[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5065223B2 - 車両制御システム - Google Patents

車両制御システム Download PDF

Info

Publication number
JP5065223B2
JP5065223B2 JP2008268814A JP2008268814A JP5065223B2 JP 5065223 B2 JP5065223 B2 JP 5065223B2 JP 2008268814 A JP2008268814 A JP 2008268814A JP 2008268814 A JP2008268814 A JP 2008268814A JP 5065223 B2 JP5065223 B2 JP 5065223B2
Authority
JP
Japan
Prior art keywords
rotating electrical
power
electrical machine
voltage
system voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008268814A
Other languages
English (en)
Other versions
JP2010098882A (ja
Inventor
武志 伊藤
寛文 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2008268814A priority Critical patent/JP5065223B2/ja
Publication of JP2010098882A publication Critical patent/JP2010098882A/ja
Application granted granted Critical
Publication of JP5065223B2 publication Critical patent/JP5065223B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は車両制御システムに係り、特に、蓄電装置と回転電機とを含む車両の制御システムに関する。
蓄電装置と回転電機とを搭載する車両においては、蓄電装置のWoutと呼ばれる放電可能電力と、Winと呼ばれる充電可能電力を考慮しながら回転電機を駆動するコンバータ、インバータ等の電源回路の作動が制御される。
例えば、特許文献1には、動力出力装置として、モータ−ECUは、Win,Woutの中にバッテリの入出力電力が入るようにトルク指令を更新することが開示されている。これによって、HV−ECUとモータ−ECUの間の通信遅れがあっても、バッテリの過大な電力による充放電を抑止することができる、と述べられている。
また、特許文献2には、電源装置において、コンバータとインバータとの間に設けられる平滑コンデンサに対する充放電電力がモータ・ジェネレータの動作電圧の変化によって変化し、これがコンバータの電力制限を超える原因となることが指摘されている。ここではモータ・ジェネレータの力行動作時に、モータ・ジェネレータの動作電圧の上昇に応じた平滑コンデンサの蓄積電力変化量と、モータ・ジェネレータの消費電力との和が、コンバータの出力制限電力を超えないように、トルク指令値を本来の要求トルクよりも小さくすることが開示されている。
また、特許文献3には、複数の蓄電装置についての昇温制御方法として、蓄電装置の温度に応じてその電圧が上下限値を超えるときは、蓄電装置に接続されるコンバータのデューティ指令値を補正することが開示されている。
また、特許文献4には、特許文献3と同様の内容で、ここでは、複数の蓄電装置のWin,Woutのそれぞれの和である充電許容電力合計値、放電許容電力合計値と電力実績値との比較を行い、電力実績値が少なくともいずれかの許容電力合計値より小さいときは、一方のコンバータを所定の目標電圧値となるように制御し、他方のコンバータを所定の目標電流値となるように制御することが開示されている。
特許文献5には、入出力制御装置として、ハイブリッド車のように充放電電流が激しく変動する場合に、バッテリの最大入出力電力を推定する従来技術では、電池電圧の変化の速度を考慮していないので、バッテリの容量に余裕を見る必要があることを指摘している。そしてここでは、電池電圧と、電池電圧の変化速度に基いてバッテリの入出力制限値を設定することが開示されている。
再表2006/006293号公報 特開2005−210779号公報 特開2008−61487号公報 特開2007−295782号公報 特開2006−166559号公報
上記のように、蓄電装置と回転電機とを搭載する車両においては、蓄電装置のWout,Winを考慮しながら駆動制御等が行われる。このような車両にも高出力化が要求されてくる。このとき、モータトルクを増大するには電流を増大する必要があり、これに対応するにはコンバータ、インバータの電流容量を大きくすることになり、大型化につながる。そこで、パワー=トルク×回転数の関係を利用し、トルクの増大に代えて回転数を増大させて高出力に対応することが行われる。
このように回転電機の高出力のために高回転化が図られると、インバータの正極母線と負極母線との間の電圧であるシステム電圧が回転電機の運転状態に依存することが強くなる。特に、車両に発電機用回転電機と駆動用回転電機とが搭載される場合に、エンジンの回転数に依存する発電機用回転電機の運転状態よりも、上記のように高出力のために高回転化が図られる駆動用回転電機の作動条件の方にシステム電圧の依存性が高くなる。したがって、回転電機の運転状態に応じてシステム電圧を制御することが例えば燃費向上のためにも好ましい。
蓄電装置を用いるシステムでは、Wout,Winを考慮した駆動制御を行うことが好ましいが、上記従来技術では、コンバータの入出力制限、蓄電装置の温度特性等に対してWout,Winを考慮しているが、システム電圧についてWout,Winを考慮することが述べられていない。このように、システム電圧を制御する際にWout,Winを考慮することが行われていないために、回転電機の運転状態から見ると、必要以上に高いシステム電圧にコンバータが昇圧していることが生じ得る。したがって、Wout,Winを考慮して、回転電機の運転状態からシステム電圧を設定することで、燃費向上を図る余地がある。
本発明の目的は、回転電機のさらなる燃費向上を図ることができる車両制御システムを提供することである。他の目的は、蓄電装置のWout,Winに応じてシステム電圧を適切に設定することを可能にする車両制御システムを提供することである。以下の手段は、上記目的の少なくとも1つに貢献する。
発明に係る車両制御システムは、複数の回転電機と、蓄電装置と、蓄電装置の電圧に対してコンバータによって昇降圧されたシステム電圧で作動し、複数の回転電機のそれぞれに接続される複数のインバータと、蓄電装置の放電可能電力または充電可能電力に応じてシステム電圧の上限を制限する制御部と、を備え、前記制御部は、蓄電装置の放電可能電力と充電可能電力の範囲の中で、複数の回転電機の電力の割合を分配して、システム電圧の上限を制限することを特徴とする。
また、本発明に係る車両制御システムにおいて、制御部は、複数の回転電機の中で力行している回転電機の必要電力に応じてシステム電圧の上限を制限することが好ましい。
また、本発明に係る車両制御システムにおいて、制御部は、蓄電装置の温度に応じてシステム電圧の上限を制限することが好ましい。
また、本発明に係る車両制御システムにおいて、制御部は、システム電圧の上限制限に際してシステム電圧を変更する場合に、予め設定された変化率を付与してシステム電圧を変更することが好ましい。
また、本発明に係る車両制御システムにおいて、複数の回転電機は、駆動用回転電機と発電用回転電機であり、制御部は、発電用回転電機のシステム損失よりも駆動用回転電機のシステム損失が大きくなったときに、システム電圧の上限制限を解除することが好ましい。
また、本発明に係る車両制御システムにおいて、インバータの駆動制御を正弦波制御モードと過変調制御モードと矩形波制御モードとの間で制御モード切替を行う手段を含み、駆動用回転電機は、矩形波制御モードにおいて弱め界磁制御を行っていることが好ましい。
上記構成の少なくとも1つにより、車両制御システムは、蓄電装置の放電可能電力であるWoutまたは充電可能電力であるWinに応じてシステム電圧Vmの上限を制限する。システムの利用可能電力は、WoutとWinの間で制限される。システム電圧Vmの上限を制限して低減することで、インバータのスイッチング損失を低減できるので燃費向上につながるが、その際に、システムの利用可能電力の範囲としてWout,Winを考慮する。これによって、システムの利用可能電力を最大限に利用しながら、システム電圧Vmを適切に設定し、燃費向上を図ることができる。回転電機は1台であっても複数台であっても、同様にWout,Winを考慮してVmの設定を行うことで、システムの利用可能電力を最大限に利用しながら、燃費向上を図ることができる。
また、車両制御システムにおいて、蓄電装置の放電可能電力であるWoutと充電可能電力であるWinの範囲の中で、複数の回転電機の電力の割合を分配して、システム電圧Vmの上限を制限する。例えば、複数の回転電機の中には発電を行うものがあり、そのときには、発電電力をWoutに加えることができる。このように、複数の回転電機の特性を考慮して電力の割合を分配することで、システムの利用可能電力を最大限に利用しながら、システム電圧Vmを適切に設定し、燃費向上を図ることができる。
また、車両制御システムにおいて、複数の回転電機の中で力行している回転電機の必要電力に応じてシステム電圧の上限を制限する。回生を行っている回転電機と力行を行っている回転電機とでは、その出力の絶対値は元々回生の回転電機の方が大きくなる性質を有する。このことから、出力の絶対値の小さい力行の回転電機の必要電力に応じてシステム電圧Vmの上限を決めることで燃費向上が図れる。
また、車両制御システムにおいて、蓄電装置の温度に応じてシステム電圧の上限を制限する。蓄電装置の内部抵抗と、Wout,Winとの関係が非線形のことがあるので、Wout,Winが大きくても蓄電装置の内部抵抗が大きい場合がある。このとき、Wout,Winが大きいので蓄電装置電流を多く流すことが可能と考えられるが、一方で蓄電装置の内部抵抗が大きいので、蓄電装置電流と内部抵抗の積である電圧降下も大きくなる。
特に、蓄電装置の温度が低温になると蓄電装置の内部抵抗が大きくなるので、電圧降下も大きくなる。これらのことから、Wout,winに基く制限に温度による蓄電装置の内部抵抗の影響を考慮することが好ましい。上記構成によれば、蓄電装置の内部抵抗の温度特性の影響も考慮して、システムの利用可能電力を最大限に利用しながら、システム電圧Vmを適切に設定し、燃費向上を図ることができる。
また、車両制御システムにおいて、システム電圧Vmの上限制限に際してシステム電圧Vmを変更する場合に、予め設定された変化率を付与してシステム電圧Vmを変更する。これにより、Wout,Winあるいは蓄電装置の温度が急変してシステム電圧Vmが急激に変化することを緩和できる。システム電圧Vmが急変すると、回転電機の消費電力が急減し、その分をインバータの平滑コンデンサが急回生し、その回生エネルギが蓄電装置に回生されて蓄電装置が過電圧になることが生じ得る。システム電圧Vmの変更に際し電圧変化率を付与することで、蓄電装置に回生されるパワーを緩やかにでき、過電圧になることを防止できる。
また、車両制御システムにおいて、発電用回転電機のシステム損失よりも駆動用回転電機のシステム損失が大きくなったときに、システム電圧Vmの上限制限を解除する。システム電圧Vmの上限を設定することで駆動用回転電機のシステム損失が増大すると、駆動用回転電機の発熱が増大することが生じる。そこで、駆動用回転電機のシステム損失が増大して発電用回転電機のシステム損失よりも大きくなるような運転状態のときには、システム電圧Vmの上限制限を解除することで、駆動用回転電機のシステム損失を抑制することができる。
また、車両制御システムにおいて、インバータの駆動制御として、正弦波制御モードと過変調制御モードと矩形波制御モードとの間で制御モード切替を行うときに、駆動用回転電機は、矩形波制御モードにおいて弱め界磁制御を行っているものとする。
システム電圧の上限を制限すると、例えば、駆動用回転電機の要求パワーを満たすためには、正弦波電流制御モードから過変調電流制御モード、矩形波電圧位相制御モードというように、インバータの出力電圧に対する信号振幅の比である変調率を高くすることが行われることがある。その場合に、回転電機における逆起電圧が高くなることを抑制するために弱め界磁電流を流す方法を用いるが、この方法は銅損の増大を招き、回転電機のシステム損失を増大させ、回転電機の発熱が増大することがある。
このように、駆動用回転電機の運転状態によって矩形波制御モードにおいて弱め界磁制御を行う場合には、システム電圧Vmの上限を設定することで駆動用回転電機のシステム損失が増大し、駆動用回転電機の発熱が増大することが生じる。そこで、駆動用回転電機のシステム損失が増大して発電用回転電機のシステム損失よりも大きくなるような運転状態のときには、システム電圧Vmの上限制限を解除することで、駆動用回転電機のシステム損失を抑制することができる。
以下に図面を用いて、本発明に係る実施の形態につき、詳細に説明する。以下では、車両制御システムの対象として、エンジンと回転電機とともに変速機が搭載される車両を説明するが、高速巡航を行うときに変速機が便利ではあるが、必ずしも変速機を用いることでもないので、変速機を省略するものとできる。また、以下では車両に搭載される回転電機として、1台でモータ機能と発電機機能とを有するモータ・ジェネレータを2台用いるものとして説明するが、これは例示であって、モータ機能のみを有する回転電機を1台、発電機機能のみを有する回転電機を1台用いるものとしてもよい。また、モータ・ジェネレータを1台用いるものとしてもよく、3台以上用いるものとしてもよい。
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
図1は、エンジンと回転電機とを搭載する車両についての車両制御システム10の構成を示す図である。車両制御システム10は、車両の駆動部30と、駆動部30の各要素の作動を制御する制御部40とを備えて構成される。
車両の駆動部30は、エンジン12と、蓄電装置14とを動力源とし、第1の回転電機(MG1)20と第2の回転電機(MG2)22とを備え、さらに、蓄電装置14と2つの回転電機20,22との間に接続されて設けられるコンバータ16と、インバータ18と、エンジン12と第1の回転電機20と第2の回転電機22との間の動力分配を行うための動力分配機構24と、動力分配機構24と第2の回転電機22との間に設けられる変速機26と、変速機26から歯車機構27を経て駆動力を受け取る車輪あるいはタイヤ28とを含んで構成される。
エンジン12は、複数の気筒を有する内燃機関で、第1の回転電機20と第2の回転電機22とともに車両の駆動源を構成する。エンジン12は、動力分配機構24等を介して車両の駆動軸を駆動しタイヤ28を回転して走行を行わせる機能と共に、第1の回転電機20を発電機として用いて発電を行わせ、蓄電装置14を充電する機能を有する。
動力分配機構24と変速機26と歯車機構27は、エンジン12と第1の回転電機20と第2の回転電機22の各出力を調整し、車両の走行等で要求されるトルクと回転数に変換して車両の駆動軸を介しタイヤ28に伝達する機能を有する。これらを合わせて、車両のトランスミッション機構と呼ぶことができる。
動力分配機構24は、エンジン12と第1の回転電機20と第2の回転電機22の間で動力を分配する機能を有するもので、プラネタリ機構を用いることができる。例えば、プラネタリ機構のサンギヤに第1の回転電機20、ピニオンギヤを公転させるキャリアをエンジン12、リングギヤを減速機構を介して車両の駆動軸に接続し、この減速機構と変速機を介して第2の回転電機22と接続するものとできる。なお、動力分配機構24のギヤ比であるプラネタリ比が1:ρとして図1に示されている。
変速機26は、回転電機22の回転数の変更によってトルクを増減する機能を有するもので、Lo変速段とHi変速段とを有する。例えば、変速状態がLoからHiに切り替えると、回転電機22自体の回転数が同じでも、駆動軸をより高速に回転でき、車両を高速走行させることができる。逆に変速状態をHiからLoに切り替えると、回転電機22自体のトルクを増大させてより高トルクで駆動軸を駆動できる。変速機26は、歯数の異なる複数のギヤの噛み合いの変更が可能な歯車変速機構を用いることができる。なお、動力分配機構24に用いられるプラネタリ機構と同様な機構を変速機26として用いることもできる。
歯車機構27は、動力分配機構24の出力と変速機26の出力とを合わせて駆動軸に伝達する機能を有するもので、歯車比は固定である。歯車機構27は、変速機26の一部として構成することもできる。
トランスミッション機構の作用は、周知の共線図を用いて説明することができる。上記構成の共線図については、後に、車両の通常走行と高速巡航とを説明する際に、その内容を述べることとする。
第1の回転電機(MG1)20と第2の回転電機(MG2)22は、車両に搭載されるモータ・ジェネレータ(MG)であって、蓄電装置14から電力が供給されるときはモータとして機能し、エンジン12による駆動時、あるいは車両の制動時には発電機として機能する3相同期型回転電機である。
ここで、第1の回転電機(MG1)22は、エンジン12によって駆動されて発電機として用いられ、発電された電力をコンバータ16、インバータ18の中のMG1インバータを介して蓄電装置14に供給するものとして用いられる。また、第2の回転電機(MG2)22は、車両走行のために用いられ、力行時には蓄電装置14から直流電力の供給を受けてコンバータ16、インバータ18の中のMG2インバータを介して変換された交流電力によってモータとして機能して車両のタイヤ28を駆動し、制動時には発電機として機能して回生エネルギを回収し、コンバータ16、インバータ18の中のMG2インバータを介して蓄電装置14に供給するものとできる。
コンバータ16とインバータ18とは、蓄電装置14と2つの回転電機20,22の間に設けられる電源回路である。ここでは、蓄電装置14の電圧に対してコンバータ16によって昇降圧されたシステム電圧Vmでインバータ18が作動し、インバータ18が2つの回転電機20,22に接続される。図2は、コンバータ16、インバータ18の内部構成も含めて、蓄電装置14と2つの回転電機20,22との接続関係の様子を示す図である。
コンバータ16は、蓄電装置14とインバータ18の間に配置され、電圧変換機能を有する回路である。図2に示されるように、コンバータ16としては、リアクトルと制御部40の制御の下で作動するスイッチング素子等を含んで構成することができる。電圧変換機能としては、蓄電装置側の電圧をリアクトルのエネルギ蓄積作用を利用して昇圧しインバータ側に供給する昇圧機能と、インバータ側からの電力を蓄電装置側に降圧して充電電力として供給する降圧機能とを有する。昇圧機能に着目するときは、コンバータ16を昇圧回路と呼ぶことができる。以下では、コンバータ16が昇圧回路としての機能を有する場合を中心にして述べる。
インバータ18は、交流電力と直流電力との間の電力変換を行う回路である。図2に示されるように、インバータ18は、制御部40の制御の下で作動する複数のスイッチング素子を含んで構成される。上記のように、第1の回転電機(MG1)20と第2の回転電機(MG2)22は、用途も動作点条件も異なるので、図2に示されるように、インバータ18は、その内部で2つのインバータ回路で構成されている。2つのインバータ回路のうち1つは第1の回転電機(MG1)20の作動用のMG1インバータであり、もう1つは第2の回転電機(MG2)22の作動用のMG2インバータである。MG1インバータと第2インバータは、基本的には同じ構造のものを用いることができる。
インバータ18の正極母線と負極母線の間の直流電圧は、インバータ18の作動電圧であり、この電圧で第1の回転電機20と第2の回転電機22の作動交流電圧の振幅が定まるので、この電圧をシステム電圧Vmと呼ぶことができる。コンバータ16が昇圧回路の機能であるときは、システム電圧Vmは、コンバータ16の出力昇圧電圧である。つまり、コンバータ16の昇圧制御によってシステム電圧Vmを制御することができる。なお、コンバータ16が降圧回路の機能であるときは、システム電圧Vmはコンバータ16への入力直流電圧となる。いずれにせよ、システム電圧Vmはコンバータ16の昇降圧制御によって定められることになる。
システム電圧Vmは、蓄電装置14と第1の回転電機20、第2の回転電機22との間の電力のやり取りによって、変動するが、その変動を吸収するために、図2に示されるように、平滑コンデンサ19が正極母線と負極母線の間に設けられる。
上記のように、第1の回転電機(MG1)20を発電機として機能させるときには、MG1インバータは、第1の回転電機(MG1)20からの交流3相回生電力を直流電力に変換し、蓄電装置側に充電電流として供給する交直変換機能を有する。また、第2の回転電機(MG2)22の作動用のMG2インバータは、車両が力行のとき、蓄電装置側からの直流電力を交流3相駆動電力に変換し、第2の回転電機(MG2)22に駆動電力として供給する直交変換機能と、車両が制動のとき、逆に第2の回転電機(MG2)22からの交流3相回生電力を直流電力に変換し、蓄電装置側に充電電流として供給する交直変換機能とを有する。
再び図1に戻り、制御部40は、上記の各要素の作動を全体として制御する機能を有する。例えば、エンジン12の作動を制御する機能、2つの回転電機20,22の作動を制御する機能、コンバータ16、インバータ18の作動を制御する機能、動力分配機構24の作動を制御する機能、変速機26の作動を制御する機能等を有する。
かかる制御部40は、車両の搭載に適した制御装置、例えば車載用コンピュータによって構成することができる。制御部40を1つのコンピュータで構成することもできるが、必要な処理速度が各構成要素によって異なること等を考慮し、複数のコンピュータにこれらの機能を分担させることもできる。例えば、エンジン12の作動を制御する機能をエンジン電気制御ユニット(Electrical Control Unit:ECU)に分担させ、2つの回転電機20,22の作動を制御する機能をMG−ECUに分担させ、コンバータ16、インバータ18の作動を制御する機能をPCU(Power Control Unit)に分担させ、これらと動力分配機構24、変速機26を含む全体を統合ECUで制御する等の構成とすることもできる。
図1において、制御部40は、これらの機能のうち、特に車両制御機能として、蓄電装置14のWout,Winに応じてシステム電圧Vmの上限を適切に設定する制御を行って燃費向上を図る機能を有する部分が示されている。すなわち、制御部40は、蓄電装置14のWout,Win状態を取得するWout/Win取得モジュール42と、取得されたWout,Winの範囲の中で、複数の回転電機の間でその電力の割合を分配する電力割合分配モジュール44と、システム電圧Vmの上限を制限するシステム電圧制限モジュール46と、コンバータ16、インバータ18の作動を制御して第1の回転電機20、第2の回転電機22の駆動を制御する駆動制御モジュール48を含んで構成される。なお、回転電機が1つの場合には、電力割合分配モジュール44の機能を省略することができる。
これらの機能は、ソフトウェアを実行することで実現でき、具体的には、車両制御プログラムの中のシステム電圧設定パートを実行することで実現できる。これらの機能の一部をハードウェアによって実現するものとしてもよい。
上記構成の作用、特に制御部40の各機能について以下に詳細に説明する。なお、駆動制御モジュール48の内容については、2つの回転電機20,22の間で特に区別がないので、以下では、第2の回転電機22に代表させて、その駆動制御について説明する。
最初に、駆動制御モジュール48に関連して、回転電機22の3つの駆動制御モードである正弦波電流制御モード、過変調電流制御モード、矩形波電圧位相制御モードについて説明する。
正弦波電流制御モードと過変調電流制御モードとは、電流フィードバック制御であり、電圧指令と搬送波(キャリア)とを比較することでパルス幅変調(Pulse Width Modulation:PWM)パターンを回転電機20に出力する制御である。一方、矩形波電圧位相制御モードは、電気角に応じて1パルススイッチング波形を回転電機20に出力する制御であり、電圧振幅は最大値に固定され、位相を制御することでトルクをフィードバック制御している。これら3つの制御モードは、駆動制御モジュール48の機能によって実行される。
正弦波電流制御モード、過変調電流制御モード、矩形波電圧位相制御モードの3つのモードの間の切替は、変調率、あるいは変調率に相当する電圧指令振幅によって行われる。変調率とは、インバータの出力電圧に対する信号振幅の比である。正弦波と三角波の比較によるPWM方式の場合は、変調率が{(3)1/2}/2{(2)1/2}=0.61であり、矩形波を信号振幅とするときの変調率が{(6)1/2}/π=0.78である。
このように、回転電機22を高出力にするには、変調率を大きくできる矩形波電圧位相制御の方が適している。一方で、正弦波電流制御モード、過変調電流制御モードにおいては、PWM技術によって形成される擬似正弦波を用いるので、矩形波電圧位相制御モードに比べ、応答を速くすることができる。これらのことから、低速領域では、正弦波電流制御モード、中速領域では過変調電流制御モード、高速領域で矩形波電圧位相制御モードを用いることが好ましい。
図3は、回転電機の動作点に応じて制御モードが選択される様子を説明する図である。この図は、回転電機22の回転数を横軸に、トルクを縦軸にとり、回転電機22が出力できるパワーを一定としてとり得るトルクの最大値を示す最大トルク特性線50を示し、さらに、最大トルク特性線50で示される作動領域においてどの制御モードが用いられるかを示す図である。この図に示されるように、低速側に正弦波電流制御モード作動領域52が、高速側に矩形波電圧位相制御モード作動領域56が、その中間に過変調電流制御モード作動領域54がそれぞれ設定されている。
次に、システム電圧Vmと、回転電機22が出力できるパワーPとの関係を説明する。図4は、最大トルク特性線で示される回転電機22が出力できるパワーPとシステム電圧Vmとの関係を説明する図である。図4は図3と同様に、回転電機22の回転数を横軸に、トルクを縦軸にとった図で、ここでは、トルクが負の場合も示されている。回転数の符号とトルクの符号が同じの場合は回転電機22が力行のときで、回転数の符号とトルクの符号が互いに逆の場合は回転電機22が回生のときである。したがって、図4には、回転電機22が力行のときと回生のときにおけるパワーPとシステム電圧Vmの関係が示されている。
パワーPは、回転数とトルクの積であるので、パワーPが一定のときには、回転数とトルクの関係は双曲線特性を示す。図3で説明した最大トルク特性線50は、この双曲線特性と、トルクの上限値とを組み合わせたものである。したがって、最大トルク特性線50の双曲線部分は、パワーP一定のときの回転数とトルクとの関係を示すものである。このパワーP一定の双曲線特性は、システム電圧Vmが大きいほどパワーPが増大する関係にある。図4では、システム電圧Vmが大きくなるにつれて、パワー線64、パワー線62、パワー線60の順序でパワー線が移動する様子が示されている。
次に、蓄電装置14の放電可能電力であるWoutと、充電可能電力であるWinとについて説明する。蓄電装置14は、十分に充電されている状態であるときには、充電をさらに行うことは難しいが放電を十分に行うことができる。逆に充電が不十分である状態のときは、充電をさらに行うことができるが、放電をさらに行うことが困難になる。蓄電装置14の充電状態をSOC(State Of Charge)で示すものとすると、Wout,WinはSOCの関数となる。
その様子を図5に示す。図5は、横軸にSOCをとり、縦軸に蓄電装置14から入出力可能な電力をとったもので、縦軸の正符号側が出力電力、つまりWoutを示し、負符号側が入力電力、つまりWinを示す。図5に示されるように、Wout−SOC特性線70は、SOCが十分大きいときにほぼ一定値であり、SOCが低下すると、非線形的にWoutが小さくなる。Win−SOC特性線71は、SOCが十分小さいときにほぼ一定値であり、SOCが大きくなると、非線形的にWinが小さくなる。
次に、トランスミッション機構に関連して、エンジン12、第1の回転電機20、第2の回転電機22の回転数の関係について共線図を用いて説明する。図6は、図1で説明した構成についての共線図で、(a)が通常走行の場合、(b)が高速巡航の場合である。この共線図は、縦軸に回転数、横軸に各要素の幾何学的配置位置を示したものである。各要素が歯車機構の場合、横軸は歯車の歯数に比例した位置となり、各要素の間の配置の間の距離の比が歯数比、すなわち減速比に相当することになる。
図6(a),(b)の横軸において、第1の回転電機(MG1)20の位置はプラネタリ機構のサンギヤの位置を示し、エンジン12の位置はプラネタリ機構のピニオンギヤの位置を示し、ペラ軸として示されている位置は、プラネタリ機構のリングギヤに対応する位置を示している。ペラ軸は、タイヤ28に接続される駆動軸であるが、歯車機構27があるので、図6(a),(b)ではその歯車機構の歯車比を含めた位置でリングギヤに対応する位置としてある。ここで、図6(a),(b)の横軸において、(サンギヤ−ピニオンギヤ)の距離:(ピニオンギヤ−リングギヤ)の距離がプラネタリ比で、1:ρとなる。
図6(a)は、通常走行の場合の状態を示す共線図である。ここでは、第1の回転電機(MG1)20と、エンジン12とペラ軸とが直線関係となり、ペラ軸とリダクション機構、つまりトランスミッション機構と、第2の回転電機(MG2)22とが直線関係となる。そして、通常走行の場合には、第2の回転電機(MG2)22が力行状態で、第1の回転電機(MG1)20が回生状態である。なお、ここで、基準としてエンジン12の状態を正回転、正トルクとして、第2の回転電機22が負回転、負トルク、第1の回転電機20が正回転、負トルクとしてある。
図6(b)は、高速巡航の場合の状態を示す共線図である。ここでも、第1の回転電機(MG1)20と、エンジン12とペラ軸とが直線関係となり、ペラ軸とリダクション機構、つまりトランスミッション機構と、第2の回転電機(MG2)22とが直線関係となるが、図6(a)と比べて、ペラ軸の回転数が高くなる。したがって、高速巡航の場合は、第2の回転電機22が負回転、正トルクの回生状態となり、第1の回転電機20が負回転、負トルクの力行状態となる。
このように、通常走行と高速巡航とでは、第1の回転電機20と第2の回転電機22とで、力行状態と回生状態とが逆になる。図7は、パワーの分担を示す図である。ここで示されるように、第2の回転電機22が力行状態のときは、(第2の回転電機の力行パワー)=(第1の回転電機20の回生によるパワー)+(蓄電装置14のWout)という関係になる。また、第2の回転電機22が回生状態のときは、(第2の回転電機の回生パワー)=(第1の回転電機20の力行によるパワー)+(蓄電装置14のWin)という関係になる。
図7の説明に示されるように、第1の回転電機20のパワーをMG1pwrとし、第2の回転電機22のパワーをMG2pwrとすると、Win≦MG1pwr+MG2pwr≦Woutの関係を守ることになる。ここで、Woutは正、Winは負として扱い、MG1pwr,MG2pwrは力行と回生で符号が変わるが、以下では特に断らない限り、MG1pwrを負、MG2pwrを正として説明を続ける。なお、符合が変わっても、図7で説明したように、力行と回生とを入れ替え、WinとWoutとを入れ替えれば同様の関係となる。
したがって、蓄電装置14のWout,Winを考慮して車両の運転状況に応じてシステム電圧Vmを設定するには次のようにすればよい。すなわち、Win≦MG1pwr+MG2pwr≦Woutの関係を守りながら、車両の運転状況に合わせて、第1の回転電機20のパワーと第2の回転電機22のパワーの分配を行い、そのパワーの分配に基いてシステム電圧Vmを設定する。このようにすることで、システムの利用可能電力を最大限に利用しながら、システム電圧Vmを適切に設定し、燃費向上を図ることができる。
次に、上記構成において、蓄電装置14のWout,Winに応じてシステム電圧Vmの上限を適切に設定する制御を行って燃費向上を図る機能、特に制御部40のWout/Win取得モジュール42、電力割合分配モジュール44、システム電圧制限モジュール46の機能について図8から図10を用いて説明する。
図8は、Wout,Winに応じてシステム電圧Vmの上限を適切に設定する制御の全体手順を示すフローチャートである。図9と図10は、図8における上限電圧演算の内部手順を示すフローチャートである。図9と図10は2つの例を示すものである。これらの手順は、車両制御プログラムのシステム電圧設定パートの各処理手順に対応する。
図8は、上記のように、Wout,Winに応じてシステム電圧Vmの上限を適切に設定する制御の全体手順を示すフローチャートである。ここでは、第1の回転電機20の駆動に必要なシステム電圧Vmを演算し(S10)、演算された必要電圧が予め定められている最高電圧以下か否かが判断される(S12)。駆動に必要なシステム電圧Vmを演算するには、第1の回転電機20に要求されるパワーを取得し、図4で説明したようにパワーPとシステム電圧Vmとの関係を示すマップあるいは関係式を用いて、要求されるパワーPに対応するシステム電圧Vmを求めることで行うことができる。最高電圧とは、第1の回転電機20に対し、インバータ18の特性、第1の回転電機20の構造等から制限される最大のシステム電圧のことである。
例えば、第1の回転電機20に要求されるパワーであるMG1pwrが余り大きくないときは、それに対応するシステム電圧Vmも低く、インバータ18等から定められる最高電圧よりも低いものとなる。逆に、Winが低い値等の場合で第1の回転電機20に要求されるパワーであるMG1pwrが大きい値のときは、それに対応するシステム電圧Vmも高くなり、インバータ18等から定められる最高電圧を計算上で超えることが生じ得る。
S12で判断が肯定、すなわち、第1の回転電機20における必要なシステム電圧の計算値が最高電圧以下の場合は、次に第2の回転電機22について同様の手順が実行される。すなわち、第2の回転電機22の駆動に必要なシステム電圧Vmを演算し(S14)、演算された必要電圧が予め定められている最高電圧以下か否かが判断される(S16)。第2の回転電機22の駆動に必要なシステム電圧Vmを演算する手順はS10で述べた内容と同じであるが、第2の回転電機22におけるパワーPとシステム電圧Vmとの関係は、第1の回転電機20におけるパワーPとシステム電圧Vmと同じでなくてもよい。例えば、第1の回転電機20は第2の回転電機22に比べ小型の回転電機とするときは、パワーPとシステム電圧Vmの関係も、最高電圧の値も、第1の回転電機20と第2の回転電機22との間で異なるものとなる。
なお、S10とS12とを行うことと、S14とS16とを行うこととを、逆の順序としてもよい。要は、第1の回転電機20と第2の回転電機22にそれぞれ要求されるパワーに対応するシステム電圧をそれぞれ求め、その結果をそれぞれについて予め定めた最高電圧と比較することが行われる。
そして、第1の回転電機20に必要なシステム電圧が第1の回転電機20について予め定められる最高電圧以下であり、さらに、第2の回転電機22に必要なシステム電圧が第2の回転電機22について予め定められる最高電圧以下であるときには、システム電圧Vmの上限電圧がそれぞれの最高電圧以下の範囲で演算されて求められる(S18)。逆に、第1の回転電機20に必要なシステム電圧が第1の回転電機20について予め定められる最高電圧を超える場合、あるいは、第2の回転電機22に必要なシステム電圧が第2の回転電機22について予め定められる最高電圧を超えるときは、その超える最高電圧にシステム電圧Vmが設定される(S20)。
図8のS18におけるシステム電圧Vmの上限電圧設定の内部手順の1つの例が図9に示される。ここでは、まずWoutとWinが取得されて入力される処理が行われる(S22)。この工程は、制御部40のWout/Win取得モジュール42の機能によって実行される。取得されたWout,Winは、以下の演算手順において、Win≦MG1pwr+MG2pwr≦Wout、あるいは、符号を考えずに絶対値で、MG2pwr≦MG1pwr+Woutの関係を守るために用いられる。
次に2つの回転電機20,22についての出力割合が演算される(S32)。この工程は、制御部40の電力割合分配モジュール44の機能によって実行される。ここでは、第1の回転電機20において要求されるパワーであるMG1pwrと、第2の回転電機22における最大パワーであるMG2pwrmaxとが取得される。そして、Woutを考慮した第2の回転電機22が取りえる最大パワーとしてMG2pwr=MG1pwr+Woutの式で与えられるMG2pwrを求める。出力割合としては、(MG2pwr/MG2pwrmax)が計算される。出力割合の計算の分母としてMG2pwrmaxを用いているのは、第2の回転電機22の最大パワーのときのシステム電圧Vmが通常の運転状態におけるシステム電圧とされるので、これを基準とするためである。
次に上限電圧設定処理(S34)が行われる。この工程は、制御部40のシステム電圧制限モジュール46の機能によって実行される。具体的には、S32で演算された出力割合に、通常運転のときのシステム電圧Vmを乗算して、これをシステム電圧Vmの上限電圧とする。例えば、S32で求められた出力割合をαとすると、システム電圧Vmは、αVmに低減された値が上限電圧として設定される。つまり、S32で求められる出力割合は、システム電圧Vmの低減比に相当する。
そして、このようにして計算上で設定された上限電圧が、MG1の要求パワーに対し、必要なシステム電圧以下か否かが判断される(S36)。MG1にとって必要なシステム電圧は、図4で説明したパワーPとシステム電圧Vmの関係に基いて求めることができる。S36において判断が肯定されると、S34で設定処理された上限電圧がそのまま用いられ、S36において判断が否定されると、演算された上限電圧が必要電圧よりも高すぎるので、必要電圧であるMG1電圧がシステム電圧Vmの上限電圧として用いられる。
このようにして、Wout,Winを考慮して回転電機出力割合で計算されて求められた計算上限電圧と、第1の回転電機20の要求パワーから求められる必要システム電圧とを比較し、いずれか低い値がシステム電圧Vmの実際の上限電圧として用いられる。
図10は、図8のS18における上限電圧演算のもう1つの例における手順を示すフローチャートである。ここでは、図9の最初の手順と同様に、WoutとWinが取得されて入力される処理が行われる(S22)。そして、MG1の電力が演算され(S42)、その符号が正、つまり力行状態か否かが判断される(S44)。MG1の電力の演算は、第1の回転電機20において要求されるパワーであるMG1pwrを求めることを内容とするもので、図8のS10と同じである。
S44で判断が肯定されると、そのMG1電力に対応するシステム電圧が、上限電圧として設定処理される(S46)。S44で判断が否定されると、図9において破線枠で囲んだ処理(S30)が実行される。
図10の方法は、第1の回転電機20が力行状態にあるときは、MG1電力に対応するシステム電圧を上限電圧として設定処理し、第1の回転電機20が力行状態にないときは、図9の方法に従うというものである。図9の方法は、第2の回転電機22が力行状態にある場合である。したがって、図10の方法は、複数の回転電機がある場合に、力行状態にある回転電機のパワーに基いてシステム電圧の上限電圧を設定することを示している。
これは、高速巡航の場合のように、元々、回生状態のパワーの絶対値の方が力行状態のパワーの絶対値よりも大きくなるという性質をもつので、ここでは、パワーが小さい力行状態にある回転電機に基づく方が、システム電圧Vmの低減を図ることができるためである。
次に、図8から図10の手順に基いてシステム電圧Vmの上限電圧を設定する例をいくつか示す。
1つは、Woutがほぼゼロの場合である。このときは、第1の回転電機20の発電パワーの範囲内でのみ、第2の回転電機22を駆動することができる。したがって、符号を考えずに絶対値において、MG2pwr<MG1pwrである。この場合には、大きい方のMG1pwrに従ってシステム電圧Vmの上限電圧を設定することになる。回転電機出力割合αは、(MG1pwr/MG2pwrmax)を計算する。この比が上記で説明した低減率に相当する。
次に、このようにして演算された出力割合αに、通常運転のときのシステム電圧Vmを乗算して、これをシステム電圧Vmの上限電圧とする。したがって、システム電圧Vmは、αVmに低減された値が上限電圧として設定される。
ここでは、Woutがほぼゼロに近い場合を説明したが、Woutがある程度ある場合でも、MG2pwr<MG1pwrであるときは同様に処理することができる。Woutが十分高いときは、MG1pwrがゼロに近い状態で、いわば、1つの回転電機で駆動が行われている場合に近い。このときは、Win≦MG2pwr≦Woutの条件を守るようにして、MG2pwrに対応するシステム電圧Vmをそのまま上限電圧として設定するものとすればよい。
次に、図6(b)で説明した高速巡航の場合を説明する。高速巡航の場合は、第2の回転電機22の回生電力と第1の回転電機20の力行電力とをバランスさせることができるので、Wout,Winはどのような値であってもよい。そして、この場合には、符号を考えずに絶対値において、MG1pwr=MG2pwrとできる。したがって、MG1pwrに対応するシステム電圧またはMG2pwrに対応するシステム電圧で上限電圧を設定することになるが、図10で説明したように、元々、回生状態のパワーの絶対値の方が力行状態のパワーの絶対値よりも大きくなるという性質をもつので、ここでは、小さいほうのパワーである力行状態にあるMG1pwrに対応するシステム電圧を上限電圧として設定が行われることになる。
図11は、蓄電装置14の温度特性を考慮する例を説明する図である。図11は、横軸に蓄電装置14の温度Tbをとって、Wout−Tb特性線80、Win−Tb特性線81と、蓄電装置14の内部抵抗RbのTbに対するRb−Tb特性線82を同じ図の中で示したものである。
図11に示されるように、蓄電装置14の内部抵抗Rbと、Wout,Winとの関係は単純な線形関係でなく、非線形関係となる。そこで、Wout,Winが大きくても蓄電装置14の内部抵抗Rbが大きい場合がある。図11の場合では、縦座標軸と横座標軸の交わる温度からやや高温側で、矢印で示した範囲において、Wout,Winがある程度大きい値であるが、その割にはRbも大きな値を有している。この様な場合には、Wout,Winが大きいので蓄電装置14の電流Ibを多く流すことが可能と考えられるが、一方で蓄電装置14の内部抵抗Rbが大きいので、蓄電装置14の電流Ibと内部抵抗Rbの積である電圧降下(Ib×Rb)も大きくなる。
このように、蓄電装置14の温度が室温から低下して低温になると、蓄電装置14の内部抵抗Rbが大きくなるので、Wout,Winが大きくても蓄電装置14の電圧降下が大きくなる。これらのことから、Wout,winに基く制限に加えて、蓄電装置14の温度Tbによる蓄電装置14の内部抵抗Rbの影響を考慮することが好ましい。
この場合には、蓄電装置14の温度Tbに応じてWout,Winが図11のように変化するので、常温におけるWout,Winの値に対し減少する分をWin≦MG1pwr+MG2pwr≦Woutについて補正すればよい。例えば、符号を考えずに絶対値における例として、MG2pwr=MG1pwr+Woutを守る場合で説明すると、WoutをTbが低温になるほど小さくしてMG2pwrを計算するものとする。
例えば、Tbが低温になって、WoutがΔWだけ小さくなるとすれば、図9のS32における計算は、MG2pwr’=MG1pwr+Wout−ΔWとし、出力割合はこの式で計算されたMG2pwr’を用いて(MG2pwr’/MG2pwrmax)とすることができる。
上記では、システム電圧Vmを低減する上限電圧の設定は、単に電圧値を変更するものとして説明したが、システム電圧Vmを変更する場合に、予め設定された変化率を付与するものとできる。
例えば、上記のシステム電圧Vmの上限電圧の設定を行うことで、Wout,Winあるいは蓄電装置14の温度Tbが急変してシステム電圧Vmが急激に変化することが生じ得る。システム電圧Vmが急変すると、回転電機22の消費電力が急減し、その分をインバータ18の平滑コンデンサ19が急回生し、その回生エネルギが蓄電装置14に回生されて蓄電装置14が過電圧になることが生じ得る。システム電圧Vmの変更に際し電圧変化率を付与することで、蓄電装置14に回生されるパワーを緩やかにでき、過電圧になることを防止できる。
図12、図13は、システム電圧Vmの変更に際し、異なる電圧変化率に対して蓄電装置14の電圧、電流に与える影響の相違を示す図である。これらの図の横軸は時間である。図12は、システム電圧Vmの変更に対し比較的大きな電圧変化率を付与した場合で、図13は、システム電圧Vmの変更に対し比較的小さな電圧変化率を付与した場合である。これらの図を比較して、電圧変化率を小さくして、緩やかにシステム電圧Vmを変更する方が、蓄電装置14の電圧、電流の変動を少なくできることが分かる。電圧変化率は、このような蓄電装置14の電圧、電流の変動を所定範囲にできるものとして設定することが好ましい。
上記では、回転電機22の制御モードについては特に述べていないが、実際には、回転電機22の制御モードの切替が行われ、これに応じて回転電機22のシステム損失が変化するので、システム電圧Vmの上限電圧の設定にこのことを考慮することが好ましい。
すなわち、回転電機22を駆動するインバータ18は、上記のように正弦波制御モードと過変調制御モードと矩形波制御モードの制御モードを有し、例えば回転電機22の回転数が低回転数から高回転数になるに応じて、正弦波制御モードから過変調制御モードへ、過変調制御モードから矩形波制御モードへと制御モードを切り替えることが行われる。図14は、回転電機22の回転数の変化に伴って制御モードの切替が行われ、これに応じて回転電機システム損失が変化する様子を示す図である。図14の横軸は回転電機回転数、縦軸は回転電機システム損失である。
図14に示されるように、回転電機回転数が高くなり、矩形波電圧位相制御モードに切り替わると、回転電機システム損失が回転電機か回転数に応じて急増する。これは、回転電機22の要求パワーを満たすためには、正弦波電流制御モードから過変調電流制御モード、過変調電流制御モードから矩形波電圧位相制御モードと制御モードを切り替え、インバータ18の出力電圧に対する信号振幅の比である変調率を高くすることが行われるが、それにつれて回転電機22における逆起電圧が高くなる。これを抑制するために弱め界磁電流を流す方法を用いるが、この方法は銅損の増大を招き、図14に示すように、回転電機22のシステム損失が急増することになるためである。
このような場合に、システム電圧Vmを低減すると、より低い回転数で変調率が高くなり、システム損失の急増がより低い回転数で開始することになる。したがって、駆動用回転電機である第2の回転電機22のシステム損失が増大して発電用回転電機である第1の回転電機20のシステム損失よりも大きくなるような運転状態のときには、システム電圧Vmの上限制限を解除して、駆動用回転電機である第2の回転電機22のシステム損失の増大を抑制することが好ましい。
本発明に係る実施の形態における車両制御システムの構成を示す図である。 本発明に係る実施の形態において、コンバータ、インバータの内部構成も含めて、蓄電装置と2つの回転電機との接続関係の様子を示す図である。 本発明に係る実施の形態において、回転電機の動作点に応じて制御モードが選択される様子を説明する図である。 本発明に係る実施の形態において、回転電機が出力できるパワーとシステム電圧との関係を説明する図である。 本発明に係る実施の形態において、蓄電装置の充電状態と、放電可能電力と充電可能電力の関係を説明する図である。 本発明に係る実施の形態において、共線図を用いて通常走行の場合と高速巡航の場合を説明する図である。 本発明に係る実施の形態において、パワーの分担を示す図である。 本発明に係る実施の形態において、蓄電装置の放電可能電力と充電可能電力に応じてシステム電圧の上限を適切に設定する制御の全体手順を示すフローチャートである。 図8における上限電圧演算の内部手順を示すフローチャートである。 図8において別の例の上限電圧演算の内部手順を示すフローチャートである。 本発明に係る実施の形態において、蓄電装置の温度特性を考慮する例を説明する図である。 本発明に係る実施の形態において、システム電圧の変更に際し電圧変化率を付与するときの蓄電装置の電圧、電流に与える影響を説明する図である。 図12の例よりも緩やかな電圧変化率を付与した場合を示す図である。 本発明に係る実施の形態において、回転電機の回転数の変化に伴って制御モードの切替が行われ、これに応じて回転電機システム損失が変化する様子を説明する図である。
符号の説明
10 車両制御システム、12 エンジン、14 蓄電装置、16 コンバータ、18 インバータ、19 平滑コンデンサ、20,22 回転電機、24 動力分配機構、26 変速機、27 歯車機構、28 タイヤ、30 駆動部、40 制御部、42 Wout/Win取得モジュール、44 電力割合分配モジュール、46 システム電圧制限モジュール、48 駆動制御モジュール、50 最大トルク特性線、52 正弦波電流制御モード作動領域、54 過変調電流制御モード作動領域、56 矩形波電圧位相制御モード作動領域、60,62,64 パワー線、70 Wout−SOC特性線、71 Win−SOC特性線、80 Wout−Tb特性線、81 Win−Tb特性線、82 Rb−Tb特性線。

Claims (6)

  1. 複数の回転電機と、
    蓄電装置と、
    蓄電装置の電圧に対してコンバータによって昇降圧されたシステム電圧で作動し、複数の回転電機のそれぞれに接続される複数のインバータと、
    蓄電装置の放電可能電力または充電可能電力に応じてシステム電圧の上限を制限する制御部と、を備え
    前記制御部は、
    蓄電装置の放電可能電力と充電可能電力の範囲の中で、複数の回転電機の電力の割合を分配して、システム電圧の上限を制限することを特徴とする車両制御システム。
  2. 請求項に記載の車両制御システムにおいて、
    前記制御部は、
    複数の回転電機の中で力行している回転電機の必要電力に応じてシステム電圧の上限を制限することを特徴とする車両制御システム。
  3. 請求項1または2に記載の車両制御システムにおいて、
    前記制御部は、
    蓄電装置の温度に応じてシステム電圧の上限を制限することを特徴とする車両制御システム。
  4. 請求項1から3のいずれか1に記載の車両制御システムにおいて、
    前記制御部は、
    システム電圧の上限制限に際してシステム電圧を変更する場合に、予め設定された変化率を付与してシステム電圧を変更することを特徴とする車両制御システム。
  5. 請求項に記載の車両制御システムにおいて、
    複数の回転電機は、駆動用回転電機と発電用回転電機であり、
    前記制御部は、
    発電用回転電機のシステム損失よりも駆動用回転電機のシステム損失が大きくなったときに、システム電圧の上限制限を解除することを特徴とする車両制御システム。
  6. 請求項に記載の車両制御システムにおいて、
    インバータの駆動制御を正弦波制御モードと過変調制御モードと矩形波制御モードとの間で制御モード切替を行う手段を含み、
    駆動用回転電機は、矩形波制御モードにおいて弱め界磁制御を行っていることを特徴とする車両制御システム。
JP2008268814A 2008-10-17 2008-10-17 車両制御システム Active JP5065223B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268814A JP5065223B2 (ja) 2008-10-17 2008-10-17 車両制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268814A JP5065223B2 (ja) 2008-10-17 2008-10-17 車両制御システム

Publications (2)

Publication Number Publication Date
JP2010098882A JP2010098882A (ja) 2010-04-30
JP5065223B2 true JP5065223B2 (ja) 2012-10-31

Family

ID=42260156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268814A Active JP5065223B2 (ja) 2008-10-17 2008-10-17 車両制御システム

Country Status (1)

Country Link
JP (1) JP5065223B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047761A1 (de) * 2010-10-08 2012-04-12 Andreas Stihl Ag & Co. Kg Arbeitsgerät mit einem elektrischen Antriebsmotor
JP2015112990A (ja) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 ハイブリッド車両
JP2015133862A (ja) 2014-01-15 2015-07-23 トヨタ自動車株式会社 車両の電源装置
JP6044569B2 (ja) 2014-03-12 2016-12-14 株式会社デンソー 制御装置
JP6344345B2 (ja) * 2015-09-11 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両
JP6871780B2 (ja) * 2017-03-29 2021-05-12 株式会社Subaru 電動車両の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142879B2 (ja) * 2002-03-04 2008-09-03 株式会社東芝 電力変換装置
JP2006353032A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp 電圧変換装置
JP5050324B2 (ja) * 2005-07-04 2012-10-17 トヨタ自動車株式会社 二次電池の制御装置
JP5109290B2 (ja) * 2006-05-30 2012-12-26 トヨタ自動車株式会社 電動機駆動制御システムおよびその制御方法
JP2008207577A (ja) * 2007-02-23 2008-09-11 Toyota Motor Corp 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法

Also Published As

Publication number Publication date
JP2010098882A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
JP4513907B2 (ja) ハイブリッド車両
JP4390785B2 (ja) 四輪駆動式車両の駆動力制御装置
JP4193704B2 (ja) 電源装置およびそれを搭載する自動車
CN103958243B (zh) 车辆和用于车辆的控制方法
JP5011940B2 (ja) 電源装置、および車両
JP4793237B2 (ja) 二次電池の充放電制御装置、および、それを備える車両
JP5644854B2 (ja) 電動機の制御装置および制御方法
JP5716694B2 (ja) 電動車両
WO2014136592A1 (ja) 電源制御装置および電源制御方法
JP2008012992A (ja) ハイブリッド車両の駆動制御装置
JP5065223B2 (ja) 車両制御システム
JP5332740B2 (ja) モータ駆動制御装置
JP2008167613A (ja) 電動車両
WO2009093494A1 (ja) 車両の制御装置およびそれを備える車両
JP5320988B2 (ja) 電源システムおよびその電力収支制御方法
JP5928260B2 (ja) 電気自動車
JP2012110189A (ja) 電動車両の電気システムおよびその制御方法
JP2010221745A (ja) 車両制御装置
JP2015198501A (ja) 車両の制御装置
JP2009196415A (ja) ハイブリッド車両の制御装置および制御方法
JP3897708B2 (ja) 前後輪駆動装置
JP5074736B2 (ja) 車両の駆動制御装置、車両、車両の駆動制御方法、その制御方法をコンピュータに実行させるためのプログラム、およびそのプログラムをコンピュータ読み取り可能に記録した記録媒体
JP4784831B2 (ja) ハイブリッド駆動装置、並びにその制御方法及び制御プログラム
JP6248766B2 (ja) ハイブリッド車両の制御システム
JP2009196533A (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R151 Written notification of patent or utility model registration

Ref document number: 5065223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250