[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5057938B2 - 水素生成装置、およびこれを備えた燃料電池システム - Google Patents

水素生成装置、およびこれを備えた燃料電池システム Download PDF

Info

Publication number
JP5057938B2
JP5057938B2 JP2007297685A JP2007297685A JP5057938B2 JP 5057938 B2 JP5057938 B2 JP 5057938B2 JP 2007297685 A JP2007297685 A JP 2007297685A JP 2007297685 A JP2007297685 A JP 2007297685A JP 5057938 B2 JP5057938 B2 JP 5057938B2
Authority
JP
Japan
Prior art keywords
combustion
air
combustion gas
gas
hydrogen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007297685A
Other languages
English (en)
Other versions
JP2009120448A (ja
Inventor
豊 吉田
邦弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007297685A priority Critical patent/JP5057938B2/ja
Publication of JP2009120448A publication Critical patent/JP2009120448A/ja
Application granted granted Critical
Publication of JP5057938B2 publication Critical patent/JP5057938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水素含有ガスを生成する改質器と改質器を加熱するためのバーナとを備える水素生成装置、およびこれを備えた燃料電池システムに関する。
従来から、小規模な高効率発電が可能である燃料電池システムは、発電運転の際に発生する熱エネルギーを利用するためのシステム構築が容易であるため、高いエネルギー利用効率を実現することが可能な分散型の発電システムとして開発が進められている。
燃料電池システムでは、発電運転の際、その発電部の本体として配設された燃料電池スタック(以下、単に「燃料電池」という)に、水素を含む水素含有ガスと酸素を含む酸素含有ガスとが各々供給される。すると、燃料電池では、その供給される水素含有ガスに含まれる水素と酸素含有ガスに含まれる酸素とが用いられて、所定の電気化学反応が進行する。この所定の電気化学反応が進行することにより、燃料電池において、水素及び酸素が有する化学的なエネルギーが電気的なエネルギーに直接変換される。これにより、燃料電池システムは、負荷に向けて電力を出力する。
さて、燃料電池システムの発電運転時に必要となる水素含有ガスの供給手段は、通常、インフラストラクチャーとして整備されていない。そのため、従来の燃料電池システムでは、例えば既存の化石原料インフラストラクチャーから得られる都市ガス又はLPG等の原料ガスと水蒸発器により生成した水蒸気とを用いて600℃〜700℃の温度で水蒸気改質反応を進行させて水素含有ガスを生成する改質器が、燃料電池と共に配設されていることが多い。一方、水蒸気改質反応により得られる水素含有ガスには、通常、原料ガスに由来する一酸化炭素及び二酸化炭素が大量に含まれている。そこで、従来の燃料電池システムでは、改質器で生成された水素含有ガスに含まれる一酸化炭素の濃度を低減するために、水素含有ガスの温度を低下させ、200℃〜350℃の温度で水性ガスシフト反応を進行させることにより一酸化炭素の濃度を低減する変成器、及び、100℃〜150℃の温度で選択酸化反応を進行させることにより一酸化炭素の濃度を更に低減する選択酸化器が、燃料電池や改質器と共に配設されていることが多い。ここで、従来の燃料電池システムでは、これらの改質器及び変成器及び選択酸化器により、水素生成装置が構成されている。尚、これらの改質器及び変成器及び選択酸化器の各々には、水蒸気改質反応、水性ガスシフト反応、選択酸化反応の各々を進行させるための各化学反応に適した触媒が各々配設されている。例えば、改質器には、Ru触媒やNi触媒が配設されている。又、変成器には、Cu−Zn触媒や貴金属系触媒が配設されている。又、選択酸化器には、Ru触媒等が配設されている。
ところで、上記構成を有する水素生成装置では、一般的に、各反応器での化学反応を適切に進行させるために、各反応器の温度を最適な温度に維持する必要がある。又、上記構成を有する水素生成装置では、各反応器の温度を最適な温度に維持する際に必要となる熱エネルギーを有効に利用することが重要な課題になっている。
そこで、燃料電池の発電時に未使用水素含有ガスのオフガスを安定的に燃焼させ、その熱エネルギーを有効に利用するため、水素生成装置用バーナーが加熱部として提案されている(特許文献1)。該文献の水素生成装置用バーナーでは、燃焼安定性を高め、窒素酸化物の発生を抑制するために、火炎放出方向に向かうにしたがって広がるテーパ形状をなした燃焼室と、空気噴出孔およびこれに略対向する一に配設された上段ガス噴出孔とを備えている。該文献には、空気供給量を燃焼室の下流方向に向かって大とするための構成が複数提案されている。例えば、該文献の図8には、空気噴出孔の間隔を燃焼室の下流方向に向かって狭くする構成が開示されている。
また、燃料ガスの燃焼熱を燃焼前の燃料ガスへと伝熱することで、結露発生に起因する燃料供給条件の変動を防止して改質器での改質反応を一定に維持する改質用バーナ装置が提案されている(特許文献2)。
また、第1の混合気を燃焼させる燃焼部と、第1の混合気を燃焼させた後にさらに空気を供給して燃焼させる燃焼部の2つの燃焼部を有する、水素生成装置用バーナーが提案されている(例えば、特許文献3参照)。
また、改質器、水蒸発器、変成器、及び選択酸化器の各々を、燃焼用燃料と燃焼用空気との混合気を燃焼して燃焼ガスを生成する加熱部の周りに同心円筒状に配設して、装置を小型化し放熱面を少なくする水素生成装置が提案されている(例えば、特許文献4参照)。
また、同一軸方向に各々筒状の水蒸発器と改質器とを並べて配置して、装置を小型化し放熱面を少なくする水素生成装置が提案されている(例えば、特許文献5参照)。
さらに各反応器の温度を最適な温度に維持する際に必要となる熱エネルギーを有効に利用するため、水素生成装置の外側の断熱性を強化して放熱を低減する構成がとられる。
多重円筒内に改質部その他の反応部を収めた上で、水蒸気発生部と改質部との間に水受け部を設けた水素生成装置も提案されている(例えば、特許文献6参照)。
特開2003−254514号公報 特開2002−255504号公報 特開2006−105408号公報 特開2002−187705号公報 特開2005−225684号公報 特開2007− 15911号公報
しかしながら従来の構成では、エネルギー効率のさらなる向上が望まれており、また窒素酸化物の抑制が必ずしも十分でない場合があるという問題があった。
本発明は上記のような課題を解決するためになされたもので、燃焼排ガス中の窒素酸化物を低減し、かつ熱効率を向上させた水素生成装置およびこれを備えた燃料電池システムを提供することを目的としている。
本発明者は、上記課題を解決すべく鋭意検討した。その結果、以下の点に気づいた。
水素生成装置からの放熱を低減する構成では、装置内部が高温になる。特に、改質部を加熱部の周りに同心円筒状に配設して、装置を小型化し放熱面を少なくする水素生成装置では、熱のこもり易い中心部に加熱部が位置しているので、燃焼室が高温になる傾向がある。窒素酸化物の発生は温度に依存し、高温になればなるほど発生量が増加する。このため、燃焼室が高温になると、燃焼排ガス中の窒素酸化物濃度も増加する。
また、水素生成装置の起動時にはオフガスの利用ができないため、都市ガス又はLPG等の原料ガスを加熱部で直接に燃焼させる必要がある。炭化水素系のガスを燃焼させる場合には、窒素酸化物の発生はさらに増加する。
以上のように、窒素酸化物の発生は、加熱部における燃焼室の温度により影響を受ける。したがって、窒素酸化物濃度を低減するためには、燃焼室の温度を低下させることが有効である。燃焼室の温度を低下させるためには、外部から供給する改質用の水を水素生成装置の内部で貯溜する水トラップ部を設け、この水トラップ部を燃焼室の近傍に配設すればよい。
さらに、円筒状の燃焼ガス流路では、周縁部の燃焼排ガスは冷却されやすい(流路の外側に配設された改質部へと熱が伝わりやすい)一方で、中央部の燃焼排ガスの熱は有効に利用されにくい。よって、周縁部の燃焼排ガスの流量を相対的に大きくし、中央部の燃焼排ガスの流量を相対的に小さくすることで、燃焼排ガス中の熱を効率よく改質部などの加熱に利用できる。加熱部のバーナーを拡散バーナーとした上で、燃焼室への空気噴出量を周縁部において相対的に大きく、中央部において相対的に小さくすると、かかる流量の違いを実現できる。かかる構成によると、周縁部においては淡燃焼、中央部においては濃燃焼が生じて、いわゆる濃淡燃焼が実現されることとなり、窒素酸化物の発生がさらに抑制される。
以上のような、水トラップ部の配設と、空気噴出量の調整とを組み合わせることで、効率よく窒素酸化物を抑制すると同時に、熱効率の向上も図ることが可能となる。
すなわち、上記課題を解決すべく、本発明の水素生成装置は、外部から少なくとも炭素元素と水素元素とを分子内に含む原料を取り入れるための改質原料供給口と、外部から水を取り入れるための改質水供給口と、燃焼ガスを生成するバーナを備える加熱器と、前記加熱器を取り囲んで前記燃焼ガスを通流させる筒状の燃焼ガス流路と、前記燃焼ガス流路の外側に設けられ前記改質原料供給口から取り入れた原料と前記改質水供給口から取り入れた水とを前記燃焼ガスにより加熱して原料と水蒸気との混合気を生成する予熱蒸発器と、前記予熱蒸発器から所定の距離を置いて前記燃焼ガス流路の外側に設けられ、改質触媒を有し、前記改質触媒を前記燃焼ガスにより加熱するとともに、前記予熱蒸発器が生成する混合気を前記改質触媒に通過させることにより水素含有ガスを生成する改質器と、前記予熱蒸発器と前記改質器との間に配設され、前記予熱蒸発器から排出された液体の水をトラップする水トラップ部とを備え、前記水トラップ部と前記燃焼ガス流路との間および前記改質器と前記燃焼ガス流路との間が1枚の内壁部で隔てられ、前記燃焼ガス流路のうちの前記水トラップ部に対向する部位が、前記燃焼ガス流路のうちの前記改質器に対向する部位よりも、前記燃焼室に近くなっており、前記バーナは、外部から燃焼用燃料を取り入れるための燃焼用燃料供給口と、外部から燃焼用空気を取り入れるための燃焼用空気供給口と、燃焼室と、前記燃焼用燃料供給口から取り入れた前記燃焼用燃料を前記燃焼室に噴出するための燃料噴出孔と、前記燃焼用空気供給口から取り入れた前記燃焼用空気を前記燃焼室に噴出するための空気噴出孔と、を有し、前記燃焼用燃料と前記燃焼用空気とを前記燃焼室において混合させ燃焼させて前記燃焼ガスを生成するように構成され、前記燃料噴出孔は前記燃焼ガス流路の主軸方向から見たときに前記筒状の燃焼ガス流路の中央部に位置するように設けられ、前記空気噴出孔は前記主軸方向から見たときに前記燃料噴出孔を取り囲むように設けられるとともに、前記主軸から遠ざかるほど空気の噴出量が多くなるように構成されている。
かかる構成では、濃淡燃焼により窒素酸化物濃度を低減できる。濃淡燃焼においては、淡燃焼領域で窒素酸化物が相対的に発生しやすい。淡燃焼領域を周縁部に配置し、その温度を水トラップ部により低下させることで、窒素酸化物濃度をさらに効果的に低減することができる。さらに、拡散燃焼を用いるため、装置の構成が簡潔になる。また、周縁部で燃焼ガスの流量が大きくなるため、熱効率が向上する。
上記の水素生成装置において、前記空気噴出孔を複数備え、それぞれの前記空気噴出孔の開口面積が前記主軸から遠ざかるほど大きくなるように構成されていてもよい。
かかる構成では、空気噴出孔の開口面積によって空気の噴出量を調整できる。
上記の水素生成装置において、前記空気噴出孔を複数備え、前記主軸から遠ざかるほど前記空気噴出孔の単位面積あたりの個数が多くなるように構成されていてもよい。
かかる構成では、空気噴出孔の単位面積あたりの個数によって空気の噴出量を調整できる。
上記の水素生成装置において、前記改質触媒が前記燃焼ガス流路を取り囲むように設けられていてもよい。
かかる構成では、燃焼ガス流路を通流する燃焼ガスにより改質部を効率よく加熱できる。
上記の水素生成装置において、前記燃焼ガス流路の内側に、前記燃焼ガス流路と主軸を共有し、かつ前記バーナから排出される前記燃焼ガスを前記燃焼ガス流路の端部へと導くようにバーナに取り付けられた、筒状の燃焼筒を有してもよい。
かかる構成では、燃焼筒の輻射熱で改質触媒を加熱できるため、熱効率がさらに向上する。
上記の水素生成装置において、前記燃焼ガス流路の内側に、前記燃焼ガスを通流させて前記燃焼ガス中の一酸化炭素を低減させる燃焼触媒を備えてもよい。
かかる構成では、窒素酸化物の低減に伴って増加しやすい一酸化炭素の濃度を燃焼触媒により低減できる。
また、本発明の燃料電池システムは、上記水素生成装置と、前記水素生成装置から排出される前記水素含有ガスを燃料として用いる燃料電池とを備える。
かかる構成では、濃淡燃焼により窒素酸化物濃度を低減できる。濃淡燃焼においては、淡燃焼領域で窒素酸化物が相対的に発生しやすい。淡燃焼領域を周縁部に配置し、その温度を水トラップ部により低下させることで、窒素酸化物濃度をさらに効果的に低減することができる。さらに、拡散燃焼を用いるため、装置の構成が簡潔になる。また、周縁部で燃焼ガスの流量が大きくなるため、熱効率が向上する。
本発明は、上記のような構成を有し、以下のような効果を奏する。すなわち、燃焼排ガス中の窒素酸化物を低減し、かつ熱効率を向上させた水素生成装置およびこれを用いた燃料電池システムを提供することができる。
以下、本発明の実施の形態を、図面を参照しながら説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る水素生成装置およびその付加的構成の概略構成を模式的に示すブロック図及び断面図である。以下、図1を参照しつつ本発明の第1実施形態に係る水素生成装置の基本的な構成について説明する。
図1に示すように、本実施形態に係る水素生成装置100は、既存の化石原料インフラストラクチャーから得られる都市ガス又はLPG等の原料ガス、又は、燃料電池に供給することができない一酸化炭素を既定濃度以上に含む水素含有ガスを燃焼して後述する改質部(改質器)2及び変成部3(変成器)及び選択酸化部4(選択酸化器)を加熱するための鉛直方向に延びる円筒状の加熱部1(加熱器)と、この加熱部1の周りに加熱部1と同心円筒状にかつ一体的に配設された改質部2及び変成部3及び選択酸化部4を備えている。
具体的に説明すると、この水素生成装置100は、図1に示すように、所定の直径を有しかつその上方の開口部及び下方の開口部が上壁部a及び下壁部bにより閉鎖された円筒状の外壁部Aと、この外壁部Aの上方及び下方に配設された上壁部a及び下壁部bにその上端及び下端が接続するよう外壁部Aと同心状に内設された外壁部Aの直径よりも小さい直径を有する略円筒状の内壁部Bとを備えている。
図1に示すように、この水素生成装置100は、外壁部Aと内壁部Bとの間に、略円筒状の隔壁部Cを備えている。
隔壁部Cは、外壁部Aとの接続部から所定の角度で下方に傾斜して内壁部B近傍の所定の位置まで延出する逆円錐状の第1の隔壁部C1と、第1の隔壁部C1の下端から鉛直下方に向けて所定の位置まで延出する円筒状の第2の隔壁部C2と、第2の隔壁部C2の下端にその内縁部が接続されたリング状の第3の隔壁部C3と、第3の隔壁部C3の外縁部にその上端が接続されかつ鉛直下方に向けて下壁部b近傍の所定の位置まで延出する円筒状の第4の隔壁部C4とを備えている。
内壁部Bにより囲まれる円柱状の領域の上方には、その中心軸と水素生成装置100の中心軸とが一致しかつその壁部と内壁部Bとの間に燃焼ガス流路5を形成するようにして、改質部2の改質触媒2aが内壁部Bを介して加熱されるための円筒状の加熱部1が配設されている。
加熱部1は燃焼バーナー1a(後述)を備えている。燃焼バーナー1aは、供給される空気および燃料ガスを燃焼室117で燃焼させることにより、改質部2における改質触媒2aの温度を水蒸気改質反応の進行に適した温度にまで加熱して保温する。
本実施形態では、水素含有ガスを生成する際における熱効率を向上させるために、加熱部1から排出される燃焼ガスが、改質部2の改質触媒2aを加熱した後に、燃焼ガス流路5を通過して後述する予熱蒸発部6(予熱蒸発器)をも加熱する構成としている。加熱部1から排出され、改質部2の改質触媒2a及び予熱蒸発部6を加熱するために用いられた燃焼ガスは、水素生成装置100の上部に設けられた排気ガス排出口から排気ガスとして水素生成装置100の外部に排出される。
図1に示すように、この水素生成装置100は、予熱蒸発器6の下方に、予熱蒸発器6の下端から所定の距離を置くように、内壁部Bにおける下方の所定の部分と第4の隔壁部C4との間に、円筒状の改質触媒2aを備えている。この改質触媒2aは、本実施形態ではRu系の触媒により構成され、都市ガス、LPG等の炭化水素系成分、メタノール等のアルコール類、或いはナフサ成分等の、少なくとも炭素元素と水素元素とを分子内に含む原料又は原料ガスと、水蒸気と、を用いる水蒸気改質反応を主に進行させ、これにより、水素を主成分として含みかつ一酸化炭素を副成分として含む水素含有ガスを生成する。ここで、本実施形態に係る改質部2は、改質触媒2aと、この改質触媒2aから排出される水素含有ガスの温度を検出して改質触媒2aの温度を間接的に検出する温度検出部2bとを備えている。改質部2は、加熱部1の鉛直軸を取り囲むような環状をなす。
図1に示すように、この水素生成装置100では、外壁部Aにおける上方の所定の部分と第2の隔壁部C2との間に、各々円筒状の変成触媒3a及び選択酸化触媒4aが配設されている。変成触媒3aは、外壁部Aにおける所定の部分と第2の隔壁部C2とにより囲まれる円筒状の領域における改質触媒2aに近い側の所定の位置(即ち、水素含有ガスの流れの上流側)に配設されている。選択酸化触媒4aは、その円筒状の領域における改質触媒2aから遠い側の所定の位置(即ち、水素含有ガスの流れの下流側)に配設されている。変成触媒3aと選択酸化触媒4aとは、互いに所定の距離を隔てるようにして、各々配設されている。変成触媒3aと選択酸化触媒4aとの間の空間に連通するように、選択酸化用空気供給口103が設けられている。選択酸化触媒4aの上方の空間に連通するように、外壁部Aに燃料ガス取出口105が設けられている。
変成触媒3aは、本実施形態ではCu−Zn系の触媒により構成され、改質部2において生成した水素含有ガスに含まれる一酸化炭素の濃度を、水蒸気を用いる水性ガスシフト反応を主に進行させることにより、所定の濃度以下にまで低減する。本実施形態に係る変成部3は、変成触媒3aと、この変成触媒3aに導入される水素含有ガスの温度を検出して変成触媒3aの温度を間接的に検出する温度検出部3bと、変成触媒3aの温度を直接検出する温度検出部3cとを備えている。選択酸化触媒4aは、本実施形態ではRu系の触媒により構成され、変成部3において一酸化炭素の濃度が低減された水素含有ガスに依然として含まれる一酸化炭素の濃度を、後述する選択酸化用空気供給器12が選択酸化用空気供給口103から供給する空気を用いる選択酸化反応を主に進行させることにより、所定の濃度以下にまで更に低減する。選択酸化触媒4aを通過した水素含有ガスは、燃料ガス取出口105から取り出される。本実施形態に係る選択酸化部4は、選択酸化触媒4aと、選択酸化触媒4aの温度を直接検出する温度検出部4bとを備えている。
次に、本発明の第1実施形態に係る水素生成装置における予熱蒸発部及び熱交換部の構成について説明する。
本実施形態に係る水素生成装置100では、外壁部Aの上部及び上壁部aの端部及び内壁部Bの上部及び隔壁部Cにおける第1、第2の隔壁部C1、C2により包囲される所定の領域において、後述する水供給器9から供給される水を蒸発させるための予熱蒸発部6が構成されている。すなわち、予熱蒸発部6は、加熱部1の鉛直軸を取り囲むような円筒形をなしている。そして、この予熱蒸発部6には、内壁部Bと対向する第2の隔壁部C2における所定の部分との間の円筒状の領域に、蒸発棒6aが配設されている。蒸発棒6aは、本実施形態では、隔壁部Cにおける第2の隔壁部C2の上端から下端に向かう鉛直方向において、内壁部Bと第2の隔壁部C2との間の円筒状領域を加熱部1の周りに螺旋状に旋回するように延在している。蒸発棒6aは、その外周部が内壁部Bと第2の隔壁部C2とに接するように配設されている。上壁部aには、予熱蒸発部6に連通するように、改質水供給口101が設けられている。つまり、本実施形態では、予熱蒸発部6は、水供給器9から改質水供給口101を通って供給される水が隔壁部Cにおける第1の隔壁部C1に沿って流れ、その後、蒸発棒6aに沿って鉛直下方に向けて内壁部Bと第2の隔壁部C2との間を螺旋状に旋回しながら流れ落ちるように構成されている。予熱蒸発部6は、外壁部Aに予熱蒸発部6に連通する改質原料供給口102が設けられていて、後述する原料供給器10から改質原料供給口102を通って供給される原料ガス(改質原料、原料)が隔壁部Cにおける第1の隔壁部C1上の空間に供給され、その後、蒸発棒6a上の空間を鉛直下方に向けて内壁部Bと第2の隔壁部C2との間を螺旋状に旋回しながら移動するように構成されている。予熱蒸発部6により、原料供給器10から供給される原料ガスは、加熱部1が排出する高温状態の燃焼ガスにより所定の温度にまで加熱されると共に、水供給器9から供給される水を蒸発させて得た水蒸気と十分に混合される。これにより、予熱蒸発部6において、原料ガスと水蒸気との混合気が生成される。こうして得られた原料ガスと水蒸気との混合気が、その後、改質部2における改質触媒2aに供給される。
図1に示すように、本実施形態に係る水素生成装置100では、隔壁部Cにおける第4の隔壁部C4の一部と、この第4の隔壁部C4の一部の内側に内壁部Bの全周に渡って環状に設けられた凹状の水トラップ部7とにより、熱交換部8が構成されている。換言すれば、隔壁部Cにおける第4の隔壁部C4の内側に原料ガスと水蒸気との混合気が流れる流路が設けられており、その内側に、水トラップ部7が配置される構成が採られている。水トラップ部7は、予熱蒸発部6の蒸発棒6aに沿って螺旋状に流れ、予熱蒸発部6において蒸発し切れずに排出された液体の水をトラップするように構成されている。
本実施形態では、水素生成装置100において、加熱部1をその中心部に配置すると共に、その加熱部1の周りの重力方向上側に円筒状の予熱蒸発部6を、その重力方向下側に円筒状の熱交換部8及び改質部2を配置している。改質部2の改質触媒2aを加熱した後に予熱蒸発部6を加熱するために、加熱部1と予熱蒸発部6との間に、加熱部1から排出される燃焼ガスを通流させるための燃焼ガス流路5を配置している。本実施形態では、熱交換部8を、原料ガスと水蒸気との混合気(改質用混合気)が流れる流路(改質用混合気流路)と変成部3に供給される水素含有ガスが流れる流路(改質後変成前水素含有ガス流路)との境界部に配置し、水トラップ部7における液体の水の量等を調整することにより、水素含有ガスが変成部3に供給される前に、水素含有ガスの温度を、第2の隔壁部C2を介して適宜制御することが可能である。本実施形態では、改質部2で生成された水素含有ガスに含まれる一酸化炭素の濃度を低減する変成部3及び選択酸化部4を予熱蒸発部6の外側に配置して、変成部3及び選択酸化部4で余剰となった熱エネルギーを予熱蒸発部6へ供給可能とする構成としている。
次に、本発明の第1実施形態に係る水素生成装置における燃焼バーナー1aについて説明する。図2は、加熱部1が備える燃焼バーナー1aの鉛直断面図である。図中、破線は火炎を示す。図2に示すように、燃焼バーナー1aは、複数の燃料噴出孔112を有する燃料ディストリビュータ113と、複数の空気噴出孔114を有する空気噴出部115とを有する。燃焼バーナー1aは、その火炎放出方向(図2の「熱」の矢印の方向)が、円筒状をなす燃焼ガス流路5の主軸(中心軸、鉛直軸)に重なるように、かつ燃焼ガス流路5の中央部に位置するように設けられる。燃料噴出孔112は、燃焼ガス流路5の主軸方向からみた時に燃焼ガス流路の中央部に位置し、空気噴出孔114は、燃焼ガス流路5の主軸方向からみた時に燃料噴出孔112を取り囲むように設けられる。
空気噴出部115は、上下の両端部が開口した円筒状(上端面が平面をなす、略ドーナツ型の形状)であり、該円筒(ドーナツ)の内部は、以下のような形状で中空となっている。すなわち、空気噴出部115の内周壁116は円錐台をなし、それにより、該円筒(ドーナツ)の内孔が、下端の開口(火炎の放出出口)に向かって断面積が大きくなる円錐台状の空間となっている。空気噴出部115の内周壁116で囲まれて形成された空間、すなわち空気噴出部115の内孔たる空間が、火炎が形成されて燃焼が行われる燃焼室117(火炎形成部)となる。燃焼室117は鉛直下向きに伏せたすり鉢状の形状を有する。かかる形状により、燃焼室117の内部でガスが混合しやすくなり、良好な燃焼状態が実現できる。
空気噴出部115では、円筒の周壁部(ドーナツ部)が中空に形成されている。すなわち、該周壁部は、外周壁118、内周壁116、上端壁119、及び、下端壁120の間に内部空間121が形成されており、内部空間121が燃焼室117を周方向に囲んだ構成となっている。内周壁116には、所定の間隔で所定の径を有する円形の空気噴出孔114が複数形成されている。ここにおいて、空気噴出孔114の径は、燃焼バーナー1aの火炎放出方向から見たときに、中心から外側に向かって(該中心から遠ざかるほど)大きくなっている。空気噴出孔114の開口面積は、該中心から該外側に向かって大きくなる。かかる構成により、空気噴出部115から燃焼室117へと供給される空気の流量(噴出量)は、該中心から該外側に向かって多くなる。燃料ガスに対する空気の混合割合は、該中心から該外側に向かって大きくなる。内部空間121は、空気噴出孔114を通じて、前記燃焼室117に連通している。空気噴出部115は、外周壁118に設けられた燃焼用空気供給口122を有し、燃焼用空気供給口122に、シロッコファン等を備える後述する燃焼用空気供給器11が接続されている。燃焼用空気供給器11は、燃焼用の空気を、流量を調整しながら、燃焼用空気供給口122を介して内部空間121へと供給する。燃焼用空気の供給流量の調整方法としては、前記送風器の動作を制御して調整を行う方法や、あるいは、供給系において、前記送風器の下流側にバルブ等の流量調整部材を配設しこれを制御して調整を行う方法等がある。空気噴出部115は、例えば金属等から構成される。
燃焼室117の上部には、下端が閉塞された管状の燃料ディストリビュータ113が嵌合されている。燃料ディストリビュータ113は、周方向に複数の燃料噴出孔112が設けられた下端部が、円形断面の燃焼室117の中心部分に突出するように配置されている。燃料ディストリビュータ113は、燃焼バーナー1aで燃焼されるガスを燃焼室117内に均一に噴出される観点から、燃焼バーナー1aの中心に設けられることが好ましい。燃料ディストリビュータ113のもう一方の端部は燃焼用燃料供給口123をなしている。燃焼用燃料供給口123は、後述する流路切り替え弁13bを介して、後述する原料供給器10または燃料電池のオフガス排出口または水素生成装置100の燃料ガス取出口105に択一的に接続される。かかる構成により、燃料ディストリビュータ113には、流路切り替え弁13bを介して燃焼用燃料、すなわち原料供給器10から供給される原料ガスの一部あるいは水素含有ガス(一酸化炭素を既定濃度以上に含むために燃料電池に供給することができない水素含有ガス、または燃料電池からのオフガス)が供給される。
燃焼バーナー1aにおいて、内周壁116などの壁はステンレスなどの金属で構成される。厚さは例えば1〜2mm程度、孔の大きさは2〜4mm程度とすることができる。
図2の燃焼バーナー1aは、図1に示す水素生成装置100において、火炎が下向きになるように、かつ燃焼室117が加熱部1の下端に位置するように設置される。また、燃焼バーナー1aには、着火するためのイグナイター、燃焼を検知するためのフレームロッドを備える構成とするが、周知の構成を利用できるため、その詳細の図示および説明は省略する。
本実施形態の燃焼バーナー1aは、いわゆる拡散バーナであり、燃焼用燃料と燃焼用空気とは燃焼室117に噴出され、混合され。混合された燃焼用燃料と燃焼用空気とは混合気となる。混合気は燃焼室117で燃焼されて燃焼ガスを生成する。
拡散バーナは、燃焼用燃料と燃焼用空気との予混合を行なうバーナに比べて窒素酸化物が発生しやすいが、構造が簡単で製造コストが低いという特徴を有する。本発明では燃焼室の温度を下げることで、拡散バーナを使用した場合でも窒素酸化物の発生を抑制できる。本発明と拡散バーナとを組み合わせることにより、製造コストを低減しながら窒素酸化物の発生も抑制できるという相乗効果が得られる。なお、拡散バーナ以外であっても窒素酸化物の発生を抑制する必要があるから、本発明は拡散バーナを使用する態様に限定されない。
次に、本発明の第1実施形態に係る水素生成装置を駆動するための付加的構成について説明する。なお、以下の付加的構成を含めて一体として水素生成装置として構成してもよい。
図1に示すように、本実施形態に係る燃料電池システムは、発電運転の際に水素生成装置100を駆動するために、水素生成装置100の予熱蒸発部6に水蒸気改質反応を進行させる際に必要となる水を供給する水供給器9と、水素生成装置100の加熱部1及び予熱蒸発部6に水蒸気改質反応を進行させる際に必要となる都市ガス又はLPG等の原料ガスを供給する原料供給器10と、水素生成装置100の加熱部1に燃焼バーナーでの都市ガス等の燃焼のために必要となる燃焼用空気を供給する燃焼用空気供給器11と、水素生成装置100の選択酸化部4に選択酸化反応を進行させる際に必要となる選択酸化用空気を供給する選択酸化用空気供給器12とを各々備えている。
水供給器9は、例えば、水道等の水を常時供給することが可能であるインフラストラクチャー等に接続されている。水供給器9は、必要に応じて異物等を除去した後、水道等から供給される水を、供給量を適切に制御しながら、改質水供給口101を通じて、改質反応用の水(改質水)として予熱蒸発部6へと供給する。
原料供給器10は、本実施形態では、都市ガスのインフラストラクチャーに接続されている。原料供給器10は、必要に応じて都市ガスに含まれている硫黄等の燃料電池システムにとって有害な成分を除去した後、硫黄等が除去された都市ガスを、供給量を適切に制御しつつ、水素生成装置100における予熱蒸発部6に改質原料供給口102を通じて原料(改質原料)として供給すると共に、加熱部1にも燃焼用燃料として供給する。
燃焼用空気供給器11は、例えばシロッコファン等を備え、フィルター等により必要に応じて粉塵や異物等を除去した後、適切な供給量で空気(燃焼用空気)を水素生成装置100における加熱部1に供給する。
選択酸化用空気供給器12は、例えばダイアフラム式ポンプ等を備え、燃焼用空気供給器11と同様にしてフィルター等により必要に応じて粉塵や異物等を除去した後、適切な供給量で空気(選択酸化用空気)を水素生成装置100における選択酸化部4に選択酸化用空気供給口103を通じて供給する。
図1に示すように、本実施形態に係る燃料電池システムは、流路切り替え弁13a、13b、13cを備えている。流路切り替え弁13a、13b、および13cは、例えば三方弁により構成され、水素生成装置100において生成された水素含有ガスが流れる流路を切り替える。本実施形態では、流路切り替え弁13aは、水素生成装置100で生成された水素含有ガスの供給先を、燃料電池と、加熱部1(流路切り替え弁13cと13bとを経由する)との間で切り替える。流路切り替え弁13cは、水素生成装置100における流路切り替え弁13bへの燃焼用燃料の供給元を、オフガス(水素含有ガス)を供給する燃料電池と水素含有ガスを供給する水素生成装置100(流路切り替え弁13aを経由する)との間で切り替える。流路切り替え弁13bは、水素生成装置100における加熱部1への燃焼用燃料の供給元を、燃料電池(流路切り替え弁13cを経由する)と原料ガスを供給する原料供給器10と水素含有ガスを供給する水素生成装置100との間で切り替える。かかる構成により、水素生成装置100は、生成する水素含有ガスの供給先や加熱部1へ供給する燃料ガスの種類を適宜切り替える。
図1に示すように、本実施形態に係る燃料電池システムは、制御器14を備えている。制御器14は、マイコン等の演算装置により構成され、CPU等からなる演算部(図1では図示せず)と、内部メモリ等からなる記憶部(図1では図示せず)等とを有している。制御器14は、燃料電池システムの発電運転等の際、図1に示す温度検出部2b、3b、3c、4b等の出力信号や記憶部に記憶されているシーケンス等に基づき、水供給器9、原料供給器10、燃焼用空気供給器11、選択酸化用空気供給器12、流路切り替え弁13a及び13b等の燃料電池システムを構成する各構成要素の動作を適宜制御する。
次に、本発明の第1実施形態に係る水素生成装置の基本的な動作について、図1を参照しながら説明する。
本発明に係る燃料電池システムを起動する際には、水供給器9と原料供給器10とを作動させ、水と原料ガスとを水素生成装置100の予熱蒸発部6に供給する。本実施形態では、原料ガスとして、脱硫後のメタンを主成分とする都市ガスを使用する。水の供給量については、原料ガス平均組成の炭素原子の約2.5〜3倍量となる酸素分子を含むように、水の供給量を設定するのが好ましい。本実施形態では、メタンを主成分とする都市ガスを原料ガスとして用いる構成とするため、供給する1モルのメタンに対して3モルの水蒸気が存在するために必要な量の水を予熱蒸発部6に供給する。即ち、スチームカーボン比(S/C比)が3となるように、水供給器9から予熱蒸発部6に向けて水を供給する。
本実施形態において、原料ガス及び水は、予熱蒸発部6の上部より供給する。これにより、予熱蒸発部6の内部において、加熱部1が排出する高温状態の燃焼ガス及び選択酸化部4と変成部3とからの伝熱により原料ガス及び水が加熱される。さらに熱交換部8において加熱されることより、最終的に、原料ガス及び水は、改質部2の手前の予熱蒸発部6で原料ガスと水蒸気との混合気となり、この混合気が改質部2に供給される。
本実施形態では、水蒸気及び原料ガスからなる混合気は、図1において上方から下方に向かって予熱蒸発部6から改質部2に流入することになる。水供給器9から供給される水は、蒸発に伴う体積増加のため、予熱蒸発部6において少なからず圧力変動を発生させる。圧力変動が大きい場合、予熱蒸発部6に向けて同時に供給する原料ガスの供給量にその圧力変動に起因する変動が発生する。しかし、本実施形態では、水供給器9から水を予熱蒸発部6の上部より供給することで、蒸発に伴う体積増加時においてもその供給する水を重力に従い予熱蒸発部6の内部において下流側に流すことができるため、予熱蒸発部6の内部における圧力変動を防止することを可能としている。
本実施形態では、熱交換器8に設けた水トラップ部7が、予熱蒸発器6の重力方向下方に配置されている。従って、予熱蒸発部6から排出された液体の水は、重力方向下方に移動した後、水トラップ部7にトラップされる。改質部2に充填された改質触媒2aに液体の水が直接供給されることはない。かかる構成により、改質触媒2aが局所的に急冷されることで生じる改質反応の阻害や改質触媒2aの破壊を確実に防止することが可能となる。
本実施形態では、加熱部1の動作は、温度検出部2bにより検出される温度を目安にして制御する。加熱部1から排出される高温状態の燃焼ガスは、改質部2における改質触媒2aを加熱した後、燃焼ガス流路5を通過する際に予熱蒸発部6をも加熱する。本実施形態では、改質部2の直後(下方)に設けられた温度検出部2bにより検出される改質触媒2aから排出された水素含有ガスの温度が約650℃となるように、加熱部1が排出する燃焼ガスの温度を制御する。その結果、改質部2の出口では、都市ガスの約85%が水蒸気改質反応により水素含有ガスとなる。
改質部2から排出される水素含有ガスは、その後、改質部2の下方において進行方向が反転され、熱交換部8に沿って上方に向かう。水素含有ガスは、熱交換部8において予熱蒸発部6側と熱交換を行った後、変成部3における変成触媒3aに供給される。変成部3では、水素含有ガスに含まれる一酸化炭素の濃度が、水蒸気を用いる水性ガスシフト反応により所定の濃度にまで低減される。本実施形態では、変成部3における温度検出部3bにより検出される温度が250℃程度となるよう、変成部3を動作させる。これにより、変成部3の出口における水素含有ガスに含まれる一酸化炭素の濃度が約0.5%(ドライガスベース)となる。通常の動作時においては、改質部2から排出される水素含有ガスの保有熱により反応温度を250℃程度に維持することができるため、変成部3の変成触媒3aを加熱部等により加熱する必要はない。
変成部3から排出される水素含有ガスには、選択酸化用空気供給器12から空気が供給される。選択酸化用空気供給器12から水素含有ガスに供給する空気の供給量は、水素含有ガスに含まれる酸素量が一酸化炭素の約2倍のモル数となるように設定する。生成させる水素量を基準として供給する空気量を予め設定することにより、選択酸化用空気供給器12から供給する空気量を制御する。本実施形態では、選択酸化用空気供給器12からの空気の供給量を制御することにより、選択酸化部4における温度検出部4bにより検出される温度が125℃となるように、選択酸化部4を動作させる。変成部3と選択酸化部4との間の空間、或いは選択酸化部4の外壁面に選択酸化冷却器としての空冷ファンを設け、これにより、選択酸化部4の動作温度を精度良く制御する構成としてもよい。本実施形態では、改質部2を予熱蒸発部6の下方(重力方向下側)に設けることにより、予熱蒸発部6から原料ガス及び水蒸気の混合気を改質部2にスムーズに供給できる構成としている。
以上のように、本発明の第1実施形態に係る水素生成装置100は、通常運転時、従来の一般的な水素生成装置の動作と同様に動作する。上記一連の運転動作により、水素生成装置100は、一酸化炭素の濃度が約20ppm以下となるように水素含有ガスを生成する。
次に、本発明の第1実施形態に係る水素生成装置の特徴的な構成と動作について、図1を参照しながら詳細に説明する。
本実施形態の一つの特徴的な構成は、図1および図2に示すように、燃焼バーナー1aの燃焼室117が水トラップ部7の近傍に設けられている(水トラップ部7が燃焼バーナー1aの燃焼室117の近傍に設けられている)点である。水トラップ部7では、供給される水がトラップされ液体の水として存在する確率が高い。液体の水は、沸点以上の温度にはならないため、水トラップ部7が設けられる近傍の内壁Bは比較的低温に維持されやすい。燃焼室117を水トラップ部7の近傍に設けることにより、燃焼室117で形成される火炎から水トラップ部7が設けられる近傍の内壁Bへの熱の移動量は増加する。つまり、燃焼室117の近傍の燃焼排ガスから、水の蒸発により低温になる水トラップ部7への伝熱を促進できるので、燃焼室117の内部空間の温度、および燃焼室117の近傍における燃焼排ガス温度を低下させることができる。その結果、燃焼室117を水トラップ部7の近傍に設けられない従来の構成と比較して、燃焼排ガス中の窒素酸化物量を低下させることができる。燃焼排ガス中の窒素酸化物は、燃焼排ガス中の窒素が酸化されて発生する。窒素酸化物の発生量は燃焼排ガスの温度に依存し、燃焼排ガスの温度が低いほど、その発生量は減少する。一例として、燃焼室117の温度が950℃程度とすると、水トラップ部7を燃焼室117の近傍に設けることで燃焼室117の温度を900℃程度に低下させることで、窒素酸化物の発生量を抑制することができる。水トラップ部7は熱交換部8を介して、変成部3に供給される前に水素含有ガスの温度を調整するという機能も有している。水トラップ部7を適切な位置に配置することで、水素生成装置100の内部における熱分布を効率よく、適切な状態に維持することができる。
なお、「近傍」とは、水トラップ部7が、窒素酸化物の発生量を抑制できる程度に燃焼室117の温度を低減できる程度の近傍を意味する。
「近傍」とは、水トラップ部7が燃焼室117と略同一高さにあることであってもよい。略同一高さとは、燃焼室117で形成される火炎の少なくとも一部が、水トラップ部7と同一の高さに存在することを意味する。水素生成装置100では、中心の加熱部1から外側へと、主として水平方向に熱が移動する。燃焼室117と水トラップ部7とを略同一高さに設けることで、燃焼室117から水トラップ部7へと水平方向に熱が移動し、効率よく燃焼室117の温度を効率よく低下させることができる。
「近傍」とは、水トラップ部7が内壁部Bを介して燃焼室117と対向するように設けられていることであってもよい。かかる構成では内壁部Bを介して水トラップ部7と燃焼室117とが熱交換するため、燃焼室117の温度を効率よく低下させることができる。
「近傍」とは、燃焼ガス流路5のうちの水トラップ部7に対向する部位が、燃焼ガス流路5のうちの改質部2に対向する部位よりも、燃焼室117に近くなっていることであってもよい。かかる構成では、燃焼室117からの燃焼排ガスが改質部2を加熱する前に水トラップ部7が燃焼排ガスを冷却する。改質部2の目標温度は650℃程度である一方で、窒素酸化物が発生する火炎の温度は950℃程度である。改質部2を加熱する前に燃焼排ガスを冷却することで、窒素酸化物の発生を抑制しつつ、改質部2を効率よく加熱できる。
「近傍」とは、水トラップ部7が、燃焼室117と略同一高さにおいて燃焼室117を取り囲むようにかつ内壁部Bを介して燃焼室117と対向するように設けられ、燃焼ガス流路5のうちの水トラップ部7に対向する部位が、燃焼ガス流路5のうちの改質部2に対向する部位よりも、燃焼室117に近くなっていることであってもよい。かかる構成では、水トラップ部7により極めて効率よく燃焼室117の温度を低下させることができる。
燃焼バーナー1aの下端部から内壁Bに沿って鉛直下方に向けて円筒状の燃焼筒1bを設けてもよい。燃焼筒1bを設ける構成により、燃焼室117近傍の燃焼排ガスと燃焼筒とが熱交換する。燃焼筒1bは、水トラップ部7が設けられる近傍の内壁Bに対して、輻射でもその熱を伝熱することができるので、効果的に燃焼排ガスの温度を低下させることができる。この場合、燃焼バーナー1aの燃焼排ガスは、燃焼筒内部を通って下壁面b付近で折り返して、内壁Bと燃焼筒とで形成される燃焼ガス流路を通り、最終的に装置外部へ排気される。
本実施形態のもう一つの特徴的な構成は、図2に示すように、燃焼バーナー1aにおいて、燃料ガスに対する空気の混合割合が中心から外側に向かって大きくなるように、空気噴出孔114の開口面積が中心から外側に(火炎放出方向から見て、以下同様)向かって大きくなるように形成されているというものである。
本発明の第1実施形態に係る燃焼バーナー1aでは、図2に示す断面の一方の内周壁116において、中心から外側に向かい、空気噴出孔114が3つあけられている。空気噴出孔114の開口部分の面積が均一ならば、空気噴出部115から空気噴出孔114を通じて燃焼室117へと噴出される空気量は、各空気噴出孔114でほぼ一定となる。しかし、空気噴出孔114の開口面積が相違すると、燃焼室117へと噴出される空気量は、空気噴出孔114の開口面積にほぼ比例する。
例えば、空気噴出孔114を円形の孔で構成する場合、中心に位置する空気噴出孔114の孔径をφ3mm、その中間をφ3.5mm、外側をφ4mmとすると、それぞれの孔の開口部分の面積の比(中心に位置する空気噴出孔114の開口部分の面積を1とする)は、1:約1.36:約1.78となり、噴出する空気量もその比に近い量となる。すなわち、燃料に対する空気の混合割合が、中心から外側に向かい大きくなるように空気が供給される。かかる構成により、例えば、中心領域(図2のα領域)では濃燃焼、外側領域(γ領域)では淡燃焼、中間領域(β領域)はその中間の燃焼状態となる。空気量が少ない(空気の混合割合が低い)濃燃焼領域では、形成される火炎が還元炎となり、窒素酸化物の発生が抑制される。空気量が多い(空気の混合割合が高い)淡燃焼領域では、空気が多く存在するので窒素酸化物の発生が多くなる。しかし、発生した窒素酸化物は、近傍にある濃燃焼領域で還元される。よって、水素生成装置100から排出される燃焼排ガス中の窒素酸化物量は、全体として、低減できる。かかる現象は、いわゆる濃淡燃焼と呼ばれる。濃淡燃焼は窒素酸化物低減に有効である。濃淡燃焼自体は当業者にとって周知の事象であるため、詳細な説明は省略する。本実施形態では、濃淡燃焼を、いわゆる濃淡バーナではなく、拡散バーナ(燃焼室で燃料と空気とを混合させて燃焼するバーナ、いわゆる拡散燃焼を行なうバーナ)で可能とする。拡散バーナは構成が簡単であるという特徴を有する。
同時に、外側領域(γ領域)では、空気が多く供給されるので、外側領域に存在する燃焼排ガス量が相対的に多くなる。本発明の第1実施形態に係る水素生成装置100では、改質部2を燃焼ガス流路5の外側に設けているので、内壁Bの近傍における燃焼排ガスの流量が燃焼ガス流路5の中央部分に比べて相対的に大きくなる。内壁B近傍の流量を大きくすることで、改質部2と燃焼排ガスとの熱交換性を向上させる効果が得られる。
周縁部の燃焼排ガスは冷やされやすいため、早く外部へと排出すべきである。一方、中央部の燃焼排ガスは冷やされにくいため、相対的にゆっくりと外部へと排出した方が熱を有効に利用できる。よって、中央部から周縁部にかけて流速を大きくすることにより、全体として熱の利用効率が向上する。
本実施形態では、水トラップ部7を燃焼バーナー1aの燃焼室117の近傍に設けることと、空気噴出量を中心から外側にかけて増加させて淡燃焼領域を外側に形成することの相乗効果により、効率よく燃焼室(あるいは火炎が形成される領域)の温度を低下させ、燃焼排ガス中の窒素酸化物濃度を低減すると同時に、水素生成装置の熱効率を向上させることが可能となる。濃淡燃焼において窒素酸化物が発生しやすい淡燃焼領域を周縁部に配置して、これを水トラップ部7により冷却することで、淡燃焼領域の温度を低下させ、窒素酸化物の発生量を低減できることも、かかる相乗効果の一つである。
なお、燃料ガスに対する空気の混合割合(あるいは燃焼室117への噴出量)が、中心部分から外側に向かって大きくなるようにするための構成としては、孔の大きさを変える以外にも様々なものが考えられる。
例えば、空気噴出孔114を、燃焼バーナー1aの中心から外側に向かって多く設置してもよい(図3参照)。空気噴出孔114の数が多くなる部分では、空気が多く噴出されるので、燃焼バーナー1aの外側での燃焼を淡燃焼の領域として、かつ燃焼排ガスの流量を増加させることができる。あるいは、中心から外側に向かって開口率(単位面積あたりの開口の合計面積)を大きくしてもよい。
燃焼バーナー1aの中心部では空気噴出孔114の近傍に障害物を置き、外側では空気噴出孔114の近傍に障害物を置かない構成としててもよい。障害物を置くと流量が小さくなるので、相対的に外側部分で流量が大きくなる。
なお、第1実施形態の水素生成装置100に、燃焼排ガスを通過させる、燃焼用触媒(例えば、Pt触媒をコージライトの担体に担持させた触媒)を設けた燃焼触媒部を備える構成とすることで、例えば、燃焼排ガス中の未燃焼成分(例えば、燃焼排ガス中の一酸化炭素)がある場合、その未燃焼成分を効果的に燃焼(酸化)させ低減することができる。燃焼触媒は、例えば燃焼排ガスの温度が100℃以上200℃以下となる部位に配設されることが好ましい。なお、燃焼触媒とは、火炎燃焼させずに燃料と空気との間の酸化反応を促進する触媒をいう。COを減らす触媒を含む。熱効率を向上させるためには、空気の流量を増やすことが好ましい。空気の流量を増やすとCOが発生しやすくなるため、燃焼触媒でCOを低減することが好ましい。
また、本実施形態の特徴的な動作は、装置の起動時に、少なくとも起動してから改質部2での改質反応が進行する(改質部2で生じる水素含有ガス中の水素濃度が、水素生成装置100から排出される水素含有ガスを加熱部1で燃焼させた場合に窒素酸化物の発生を十分抑制できる程度に上昇する)までの期間は、水トラップ部7に液体の水を存在させる点である。燃焼排ガス中の窒素酸化物は、燃焼排ガス中の窒素が酸化されて発生する。窒素酸化物の発生量は、燃焼排ガスの温度に依存する一方で、燃焼させる燃料種によっても変化する。例えば、水素ガスを燃料とする場合、火炎中で発生する窒素酸化物が水素ガスにより還元されることが考えられるので、都市ガス又はLPG等の原料ガスを燃焼させる場合と比較して、窒素酸化物の発生が少なくなる傾向がある。水素製造装置100を起動させる場合、改質部2での改質反応が進行して水素ガスが発生するまでは、都市ガス又はLPG等の原料ガスを燃焼させる期間が存在する。この期間の燃焼排ガス中の窒素酸化物量は、上述の理由により多くなる傾向がある。窒素酸化物の発生を少しでも抑制するには、燃焼排ガス温度を低下させること好ましい。そこで、少なくとも起動してから改質部2での改質反応が進行するまでの期間は、水トラップ部7で液体の水を存在させながら装置を運転する。この起動方法により、加熱部1における燃焼室117の近傍の燃焼排ガスから、水の蒸発により低温になる水トラップ部7への伝熱を促進できるので、燃焼室117の近傍の燃焼排ガス温度を低下させることができ、燃焼排ガス中の窒素酸化物の発生を抑制することができる。改質部2での改質反応が進行するまでの期間に水トラップ部7に液体の水を存在させる手法として、例えば、S/C(スチームカーボン比)を増加させる手法、装置起動動作直後に一時的に多量の水を供給し、水トラップ部7に貯める水を多くする手法、予熱蒸発部6の温度を制御して予熱蒸発部6を液体のまま通過する水の量を制御する手法などがとれる。
温度検出部2bによって改質部の温度を検出し、検出された改質部の温度に基づいて、改質部において改質反応が進行するようになったか否かを判定してもよい。
なお、水トラップ部7により燃焼室117の温度を低減するために、燃焼バーナー1aが金属で構成され、燃焼バーナー1aと水トラップ部7とが、熱伝導部材(金属フィンなど)によって物理的に接続されていてもよい。かかる構成では、燃焼バーナー1aから水トラップ部7へと効率よく熱を運搬でき、燃焼室117の温度を効率よく低減することができる。
(変形例)
図3は、第1実施形態の変形例の燃焼バーナの概略構成を示す断面図である。本変形例では、燃焼バーナー1aの燃焼室117の下流側に、中空円筒状の燃焼筒124が火炎放出方向に沿って設けられている。
図4は、第1実施形態の変形例の水素生成装置およびその付加的構成の概略構成を模式的に示すブロック図及び断面図である。図4に示すように、燃焼筒124を設けることでバーナ1aから排出された燃焼排ガスは、燃焼筒124の開口部まで導かれ、そこで下壁部bに当たって折り返し、燃焼筒124と内壁部Bとの間に形成された燃焼ガス流路5を通過する。
燃焼筒124を設けることで、燃焼筒124と内壁Bとの間で形成される燃焼ガス流路5における燃焼排ガスの流速を大きくすることができる。さらに、流速の大きな燃焼ガスにより燃焼筒142が加熱されるため、燃焼筒124が放射する輻射熱によっても内壁Bを加熱できる。かかる構成により、燃焼排ガスの熱をより効率的に利用できる。
(第2実施形態)
図5は、本発明の第2実施形態の燃料電池システムの概略構成を示すブロック図である。図5に示すように、第2実施形態の燃料電池システム200は、燃料電池201と、燃料電池201のアノードに、発電用の燃料となる水素含有ガスを供給する水素生成装置100とから構成される。水素生成装置100で生成させた水素含有ガスは、水素含有ガス経路202を通し、燃料電池201のアノードに供給される。また、燃料電池201の発電時に未使用となるアノードオフガスを水素生成装置100に送るオフガス経路203、流路切り替え弁13aを介して水素含有ガス経路202とオフガス経路203を接続するバイパス経路204が設けられる。また、燃料電池201のカソードに空気を供給する燃料電池空気供給部205が設けられる。
燃料電池システム200では、水素生成装置100が第1実施形態の水素生成装置と同様な構成となっている。よって、水素生成装置100の詳細な説明は省略する。
燃料電池システム200は、例えば、発電時に発生する熱を利用するための貯湯槽等の一般的な燃料電池システムが備える周知の構成を有するが、その詳細な説明は省略する。燃料電池システム200の動作は、一般的な燃料電池システムと同等なので、その詳細な説明は省略する。
本実施形態の燃料電池システムでは、燃焼排ガス中の窒素酸化物を低減し、かつ熱効率を向上させることが可能となる。
本発明に係る水素生成装置およびこれを備えた燃料電池システムは、燃焼排ガス中の窒素酸化物を低減し、かつ熱効率を向上させることが可能な水素生成装置およびこれを備えた燃料電池システムとして有用である。
図1は、本発明の第1実施形態に係る水素生成装置およびその付加的構成の概略構成を模式的に示すブロック図及び断面図である。 図2は、加熱部1が備える燃焼バーナー1aの鉛直断面図である。 図3は、第1実施形態の変形例の燃焼バーナの鉛直断面図である。 図4は、第1実施形態の変形例に係る水素生成装置およびその付加的構成の概略構成を模式的に示すブロック図及び断面図である。 図5は、本発明の第2実施形態の燃料電池システムの概略構成を示すブロック図である。
符号の説明
1 加熱部
1a 燃焼バーナー
1b 燃焼筒
2 改質部
2a 改質触媒
2b 温度検出部
3 変成部
3a 変成触媒
3b,3c 温度検出部
4 選択酸化部
4a 選択酸化触媒
4b 温度検出部
5 燃焼ガス流路
6 予熱蒸発部
6a 蒸発棒
7 水トラップ部
8 熱交換部
9 水供給器
10 原料供給器
11 燃焼用空気供給器
12 選択酸化用空気供給器
13a,13b 流路切り替え弁
14 制御器
100 水素生成装置
101 改質水供給口
102 改質原料供給口
103 選択酸化用空気供給口
104 間隙
105 燃料ガス取出口
112 燃料噴出孔
113 燃料ディストリビュ−タ
114 空気噴出孔
115 空気噴出部
116 内周壁
117 燃焼室
118 外周壁
119 上端壁
120 下端壁
121 内部空間
122 燃焼用空気供給口
123 燃焼用燃料供給口
124 燃焼筒
a 上壁部
b 下壁部
A 外壁部
B 内壁部
C 隔壁部
C1 第1の隔壁部
C2 第2の隔壁部
C3 第3の隔壁部
C4 第4の隔壁部
P1 蒸発部
P2 熱交換部

Claims (7)

  1. 外部から少なくとも炭素元素と水素元素とを分子内に含む原料を取り入れるための改質原料供給口と、
    外部から水を取り入れるための改質水供給口と、
    燃焼ガスを生成するバーナを備える加熱器と、
    前記加熱器を取り囲んで前記燃焼ガスを通流させる筒状の燃焼ガス流路と、
    前記燃焼ガス流路の外側に設けられ前記改質原料供給口から取り入れた原料と前記改質水供給口から取り入れた水とを前記燃焼ガスにより加熱して原料と水蒸気との混合気を生成する予熱蒸発器と、
    前記予熱蒸発器から所定の距離を置いて前記燃焼ガス流路の外側に設けられ、改質触媒を有し、前記改質触媒を前記燃焼ガスにより加熱するとともに、前記予熱蒸発器が生成する混合気を前記改質触媒に通過させることにより水素含有ガスを生成する改質器と、
    前記予熱蒸発器と前記改質器との間に配設され、前記予熱蒸発器から排出された液体の水をトラップする水トラップ部とを備え、
    記バーナは、外部から燃焼用燃料を取り入れるための燃焼用燃料供給口と、外部から燃焼用空気を取り入れるための燃焼用空気供給口と、すり鉢状の燃焼室と、前記燃焼用燃料供給口から取り入れた前記燃焼用燃料を前記燃焼室に噴出するための燃料噴出孔と、前記燃焼用空気供給口から取り入れた前記燃焼用空気を前記燃焼室に噴出するための空気噴出孔と、を有し、前記燃焼用燃料と前記燃焼用空気とを前記燃焼室において混合させ燃焼させて前記燃焼ガスを生成するように構成され、
    前記燃料噴出孔は前記燃焼ガス流路の主軸方向から見たときに前記筒状の燃焼ガス流路の中央部に位置するように設けられ、
    前記空気噴出孔は前記主軸方向から見たときに前記燃料噴出孔を取り囲むように設けられるとともに、前記主軸から遠ざかるほど空気の噴出量が多くなるように構成され
    前記水トラップ部と前記燃焼ガス流路との間および前記改質器と前記燃焼ガス流路との間が1枚の内壁部で隔てられ、前記燃焼ガス流路のうちの前記水トラップ部に対向する部位が、前記燃焼ガス流路のうちの前記改質器に対向する部位よりも、すり鉢状の前記燃焼室に近くなっている、
    水素生成装置。
  2. 前記空気噴出孔を複数備え、
    それぞれの前記空気噴出孔の開口面積が前記主軸から遠ざかるほど大きくなるように構成されている、請求項1に記載の水素生成装置。
  3. 前記空気噴出孔を複数備え、
    前記主軸から遠ざかるほど前記空気噴出孔の単位面積あたりの個数が多くなるように構成されている、請求項1に記載の水素生成装置。
  4. 前記改質触媒が前記燃焼ガス流路を取り囲むように設けられている、請求項1に記載の水素生成装置。
  5. 前記燃焼ガス流路の内側に、前記燃焼ガス流路と主軸を共有し、かつ前記バーナから排出される前記燃焼ガスを前記燃焼ガス流路の端部へと導くようにバーナに取り付けられた、筒状の燃焼筒を有する、請求項1に記載の水素生成装置。
  6. 前記燃焼ガス流路の内側に、前記燃焼ガスを通流させて前記燃焼ガス中の一酸化炭素を低減させる燃焼触媒を備える、請求項1に記載の水素生成装置。
  7. 請求項1に記載の水素生成装置と、
    前記水素生成装置から排出される前記水素含有ガスを燃料として用いる燃料電池とを備える、燃料電池システム。
JP2007297685A 2007-11-16 2007-11-16 水素生成装置、およびこれを備えた燃料電池システム Active JP5057938B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297685A JP5057938B2 (ja) 2007-11-16 2007-11-16 水素生成装置、およびこれを備えた燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297685A JP5057938B2 (ja) 2007-11-16 2007-11-16 水素生成装置、およびこれを備えた燃料電池システム

Publications (2)

Publication Number Publication Date
JP2009120448A JP2009120448A (ja) 2009-06-04
JP5057938B2 true JP5057938B2 (ja) 2012-10-24

Family

ID=40813028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297685A Active JP5057938B2 (ja) 2007-11-16 2007-11-16 水素生成装置、およびこれを備えた燃料電池システム

Country Status (1)

Country Link
JP (1) JP5057938B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102256A1 (ja) * 2006-03-07 2007-09-13 Mitsubishi Electric Corporation ディスプレイ開閉装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603203B2 (en) 2010-04-12 2013-12-10 Samsung Sdi Co., Ltd. Burner nozzle assembly and fuel reformer having the same
JP5627942B2 (ja) * 2010-07-13 2014-11-19 日本特殊陶業株式会社 固体酸化物形燃料電池装置および固体酸化物形燃料電池スタック用燃焼器
JP5603510B2 (ja) * 2012-06-25 2014-10-08 パナソニック株式会社 燃料処理装置
JP5483788B1 (ja) * 2012-06-25 2014-05-07 パナソニック株式会社 燃料処理装置
JP6131428B2 (ja) * 2012-09-25 2017-05-24 日鉄住金テックスエンジ株式会社 ガス爆発体験装置
CN106104158B (zh) * 2014-03-19 2019-01-11 住友精密工业株式会社 燃烧器及燃料电池系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808743B2 (ja) * 2000-10-10 2006-08-16 東京瓦斯株式会社 単管円筒式改質器
JP3913996B2 (ja) * 2001-02-26 2007-05-09 三洋電機株式会社 改質器用バーナ装置
JP2003254514A (ja) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd 水素生成装置用バーナとそれを備える水素生成装置
JP2005089210A (ja) * 2003-09-12 2005-04-07 Nippon Oil Corp 改質器とその運転方法ならびに燃料電池システム
JP4477890B2 (ja) * 2004-02-10 2010-06-09 パナソニック株式会社 水素生成装置
JP2006105408A (ja) * 2004-09-30 2006-04-20 Max Co Ltd 空気清浄化システム
JP4979935B2 (ja) * 2005-06-10 2012-07-18 富士電機株式会社 燃料改質装置
JP4847117B2 (ja) * 2005-12-02 2011-12-28 富士電機株式会社 燃料改質システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102256A1 (ja) * 2006-03-07 2007-09-13 Mitsubishi Electric Corporation ディスプレイ開閉装置

Also Published As

Publication number Publication date
JP2009120448A (ja) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4135640B2 (ja) 改質装置及びその運転方法
JP5057938B2 (ja) 水素生成装置、およびこれを備えた燃料電池システム
JP4979935B2 (ja) 燃料改質装置
JP4068111B2 (ja) 水素生成装置およびこれを備えた燃料電池システム
JP4870499B2 (ja) 水素製造装置及び燃料電池発電装置
JP2004149403A (ja) 水素発生装置及び燃料電池発電システム
JP4614515B2 (ja) 燃料電池用の改質装置
US8690976B2 (en) Fuel reformer
JP4747469B2 (ja) 燃焼装置
JP6308825B2 (ja) 改質装置
JP5057910B2 (ja) 水素生成装置、およびその起動方法
JP2009062223A (ja) 改質装置
JP5244488B2 (ja) 燃料電池用改質器
JP5344935B2 (ja) 水素生成装置
JP5634729B2 (ja) 水素製造装置及び燃料電池システム
JP2018104232A (ja) 水素生成装置
JP4759656B2 (ja) 水素発生装置とその起動方法
JP4847772B2 (ja) 水素含有ガス生成装置
JP2005216615A (ja) 燃料処理装置及び燃料電池発電システム
JP4904879B2 (ja) 燃料処理装置用気化バーナ装置
JP2006105480A (ja) バーナおよび燃料電池システム
JP4187710B2 (ja) バーナおよび燃料電池システム
JP6467591B2 (ja) 水素生成装置
JP4283238B2 (ja) 改質器用バーナー
JP5462687B2 (ja) 水素製造装置及び燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150