that it becomes a grain and the toughness fall of the welding heat affected zone of a circumferential welded part tends to occur.

また、特許文献2には、C:0.01〜0.12%、Si:0.5%以下、Mn:0.5〜1.8%、Ti:0.010〜0.030%、Nb:0.01〜0.05%、Ca:0.0005〜0.0050%を、炭素当量:0.40以下、Ca/O:1.5〜2.0を満足するように、含む鋼片を、Ar+100℃以上で熱間圧延を終了し、1〜20秒空冷したのち、Ar点以上の温度から冷却し、20秒以内に550〜650℃まで冷却し、その後450〜500℃で巻き取る、耐水素誘起割れ性に優れた高強度鋼板の製造方法が提案されている。特許文献1に記載された技術では、耐水素誘起割れ性を有するAPI規格のX60〜X70グレードのラインパイプ用鋼板を製造できるとしている。しかし、特許文献2に記載された技術では、板厚が厚い鋼板では、所望の冷却時間を確保できなくなり、所望の特性を確保するためには、さらなる冷却能力の向上を必要とするという問題があった。 In Patent Document 2, C: 0.01 to 0.12%, Si: 0.5% or less, Mn: 0.5 to 1.8%, Ti: 0.010 to 0.030%, Nb: 0.01 to 0.05%, Ca: 0.0005 to 0.0050%, carbon equivalent: 0.40, Ca / O: 1.5 to 2.0 so as to satisfy, the steel slab comprising, exit hot rolled at Ar 3 + 100 ° C. or higher, 20 seconds After cooling, the above Ar 3 point There has been proposed a method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, which is cooled from temperature, cooled to 550 to 650 ° C. within 20 seconds, and then wound up at 450 to 500 ° C. According to the technique described in Patent Document 1, API standard X60 to X70 grade steel plates for line pipe having hydrogen-induced crack resistance can be manufactured. However, with the technique described in Patent Document 2, it is impossible to secure a desired cooling time with a thick steel plate, and there is a problem that further improvement of the cooling capacity is required to secure desired characteristics. there were.

また、厚鋼板であるが、特許文献3には、C:0.03〜0.06%、Si:0.01〜0.5%、Mn:0.8〜1.5%、S:0.0015%以下、Al:0.08%以下、Ca:0.001〜0.005%、O:0.0030%以下を含み、かつCa,S,Oが特定関係を満足するように含有する鋼を、加熱しAr変態点以上の温度から5℃/s以上の冷却速度で400〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱し、再加熱終了時の鋼板表面と板厚中心部の温度差を20℃以上とする、耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法が提案されている。特許文献3に記載された技術では、金属組織中の第2相の分率を3%以下であり、表層と板厚中心部の硬さ差がビッカース硬さで40ポイント以内の鋼板が得られ、耐水素誘起割れ性に優れた厚鋼板となるとしている。しかし、特許文献3に記載された技術では、再加熱工程を必要とし、製造工程が複雑になるとともに、再加熱設備等の更なる配設が必要となるなどの問題があった。 Moreover, although it is a thick steel plate, in patent document 3, C: 0.03-0.06%, Si: 0.01-0.5%, Mn: 0.8-1.5%, S: 0.0015% or less, Al: 0.08% or less, Ca: 0.001 The steel containing up to 0.005%, O: 0.0030% or less, and containing Ca, S, O so as to satisfy a specific relationship is heated to a cooling rate of 5 ° C./s or more from the temperature above the Ar 3 transformation point. Accelerated cooling to 400 to 600 ° C, and then immediately reheat to a steel plate surface temperature of 600 ° C or higher and a plate thickness center temperature of 550 to 700 ° C at a heating rate of 0.5 ° C / s or higher. There has been proposed a method for producing a steel sheet for high-strength line pipe excellent in hydrogen-induced cracking resistance, in which the temperature difference between the center of the plate thickness is 20 ° C. or more. In the technique described in Patent Document 3, a steel sheet is obtained in which the fraction of the second phase in the metal structure is 3% or less, and the hardness difference between the surface layer and the thickness center is within 40 points in terms of Vickers hardness. The thick steel plate is excellent in hydrogen-induced crack resistance. However, the technique described in Patent Document 3 has a problem that a reheating process is required, the manufacturing process becomes complicated, and further arrangement of a reheating facility or the like is required.

また、厚鋼板であるが、特許文献4には、C:0.01〜0.3%、Si:0.6%以下、Mn:0.2〜2.0%、Al:0.06%以下、Ti:0.005〜0.035%、N:0.001〜0.006%を含む鋳片を熱間圧延した後の冷却過程のAc−50℃以下の温度で、累積で2%以上の圧延を行い、その後、Ac超Ac未満の温度に加熱し、放冷する、表裏面に粗粒フェライト層を有する鋼材の製造方法が提案されている。特許文献4に記載された技術では、鋼材のSCC感受性や耐候性、耐食性の向上、さらには冷間加工後の材質劣化抑制などに寄与するとしている。しかし、特許文献4に記載された技術では、再加熱工程を必要とし、製造工程が複雑になるとともに、再加熱設備等の更なる配設が必要となるなどの問題があった。 Moreover, although it is a thick steel plate, in patent document 4, C: 0.01-0.3%, Si: 0.6% or less, Mn: 0.2-2.0%, Al: 0.06% or less, Ti: 0.005-0.035%, N: 0.001 in Ac 1 -50 ° C. below the temperature of the slab course the after hot rolling cooling containing 0.006%, performs rolling over 2% cumulative, then heated to a temperature of less than Ac 1 super Ac 3 A method of manufacturing a steel material having a coarse ferrite layer on the front and back surfaces is proposed. In the technique described in Patent Document 4, it is said that it contributes to the improvement of SCC sensitivity, weather resistance, and corrosion resistance of steel materials, and further suppression of material deterioration after cold working. However, the technique described in Patent Document 4 has a problem that a reheating process is required, the manufacturing process becomes complicated, and further arrangement of a reheating facility or the like is required.

またさらに最近では、極寒冷地用の鋼管には、パイプラインのバースト破壊を防止する観点から、破壊靭性、とくにCTOD特性や、DWTT特性に優れることが要求されることが多い。
このような要求に対し、例えば、特許文献5には、C、Si、Mn、Nを適正量含有し、さらにSi、MnをMn/Siが5〜8を満足する範囲において含有し、さらにNb:0.01〜0.1%を含有する鋼片を、加熱後、1100℃以上で行う最初の圧延の圧下率:15〜30%、1000℃以上での合計圧下率:60%以上、最終圧延の圧下率:15〜30%の条件下で粗圧延を行ったのち、いったん5℃/s以上の冷却速度で、表層部の温度をAr点以下まで冷却しついで、復熱または強制過熱で表層部の温度が(Ac−40℃)〜(Ac+40℃)となった時点で仕上圧延を開始し、950℃以下での合計圧下率:60%以上、圧延終了温度:Ar点以上の条件で仕上圧延を終了し、仕上圧延終了後2s以内に冷却を開始し、10℃/s以上の速度で600℃以下まで冷却し、600〜350℃の温度範囲で巻き取る高強度電縫鋼管用熱延鋼板の製造方法が記載されている。特許文献5に記載された技術で製造された鋼板は、高価な合金元素を添加することなく、また鋼管全体を熱処理することなく、鋼板表層の組織が微細化され、低温靭性、とくにDWTT特性に優れた高強度電縫鋼管が製造できるとしている。しかし、特許文献5に記載された技術では、板厚が厚い鋼板では、所望の冷却速度を確保できなくなり、所望の特性を確保するためには、さらなる冷却能力の向上を必要とするという問題があった。
Furthermore, recently, steel pipes for extremely cold regions are often required to have excellent fracture toughness, particularly CTOD characteristics and DWTT characteristics, from the viewpoint of preventing burst fracture of pipelines.
In response to such a requirement, for example, Patent Document 5 contains appropriate amounts of C, Si, Mn, and N, and further contains Si and Mn in a range where Mn / Si satisfies 5 to 8, and further includes Nb. : Rolling ratio of the first rolling performed at 1100 ° C or higher after heating the steel slab containing 0.01 to 0.1%: 15-30%, Total rolling ratio at 1000 ° C or higher: 60% or higher, Rolling ratio of final rolling : After rough rolling under the condition of 15-30%, once the surface layer is cooled to a temperature of 1 point or less at a cooling rate of 5 ° C / s or more, the surface layer is reheated or forced overheated. Finishing rolling is started when the temperature reaches (Ac 3 −40 ° C.) to (Ac 3 + 40 ° C.), and the total rolling reduction at 950 ° C. or less is 60% or more, and the rolling end temperature is Ar 3 points or more. Finish the finish rolling, start cooling within 2 s after finishing the finish rolling, cool to 600 ° C. or less at a rate of 10 ° C./s or more, and wind up in the temperature range of 600 to 350 ° C. Method of manufacturing an electric resistance welded steel pipe for hot rolled steel sheet are described. The steel sheet manufactured by the technique described in Patent Document 5 has a refined structure of the steel sheet surface layer without adding an expensive alloy element and without heat treating the entire steel pipe, resulting in low temperature toughness, particularly DWTT characteristics. An excellent high-strength ERW steel pipe can be manufactured. However, the technique described in Patent Document 5 has a problem that a steel plate with a large thickness cannot secure a desired cooling rate, and further cooling capacity needs to be improved in order to secure desired characteristics. there were.

また、特許文献6には、C、Si、Mn、Al、Nを適正量含有し、さらにNb:0.001〜0.1%、V:0.001〜0.1%、Ti:0.001〜0.1%を含み、Cu、Ni、Moのうちの1種または2種以上を含有し、Pcm値が0.17以下である鋼スラブを、加熱したのち、表面温度が(Ar3−50℃)以上の条件で仕上圧延を終了し、圧延後直ちに冷却し700℃以下の温度で巻き取り徐冷する低温靭性および溶接性に優れた高強度電縫管用熱延鋼帯の製造方法が記載されている。   Patent Document 6 contains appropriate amounts of C, Si, Mn, Al, and N, and further includes Nb: 0.001 to 0.1%, V: 0.001 to 0.1%, Ti: 0.001 to 0.1%, Cu, Ni After heating a steel slab containing one or more of Mo and having a Pcm value of 0.17 or less, finish rolling is completed under conditions where the surface temperature is (Ar3-50 ° C) or more, and rolling A method for producing a hot-rolled steel strip for a high-strength electric-welded pipe excellent in low-temperature toughness and weldability that is immediately cooled and wound up and slowly cooled at a temperature of 700 ° C. or less is described.

特開平08−319538号公報Japanese Unexamined Patent Publication No. 08-319538 特開平09−296216号公報Japanese Unexamined Patent Publication No. 09-296216 特開2008−056962号公報JP 2008-056962 JP 特開2001−240936号公報Japanese Patent Laid-Open No. 2001-240936 特開2001−207220号公報Japanese Patent Laid-Open No. 2001-207220 特開2004−315957号公報JP 2004-315957 A

最近、高強度電縫鋼管用鋼板には、低温靭性、とくにCTOD特性、DWTT特性の更なる向上が要求されている。特許文献6に記載された技術では、低温靭性が充分でなく、要求されるCTOD特性、DWTT特性を十分に満足させるほど、優れた低温靭性を具備させることができないという問題があった。とくに、板厚:22mmを超える極厚の熱延鋼板では、板厚中心部が表層部に比して冷却が遅れ、板厚中心部の結晶粒径が粗大化しやすい傾向にあり、低温靭性の更なる向上が難しいという問題がある。   Recently, steel sheets for high-strength ERW steel pipes are required to further improve low-temperature toughness, particularly CTOD characteristics and DWTT characteristics. The technique described in Patent Document 6 has a problem that the low-temperature toughness is not sufficient, and the excellent low-temperature toughness cannot be provided to the extent that the required CTOD characteristics and DWTT characteristics are sufficiently satisfied. In particular, in the case of a hot-rolled steel sheet with an extremely thick thickness exceeding 22 mm, the center of the plate thickness tends to be slower to cool than the surface layer, and the crystal grain size at the center of the plate thickness tends to become coarser. There is a problem that further improvement is difficult.

本発明は、上記した従来技術の問題を解決し、多量の合金元素添加を必要とすることなく、22mmを超える板厚を有し、引張強さ:530MPa以上の高強度と、優れた低温靭性、とくに優れたCTOD特性、DWTT特性、とを兼備する、X70〜X80級の高強度電縫鋼管用あるいは高強度スパイラル鋼管用として好適な、極厚高張力熱延鋼板およびその製造方法を提供することを目的とする。ここでいう「優れた低温靭性」とは、ASTM E 436の規定に準拠して行ったDWTT試験で、延性破面率が85%となる最低温度(DWTT)が−30℃以下であり、さらにASTM E 1290の規定に準拠して、試験温度:−10℃で実施したCTOD試験における限界開口変位量CTOD値が、0.30mm以上である場合をいう。   The present invention solves the above-mentioned problems of the prior art, has a thickness exceeding 22 mm without requiring a large amount of alloying elements, and has a high tensile strength of 530 MPa or more and excellent low temperature toughness. An ultra-thick high-tensile hot-rolled steel sheet suitable for X70 to X80 class high-strength ERW steel pipes or high-strength spiral steel pipes, which has particularly excellent CTOD characteristics and DWTT characteristics, and a method for producing the same For the purpose. “Excellent low temperature toughness” as used herein is a DWTT test conducted in accordance with the provisions of ASTM E 436. The minimum temperature (DWTT) at which the ductile fracture surface ratio is 85% is −30 ° C. or lower, and In accordance with ASTM E 1290, this refers to a case where the critical opening displacement CTOD value in a CTOD test conducted at a test temperature of −10 ° C. is 0.30 mm or more.

本発明者らは、上記した目的を達成するために、低温靭性、とくにDWTT特性に及ぼす各種要因について鋭意考究した。その結果、全厚での靭性試験であるDWTT特性は、板厚方向の組織均一性に大きく影響されることを見出した。そして、全厚での靭性試験であるDWTT特性に及ぼす板厚方向の組織不均一の影響は、板厚:11mm以上の厚肉材で顕在化することも見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting low temperature toughness, particularly DWTT characteristics. As a result, it was found that the DWTT characteristic, which is a toughness test at the full thickness, is greatly influenced by the structure uniformity in the thickness direction. The present inventors have also found that the influence of the structure non-uniformity in the thickness direction on the DWTT characteristics, which is a toughness test at the full thickness, is manifested by a thick material having a thickness of 11 mm or more.

また、本発明者らの更なる研究によれば、「優れたDWTT特性」は、表面から板厚方向に1mmの位置(表層部)におけるフェライトの平均結晶粒径と板厚中央位置(板厚中心部)におけるフェライトの平均結晶粒径との差、ΔDが2μm以下で、かつ表面から板厚方向に1mmの位置(表層部)における第二相の組織分率(体積率)と板厚中央位置(板厚中心部)における第二相の組織分率(体積率)との差、ΔVが2%以下である場合に、確保できることを見出した。   Further, according to further studies by the present inventors, “excellent DWTT characteristics” indicate that the average crystal grain size of ferrite and the center position of the plate thickness (plate thickness) (plate thickness) at a position 1 mm (surface layer portion) in the plate thickness direction from the surface. The difference from the average grain size of ferrite in the center part), ΔD is 2 μm or less, and the structure fraction (volume ratio) of the second phase and the center of the thickness at the position (surface part) 1 mm from the surface in the thickness direction It was found that the difference from the structure fraction (volume ratio) of the second phase at the position (plate thickness center portion), ΔV, can be ensured when it is 2% or less.

また、本発明者らの更なる研究によれば、ΔDが2μm以下でかつΔVが2%以下とするために必要な冷却停止温度および巻取温度は、主として含有する合金元素量に依存して決定される。すなわち、ΔDが2μm以下でかつΔVが2%以下とするためには、冷却停止温度を、次式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:冷却速度(℃/s))
で定義されるBFS以下の温度とし、かつ、巻取温度を、次式
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%))
で定義されるBFS0以下の温度とすることが肝要となる。
Further, according to further studies by the present inventors, the cooling stop temperature and the coiling temperature necessary for ΔD to be 2 μm or less and ΔV to be 2% or less mainly depend on the amount of alloying elements contained. It is determined. That is, in order to set ΔD to 2 μm or less and ΔV to 2% or less, the cooling stop temperature is expressed by the following equation:
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: cooling rate (° C./s))
The temperature is below the BFS defined by
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%))
It is important to set the temperature below BFS0 as defined in.

しかし、板厚が22mmを超える極厚の熱延鋼板では、ΔD,ΔVが上記した範囲内であっても、DWTT特性が低下し、所望の「優れたDWTT特性」を確保できなくなる。そこで、本発明者らは、板厚が22mmを超える極厚熱延鋼板では、表層部に比して板厚中心部の冷却が遅れ、結晶粒が粗大化しやすく、板厚中心部のフェライト粒径が粗大化するとともに、第二相が増加するためと考え、極厚熱延鋼板の板厚中心部組織の調整方法について、さらに鋭意研究した。その結果、鋼板の板厚中央位置の温度を、仕上圧延終了後、加速冷却開始時の温度T(℃)から20℃低下するまでの滞留時間を20s以下として、鋼板が高温域で滞留する時間を短縮すること、さらに、鋼板の板厚中央位置の温度を仕上圧延終了後で、加速冷却開始時の温度T(℃)から下記(2)式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:冷却速度(℃/s))
で定義されるBFS温度までの冷却時間を30s以下とすること、が肝要となることを見出した。これにより、板厚中央部の組織を、フェライト相の平均結晶粒径が5μm以下、第二相の組織分率(体積%)が2%以下となる組織とすることができる。
However, in an extremely thick hot-rolled steel sheet having a thickness exceeding 22 mm, even if ΔD and ΔV are within the above-described ranges, the DWTT characteristics are lowered and the desired “excellent DWTT characteristics” cannot be ensured. Therefore, the present inventors, in the ultra-thick hot-rolled steel sheet having a plate thickness of more than 22 mm, delays the cooling of the center portion of the plate thickness compared to the surface layer portion, and tends to coarsen the crystal grains. Considering that the diameter increases and the second phase increases, we have further studied diligently on the adjustment method of the thickness center structure of the extra-thick hot-rolled steel sheet. As a result, the time during which the steel sheet stays in the high temperature range is set to 20 s or less after the finish rolling, after the finish rolling, until the temperature T (° C.) decreases from the temperature T (° C.) at the start of accelerated cooling to 20 ° C. In addition, the temperature at the center position of the steel sheet thickness after finishing finish rolling is calculated from the temperature T (° C.) at the start of accelerated cooling by the following formula (2)
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: cooling rate (° C./s))
It was found that the cooling time to the BFS temperature defined in (3) was 30 s or less. Thereby, the structure of the plate thickness central part can be made a structure in which the average crystal grain size of the ferrite phase is 5 μm or less and the structure fraction (volume%) of the second phase is 2% or less.

まず、本発明の基礎となった実験結果について説明する。
質量%で、0.039%C−0.24%Si−1.61%Mn−0.019%P−0.0023%S−0.038%Al−0.059%Nb−0.010%Ti−残部Feからなるスラブを鋼素材として使用した。なお、(Ti+Nb/2)/Cは1.0である。
上記した組成の鋼素材を、1200℃に加熱し、仕上圧延開始温度:1000℃、仕上圧延終了温度:800℃とする熱間圧延を施して板厚:23.8mmの熱延板とし、熱間圧延終了後、種々の条件で加速冷却を施しついで、種々の巻取温度で巻き取り、熱延鋼板(鋼帯)とした。
First, the experimental results on which the present invention is based will be described.
A slab composed of 0.039% C-0.24% Si-1.61% Mn-0.019% P-0.0023% S-0.038% Al-0.059% Nb-0.010% Ti-balance Fe in mass% was used as a steel material. Note that (Ti + Nb / 2) / C is 1.0.
The steel material having the composition described above is heated to 1200 ° C, hot rolled to a finish rolling start temperature of 1000 ° C and a finish rolling finish temperature of 800 ° C to obtain a hot rolled sheet having a thickness of 23.8 mm. After the end of rolling, accelerated cooling was performed under various conditions, followed by winding at various winding temperatures to obtain a hot rolled steel sheet (steel strip).

得られた熱延鋼板から試験片を採取し、DWTT特性および組織を調査した。組織は、表面から板厚方向に1mmの位置(表層部)、板厚中央位置(板厚中心部)について、フェライト相の平均結晶粒径(μm)、第二相の組織分率(体積%)を求めた。得られた測定値から、表面から板厚方向に1mmの位置(表層部)と板厚中央位置(板厚中心部)との、フェライト相の平均結晶粒径差ΔDおよび第二相の組織分率の差ΔVをそれぞれ算出した。なお、ここでいう「フェライト相」とは、ベイニティックフェライト相、あるいはベイナイト相、およびそれらの混合相のいずれかをいうものとする。   Test pieces were collected from the obtained hot-rolled steel sheet, and DWTT characteristics and structure were investigated. The structure is 1 mm from the surface in the plate thickness direction (surface layer part), the plate thickness center position (plate thickness center part), the average crystal grain size (μm) of the ferrite phase, the structure fraction (volume%) of the second phase ) From the measured values obtained, the average crystal grain size difference ΔD of the ferrite phase and the structure of the second phase at a position (surface layer portion) 1 mm from the surface (surface layer portion) and the plate thickness central position (plate thickness center portion). The rate difference ΔV was calculated respectively. The “ferrite phase” here refers to either a bainitic ferrite phase, a bainite phase, or a mixed phase thereof.

得られた結果を、DWTTに及ぼす板厚中央部でのフェライト相の平均結晶粒径と第二相の組織分率との関係で図1に示す。なお、図1では、ΔDは2μm以下、ΔVは2%以下である場合について示している。
図1から、板厚中央部でのフェライト相の平均結晶粒径が5μm以下でかつ第二相の組織分率が2%以下である場合に、極厚であるにもかかわらず、DWTTが−30℃以下と、「優れたDWTT特性」を有する鋼板となることがわかる。
The obtained results are shown in FIG. 1 in relation to the average crystal grain size of the ferrite phase at the central portion of the plate thickness on the DWTT and the structure fraction of the second phase. FIG. 1 shows a case where ΔD is 2 μm or less and ΔV is 2% or less.
From FIG. 1, when the average crystal grain size of the ferrite phase at the center of the plate thickness is 5 μm or less and the structure fraction of the second phase is 2% or less, DWTT is − It can be seen that the steel sheet has “excellent DWTT characteristics” at 30 ° C. or lower.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbを次(1)式
(Ti+(Nb/2))/C<4 ‥‥(1)
(ここで、Ti、Nb、C:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成と、板厚中央位置における低温変態フェライト相の平均結晶粒径が5μm以下、板厚中央位置における低温変態フェライト相の組織分率(体積%)が98%以上、板厚中央位置における第二相の組織分率(体積%)が2%以下であり、かつ表面から板厚方向に1mmの位置における低温変態フェライト相の平均結晶粒径と板厚中央位置における低温変態フェライト相の平均結晶粒径との差ΔDが2μm以下、表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下であり、前記低温変態フェライト相がベイニティックフェライト相、ベイナイト相、またはそれらの混合相のいずれかであり、前記第二相がパーライト、マルテンサイト、島状マルテンサイト、上部ベイナイト、あるいはそれらの2種以上からなる混合相のいずれかである組織を有することを特徴とする低温靭性に優れた板厚:22mm超の極厚高張力熱延鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.01 ˜0.10%, Ti: 0.001˜0.05%, and C, Ti, Nb is expressed by the following formula (1) (Ti + (Nb / 2)) / C <4 (1)
(Here, Ti, Nb, C: content of each element (mass%))
Wherein to satisfy a composition the balance being Fe and unavoidable impurities, below 5μm average crystal grain size of the low-temperature transformation ferrite phase in the sheet thickness center position, structural fraction of the low-temperature transformation ferrite phase in the sheet thickness center position ( vol%) 98% or more, structural fraction of the second phase in the sheet thickness center position (vol%) is 2% or less, and the average crystal grain of low-temperature transformation ferrite phase at 1mm position in the thickness direction from the surface The difference ΔD between the diameter and the average crystal grain size of the low-temperature transformed ferrite phase at the center position of the plate thickness is 2 μm or less, and the structure fraction (volume%) of the second phase at the position 1 mm from the surface to the plate thickness direction and the center position of the plate thickness. in the second phase of the structure fraction (vol%) der difference ΔV of 2% or less and is, the low-temperature transformation ferrite phase bainitic ferrite phase is either bainite phase, or a mixed phase thereof, Second But pearlite, martensite, island martensite, upper bainite thickness or excellent low temperature toughness characterized by having a structure which is either mixed phase of two or more thereof,: 22 mm than the extra-thick High tensile hot rolled steel sheet.

(2)(1)において、前記組成に加えてさらに、質量%で、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上を含有する組成とすることを特徴とする極厚高張力熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする極厚高張力熱延鋼板。
(2) In (1), in addition to the above composition, in terms of mass%, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 An ultra-thick high-tensile hot-rolled steel sheet having a composition containing one or more of ˜0.50%.
(3) The ultra-thick high-tensile hot-rolled steel sheet according to (1) or (2), further comprising Ca: 0.0005 to 0.005% by mass% in addition to the above composition.

(4)質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbを次(1)式
(Ti+(Nb/2))/C<4 ‥‥(1)
(ここで、Ti、Nb、C:各元素の含有量(質量%))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を加熱し、粗圧延と仕上圧延とからなる熱間圧延を施して熱延鋼板とし、ついで、前記仕上圧延終了後の前記熱延鋼板に、板厚中心位置の平均冷却速度で10℃/s以上の加速冷却を、次(2)式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:冷却速度(℃/s))
で定義されるBFS以下の冷却停止温度まで行い、ついで次(3)式
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni ‥‥(3)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%))
で定義されるBFS0以下の巻取温度で巻き取るに当たり、該熱延鋼板の板厚中心位置の温度が、前記加速冷却の開始時の温度:T(℃)から温度:(T−20℃)となるまでの滞留時間を20s以内とし、かつ前記板厚中心位置の温度Tから前記BFSの温度までの冷却時間が30s以下となるように調整することを特徴とする(1)に記載の組織を有する低温靭性に優れた板厚:22mm超の極厚高張力熱延鋼板の製造方法。
(4) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.01 ˜0.10%, Ti: 0.001˜0.05%, and C, Ti, Nb is expressed by the following formula (1) (Ti + (Nb / 2)) / C <4 (1)
(Here, Ti, Nb, C: content of each element (mass%))
The steel material of the composition comprising the balance Fe and unavoidable impurities is heated so as to satisfy, and hot rolling comprising rough rolling and finish rolling is performed to form a hot rolled steel sheet, and then after the finish rolling is completed. The above-mentioned hot-rolled steel sheet is subjected to accelerated cooling at an average cooling rate of 10 ° C./s or more at the center position of the thickness in the following formula (2)
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: cooling rate (° C./s))
To the cooling stop temperature below the BFS defined in, and then the following equation (3)
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni (3)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%))
When the coil is wound at a coiling temperature of BFS0 or less as defined by the above, the temperature at the thickness center position of the hot-rolled steel sheet is changed from the temperature at the start of the accelerated cooling: T (° C) to the temperature: (T-20 ° C) The structure as set forth in (1), wherein the residence time until becoming is within 20 s, and the cooling time from the temperature T at the plate thickness center position to the temperature of the BFS is 30 s or less. Thickness excellent in low-temperature toughness having : A method for producing an ultra-thick high-tensile hot-rolled steel sheet exceeding 22 mm.

(5)(4)において、前記組成に加えてさらに、質量%で、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上を含有する組成とすることを特徴とする極厚高張力熱延鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする極厚高張力熱延鋼板の製造方法。
(5) In (4), in addition to the above composition, in terms of mass%, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 A method for producing an ultra-thick high-tensile hot-rolled steel sheet, characterized in that the composition contains one or more of ˜0.50%.
(6) In (4) or (5), in addition to the said composition, it is set as the composition which contains further Ca: 0.0005-0.005% by the mass%, The manufacturing method of the ultra-thick high-tensile hot-rolled steel sheet characterized by the above-mentioned. .

本発明によれば、板厚中心部の組織が微細化され、かつ板厚方向の組織変動が少なく、板厚:22mm超えの極厚で、引張強さTS:530MPa以上の高強度と、優れた低温靭性、とくに優れたDWTT特性とCTOD特性とを兼備する極厚高張力熱延鋼板を容易にしかも安価に製造でき、産業上格段の効果を奏する。また本発明によれば、低温靭性、さらにはパイプライン敷設時の円周溶接性に優れたラインパイプ用電縫鋼管およびラインパイプ用スパイラル鋼管を容易に製造できるという効果もある。   According to the present invention, the structure at the center of the plate thickness is miniaturized, the variation in the structure in the plate thickness direction is small, the plate thickness: an extreme thickness exceeding 22 mm, the tensile strength TS: high strength of 530 MPa or more, and excellent In addition, an ultra-thick high-tensile hot-rolled steel sheet having both excellent low-temperature toughness, particularly excellent DWTT characteristics and CTOD characteristics, can be produced easily and inexpensively, and the industrially remarkable effect is achieved. In addition, according to the present invention, there is also an effect that an ERW steel pipe for line pipe and a spiral steel pipe for line pipe, which are excellent in low temperature toughness and circumferential weldability when laying a pipeline, can be easily manufactured.

DWTTに及ぼす、板厚中央位置におけるフェライト相の平均結晶粒径と、第二相の組織分率との関係を示すグラフである。It is a graph which shows the relationship between the average crystal grain diameter of the ferrite phase in plate | board thickness center position, and the structure fraction of a 2nd phase which affects DWTT.

まず、本発明極厚高張力熱延鋼板の組成限定理由について説明する。なお、とくに断らないかぎり、質量%は単に%と記す。
C:0.02〜0.08%
Cは、鋼の強度を上昇させる作用を有する元素であり、本発明では所望の高強度を確保するために、0.02%以上の含有を必要とする。一方、0.08%を超える過剰な含有は、パーライト等の第二相の組織分率を増大させ、母材靭性および溶接熱影響部靭性を低下させる。このため、Cは0.02〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.05%である。
First, the reasons for limiting the composition of the ultra-thick high-tensile hot-rolled steel sheet of the present invention will be described. Unless otherwise specified, mass% is simply expressed as%.
C: 0.02 to 0.08%
C is an element having an action of increasing the strength of steel, and in the present invention, it is necessary to contain 0.02% or more in order to ensure a desired high strength. On the other hand, an excessive content exceeding 0.08% increases the structural fraction of the second phase such as pearlite, and lowers the base metal toughness and the weld heat affected zone toughness. For this reason, C was limited to the range of 0.02 to 0.08%. In addition, Preferably it is 0.02 to 0.05%.

Si:0.01〜0.50%
Siは、固溶強化、焼入れ性の向上を介して、鋼の強度を増加させる作用を有する。このような効果は0.01%以上の含有で認められる。一方、Siは、γ→α変態時にCをγ相に濃化させ、第二相としてマルテンサイト相の形成を促進させる作用を有し、結果として鋼板の靭性を低下させる。また、Siは、電縫溶接時にSiを含有する酸化物を形成し、溶接部品質を低下させるとともに、溶接熱影響部靭性を低下させる。このような観点から、Siはできるだけ低減することが望ましいが、0.50%までは許容できる。このようなことから、Siは0.01〜0.50%に限定した。好ましくは0.40%以下である。
Si: 0.01-0.50%
Si has an action of increasing the strength of steel through solid solution strengthening and improvement of hardenability. Such an effect is recognized when the content is 0.01% or more. On the other hand, Si has the effect of concentrating C in the γ phase during the γ → α transformation and promoting the formation of the martensite phase as the second phase, resulting in a decrease in the toughness of the steel sheet. Moreover, Si forms an oxide containing Si during ERW welding, lowers the weld zone quality, and lowers the weld heat affected zone toughness. From this point of view, it is desirable to reduce Si as much as possible, but up to 0.50% is acceptable. For these reasons, Si was limited to 0.01 to 0.50%. Preferably it is 0.40% or less.

なお、電縫溶接鋼管向け熱延鋼板では、Mnを含有するため、Siは低融点のMn珪酸化物を形成し溶接部からの酸化物排出が容易となるため、Siは0.10〜0.30%含有させてもよい。
Mn:0.5〜1.8%
Mnは、焼入性を向上させる作用を有し、焼入性向上を介し鋼板の強度を増加させる。また、Mnは、MnSを形成しSを固定することにより、Sの粒界偏析を防止してスラブ(鋼素材)割れを抑制する。このような効果を得るためには、0.5%以上の含有を必要とする。一方、1.8%を超える含有は、スラブ鋳造時の凝固偏析を助長し、鋼板にMn濃化部を残存させ、セパレーションの発生を増加させる。このMn濃化部を消失させるには、1300℃を超える温度に加熱する必要があり、このような熱処理を工業的規模で実施することは現実的でない。このため、Mnは0.5〜1.8%の範囲に限定した。なお、好ましくは0.9〜1.7%である。
In addition, since hot rolled steel sheets for electric resistance welded steel pipes contain Mn, Si forms a low melting point Mn silicate and facilitates oxide discharge from the weld zone, so Si is contained in an amount of 0.10 to 0.30%. May be.
Mn: 0.5-1.8%
Mn has the effect of improving hardenability, and increases the strength of the steel sheet through the improvement of hardenability. Further, Mn forms MnS and fixes S, thereby preventing segregation of S grain boundaries and suppressing slab (steel material) cracking. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 1.8%, solidification segregation during slab casting is promoted, Mn-concentrated portions remain in the steel sheet, and the occurrence of separation increases. In order to eliminate this Mn enriched part, it is necessary to heat to a temperature exceeding 1300 ° C., and it is not practical to carry out such a heat treatment on an industrial scale. For this reason, Mn was limited to the range of 0.5 to 1.8%. In addition, Preferably it is 0.9 to 1.7%.

P:0.025%以下
Pは、鋼中に不純物として不可避的に含まれるが、鋼の強度を上昇させる作用を有する。しかし、0.025%を超えて過剰に含有すると溶接性が低下する。このため、Pは0.025%以下に限定した。なお、好ましくは0.015%以下である。
S:0.005%以下
Sは、Pと同様に鋼中に不純物として不可避的に含まれるが、0.005%を超えて過剰に含有すると、スラブ割れを生起させるとともに、熱延鋼板においては粗大なMnSを形成し、延性の低下を生じさせる。このため、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。
P: 0.025% or less P is inevitably contained as an impurity in steel, but has an effect of increasing the strength of steel. However, when it exceeds 0.025% and it contains excessively, weldability will fall. For this reason, P was limited to 0.025% or less. In addition, Preferably it is 0.015% or less.
S: 0.005% or less S is inevitably contained as an impurity in steel like P, but if it exceeds 0.005% and excessively contained, slab cracking occurs and coarse MnS is contained in the hot-rolled steel sheet. Forming and causing a reduction in ductility. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.004% or less.

Al:0.005〜0.10%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上含有することが望ましい。一方、0.10%を超える含有は、電縫溶接時の、溶接部の清浄性を著しく損なう。このため、Alは0.005〜0.10%に限定した。なお、好ましくは0.08%以下である。
Al: 0.005-0.10%
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.005% or more. On the other hand, the content exceeding 0.10% significantly impairs the cleanliness of the welded part during ERW welding. For this reason, Al was limited to 0.005 to 0.10%. In addition, Preferably it is 0.08% or less.

Nb:0.01〜0.10%
Nbは、オーステナイト粒の粗大化、再結晶を抑制する作用を有する元素であり、熱間仕上圧延におけるオーステナイト未再結晶温度域圧延を可能にするとともに、炭窒化物として微細析出することにより、溶接性を損なうことなく、少ない含有量で熱延鋼板を高強度化する作用を有する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.10%を超える過剰な含有は、熱間仕上圧延中の圧延荷重の増大をもたらし、熱間圧延が困難となる場合がある。このため、Nbは0.01〜0.10%の範囲に限定した。なお、好ましくは0.03〜0.09%である。
Nb: 0.01-0.10%
Nb is an element that has the effect of suppressing the coarsening and recrystallization of austenite grains, enabling the austenite non-recrystallization temperature range rolling in hot finish rolling, and by precipitating finely as carbonitride, It has the effect | action which makes a hot-rolled steel plate high intensity | strength with little content, without impairing property. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, an excessive content exceeding 0.10% may cause an increase in rolling load during hot finish rolling, which may make hot rolling difficult. For this reason, Nb was limited to the range of 0.01 to 0.10%. In addition, Preferably it is 0.03-0.09%.

Ti:0.001〜0.05%
Tiは、窒化物を形成しNを固定しスラブ(鋼素材)割れを防止する作用を有するとともに、炭化物として微細析出することにより、鋼板を高強度化させる。このような効果は、0.001%以上の含有で顕著となるが、0.05%を超える含有は析出強化により降伏点が著しく上昇する。このため、Tiは0.001〜0.05%の範囲に限定した。なお、好ましくは0.005〜0.035%である。
Ti: 0.001 to 0.05%
Ti has the effect of forming nitrides and fixing N to prevent cracking of slabs (steel material), and finely precipitates as carbides, thereby increasing the strength of the steel sheet. Such an effect becomes remarkable when the content is 0.001% or more. However, when the content exceeds 0.05%, the yield point is remarkably increased by precipitation strengthening. For this reason, Ti was limited to the range of 0.001 to 0.05%. In addition, Preferably it is 0.005-0.035%.

本発明では、上記した範囲のNb、Ti、Cを含み、かつ下記(1)式
(Ti+(Nb/2))/C<4 ‥‥(1)
を満足するようにNb、Ti、Cの含有量を調整する。
Nb、Tiは、炭化物形成傾向の強い元素で、C含有量が低い場合にはほとんどのCが炭化物となり、フェライト粒内の固溶C量が激減することが想定される。フェライト粒内の固溶C量の激減は、パイプライン施工時の円周溶接性に悪影響を及ぼす。フェライト粒内の固溶C量が極度に低減した鋼板を用いて製造された鋼管をラインパイプとして、円周溶接を行った場合には、円周溶接部の熱影響部における粒成長が顕著となり、円周溶接部の熱影響部靭性が低下する恐れがある。このため、本発明では、Nb、Ti、Cを(1)式を満足するように調整して含有させる。これにより、フェライト粒内の固溶C量を10ppm以上とすることが可能となり、円周溶接部の熱影響部靭性の低下を防止できる。
In the present invention, Nb, Ti, and C in the above ranges are included, and the following formula (1) (Ti + (Nb / 2)) / C <4 (1)
Nb, Ti, and C content are adjusted so as to satisfy the above.
Nb and Ti are elements that have a strong tendency to form carbides. When the C content is low, most of the C becomes carbides, and the amount of solid solution C in the ferrite grains is assumed to decrease drastically. The drastic decrease in the amount of C dissolved in ferrite grains adversely affects the circumferential weldability during pipeline construction. When circumferential welding is performed using a steel pipe manufactured using a steel plate with extremely reduced solid solution C in the ferrite grains as a line pipe, grain growth in the heat-affected zone of the circumferential weld becomes significant. The heat affected zone toughness of the circumferential weld may be reduced. For this reason, in this invention, Nb, Ti, and C are adjusted and contained so that Formula (1) may be satisfied. Thereby, it becomes possible to make solid solution C amount in a ferrite grain 10 ppm or more, and can prevent the fall of the heat affected zone toughness of a circumference welded part.

本発明では、上記した成分が基本成分であるが、この基本の組成に加えてさらに、選択元素として、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上、および/または、Ca:0.0005〜0.005%を、必要に応じて選択して含有することができる。
V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上
V、Mo、Cr、Cu、Niはいずれも、焼入れ性を向上させ、鋼板の強度を増加させる元素であり、必要に応じて1種または2種以上を選択して含有できる。
In the present invention, the above components are basic components. In addition to this basic composition, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: One or more of 0.01 to 0.50%, Ni: 0.01 to 0.50%, and / or Ca: 0.0005 to 0.005% can be selected and contained as necessary.
One or more of V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50% V, Mo, Cr, Cu , Ni is an element that improves the hardenability and increases the strength of the steel sheet, and can be selected from one or more as required.

Vは、焼入性を向上させるとともに、炭窒化物を形成して鋼板を高強度化する作用を有する元素であり、このような効果は0.01%以上の含有で顕著となる。一方、0.10%を超える過剰の含有は、溶接性を劣化させる。このため、Vは0.01〜0.10%とすることが好ましい。なお、さらに好ましくは0.03〜0.08%である。
Moは、焼入性を向上させるとともに、炭窒化物を形成して鋼板を高強度化する作用を有する元素であり、このような効果は0.01%以上の含有で顕著となる。一方、0.50%を超える多量の含有は、溶接性を低下させる。このため、Moは0.01〜0.50%に限定することが好ましい。なお、より好ましくは0.05〜0.30%である。
V is an element that has an effect of improving hardenability and forming carbonitride to increase the strength of the steel sheet, and such an effect becomes remarkable when the content is 0.01% or more. On the other hand, excessive content exceeding 0.10% deteriorates weldability. For this reason, V is preferably 0.01 to 0.10%. Further, it is more preferably 0.03 to 0.08%.
Mo is an element that has an effect of improving hardenability and forming carbonitride to increase the strength of the steel sheet. Such an effect becomes remarkable when the content is 0.01% or more. On the other hand, a large content exceeding 0.50% reduces weldability. For this reason, it is preferable to limit Mo to 0.01 to 0.50%. In addition, More preferably, it is 0.05 to 0.30%.

Crは、焼入性を向上させ、鋼板強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、1.0%を超える過剰の含有は、電縫溶接時に溶接欠陥を多発させる傾向となる。このため、Crは0.01〜1.0%に限定することが好ましい。なお、さらに好ましくは0.01〜0.80%である。
Cuは、焼入れ性を向上させるとともに、固溶強化あるいは析出強化により鋼板の強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましいが、0.50%を超える含有は熱間加工性を低下させる。このため、Cuは0.01〜0.50%に限定することが好ましい。なお、より好ましくは0.10〜0.40%である。
Cr is an element that has the effect of improving hardenability and increasing the strength of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, an excessive content exceeding 1.0% tends to cause frequent welding defects during ERW welding. For this reason, it is preferable to limit Cr to 0.01 to 1.0%. In addition, More preferably, it is 0.01 to 0.80%.
Cu is an element that has the effect of improving the hardenability and increasing the strength of the steel sheet by solid solution strengthening or precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.50% reduces hot workability. For this reason, it is preferable to limit Cu to 0.01 to 0.50%. In addition, More preferably, it is 0.10 to 0.40%.

Niは、焼入性を向上させ、鋼の強度を増加させるとともに、鋼板の靭性をも向上させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.50%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Niは0.01〜0.50%に限定することが好ましい。なお、より好ましくは0.10〜0.45%である。   Ni is an element that has the effect of improving hardenability, increasing the strength of the steel, and improving the toughness of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.50%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Ni to 0.01 to 0.50%. In addition, More preferably, it is 0.10 to 0.45%.

Ca:0.0005〜0.005%
Caは、SをCaSとして固定し、硫化物系介在物を球状化し、介在物の形態を制御する作用を有し、介在物の周囲のマトリックスの格子歪を小さくし、水素のトラップ能を低下させる作用を有する元素である。このような効果は、0.0005%以上の含有で顕著となるが、0.005%を超えて含有すると、CaOの増加を招き、耐食性、靭性を低下させる。このため、Caは含有する場合には、0.0005〜0.005%に限定することが好ましい。なお、より好ましくは0.0009〜0.003%である。
Ca: 0.0005 to 0.005%
Ca has the action of fixing S as CaS, spheroidizing sulfide inclusions, and controlling the form of inclusions, reducing the lattice strain of the matrix surrounding inclusions, and reducing the hydrogen trapping ability It is an element which has the effect | action to make it. Such an effect becomes remarkable when the content is 0.0005% or more. However, if the content exceeds 0.005%, CaO is increased and corrosion resistance and toughness are lowered. For this reason, when it contains Ca, it is preferable to limit to 0.0005 to 0.005%. In addition, More preferably, it is 0.0009 to 0.003%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、N:0.005%以下、O:0.005%以下、Mg:0.003%以下、Sn:0.005%以下が許容できる。
N:0.005%以下
Nは、鋼中に不可避的に含有されるが、過剰の含有は、鋼素材(スラブ)鋳造時の割れを多発させる。このため、Nは0.005%以下に限定することが望ましい。なお、より好ましくは0.004%以下である。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include N: 0.005% or less, O: 0.005% or less, Mg: 0.003% or less, and Sn: 0.005% or less.
N: 0.005% or less N is inevitably contained in steel, but excessive inclusion frequently causes cracking during casting of a steel material (slab). For this reason, it is desirable to limit N to 0.005% or less. More preferably, it is 0.004% or less.

O:0.005%以下
Oは、鋼中では各種の酸化物として存在し、熱間加工性、耐食性、靭性等を低下させる原因となる。このため、本発明ではできるだけ低減することが望ましいが、0.005%までは許容できる。極端な低減は精錬コストを高騰を招くため、Oは0.005%以下に限定することが望ましい。
O: 0.005% or less O exists as various oxides in steel, and causes hot workability, corrosion resistance, toughness and the like to decrease. For this reason, it is desirable to reduce as much as possible in the present invention, but it is acceptable up to 0.005%. Since extreme reduction leads to an increase in refining costs, it is desirable to limit O to 0.005% or less.

Mg:0.003%以下
Mgは、Caと同様に酸化物、硫化物を形成し、粗大なMnSの形成を抑制する作用を有するが、0.003%を超える含有は、Mg酸化物、Mg硫化物のクラスターを多発させ、靭性の低下を招く。このため、Mgは0.003%以下に限定することが望ましい。
Sn:0.005%以下
Snは、製鋼原料として使用されるスクラップ等から混入する。Snは、粒界等に偏析しやすい元素であり、0.005%を超えて多量に含有すると、粒界強度が低下し、靭性の低下を招く。このため、Snは0.005%以下に限定することが望ましい。
Mg: 0.003% or less
Mg, like Ca, forms oxides and sulfides and has the effect of suppressing the formation of coarse MnS, but if it exceeds 0.003%, Mg oxide and Mg sulfide clusters occur frequently, and toughness Cause a decline. For this reason, it is desirable to limit Mg to 0.003% or less.
Sn: 0.005% or less
Sn is mixed from scraps used as steelmaking raw materials. Sn is an element that easily segregates at grain boundaries and the like, and if it is contained in a large amount exceeding 0.005%, the grain boundary strength is lowered and the toughness is lowered. For this reason, it is desirable to limit Sn to 0.005% or less.

本発明の極厚高張力熱延鋼板は、上記した組成を有し、さらに、板厚中央位置におけるフェライト相の平均結晶粒径が5μm以下、第二相の組織分率(体積%)が2%以下であり、かつ鋼板表面から板厚方向に1mmの位置におけるフェライト相の平均結晶粒径と板厚中央位置におけるフェライト相の平均結晶粒径(μm)との差ΔDが2μm以下で、かつ表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織を有する。なお、ここでいう「フェライト相」は、硬質な低温変態フェライトを意味し、ベイニティックフェライト相、ベイナイト相、またはそれらの混合相のいずれかをいう。なお、軟質な高温変態フェライト(粒状のポリゴナルフェライト)は含まない。板厚中央位置における組織は、主相をベイニティックフェライト相、ベイナイト相、またはそれらの混合相のいずれかとし、第二相としてパーライト、マルテンサイト、MA(martensite−austenite constituent、島状マルテンサイトともいう。 )、上部ベイナイト、あるいはそれらの2種以上からなる混合相のいずれかである。ここで「主相」とは、組織分率(体積%)で90%以上、さらに好ましくは98%以上の場合をいう。   The ultra-thick high-tensile hot-rolled steel sheet of the present invention has the above-described composition, and further, the average crystal grain size of the ferrite phase at the center position of the sheet thickness is 5 μm or less, and the second phase structure fraction (volume%) is 2. And the difference ΔD between the average crystal grain size of the ferrite phase at a position 1 mm from the steel sheet surface in the plate thickness direction and the average crystal grain size (μm) of the ferrite phase at the center position of the plate thickness is 2 μm or less, and A structure in which the difference ΔV between the structure fraction (volume%) of the second phase at a position 1 mm from the surface in the sheet thickness direction and the structure fraction (volume%) of the second phase at the sheet thickness center position is 2% or less. Have. The term “ferrite phase” used herein means hard low-temperature transformation ferrite, and refers to any of bainitic ferrite phase, bainite phase, or a mixed phase thereof. Soft high temperature transformation ferrite (granular polygonal ferrite) is not included. The structure at the center of the plate thickness is such that the main phase is either bainitic ferrite phase, bainite phase, or a mixed phase thereof, and the second phase is pearlite, martensite, MA (martensite-austenite constituent, island martensite). ), Upper bainite, or a mixed phase composed of two or more thereof. Here, the “main phase” refers to a case where the structure fraction (volume%) is 90% or more, more preferably 98% or more.

ΔDが2μm以下でかつΔVが2%以下となる場合に、低温靭性、とくに全厚試験片を用いるDWTT特性やCTOD特性が顕著に向上する。ΔDまたはΔVのいずれか一つが、所望の範囲外となる場合には、DWTT特性が低下し、低温靭性が劣化する。板厚が22mmを超える極厚の場合には、さらに、板厚中央位置におけるフェライト相の平均結晶粒径が5μm以下、第二相の組織分率(体積%)が2%以下とすることを必要とする。フェライト相の平均結晶粒径が5μmを超える場合や、第二相の組織分率(体積%)が2%を超えると、DWTT特性が低下し、低温靭性が劣化する。   When ΔD is 2 μm or less and ΔV is 2% or less, low-temperature toughness, particularly DWTT characteristics and CTOD characteristics using a full-thickness specimen are significantly improved. When either one of ΔD or ΔV falls outside the desired range, the DWTT characteristic is lowered and the low temperature toughness is deteriorated. If the plate thickness is more than 22 mm, the average grain size of the ferrite phase at the center of the plate thickness should be 5 μm or less, and the second phase structure fraction (volume%) should be 2% or less. I need. When the average crystal grain size of the ferrite phase exceeds 5 μm, or when the structure fraction (volume%) of the second phase exceeds 2%, the DWTT characteristics are lowered and the low temperature toughness is deteriorated.

このようなことから、本発明では、組織を、板厚中央位置におけるフェライト相の平均結晶粒径が5μm以下、第二相の組織分率(体積%)が2%以下であり、かつ鋼板表面から板厚方向に1mmの位置におけるフェライト相の平均結晶粒径と板厚中央位置におけるフェライト相の平均結晶粒径(μm)との差ΔDが2μm以下、かつ表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織に限定した。   For this reason, in the present invention, the structure is such that the average crystal grain size of the ferrite phase at the center position of the plate thickness is 5 μm or less, the structure fraction (volume%) of the second phase is 2% or less, and the steel sheet surface The difference ΔD between the average crystal grain size of the ferrite phase at a position of 1 mm in the plate thickness direction and the average crystal grain size (μm) of the ferrite phase at the plate thickness center position is 2 μm or less, and the position of 1 mm from the surface in the plate thickness direction The difference ΔV between the structure fraction (volume%) of the second phase and the second phase structure volume (volume%) at the center position of the plate thickness was limited to a structure having 2% or less.

なお、ΔDが2μm以下でかつΔVが2%以下となる組織を有する熱延鋼板は、鋼板表面から板厚方向に1mmの位置と板厚1/4位置とのフェライト相の平均結晶粒径(μm)の差ΔD*が2μm以下、第二相の組織分率(%)の差ΔV*が2%以下を満足し、また鋼板表面から板厚方向に1mmの位置と板厚3/4位置とのフェライト相の平均結晶粒径(μm)の差ΔD**も2μm以下、第二相の組織分率(%)の差ΔV**も2%以下を満足することを確認している。   Note that a hot-rolled steel sheet having a structure in which ΔD is 2 μm or less and ΔV is 2% or less is the average grain size of the ferrite phase at a position of 1 mm and a thickness of 1/4 in the thickness direction from the steel sheet surface ( μm) difference ΔD * is 2 μm or less, second phase structure fraction (%) difference ΔV * is 2% or less, and the position of 1 mm from the steel sheet surface in the thickness direction and the thickness of 3/4 position It has been confirmed that the difference ΔD ** in the average crystal grain size (μm) of the ferrite phase satisfies 2 μm or less and the difference ΔV ** in the structure fraction (%) of the second phase also satisfies 2% or less.

つぎに、本発明熱延鋼板の好ましい製造方法について説明する。
鋼素材の製造方法としては、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが好ましいが、本発明では、これに限定されることはない。
上記した組成の鋼素材に、加熱し熱間圧延を施す。熱間圧延は、鋼素材をシートバーとする粗圧延と、該シートバーを熱延板とする仕上圧延とからなる。
Below, the preferable manufacturing method of this invention hot-rolled steel plate is demonstrated.
As a manufacturing method of the steel material, it is preferable to melt the molten steel having the above composition by a conventional melting method such as a converter, and to make a steel material such as a slab by a conventional casting method such as a continuous casting method, The present invention is not limited to this.
The steel material having the above composition is heated and hot-rolled. Hot rolling consists of rough rolling using a steel material as a sheet bar and finish rolling using the sheet bar as a hot-rolled sheet.

鋼素材の加熱温度は、熱延板に圧延することが可能な温度であればよく、とくに限定する必要はないが、1100〜1300℃の範囲の温度とすることが好ましい。加熱温度が1100℃未満では、変形抵抗が高く圧延負荷が増大し圧延機への負荷が過大となりすぎる。一方、加熱温度が1300℃を超えて高温になると、結晶粒が粗大して低温靭性が低下するうえ、スケール生成量が増大し、歩留りが低下する。このため、熱間圧延における加熱温度は1100〜1300℃とすることが好ましい。   The heating temperature of the steel material is not particularly limited as long as it can be rolled into a hot-rolled sheet, but it is preferably a temperature in the range of 1100 to 1300 ° C. When the heating temperature is less than 1100 ° C., the deformation resistance is high, the rolling load increases, and the load on the rolling mill becomes excessive. On the other hand, when the heating temperature is higher than 1300 ° C., the crystal grains are coarsened and the low-temperature toughness is reduced, the amount of scale generation is increased, and the yield is lowered. For this reason, it is preferable that the heating temperature in hot rolling shall be 1100-1300 degreeC.

加熱された鋼素材に、粗圧延を施し、シートバーとする。粗圧延の条件は、所望の寸法形状のシートバーが得られればよく、その条件はとくに限定されない。なお、靭性確保の観点からは、粗圧延の圧延終了温度は1050℃以下とすることが好ましい。
得られたシートバーに、さらに仕上圧延を施す。なお、仕上圧延前のシートバーに加速冷却を施すか、あるいはテーブル上でオシレーションなどを行って仕上圧延開始温度を調整することが好ましい。これにより、仕上圧延ミル内での、高靭性化に有効な温度域での圧下率を大きくすることができる。
The heated steel material is roughly rolled into a sheet bar. The rough rolling conditions are not particularly limited as long as a sheet bar having a desired size and shape can be obtained. From the viewpoint of securing toughness, the rolling end temperature of rough rolling is preferably 1050 ° C. or lower.
The obtained sheet bar is further subjected to finish rolling. In addition, it is preferable to adjust the finish rolling start temperature by performing accelerated cooling on the sheet bar before finish rolling or by performing oscillation on the table. Thereby, the reduction rate in the temperature range effective for high toughness in the finish rolling mill can be increased.

仕上圧延では、高靭性化の観点から、有効圧下率を20%以上とすることが好ましい。ここで、「有効圧下率」とは、950℃以下の温度域での全圧下量(%)をいう。なお、板厚全体で所望の高靭性化を達成するためには、板厚中央部における有効圧下率が20%以上を満足することが好ましい。仕上圧延終了温度FDTは750℃以上とすることが、その後に加速冷却を施すうえで好ましい。   In finish rolling, it is preferable that the effective rolling reduction is 20% or more from the viewpoint of increasing toughness. Here, the “effective reduction ratio” refers to the total reduction amount (%) in the temperature range of 950 ° C. or lower. In order to achieve the desired high toughness in the entire plate thickness, it is preferable that the effective rolling reduction at the central portion of the plate thickness satisfies 20% or more. The finish rolling finish temperature FDT is preferably set to 750 ° C. or higher for accelerated cooling thereafter.

熱間圧延(仕上圧延)終了後、熱延板には、ホットランテーブル上で加速冷却を施す。なお、本発明では、板厚中心位置でのフェライト相の結晶粒径を所定値以下とし、第二相の組織分率を体積率で2%以下とするために、仕上圧延終了後で加速冷却開始時の鋼板板厚中心位置の温度T(℃)(以下、冷却開始点ともいう)から(T−20℃)の温度となるまでの滞留時間を20s以内とし、高温での滞留時間を短縮する。T(℃)から(T−20℃)の温度となるまでの滞留時間が、20sを超えて長くなると、変態時の結晶粒径が粗大化しやすく、高温変態フェライト(ポリゴナルフェライト)の生成を回避することが難しくなる。なお、T(℃)から(T−20℃)の温度となるまでの滞留時間を20s以内とするには、本発明鋼板の板厚範囲では、ホットランテーブル上での通板速度を120mpm以上とすることが好ましい。   After completion of hot rolling (finish rolling), the hot-rolled sheet is subjected to accelerated cooling on a hot run table. In the present invention, in order to set the crystal grain size of the ferrite phase at the center position of the plate thickness to a predetermined value or less and the structure fraction of the second phase to 2% or less by volume, accelerated cooling after finishing rolling is finished. The residence time from the temperature T (° C) at the center of the steel plate thickness at the start (hereinafter also referred to as the cooling start point) to the temperature of (T-20 ° C) is set within 20 s, and the residence time at high temperature is shortened. To do. If the residence time from T (° C.) to (T-20 ° C.) is longer than 20 s, the crystal grain size at the time of transformation tends to become coarse, and high temperature transformation ferrite (polygonal ferrite) is generated. It becomes difficult to avoid. In addition, in order to make the residence time from T (° C.) to (T-20 ° C.) within 20 s, in the plate thickness range of the steel plate of the present invention, the plate passing speed on the hot run table is 120 mpm or more. It is preferable to do.

また、加速冷却の開始は、板厚中央部の温度が750℃以上であるうちに行うことが望ましい。板厚中央部の温度が750℃未満となると、高温変態フェライト(ポリゴナルフェライト)が形成され、γ→α変態時に排出されたCが未変態γに濃縮されるため、パーライト相または上部ベイナイト等の第二相が、ポリゴナルフェライト周辺に形成される。このため、板厚中心部で第二相の組織分率が高くなり、上記した所望の組織を形成できなくなる。   Moreover, it is desirable to start the accelerated cooling while the temperature at the central portion of the plate thickness is 750 ° C. or higher. When the temperature at the center of the plate thickness is less than 750 ° C., high-temperature transformation ferrite (polygonal ferrite) is formed, and C discharged during γ → α transformation is concentrated to untransformed γ. The second phase is formed around polygonal ferrite. For this reason, the structure fraction of the second phase increases at the center of the plate thickness, and the above-described desired structure cannot be formed.

加速冷却は、板厚中心部の平均冷却速度で10℃/s以上、好ましくは20℃/s以上の冷却速度で、BFS以下の冷却停止温度まで行うことが好ましい。
冷却速度が10℃/s未満では、高温変態フェライト(ポリゴナルフェライト)が形成されやすくなり、板厚中心部で第二相の組織分率が高くなり、上記した所望の組織を形成できなくなる。このため、熱間圧延終了後の加速冷却は、板厚中央部の平均冷却速度で10℃/s以上の冷却速度で行うことが好ましい。なお、冷却速度の上限は、使用する冷却装置の能力に依存して決定されるが、反り等の鋼板形状の悪化を伴わない冷却速度であるマルテンサイト生成冷却速度より遅いことが好ましい。また、このような冷却速度は、フラットノズル、棒状ノズル、円管ノズル等を利用した水冷装置により達成できる。なお、本発明では、板厚中心部の温度、冷却速度等は、伝熱計算等で算出したものを使用することとした。
The accelerated cooling is preferably performed at a cooling rate of 10 ° C./s or higher, preferably 20 ° C./s or higher, at an average cooling rate at the center of the plate thickness, to a cooling stop temperature of BFS or lower.
When the cooling rate is less than 10 ° C./s, high-temperature transformation ferrite (polygonal ferrite) is likely to be formed, the second phase structure fraction becomes high at the center of the plate thickness, and the above-described desired structure cannot be formed. For this reason, it is preferable to perform accelerated cooling after completion | finish of hot rolling with the cooling rate of 10 degrees C / s or more by the average cooling rate of a plate | board thickness center part. In addition, although the upper limit of a cooling rate is determined depending on the capability of the cooling device to be used, it is preferable that it is slower than the martensite production cooling rate which is a cooling rate without the deterioration of steel plate shapes, such as curvature. In addition, such a cooling rate can be achieved by a water cooling device using a flat nozzle, a rod-like nozzle, a circular tube nozzle, or the like. In the present invention, the temperature at the center of the plate thickness, the cooling rate, and the like calculated by heat transfer calculation are used.

また、上記した加速冷却の冷却停止温度は、板厚中心位置の温度でBFS 以下の温度とすることが好ましい。なお、より好ましくは(BFS−20℃)以下である。BFS は、次(2)式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:冷却速度(℃/s))
で定義される。
Further, the cooling stop temperature of the above-described accelerated cooling is preferably set to a temperature equal to or lower than BFS at the center thickness position. In addition, More preferably, it is (BFS-20 degreeC) or less. BFS is the following equation (2)
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: cooling rate (° C./s))
Defined by

本発明では、板厚中心位置でのフェライト相の結晶粒径を所定値以下とし、第二相の組織分率を体積率で2%以下とするために、さらに、上記した、冷却開始点T(℃)からBFS温度までの冷却時間を30s以下に調整する。T(℃)からBFS温度までの冷却時間が30sを超えて長くなると、高温変態フェライト(ポリゴナルフェライト)が形成されやすくなり、γ→α変態時に排出されたCが未変態γに濃縮され、パーライト相または上部ベイナナイト等の第二相が、ポリゴナルフェライト周辺に形成される。このため、板厚中心部で第二相の組織分率が高くなり、上記した所望の組織を形成できなくなる。このようなことから、冷却開始点T(℃)からBFS温度までの冷却時間を30s以下に限定した。このような冷却開始点T(℃)からBFS温度までの冷却時間の調整は、通板速度の調整および冷却水量の調整により可能となる。   In the present invention, in order to set the crystal grain size of the ferrite phase at the center position of the plate thickness to a predetermined value or less and the structure fraction of the second phase to 2% or less by volume, the above-described cooling start point T Adjust the cooling time from (℃) to BFS temperature to 30s or less. When the cooling time from T (° C.) to the BFS temperature is longer than 30 s, high temperature transformation ferrite (polygonal ferrite) is likely to be formed, and C discharged during γ → α transformation is concentrated to untransformed γ, A second phase such as a pearlite phase or upper bainite is formed around polygonal ferrite. For this reason, the structure fraction of the second phase increases at the center of the plate thickness, and the above-described desired structure cannot be formed. For this reason, the cooling time from the cooling start point T (° C.) to the BFS temperature is limited to 30 s or less. The adjustment of the cooling time from the cooling start point T (° C.) to the BFS temperature can be performed by adjusting the plate passing speed and the cooling water amount.

また、本発明では加速冷却を、上記した冷却停止温度以下で停止したのち、熱延板は板厚中央位置の温度でBFS0以下の巻取温度でコイル状に巻き取られる。なお、より好ましくは(BFS0−20℃)以下である。BFS0は、次(3)式
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni ‥‥(3)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%))
で定義される。
Further, in the present invention, after the accelerated cooling is stopped below the above-described cooling stop temperature, the hot-rolled sheet is wound in a coil shape at a winding temperature of BFS 0 or less at the temperature at the center position of the plate thickness. In addition, More preferably, it is (BFS0-20 degreeC) or less. BFS0 is the following formula (3)
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni (3)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%))
Defined by

加速冷却の冷却停止温度をBFS 以下の温度とし、かつ巻取温度をBFS0以下の温度とすることにより、ΔDが2μm以下でかつΔVが2%以下となり、板厚方向の組織の均一性が顕著となる。これにより、優れたDWTT特性および優れたCTOD特性を確保できる。
なお、コイル状に巻き取られた熱延板は、コイル中央部での冷却速度で20〜60℃/hrで室温まで冷却することが好ましい。冷却速度が20℃/hr未満では、結晶粒の成長が進行するため、靭性が低下する場合がある。また、60℃/hrを超える冷却速度では、コイル中央部とコイル外周部や内周部との温度差が大きくなり、コイル形状の悪化を招きやすい。
By setting the cooling stop temperature of accelerated cooling to BFS or less and the coiling temperature to BFS0 or less, ΔD is 2 μm or less and ΔV is 2% or less, and the uniformity of the structure in the thickness direction is remarkable. It becomes. Thereby, it is possible to ensure excellent DWTT characteristics and excellent CTOD characteristics.
In addition, it is preferable that the hot-rolled sheet wound up in a coil shape is cooled to room temperature at a rate of 20 to 60 ° C./hr at a cooling rate at the center of the coil. If the cooling rate is less than 20 ° C./hr, the growth of crystal grains proceeds, so that the toughness may decrease. Further, at a cooling rate exceeding 60 ° C./hr, the temperature difference between the coil central portion and the coil outer peripheral portion or inner peripheral portion becomes large, and the coil shape tends to deteriorate.

以下、さらに実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1に示す組成のスラブ(鋼素材)(肉厚:230mm)を用いて、表2に示す熱間圧延条件で熱間圧延を施し、熱間圧延終了後、表2に示す冷却条件で冷却し、表2に示す巻取温度でコイル状に巻取り、表2に示す板厚の熱延鋼板(鋼帯)とした。なお、これら熱延鋼板を素材として、冷間でのロール連続成形によりオープン管とし、該オープン管の端面同士を電縫溶接して、電縫鋼管(外径660mmφ)とした。   Using a slab (steel material) (thickness: 230 mm) having the composition shown in Table 1, hot rolling is performed under the hot rolling conditions shown in Table 2, and after completion of the hot rolling, cooling is performed under the cooling conditions shown in Table 2. And it wound up in coil shape at the coiling temperature shown in Table 2, and it was set as the hot-rolled steel plate (steel strip) of the board thickness shown in Table 2. Using these hot-rolled steel sheets as the raw material, open pipes were formed by continuous roll forming in the cold, and the end faces of the open pipes were electro-welded to form electric-welded steel pipes (outer diameter 660 mmφ).

得られた熱延鋼板から試験片を採取し、組織観察、引張試験、衝撃試験、DWTT試験、CTOD試験を実施した。なお、DWTT試験、CTOD試験は電縫鋼管についても実施した。試験方法は次の通りとした。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨、腐食し、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(倍率:2000倍)で各3視野以上観察し、撮像して、組織の同定を行い、さらに画像解析装置を用いて、フェライト相の平均結晶粒径、およびフェライト相以外の第二相の組織分率(体積%)を測定した。観察位置は、鋼板表面から板厚方向に1mmの位置、および板厚中央位置とした。なお、フェライト相の平均結晶粒径は、切断法により平均結晶粒径をもとめ、公称粒径を該位置における平均結晶粒径とした。
Test pieces were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, impact test, DWTT test, and CTOD test. The DWTT test and CTOD test were also conducted on ERW steel pipes. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, the cross section in the rolling direction is polished and corroded, and the optical microscope (magnification: 1000 times) or scanning electron microscope (magnification: 2000 times) is used. Observe at least 3 fields of view, image, identify the structure, and use an image analyzer to determine the average crystal grain size of the ferrite phase and the structure fraction (volume%) of the second phase other than the ferrite phase. It was measured. The observation position was a position of 1 mm in the thickness direction from the surface of the steel plate and a central position of the thickness. The average crystal grain size of the ferrite phase was determined by a cutting method, and the nominal grain size was defined as the average crystal grain size at the position.

(2)引張試験
得られた熱延鋼板から、圧延方向に直交する方向(C方向)が引張試験方向となるように、板状の試験片(平行部幅:25mm、標点間距離:50mm)を採取し、ASTM E8M−04の規定に準拠して、室温で引張試験を実施し、引張強さTSを求めた。
(3)衝撃試験
得られた熱延鋼板の板厚中央部から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:−80℃での吸収エネルギー(J)を求めた。なお、試験片は3本とし、得られた吸収エネルギー値の算術平均をもとめ、その鋼板の吸収エネルギー値vE−80(J)とした。vE−80が200J以上である場合を「靭性が良好である」と評価した。
(2) Tensile test From the obtained hot-rolled steel sheet, a plate-shaped specimen (parallel part width: 25 mm, distance between gauge points: 50 mm) so that the direction (C direction) perpendicular to the rolling direction is the tensile test direction. ), And a tensile test was performed at room temperature in accordance with ASTM E8M-04 to determine the tensile strength TS.
(3) Impact test V-notch test specimens were taken from the center of the thickness of the obtained hot-rolled steel sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and conformed to the provisions of JIS Z 2242 Then, a Charpy impact test was performed, and the absorbed energy (J) at a test temperature of −80 ° C. was obtained. The number of test pieces was three, and the arithmetic average of the obtained absorbed energy values was obtained to obtain the absorbed energy value vE- 80 (J) of the steel sheet. The case where vE- 80 was 200 J or more was evaluated as “good toughness”.

(4)DWTT試験
得られた熱延鋼板から、圧延方向に直交する方向(C方向)が長手方向となるようにDWTT試験片(大きさ:板厚×幅3in.×長さ12in.)を採取し、ASTM E 436の規定に準拠して、DWTT試験を行い、延性破面率が85%となる最低温度(DWTT)を求めた。DWTTが、−30℃以下の場合を「優れたDWTT特性」を有すると評価した。
(4) DWTT test From the obtained hot-rolled steel sheet, a DWTT test piece (size: plate thickness x width 3 in. X length 12 in.) Was set so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction. The sample was collected and subjected to a DWTT test in accordance with ASTM E 436, and the lowest temperature (DWTT) at which the ductile fracture surface ratio was 85% was determined. The case where DWTT was −30 ° C. or less was evaluated as having “excellent DWTT characteristics”.

なお、DWTT試験は、電縫鋼管の母材部からも試験片の長手方向が管周方向となるように、DWTT試験片を採取し、鋼板と同様に試験した。
(5)CTOD試験
得られた熱延鋼板から、圧延方向に直交する方向(C方向)が長手方向となるようにCTOD試験片(大きさ:板厚×幅(2×板厚)×長さ(10×板厚)を採取し、ASTM E 1290の規定に準拠して、試験温度:−10℃でCTOD試験を行い、−10℃での限界開口変位量(CTOD値)を求めた。なお、試験荷重は、三点曲げ方式で負荷し、切欠部に変位計を取り付け、限界開口変位量CTOD値を求めた。CTOD値が0.30mm以上である場合を、「優れたCTOD特性」を有すると評価した。
In the DWTT test, a DWTT test piece was sampled from the base material portion of the ERW steel pipe so that the longitudinal direction of the test piece became the pipe circumferential direction, and tested in the same manner as the steel plate.
(5) CTOD test From the obtained hot-rolled steel sheet, a CTOD specimen (size: plate thickness x width (2 x plate thickness) x length so that the direction orthogonal to the rolling direction (C direction) is the longitudinal direction. (10 × plate thickness) was sampled and subjected to a CTOD test at a test temperature of −10 ° C. in accordance with ASTM E 1290, and a critical opening displacement (CTOD value) at −10 ° C. was obtained. The test load was applied by a three-point bending method, a displacement gauge was attached to the notch, and the critical opening displacement CTOD value was obtained.If the CTOD value is 0.30 mm or more, it has “excellent CTOD characteristics”. Then I evaluated.

なお、CTOD試験は、電縫鋼管からも、管軸方向に直交する方向が試験片の長手方向となるように、CTOD試験片を採取し、ノッチを母材部およびシーム部に導入して、鋼板と同様に試験した。
得られた結果を表3に示す。
In addition, CTOD test is also taken from the ERW steel pipe, so that the direction orthogonal to the tube axis direction is the longitudinal direction of the test piece, CTOD test piece is taken, and the notch is introduced into the base metal part and the seam part, Tested in the same manner as the steel sheet.
The obtained results are shown in Table 3.

Figure 0005499734
Figure 0005499734

Figure 0005499734
Figure 0005499734

Figure 0005499734
Figure 0005499734

本発明例はいずれも、適正な組織を有し、TS:530MPa以上の高強度と、vE−80が200J以上、CTOD値が0.30mm以上、−30℃以下のDWTTと、優れた低温靭性とを有する熱延鋼板となり、とくに優れたCTOD特性、優れたDWTT特性を有している。本発明例の熱延鋼板を使用した電縫鋼管も、母材部、シーム部ともに、0.30mm以上のCTOD値、−5℃以下のDWTTを有し、優れた低温靭性を有する鋼管となっている。 Each of the inventive examples has an appropriate structure, TS: high strength of 530 MPa or more, DWTT of vE- 80 of 200 J or more, CTOD value of 0.30 mm or more, −30 ° C. or less, and excellent low temperature toughness And has excellent CTOD characteristics and excellent DWTT characteristics. The ERW steel pipe using the hot-rolled steel sheet of the example of the present invention also has a CTOD value of 0.30 mm or more and a DWTT of −5 ° C. or less for both the base metal part and the seam part, and has excellent low temperature toughness. Yes.

一方、本発明の範囲を外れる比較例は、vE−80が200J未満であるか、CTOD値が0.30mm未満であるか、−20℃超えのDWTTであるかして、低温靭性が低下している。 On the other hand, the comparative example out of the scope of the present invention shows that the low temperature toughness is lowered because the vE- 80 is less than 200 J, the CTOD value is less than 0.30 mm, or the DWTT exceeds -20 ° C. Yes.

Claims (6)

質量%で、
C:0.02〜0.08%、 Si:0.01〜0.50%、
Mn:0.5〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
Nb:0.01〜0.10%、 Ti:0.001〜0.05%
を含み、かつC、Ti、Nbを下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成と、板厚中央位置における低温変態フェライト相の平均結晶粒径が5μm以下、板厚中央位置における低温変態フェライト相の組織分率(体積%)が98%以上、板厚中央位置における第二相の組織分率(体積%)が2%以下であり、かつ表面から板厚方向に1mmの位置における低温変態フェライト相の平均結晶粒径と板厚中央位置における低温変態フェライト相の平均結晶粒径との差ΔDが2μm以下、表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下であり、前記低温変態フェライト相がベイニティックフェライト相、ベイナイト相、またはそれらの混合相のいずれかであり、前記第二相がパーライト、マルテンサイト、島状マルテンサイト、上部ベイナイト、あるいはそれらの2種以上からなる混合相のいずれかである組織を有することを特徴とする低温靭性に優れた板厚:22mm超の極厚高張力熱延鋼板。

(Ti+(Nb/2))/C<4 ‥‥(1)
ここで、Ti、Nb、C:各元素の含有量(質量%)
% By mass
C: 0.02 to 0.08%, Si: 0.01 to 0.50%,
Mn: 0.5 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
Nb: 0.01-0.10%, Ti: 0.001-0.05%
And C, Ti, Nb so as to satisfy the following formula (1), the composition comprising the balance Fe and inevitable impurities, and the average crystal grain size of the low-temperature transformation ferrite phase at the center of the plate thickness is 5 μm or less The structure fraction (volume%) of the low-temperature transformation ferrite phase at the center position of the plate thickness is 98% or more, the structure fraction (volume%) of the second phase at the center position of the sheet thickness is 2% or less, and the plate from the surface The difference ΔD between the average grain size of the low temperature transformation ferrite phase at 1 mm in the thickness direction and the average grain size of the low temperature transformation ferrite phase at the center of the plate thickness is 2 μm or less. structural percentage of the two phases (vol%) and der difference ΔV of 2% or less of the structural fraction of the second phase (vol%) in the sheet thickness center position is, the low-temperature transformation ferrite phase bainitic ferrite phase Bainite phase, or them The second phase has a structure that is one of pearlite, martensite, island martensite, upper bainite, or a mixed phase composed of two or more thereof. Thickness excellent in low-temperature toughness: Extra-thick high-tensile hot-rolled steel sheet exceeding 22 mm.
(Ti + (Nb / 2)) / C <4 (1)
Here, Ti, Nb, C: Content of each element (mass%)
前記組成に加えてさらに、質量%で、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の極厚高張力熱延鋼板。   In addition to the above composition, in addition to mass, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50% Or it is set as the composition containing 2 or more types, The ultra-thick high tension hot-rolled steel plate of Claim 1 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする請求項1または2に記載の極厚高張力熱延鋼板。   The extra-thick high-tensile hot-rolled steel sheet according to claim 1 or 2, wherein, in addition to the composition, the composition further contains Ca: 0.0005 to 0.005% by mass. 質量%で、
C:0.02〜0.08%、 Si:0.01〜0.50%、
Mn:0.5〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
Nb:0.01〜0.10%、 Ti:0.001〜0.05%
を含み、かつC、Ti、Nbを下記(1)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を加熱し、粗圧延と仕上圧延とからなる熱間圧延を施して熱延鋼板とし、ついで、前記仕上圧延終了後の前記熱延鋼板に、板厚中心位置の平均冷却速度で10℃/s以上の加速冷却を、下記(2)式で定義されるBFS以下の冷却停止温度まで行い、ついで下記(3)式で定義されるBFS0以下の巻取温度で巻き取るに当たり、該熱延鋼板の板厚中心位置の温度が、前記加速冷却の開始時の温度:T(℃)から温度:(T−20℃)となるまでの滞留時間を20s以内とし、かつ前記板厚中心位置の温度Tから前記BFSの温度までの冷却時間が30s以下となるように調整することを特徴とする請求項1に記載の組織を有する低温靭性に優れた板厚:22mm超の極厚高張力熱延鋼板の製造方法。

(Ti+(Nb/2))/C<4 ‥‥(1)
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni ‥‥(3)
ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)
CR:冷却速度(℃/s)
% By mass
C: 0.02 to 0.08%, Si: 0.01 to 0.50%,
Mn: 0.5 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
Nb: 0.01-0.10%, Ti: 0.001-0.05%
And containing C, Ti, Nb so as to satisfy the following formula (1), heating a steel material having a composition composed of the balance Fe and inevitable impurities, and performing hot rolling consisting of rough rolling and finish rolling Then, the hot rolled steel sheet after the finish rolling is finished, and the accelerated cooling of 10 ° C./s or more at the average cooling rate at the center position of the sheet thickness is defined by the following formula (2). When the coil is wound up to a cooling stop temperature of BFS or less and then wound at a coiling temperature of BFS 0 or less defined by the following equation (3), the temperature at the center of the thickness of the hot-rolled steel sheet is The residence time from temperature: T (° C.) to temperature: (T-20 ° C.) should be within 20 s, and the cooling time from the temperature T at the plate thickness center position to the BFS temperature should be 30 s or less. thickness superior in low temperature toughness having a tissue according to claim 1, characterized in that to adjust the Method for producing extra heavy high strength hot-rolled steel sheet of 22mm greater.
(Ti + (Nb / 2)) / C <4 (1)
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni (3)
Here, C, Mn, Cr, Mo, Cu, Ni: Content of each element (mass%)
CR: Cooling rate (° C / s)
前記組成に加えてさらに、質量%で、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上を含有する組成とすることを特徴とする請求項4に記載の極厚高張力熱延鋼板の製造方法。   In addition to the above composition, in addition to mass, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50% Or it is set as the composition containing 2 or more types, The manufacturing method of the ultra-thick high tension hot-rolled steel plate of Claim 4 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする請求項4または5に記載の極厚高張力熱延鋼板の製造方法。
The method for producing an ultra-thick high-tensile hot-rolled steel sheet according to claim 4 or 5, wherein, in addition to the composition, the composition further contains Ca: 0.0005 to 0.005% by mass.
JP2010016828A 2009-01-30 2010-01-28 Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same Active JP5499734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016828A JP5499734B2 (en) 2009-01-30 2010-01-28 Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009019357 2009-01-30
JP2009019357 2009-01-30
JP2010016828A JP5499734B2 (en) 2009-01-30 2010-01-28 Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010196165A JP2010196165A (en) 2010-09-09
JP5499734B2 true JP5499734B2 (en) 2014-05-21

Family

ID=42821174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016828A Active JP5499734B2 (en) 2009-01-30 2010-01-28 Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5499734B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029749B2 (en) * 2010-09-17 2012-09-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
JP5126326B2 (en) * 2010-09-17 2013-01-23 Jfeスチール株式会社 High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same
JP5776377B2 (en) * 2011-06-30 2015-09-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same
TWI432585B (en) 2011-09-27 2014-04-01 Nippon Steel & Sumitomo Metal Corp Pipeline heat coil and its manufacturing method
CN102330034B (en) * 2011-09-30 2013-04-24 中国石油集团渤海石油装备制造有限公司 X65MS steel-grade spiral welded tube for acidic corrosion environment and manufacturing method thereof
JP5853661B2 (en) * 2011-12-15 2016-02-09 Jfeスチール株式会社 Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
MX355667B (en) * 2012-04-27 2018-04-25 Nippon Steel & Sumitomo Metal Corp Seamless steel pipe and method for manufacturing same.
CN102912253B (en) * 2012-09-29 2014-07-23 宝山钢铁股份有限公司 High-frequency straight welded pipe and manufacturing method thereof
CN103484788B (en) * 2013-08-31 2016-05-04 宝鸡石油钢管有限责任公司 A kind of high-strength X 80 MS spiral submerged welded pipe and manufacture method thereof of hydrogen sulfide corrosion-resistant
CN103526108B (en) * 2013-10-07 2015-12-09 宝鸡石油钢管有限责任公司 The ERW welded tube of the X70MS that a kind of anti-SSCC stress corrosion is excellent and manufacture method thereof
JP5783229B2 (en) * 2013-11-28 2015-09-24 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP6645037B2 (en) * 2015-06-16 2020-02-12 日本製鉄株式会社 Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP6645036B2 (en) * 2015-06-16 2020-02-12 日本製鉄株式会社 Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP7448804B2 (en) 2020-04-23 2024-03-13 日本製鉄株式会社 ERW steel pipes for line pipes and hot rolled steel plates for line pipes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP4375087B2 (en) * 2004-03-31 2009-12-02 Jfeスチール株式会社 High strength and high toughness hot-rolled steel strip with excellent material homogeneity and manufacturing method thereof
JP4940882B2 (en) * 2005-10-18 2012-05-30 Jfeスチール株式会社 Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP5151233B2 (en) * 2007-04-26 2013-02-27 Jfeスチール株式会社 Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same

Also Published As

Publication number Publication date
JP2010196165A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5499734B2 (en) Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5195469B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
KR101333854B1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5630026B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5776377B2 (en) High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP5533024B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
WO2010087512A1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP4905240B2 (en) Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5553093B2 (en) Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP5521482B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
JP5521483B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5347540B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5521484B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5533025B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5413496B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250