[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4927216B1 - 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器 - Google Patents

線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器 Download PDF

Info

Publication number
JP4927216B1
JP4927216B1 JP2011022022A JP2011022022A JP4927216B1 JP 4927216 B1 JP4927216 B1 JP 4927216B1 JP 2011022022 A JP2011022022 A JP 2011022022A JP 2011022022 A JP2011022022 A JP 2011022022A JP 4927216 B1 JP4927216 B1 JP 4927216B1
Authority
JP
Japan
Prior art keywords
capacitance
output
code sequence
drive
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011022022A
Other languages
English (en)
Other versions
JP2012118957A (ja
Inventor
雅之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011022022A priority Critical patent/JP4927216B1/ja
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to EP15199882.0A priority patent/EP3012724A1/en
Priority to PCT/JP2011/065419 priority patent/WO2012063520A1/en
Priority to US13/879,819 priority patent/US9501451B2/en
Priority to CN201180053782.XA priority patent/CN103201715B/zh
Priority to EP11840690.9A priority patent/EP2638459A4/en
Priority to TW100124818A priority patent/TWI476650B/zh
Application granted granted Critical
Publication of JP4927216B1 publication Critical patent/JP4927216B1/ja
Publication of JP2012118957A publication Critical patent/JP2012118957A/ja
Priority to US15/285,393 priority patent/US9563323B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • Position Input By Displaying (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】検出精度及び解像度が良好で高速動作が可能な静電容量検出方法を提供する。
【解決手段】静電容量検出方法は、ドライブラインDL1〜DLMとセンスラインSL1の間の第1静電容量列Ci1とドライブラインと他の1本のセンスラインSL2の間の第2静電容量列Ci2に対して、±1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、±Vボルトを印加するように並列に駆動して、第1の静電容量列Ci1からの出力sFirst=(s11、s12、…、s1N)、及び、第2の静電容量列Ci2からの出力sSecond=(s21、s22、…、s2N)を出力し、出力sFirstと符号系列diとの内積演算に基づいて第1の静電容量列Ci1の容量値を推定し、出力sSecondと符号系列diとの内積演算に基づいて第2の静電容量列Ci2の容量値を推定する。
【選択図】図1

Description

本発明は、マトリックス状に構成された線形系の係数、素子値、または静電容量を推定または検出する方法、及びこの方法に従って動作する集積回路、タッチセンサシステム、及び電子機器に関する。
マトリックス状に分布した線形素子値を検出する装置、例えば、M本のドライブラインとL本のセンスラインとの間に形成される静電容量行列Cij(i=1、…、M、j=1、…、L)の静電容量値の分布を検出するタッチセンサ装置(接触検出装置)が、特許文献1に開示されている。このタッチセンサ装置は、ドライブラインを順番に選択し、その選択したドライブラインにつながる線形素子の値を検出する走査検出方式により動作する。
また、複数のドライブラインを時系列的な符号系列に基づいて第1のドライブライン群と第2のドライブライン群とに振り分けて駆動し、センスラインに接続され、駆動されたドライブラインとの複数の交差部の容量に生じる電流の総和を電気信号に変換した測定電圧を出力し、センスラインごとに、測定電圧と符号系列とにより積和演算を行い、各交差部の容量に対応する電圧値を求める容量検出回路が特許文献2に記載されている。
特開2010−92275号公報(2010年4月22日公開) 特許第4364609号明細書(2005年6月16日公開) 特許第4387773号明細書(2005年6月16日公開) 特開2005−114362号公報(2005年4月28日公開) 特開2005−134240号公報(2005年5月26日公開)
しかしながら、特許文献1に記載の走査検出方式により動作するタッチセンサ装置においては、二次元に分布する静電容量値を取得するために与えられた時間をTとし、走査の回数をmとすると、複数ラインを同時に選択し、それをスキャンして静電容量行列Cijの静電容量を検出する処理は時間(T/m)の間に終わらなければならない。
一般に、検出処理の精度は、例えば平均化等により処理時間が長いほど高めることができるが、タッチセンサ装置が高速な動作に追従できるためには、静電容量値を取得するために与えられる時間Tは小さくする必要があり、解像度を上げるためには、走査回数mを大きくする必要があり、いずれの場合も処理時間(T/m)は小さくなり検出精度の劣化を招くという問題がある。
また、特許文献2に記載の容量検出回路では、測定電圧のオフセット誤差をキャンセルするために、符号系列に基づいて第1のドライブラインと第2のドライブラインとに振り分けて駆動し、第1のドライブラインの駆動に基づく測定電圧から、第2のドライブラインの駆動に基づく測定電圧を減算している(特許文献2:明細書段落[0058]〜[0061])。しかしながら、このような構成は、演算過程が2相に渡るため、消費電力を抑えた高速化に不利であるという問題がある。
本発明の目的は、検出精度が良好になり、且つ解像度も良好で高速動作が可能な形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器を提供することにある。
上記の課題を解決するために、参考の形態に係る線形系係数推定方法は、M個の入力Xk(k=1、…、M)を有して入出力が線形な系
Figure 0004927216
に対して、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて前記M個の入力Xk(k=1、…、M)を入力して、N個の出力s=(s1、s2、…、sN)=(F(d11、d21、…、dM1)、F(d12、d22、…、dM2)、…、F(d1N、d2N、…、dMN))を出力する出力工程と、
前記出力sと前記符号系列diとの内積演算に基づいて、k番目の入力Xkに対応する係数Ckを推定する推定工程とを包含することを特徴とする。
この特徴により、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて前記M個の入力Xk(k=1、…、M)を入力して、N個の出力s=(s1、s2、…、sN)=(F(d11、d21、…、dM1)、F(d12、d22、…、dM2)、…、F(d1N、d2N、…、dMN))を出力するので、M個の入力にすべて同時に入力して線形系の係数Ckを推定する。従って、従来の構成のように、M個の入力を1個ずつ選択して走査入力する必要が無くなり、入力数Mが増大しても、線形系の係数値を取得するための処理時間は短くならず、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能な線形系係数推定方法を得ることができる。
参考の形態に係る他の線形系係数推定方法は、M個の入力Xk(k=1、…、M)を有して入出力が線形な第1の系及び第2の系
Figure 0004927216
のそれぞれに対して、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて前記M個の入力Xk(k=1、…、M)を入力して、前記第1の系からのN個の出力sFirst=(s11、s12、…、s1N)=(F1(d11、d21、…、dM1)、F1(d12、d22、…、dM2)、…、F1(d1N、d2N、…、dMN))、及び、前記第2の系からのN個の出力sSecond=(s21、s22、…、s2N)=(F2(d11、d21、…、dM1)、F2(d12、d22、…、dM2)、…、F2(d1N、d2N、…、dMN))を出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目の入力Xkに対応する前記第1の系の係数C1kを推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目の入力Xkに対応する前記第2の系の係数C2kを推定する推定工程とを包含することを特徴とする。
この特徴により、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて前記M個の入力xk(k=1、…、M)を入力して、前記第1の系からのN個の出力sFirst=(s11、s12、…、s1N)=(F1(d11、d21、…、dM1)、F1(d12、d22、…、dM2)、…、F1(d1N、d2N、…、dMN))、及び、前記第2の系からのN個の出力sSecond=(s21、s22、…、s2N)=(F2(d11、d21、…、dM1)、F2(d12、d22、…、dM2)、…、F2(d1N、d2N、…、dMN))を出力するので、M個の入力にすべて同時に入力して第1の系の係数C1k及び第2の系の係数C2kを推定する。従って、従来の構成のように、M個の入力を1個ずつ選択して走査入力する必要が無くなり、入力数Mが増大しても、第1及び第2の系の係数値を取得するための処理時間は短くならず、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能な線形系係数推定方法を得ることができる。
本発明に係る線形素子列値推定方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の線形素子列C1i(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の線形素子列C2i(i=1,…,M)のそれぞれに対して、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の線形素子列からのN個の出力sFirst=(s11、s12、…、s1N)、及び、前記第2の線形素子列からのN個の出力sSecond=(s21、s22、…、s2N)を出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の線形素子列の線形素子の値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の線形素子列の線形素子の値を推定する推定工程とを包含することを特徴とする。
この特徴により、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の線形素子列からのN個の出力sFirst=(s11、s12、…、s1N)、及び、前記第2の線形素子列からのN個の出力sSecond=(s21、s22、…、s2N)を出力するので、M本のドライブラインにすべて同時に入力して第1の線形素子列の線形素子の値及び第2の線形素子列の線形素子の値を推定する。従って、従来の構成のように、M本のドライブラインを1本ずつ選択して走査入力する必要が無くなり、第1の線形素子列の線形素子の値及び第2の線形素子列の線形素子の値を取得するための処理時間が長くなり、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能な線形系係数推定方法を得ることができる。
本願発明に係る線形素子列値推定方法では、前記符号系列di=(di1、di2、…、diN)(i=1、…、M)の各要素は、+Vまたは−Vによって構成されることが好ましい。
上記構成により、各ドライブラインを+Vボルトまたは−Vボルトの電圧を印加して駆動することができる。
本願発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列C1i(i=1,…,M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列C2i(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含することを特徴とする。
この特徴により、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力するので、M本のドライブラインにすべて同時に入力して、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する。従って、従来の構成のように、M本のドライブラインを1本ずつ選択して走査入力する必要が無くなり、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を取得するための処理時間が長くなり、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能な静電容量検出方法を得ることができる。
また、M本の全ドライブラインを、符号系列に応じて+Vボルト又は−Vボルトで並列に駆動するので、符号系列に応じてドライブラインを分割して駆動する特許文献2に記載の構成に比べて、静電容量列からの出力信号に含まれる情報量が多くなり、SN比も良好になる。さらに、2相演算する特許文献2に記載の構成に比べて、演算が一層で済むため、高速化に有利である。
本発明に係る静電容量検出方法では、前記推定工程は、前記符号系列による1回の並列駆動ごとに、内積に必要な、符号に応じた加減算を実行することが好ましい。
上記構成により、1回の並列駆動ごとに内積演算を実行するので、符号系列の長さに対応するN回の並列駆動ごとに内積演算を実行する構成に比較して、パイプライン処理が可能で短時間で演算することができ、また、演算に必要なメモリが少なくて済む。
上記静電容量検出方法では、前記出力工程は、前記第1の静電容量列からの出力sFirstを第1アナログ積分器に出力し、前記第2の静電容量列からの出力sSecondを第2アナログ積分器に出力し、前記推定工程は、前記第1アナログ積分器に出力された出力sFirstをAD変換器によりAD変換して前記出力sFirstと前記符号系列diとの内積演算を実行し、前記第2アナログ積分器に出力された出力sSecondを前記AD変換器によりAD変換して前記出力sSecondと前記符号系列diとの内積演算を実行することが好ましい。
上記構成により、アナログ積分器が各センスラインに対応して並列に配置されるので、マトリックス状に配置された静電容量の全体を検出する検出速度を向上させることができる。
上記静電容量検出方法では、前記出力工程は、前記第1の静電容量列からの出力sFirstをアナログ積分器に出力した後、前記第2の静電容量列からの出力sSecondを前記アナログ積分器に出力し、前記推定工程は、前記アナログ積分器に出力された出力sFirstをAD変換器によりAD変換して前記出力sFirstと前記符号系列diとの内積演算を実行し、前記アナログ積分器に出力された出力sSecondを前記AD変換器によりAD変換して前記出力sSecondと前記符号系列diとの内積演算を実行することが好ましい。
上記構成により、単一のアナログ積分器により推定工程を構成することができるので、より簡単な構成により静電容量を検出することができる。
上記静電容量検出方法では、前記出力工程は、前記第1の静電容量列からの出力sFirstを第1アナログ積分器に出力し、前記第2の静電容量列からの出力sSecondを第2アナログ積分器に出力し、前記推定工程は、前記第1アナログ積分器に出力された出力sFirstを第1AD変換器によりAD変換して前記出力sFirstと前記符号系列diとの内積演算を実行し、前記第2アナログ積分器に出力された出力sSecondを第2AD変換器によりAD変換して前記出力sSecondと前記符号系列diとの内積演算を実行することが好ましい。
上記構成により、アナログ積分器及びAD変換器が各センスラインに対応して並列に配置されるので、マトリックス状に配置された静電容量の全体を検出する検出速度をより一層向上させることができる。
本発明に係る集積回路は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列C1i(i=1,…,M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列C2i(i=1,…,M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させる駆動部と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを備えたことを特徴とする。
この特徴により、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させるので、M本のドライブラインにすべて同時に入力して、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する。従って、従来の構成のように、M本のドライブラインを1本ずつ選択して走査入力する必要が無くなり、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定するための処理時間が長くなり、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能な静電容量検出方法に用いる集積回路を得ることができる。
また、M本の全ドライブラインを、符号系列に応じて+Vボルト又は−Vボルトで並列に駆動するので、符号系列に応じてドライブラインを分割して駆動する特許文献2に記載の構成に比べて、静電容量列からの出力信号に含まれる情報量が多くなり、SN比も良好になる。さらに、2相演算する特許文献2に記載の構成に比べて、演算が一層で済むため、高速化に有利である。
本発明に係るタッチセンサシステムは、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列C1i(i=1,…,M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列C2i(i=1、…、M)とを備えるセンサパネルと、上記センサパネルを制御する集積回路とを備えたタッチセンサシステムであって、上記集積回路は、前記第1の静電容量列C1i(i=1、…、M)、及び前記第2の静電容量列C2i(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させる駆動部と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを有することを特徴とする。
この特徴により、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させるので、M本のドライブラインにすべて同時に入力して、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する。従って、従来の構成のように、M本のドライブラインを1本ずつ選択して走査入力する必要が無くなり、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定するための処理時間が長くなり、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能なタッチセンサシステムを得ることができる。
また、M本の全ドライブラインを、符号系列に応じて+Vボルト又は−Vボルトで並列に駆動するので、符号系列に応じてドライブラインを分割して駆動する特許文献2に記載の構成に比べて、静電容量列からの出力信号に含まれる情報量が多くなり、SN比も良好になる。さらに、2相演算する特許文献2に記載の構成に比べて、演算が一層で済むため、高速化に有利である。
本発明に係る電子機器は、本発明に係るタッチセンサシステムと、前記タッチセンサシステムに設けられたセンサパネルに重ねて配置されているか、または、前記センサパネルを内蔵した表示パネルとを備えたことを特徴とする。
この特徴により、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させるので、M本のドライブラインにすべて同時に入力して、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する。従って、従来の構成のように、M本のドライブラインを1本ずつ選択して走査入力する必要が無くなり、k1番目のドライブラインに対応する前記第1の静電容量列の容量値、及びk2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定するための処理時間が長くなり、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能なタッチセンサシステムを備えた電子機器を得ることができる。
また、M本の全ドライブラインを、符号系列に応じて+Vボルト又は−Vボルトで並列に駆動するので、符号系列に応じてドライブラインを分割して駆動する特許文献2に記載の構成に比べて、静電容量列からの出力信号に含まれる情報量が多くなり、SN比も良好になる。さらに、2相演算する特許文献2に記載の構成に比べて、演算が一層で済むため、高速化に有利である。
本発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程は、前記アナログ積分器のリセット時にはVrefボルトで表される第1電圧により前記M本のドライブラインを駆動し、前記第1及び第2静電容量列からの出力のサンプリング時には、前記符号系列が前記+1の場合は(Vref+V)ボルトで表される第2電圧により、前記符号系列が前記−1の場合は(Vref−V)ボルトで表される第3電圧により前記M本のドライブラインを駆動することを特徴とする。
上記特徴により、符号系列に基づいて、簡単な構成により、ドライブラインを並列に駆動することができる。
本発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程は、前記符号系列が前記+1の場合は、前記アナログ積分器のリセット時に第1電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に第2電圧により前記ドライブラインを駆動し、前記符号系列が前記−1の場合は、前記アナログ積分器のリセット時に前記第2電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に前記第1電圧により前記ドライブラインを駆動することを特徴とする。
上記特徴により、より高い信号強度を得ることができ、静電容量に蓄積される電荷を増大させることができる。
本発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程の前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出してメモリに格納することを特徴とする。
上記特徴により、アナログ積分器により生じるオフセットをキャンセルすることができる。
本発明に係る静電容量検出方法では、前記推定工程は、前記メモリに格納された第1の静電容量列からのオフセット出力を前記出力sFirstから減算した結果と、前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記メモリに格納された第2の静電容量列からのオフセット出力を前記出力sSecondから減算した結果と、前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定することが好ましい。
上記構成により、アナログ積分器により生じるオフセットをキャンセルすることができる。
本発明に係る静電容量検出方法では、前記出力工程の前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出す動作を複数回繰り返して得られた複数個のオフセット出力を平均化してメモリに格納することが好ましい。
上記構成により、アナログ積分器により生じるオフセットに含まれるノイズ成分を削減した後、メモリに格納することができる。
本発明に係る集積回路は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを備えた集積回路であって、前記駆動部は、前記符号系列が前記+1の場合は、前記アナログ積分器のリセット時に第1電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に第2電圧により前記ドライブラインを駆動し、前記符号系列が前記−1の場合は、前記アナログ積分器のリセット時に前記第2電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に前記第1電圧により前記ドライブラインを駆動することを特徴とする。
上記特徴により、より高い信号強度を得ることができ、静電容量に蓄積される電荷を増大させることができる。
本発明に係る集積回路は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを備えた集積回路であって、前記駆動部は、前記第1及び第2静電容量からの出力を前記アナログ積分器に出力する前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出してメモリに格納することを特徴とする。
上記特徴により、アナログ積分器により生じるオフセットをキャンセルすることができる。
本発明に係るタッチセンサシステムは、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)とを備えるセンサパネルと、前記センサパネルを制御する集積回路とを備えたタッチセンサシステムであって、前記集積回路は、前記第1の静電容量列Ci1(i=1、…、M)、及び前記第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを有しており、前記駆動部は、前記符号系列が前記+1の場合は、前記アナログ積分器のリセット時に第1電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に第2電圧により前記ドライブラインを駆動し、前記符号系列が前記−1の場合は、前記アナログ積分器のリセット時に前記第2電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に前記第1電圧により前記ドライブラインを駆動することを特徴とする。
上記特徴により、より高い信号強度を得ることができ、静電容量に蓄積される電荷を増大させることができる。
本発明に係るタッチセンサシステムは、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)とを備えるセンサパネルと、前記センサパネルを制御する集積回路とを備えたタッチセンサシステムであって、前記集積回路は、前記第1の静電容量列Ci1(i=1、…、M)、及び前記第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを有しており、前記駆動部は、前記第1及び第2静電容量からの出力を前記アナログ積分器に出力する前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出してメモリに格納することを特徴とする。
上記特徴により、アナログ積分器により生じるオフセットをキャンセルすることができる。
本発明に係る電子機器は、本発明に係るタッチセンサシステムと、前記タッチセンサシステムに設けられたセンサパネルに重ねて配置されているか、または、前記センサパネルを内蔵した表示パネルとを備えたことを特徴とする。
本発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程は、前記アナログ積分器の飽和を防止するために、前記符号系列の列方向に沿った各要素の総和の絶対値に応じて、前記アナログ積分器のゲインを切り替えることを特徴とする。
上記特徴により、アナログ積分器の飽和を回避することができる。
本発明に係る静電容量検出方法では、前記推定工程は、前記出力sFirstをAD変換した第1デジタル値と前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondをAD変換した第2デジタル値と前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定し、前記推定工程は、前記符号系列の列方向に沿った各要素の総和の絶対値に応じて、前記第1及び第2デジタル値の重み付けを切り替えることが好ましい。
上記特徴により、アナログ積分器から内積演算部までのゲインを符号系列による駆動ごとに一定にすることができる。
本発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程は、前記アナログ積分器の飽和を防止するために、前記符号系列の列方向に沿った各要素の総和の絶対値に応じて、前記符号系列の列を複数の列に分割して、前記M本のドライブラインの駆動を複数回に分割することを特徴とする。
上記特徴により、アナログ積分器の飽和を回避することができる。
本発明に係る静電容量検出方法は、(M=2)本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記(M=2)本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、シルベスター(sylvester)法によって生成される2次のアダマール(Hadamard)行列の各行に相当する+1または−1によって構成されて互いに直交する符号長N=Mの符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程は、前記アナログ積分器の飽和を防止するために、前記符号系列の第1列目を複数の列に分割して、前記符号系列の第1列目に相当する駆動を複数回に分割することを特徴とする。
上記特徴により、アナログ積分器の飽和を回避することができる。
本発明に係る静電容量検出方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、シルベスター(sylvester)法によって生成される2次(M<2)のアダマール(Hadamard)行列の各行に相当する+1または−1によって構成されて互いに直交する符号長N>Mの符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、前記出力工程は、前記符号系列の列方向に沿った各要素の総和の絶対値が前記アナログ積分器の飽和に関連する閾値Numを超える列を複数の列に分解して、前記符号系列の前記閾値Numを超える列に対応する駆動を複数回に分割することを特徴とする。
上記特徴により、2次(M<2)のアダマール行列による駆動において、アナログ積分器の飽和を回避することができる。
本発明に係る静電容量検出方法では、前記符号系列の列方向に沿った各要素の総和の絶対値が前記アナログ積分器の飽和に関連する閾値Numを超える列は、前記2次のアダマール行列の1列目、(2n−1+1)列目、(2n−1+2n−2+1)列目、及び(2n−1−2n−2+1)列目のうちの少なくとも1つであることが好ましい。
上記構成により、2次(M<2)のアダマール行列による駆動において、簡単なアルゴリズムにより、アナログ積分器の飽和を回避することができる。
本発明に係る静電容量検出方法は、[x]をxの整数部とし、前記2次のアダマール行列の1列目が前記閾値Numを超える場合、ドライブラインの1番目からNum×[M/Num]番目までをNum個ずつ駆動することを[M/Num]回繰り返した後、残りの(M/Num)の余りの個数を並列駆動し、前記アダマール行列の(2n−1+1)列目が前記閾値Numを超える場合、ドライブラインの(2n−1−(M−2n−1))行目に基づく行からM行目までを並列に駆動した後、ドライブラインの1行目から(2n−1−(M−2n−1)−1)行目に基づく行までを、Num個ずつ駆動することを[(2n−1−(M−2n−1)−1)行目に基づく行/Num]回繰り返した後、残りの((2n−1−(M−2n−1)−1)行目に基づく行/Num)の余りの個数を並列駆動し、前記アダマール行列の(2n−1+2n−2+1)列目が前記閾値Numを超える場合、まず、ドライブラインの1行目から(2n−1)行目までを同時並列に駆動し、そして、ドライブラインの((2n−1+2n−2)−(M−(2n−1+2n−2)))行目に基づく行からM行目までを並列に駆動し、次に、ドライブラインの(2n−1+1)行目から((2n−1+2n−2)−(M−(2n−1+2n−2)))行目に基づく行までを、Num個ずつ駆動することを[((((2n−1+2n−2)−(M−(2n−1+2n−2)))に基づく行))−(2n−1+1)/Num]回繰り返した後、残りの(((((2n−1+2n−2)−(M−(2n−1+2n−2)))に基づく行))−(2n−1+1)/Num)の余りの個数を並列駆動することを特徴とする。
上記構成により、2次(M<2)のアダマール行列による駆動において、簡単なアルゴリズムにより、アナログ積分器の飽和を回避することができる。
本発明に係る静電容量検出方法では、行の順番を入れ替えることにより、シルベスター法によって生成される2次(M<2)のアダマール行列からなる符号系列を生成し、当該符号系列に基づいて前記M本のドライブラインを並列に駆動することが好ましい。
本発明に係る線形素子列値推定方法は、M本のドライブラインと1本のセンスラインの間に形成される第1の線形素子列C1i(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の線形素子列C2i(i=1,…,M)のそれぞれに対して、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の線形素子列からのN個の出力sFirst=(s11、s12、…、s1N)、及び、前記第2の線形素子列からのN個の出力sSecond=(s21、s22、…、s2N)を出力し、前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の線形素子列の線形素子の値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の線形素子列の線形素子の値を推定する。従って、従来の構成のように、M本のドライブラインを1本ずつ選択して走査入力する必要が無くなり、第1の線形素子列の線形素子の値及び第2の線形素子列の線形素子の値を取得するための処理時間が長くなり、検出精度を良好に維持しながら、且つ、解像度も良好で高速動作が可能な線形素子列値推定方法を得ることができるという効果を奏する。
実施の形態に係るタッチセンサシステムの構成を示す回路図である。 上記タッチセンサシステムに設けられた集積回路の推定部の構成を示すブロック図である。 上記タッチセンサシステムに設けられたセンサパネルの駆動方法を説明するための図である。 上記センサパネルの駆動方法を説明するためのタイミングチャートである。 上記タッチセンサシステムに設けられたセンサパネルに入力される直交する符号系列の具体例を説明するための図である。 上記直交する符号系列の他の具体例を説明するための図である。 上記直交する符号系列のさらに他の具体例を説明するための図である。 実施の形態2に係るタッチセンサシステムに設けられたセンサパネルの駆動方法を説明するためのタイミングチャートである。 実施の形態2に係るタッチセンサシステムに設けられたセンサパネルの駆動方法を説明するための他のタイミングチャートである。 実施の形態3に係るセンサパネルの駆動方法を説明するための図である。 (a)及び(b)は実施の形態4に係るセンサパネルを駆動するための符号系列を説明するための図である。 実施の形態5に係るセンサパネルを駆動するための符号系列を説明するための図である。 上記センサパネルを駆動する方法を示すグラフである。
本発明のタッチセンサシステムに関する実施の一形態について図1〜図13に基づいて説明すれば以下のとおりである。
(実施の形態1)
(実施の形態に係るタッチセンサシステムの構成)
図1は、実施の形態に係るタッチセンサシステム1の構成を示す回路図である。タッチセンサシステム1は、センサパネル2と、このセンサパネル2を制御する集積回路3とを備えている。センサパネル2は、水平方向に沿って互いに平行に所定の間隔を空けて配置されたM本のドライブラインDL1〜DLMと、このドライブラインに交差する方向に沿って互いに平行に所定の間隔を空けて配置されたL本のセンスラインSL1〜SLLと、これらM本のドライブラインDL1〜DLMのそれぞれとL本のセンスラインSL1〜SLLのそれぞれとの間にM行×L列のマトリックス状に配置された静電容量Cij(i=1〜M、j=1〜L)とを備えている。
集積回路3は、M本のドライブラインDL1〜DLMに接続された駆動部4を有している。集積回路3には、推定部5が設けられている。図2は、集積回路3の推定部5の構成を示すブロック図である。
推定部5は、L本のセンスラインSL1〜SLLにそれぞれ接続されたL個のアナログ積分器6と、L個のアナログ積分器6に接続されたスイッチ7と、スイッチ7に接続されたAD変換器8と、AD変換器8に接続された内積演算部9と、内積演算部9に接続されたRAM10とを有している。アナログ積分器6は、一方の入力が接地されたオペアンプと、このオペアンプの出力と他方の入力との間に配置された容量Cintの積分容量と、オペアンプの他方の入力に結合されたトランジスタと、このトランジスタと並列に接続された他のトランジスタとを有している。
集積回路3には、内積演算部9に接続されて240Hzでジェスチャ認識処理(ARM等)を実行するアプリケーション処理部11が設けられている。このように、推定部5には、アナログ回路とデジタル回路とが混載されている。
(従来のタッチセンサシステムの動作)
本実施の形態の動作を具体的に説明する前に、前述した特許文献1に記載の従来の構成における動作を確認する。M本のドライブラインとL本のセンスラインとの間に形成される静電容量のマトリックスCij(i=1、…、m、j=1、…、L)の検出を考える。まず、ドライブラインを一本づつ選択する走査検出を考える。
選択したドライブラインにつながる容量Cij(j=1,…l)をVボルトに充電しCij×Vの信号を蓄える。この信号をセンスライン経由で読み出す際のゲインをGとすると、検出信号は、
G×Cij×V (式1)
となる。
(本実施の形態のタッチセンサシステムの動作)
図3は、タッチセンサシステム1に設けられたセンサパネル2の駆動方法を説明するための図である。図1及び図2で前述した構成要素と同一の構成要素には同一の参照符号を付している。これらの構成要素についての詳細な説明は繰り返さない。
本発明の実施の形態として、まず、+1と−1とから構成される互いに直交する符号長Nの符合系列di=(di1、di2、…、diN)(i=1、…、M)を準備する。ここで、符号長Nの符合系列di=(di1、di2、…、diN)(i=1、…、M)が「直交する」とは、符合系列diが下記に示す条件を満足することをいう。
Figure 0004927216
そして、この符号系列diに基づいて、+1の場合は+Vボルトが印加され、−1の場合は−Vボルトが印加されるように、駆動部4は、M本のドライブラインDL1〜DLMを並列に駆動する。すると、各静電容量Cij(i=1〜M、j=1〜L)に、符号系列の各要素(+1または−1)に応じて、±Cij・Vの電荷を有する信号が蓄えられる。
次に、同じセンスラインにつながる各静電容量に蓄積された電荷により表される信号について、センスラインの結線に沿って電荷加算を行い、センスライン毎にアナログ積分器6で読み出し、出力系列ベクトルsj=(sj1、sj2、…、sjN)(j=1、…、L)を得る。
図4は、センサパネル2の駆動方法を説明するためのタイミングチャートである。まず、
リセット信号により、アナログ積分器6の積分容量Cintがリセットされるとともに、センサパネル2にマトリックス状に配置された各静電容量もリセットされる。ここで、リセットとは、容量に蓄積されている電荷を放電するという意味である。そして、ドライブラインDL1〜DLMを、符号系列d11、d21、d31、…、dM1の値である+1または−1に応じて、Vref+V、またはVref−Vで並列に駆動すると、各静電容量に、符号系列の要素±1に応じた±CVの電荷が蓄えられる。次に、同じセンスラインにつながる各静電容量に蓄積された電荷により表される信号について、センスラインの結線に沿って電荷加算を行い、センスライン毎にアナログ積分器6で読み出す。アナログ積分器6からの出力には、
Figure 0004927216
(この回路の場合、G=−1/Cint)
が表れるので、このアナログ積分器6からの出力をサンプリング信号に基づいてAD変換器8によりAD変換する。
出力系列ベクトルsjiは、
Figure 0004927216
となり、
Figure 0004927216
符号系列diと出力系列ベクトルsjとの内積演算di・sjを行うと、
Figure 0004927216
上記(式1)及び上記(式2)を比較すると、本実施の形態の方式により、従来の走査読み出し方式よりもn倍大きい検出信号が得られることがわかる。
センスラインの読み出し方式としては、図1及び図2に示されるアナログ積分器6(積分容量Cintを用いたオペアンプによる電荷積分器)を使用すると、上記ゲインGは、(1/Cint)となる。
このように、集積回路3の駆動部4は、第1の静電容量列Cip(pは1以上(L−1)以下、i=1、…、M)、及び前記第2の静電容量列Ciq(p<q、qは2以上L以下、i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、符号系列が前記+1の場合は+Vボルト、−1の場合は−Vボルトを印加するようにM本のドライブラインを並列に駆動する。そして、第1の静電容量列からの出力sFirst=(sp1、sp2、…、spN)、及び、第2の静電容量列からの出力sSecond=(sq1、sq2、…、sqN)を出力させる。
そして、上記第1の静電容量列からの出力sFirst=(sp1、sp2、…、spN)は、対応して設けられたアナログ積分器6によって積分され、第2の静電容量列からの出力sSecond=(sq1、sq2、…、sqN)は、対応して設けられたアナログ積分器6によって積分される。スイッチ7は、各センスラインSL1〜SLLに対応するアナログ積分器6を順次切り換えて、各アナログ積分器6により積分された静電容量列からの出力をAD変換器8に供給する。
具体的には、まず、第1の静電容量列から出力sp1がアナログ積分器6に読み出されて積分されると同時に第2の静電容量列から出力sq1が他のアナログ積分器6に読み出されて積分される。そして、スイッチ7は、アナログ積分器6に接続し、読み出されて積分された出力sp1をADC8に供給する。次に、スイッチ7は、アナログ積分器6との接続を解除して他のアナログ積分器6に接続し、読み出されて積分された出力sq1をADC8に供給する。その後、第1の静電容量列から出力sp2がアナログ積分器6に読み出されて積分されると同時に第2の静電容量列から出力sq2が他のアナログ積分器6に読み出されて積分される。そして、スイッチ7は、アナログ積分器6に接続し、読み出されて積分された出力sp2をADC8に供給する。次に、スイッチ7は、アナログ積分器6との接続を解除して他のアナログ積分器6に接続し、読み出されて積分された出力sq2をADC8に供給する。このようにして、出力spN、出力sqNまでがアナログ積分器6及びスイッチ7により順番にADC8に供給される。また、ドライブラインの駆動に合わせて全センスラインのアナログ積分器6が並列に動作する。
AD変換器8は、アナログ積分器6により積分された静電容量列からの出力をAD変換して内積演算部9に供給する。
内積演算部9は、出力sFirstと符号系列diとの内積演算に基づいて、RAM10に格納されたデータを参照しながら、k1番目(1≦k1<M)のドライブラインに対応する第1の静電容量列の容量値を推定し、出力sSecondと符号系列diとの内積演算に基づいて、k2番目(k1<k2、1<k1≦M)のドライブラインに対応する第2の静電容量列の容量値を推定する。
アプリケーション処理部11は、内積演算部9により推定された静電容量の容量値に基づいて、ジェスチャー認識処理を実行し、ジェスチャーコマンドを生成する。
(符号系列の具体例)
図5は、センサパネルに入力される直交する符号系列の具体例を説明するための図である。長さNの直交する符号系列diの具体例としては、例えば、下記に示す符号系列を挙げることができる。
代表的な直交する符号系列であるアダマール(Hadamard)行列は、図5に示されるシルベスター(sylvester)法によって生成される。基本的な構造として、2行×2列の基本単位を作る。この基本単位の右上、左上、及び左下のビットは同一であり、右下はこれらのビット反転となっている。
次に、前述した2×2の基本要素を、右上、左上、右下、及び左下にブロックとして4つ合成して、4行×4列のビット配列の符号を作る。ここで、2×2の基本単位の作成と同様に、右下のブロックはビット反転となる。同様な手順で、8行×8列、16行×16列のビット配列の符号を生成する。これらの行列は、前述した本発明の「直交する」の定義を満足する。
本実施の形態において、例えば、センサパネル2のドライブラインが16本で構成されていれば、図4に示す16行×16列のビット配列の符号を直交する符号系列として使用することができる。ここで、アダマール(Hadamard)行列とは、要素が1または−1のいずれかであり、かつ各行が互いに直交であるような正方行列をいう。すなわち、アダマール行列の任意の2つの行は、互いに垂直なベクトルを表す。
本実施の形態に係る直交する符号系列は、N次のアダマール行列から任意にM行取り出した行列を使用することができる(ここで、M≦Nである)。以下に述べるように、シルベスター法以外の方法によるアダマール行列も本発明に適用することができる。
図6は直交する符号系列の他の具体例を説明するための図であり、図7は直交する符号系列のさらに他の具体例を説明するための図である。シルベスター法によるN次のアダマール行列は、N=2のべき乗になるが、Nが4の倍数であれば、アダマール行列は存在するという予想が存在し、例えば、図6には、N=12のときのアダマール行列が示されており、図7には、N=20のときのアダマール行列が示されている。これらのシルベスター法以外の方法によるアダマール行列も、本実施の形態に係る直交する符号系列として使用することができる。
(内積演算の実際)
内積マトリックスC’ij=di・sjの計算は次の手順で行う。
(1)まず、推定部5のRAM10(図2)に格納された内積マトリックスをC’ij=0にリセットする。
(2)時刻tk(k=1、…、Nのいずれか)のタイミングでi番目(i=1、…、M)のドライブラインDLiを電圧V×dikで並列に駆動し、各静電容量に電荷Cij×V×dikを充電する。
(3)各センスラインj(j=1、…、L)を対応するアナログ積分器6に接続し、時刻tkで充電した静電容量からの出力電圧sjkを読み出し、各L本のセンスラインに対応して配置されたL個アナログ積分器6にそれぞれ読み出された時刻tkにおけるL個の出力電圧sjkを、スイッチ7により順番にAD変換器8に供給してAD変換し、AD変換器8によりAD変換された時刻tkにおける出力電圧sjkを内積演算部9に供給する。内積演算部9に供給された時刻tkにおける出力電圧sjkは、
Figure 0004927216
となる。
(4)内積演算部9は、AD変換器8から出力されたL個の出力電圧sjkのそれぞれと、RAM10に格納された符号系列dikに応じて加減算を行い(符号系列dik=1のときは加算し、dik=−1のときは減算する)、その結果に基づいてC’ijの値を更新する。
Figure 0004927216
(5)符号系列の長さに相当するN回の処理が回るまでは、時刻をインクリメント(tk+1)し、(1)に戻る。
以上の処理が終わると、C’ijの値は、内積の計算結果となる。
本実施の形態に係るセンサパネル2のドライブラインの本数M、センスラインの本数L、及び符号系列の長さNは、例えば、4インチクラスの携帯情報端末等に適用する場合は、M=16、L=32とすれば、3mmピッチ程度になる。また、例えば、20インチクラスの画面を有する電子機器に適用する場合は、M=48、L=80により、6mmピッチ程度になる。符号系列の長さNの自由度は、非常に高いが、例えば、N=64〜512である。
(駆動概念の先行技術との差異)
前述した特許文献2に記載の容量検出装置も、符号系列に基づいてドライブラインを駆動し、センスラインに接続され、駆動されたドライブラインとの複数の交差部の容量に生じる電流の総和を電気信号に変換した測定電圧を出力し、センスラインごとに、測定電圧と符号系列とにより積和演算を行い、各交差部の容量に対応する電圧値を求めている。しかしながら、ドライブラインの駆動概念が、下記のように、本実施の形態とは異なる。
例えば、説明の簡単化のために、1本のセンスラインと4本のドライブラインとの間に、容量(C1、C2、C3、C4)が形成されている例を考える。4本のドライブラインの駆動信号(符号系列)が、(1、1、−1、−1)であるとすると(特許文献2の表記では(1、1、0、0))、本実施の形態では、常に全ドライブラインが駆動され、
C1+C2−C3−C4 …(式3)
に相当する積分出力を得るが、特許文献2に開示された構成では、「1」に対応するドライブラインのみが駆動され、
C1+C2 …(式4)
に相当する積分出力を得る。本実施の形態の(式3)と特許文献2の(式4)とを比較すると、本実施の形態の積分出力の方が含まれる情報量が多いといえる。
また、
Ci=C+ΔCi
ΔCi:容量の変化(ΔCiは通常、Cの1割程度である)
と表すと、
(式3)=C1+C2−C3−C4
=ΔC1+ΔC2−ΔC3−ΔC4
≒0.2×C …(式5)
(式4)=2×C+ΔC1+ΔC2
≒2×C …(式6)
となる。
タッチセンサーパネル等では、ΔCiはCの一割程度であるので、(式6)の値は、(式5)の値の10倍程度になる。即ち、特許文献2の(式6)を実現する積分回路は、(式5)を実現する本実施の形態の積分回路に比べてゲインを1/10程度に設定せざるを得ず、信号のSN比が劣る。このSN比の違いは、ドライブラインの数Mが増加すると、さらに大きくなる。
常に全ドライブラインを並列に駆動している本実施の形態は、測定電圧のオフセット誤差をキャンセルするために、符号系列に基づいて第1のドライブライン(C1、C2)と第2のドライブライン(C3、C4)とに振り分けて駆動している特許文献2に記載の容量検出回路と異なっている。本実施の形態では、リセットスイッチのフィールドスルーによるオフセットは、ドライブラインに信号を入力しない状態(電圧Vrefで駆動している状態)におけるAD変換器の出力によって計測することができるので、この計測値をデジタル回路において減算すれば、オフセット誤差をキャンセルすることができる。
(正負演算の先行技術との差異)
本実施の形態では、符号系列の値に応じて、+1の場合は+Vボルト、−1の場合は−VボルトになるようにM本のドライブラインを並列に駆動し、(式3)に相当する値を一挙に演算する。これに対して特許文献2に記載の構成では、(式4)のC1+C2を演算し、その後、C3+C4に相当する演算を行う。このように特許文献2に記載の構成では、演算が2相になるため、消費電力を抑えた高速化に不利である。
また、本実施の形態は、符号系列の値が−1の場合は−Vボルトになるようにドライブラインを駆動するが、特許文献2に記載の構成は、ドライブラインを+Vボルトに駆動するのみであり、−Vボルトに駆動する概念が無い点で相異する。
(直交性概念の先行技術との差異)
前述したように本発明において、符号長Nの符合系列di=(di1、di2、…、diN)(i=1、…、M)が直交するとは、符合系列diが下記に示す条件を満足することをいうと定義している。
Figure 0004927216
特許文献2〜5においても、直交性を有すると称される符号系列が開示されているが、明細書の中には、「直交する」ことの定義が明確に示されていない。例えば、特許文献2の図19には、15行×15列の行列が示されており、この15行×15列の行列を直交符号として利用すると記載されている。しかしながら、この15行×15列の行列は、本発明の上記定義を満足せず、本発明の直交する符号系列に該当しない。内積演算により容量を正確に検出するためには、符号系列の直交性が必要であるが、特許文献2に記載の読み出し方式では、本発明の直交する符号系列に該当しない符号系列に基づいて読み出されているので、読み出した値に誤差が混入する。
(推定部5の他の構成)
本実施の形態においては、L本のセンスラインにそれぞれ対応するアナログ積分器6を配置し、スイッチ7によりこれらのアナログ積分器6を切り換え、AD変換器8及び内積演算部9を一個ずつ配置した構成の例を示したが、本発明はこれに限定されない。アナログ積分器6を1個設け、このアナログ積分器6の入力切り換えによってセンスライン毎の読み出しを行うように構成してもよい。
また、AD変換器8を、センスライン及びアナログ積分器毎に設け、スイッチ7をAD変換器8と及び内積演算部9との間に設けるように構成してもよい。
(他の実施形態の構成)
本実施の形態においては、ドライブラインとセンスラインとの間に形成される静電容量の容量値を検出する例を挙げて説明したが、本発明はこれに限定されない。例えば、ドライブラインとセンスラインとの間に形成される線形素子の値を推定する構成に対しても本発明を適用することができるし、また、M個の入力xk(k=1、…、M)を有して入出力が線形な系のk番目の入力xkに対応する係数Ckを推定する構成に対しても本発明を適用することができる。
また、本実施の形態に記載したタッチセンサシステム1と、タッチセンサシステム1に設けられたセンサパネル2に重ねて配置された表示パネルとを備えた電子機器を構成してもよし、また、タッチセンサシステム1と、センサパネル2を内蔵してセンサパネル2の機能を有する表示パネルとを備えた電子機器を構成してもよい。
(実施の形態2)
(2種類電圧によるセンサパネルの駆動方法)
図8は、実施の形態2に係るタッチセンサシステムに設けられたセンサパネルの駆動方法を説明するためのタイミングチャートである。
図4を参照して前述した実施の形態1に係るセンサパネルの駆動方法では、Vref、(Vref+V)、及び(Vref−V)の3種類の電圧によりセンサパネルを駆動したが、実施の形態2の駆動方法では2種類の電圧V1・V2により駆動する。
即ち、符号系列が+1の場合は、アナログ積分器6(図1)のリセット時に電圧V1により、各静電容量が結合されたセンスラインからの出力のサンプリング時に電圧V2によりドライブラインを駆動する。そして、符号系列が−1の場合は、アナログ積分器6のリセット時に電圧V2により、各静電容量が結合されたセンスラインからの出力のサンプリング時に電圧V1によりドライブラインを駆動する。
具体的には、図8に示す例では、ドライブラインDL1は、符号系列の対応する要素d11=+1、d12=+1であるので、アナログ積分器6のリセット時に電圧V1により駆動された後、サンプリング時に電圧V2により駆動され、次のリセット時に電圧V1により駆動された後、次のサンプリング時に電圧V2により駆動される。ドライブラインDL2は、符号系列の対応する要素d21=+1、d22=−1であるので、アナログ積分器6のリセット時に電圧V1により駆動された後、サンプリング時に電圧V2により駆動され、次のリセット時に電圧V2により駆動された後、次のサンプリング時に電圧V1により駆動される。
ドライブラインDL3は、符号系列の対応する要素d31=−1、d32=−1であるので、アナログ積分器6のリセット時に電圧V2により駆動された後、サンプリング時に電圧V1により駆動され、次のリセット時に電圧V2により駆動された後、次のサンプリング時に電圧V1により駆動される。ドライブラインDL4は、符号系列の対応する要素d41=−1、d42=+1であるので、アナログ積分器6のリセット時に電圧V2により駆動された後、サンプリング時に電圧V1により駆動され、次のリセット時に電圧V1により駆動された後、次のサンプリング時に電圧V2により駆動される。ドライブラインDLMは、符号系列の対応する要素dM1=−1、dM2=+1であるので、アナログ積分器6のリセット時に電圧V2により駆動された後、サンプリング時に電圧V1により駆動され、次のリセット時に電圧V1により駆動された後、次のサンプリング時に電圧V2により駆動される。
ここで、V1=Vdd、V2=Vss
とすると、出力は、
(Cf/Cint)×(V1−V2)=(Cf/Cint)×(Vdd−Vss)
となり、
図4を参照して前述した実施の形態1に係るセンサパネルの駆動方法において、
Vref=(Vdd−Vss)/2、
とおいた場合、
Vdd=Vref+V、
Vss=Vref−V、
であるから、
V=(Vdd−Vss)/2
となり、図8に示す例の半分の出力になる。従って、図8に示す実施の形態2の駆動方法によれば、図4の実施の形態1の駆動方法の2倍の信号強度を得ることができ、静電容量に蓄積される電荷を2倍にすることができる。
(オフセット読み出し)
図9は、実施の形態2に係るタッチセンサシステムに設けられたセンサパネルの駆動方法を説明するための他のタイミングチャートである。
図4または図8に示した態様によりドライブラインDL1〜DLMを並列駆動する前に、図9に示すように、リセット時もサンプリング時も一定電圧VrefによりドライブラインDL1〜DLMを駆動して、ドライブラインに信号を入れない状態にし、アナログ積分器6(図1及び図2)からオフセット出力値を読み出す。そして、アナログ積分器6から読み出したオフセット出力値をADC8によりAD変換する。次に、ADC8によりAD変換されたオフセット出力値を内積演算部9により計測し、このオフセット出力値をセンスラインSL1〜SLLごとにRAM10に格納する。
(オフセット補償方法)
その後、図4または図8に示した態様によりドライブラインDL1〜DLMを並列駆動して、静電容量列からの出力をアナログ積分器6に出力する。そして、ADC8は、アナログ積分器6に出力された静電容量列からの出力をAD変換して内積演算部9に供給する。次に、内積演算部9は、ADC8により供給された静電容量列からの出力から、RAM10に格納されたオフセット出力値をセンスラインSL1〜SLLごとに減算して、アナログ積分器6に設けられたリセットスイッチのフィードスルーによるオフセットをキャンセルする。
なお、リセット時もサンプリング時も一定電圧VrefによりドライブラインDL1〜DLMを駆動して、アナログ積分器6からオフセット出力値を読み出し、ADC8によりAD変換したオフセット出力値を内積演算部9により計測する動作を複数回繰り返して複数個のオフセット出力値を計測し、この複数個のオフセット出力値を平均化することによりオフセットに含まれるノイズ成分を削減した平均オフセット出力値をRAM10に格納するように構成してもよい。複数回の繰り返し回数は、例えば、60Hzの場合、16回であり、240Hzの場合、100回に設定され得る。
(実施の形態3)
(アナログ積分器のゲイン切り替え)
図10は、実施の形態3に係るセンサパネルの駆動方法を説明するための図である。実施の形態1で前述した構成要素と同一の構成要素には同一の参照符号を付し、その詳細な説明は繰り返さない。
センサパネル2が4本のドライブラインDl1〜DL4と4本のセンスラインSL1〜SL4とを有しており、符号系列が、シルベスター法によって生成される4次のアダマール行列により構成される例を説明する。
アナログ積分器6Aは、一方の入力が基準電圧Vrefに結合されたオペアンプと、このオペアンプの出力と他方の入力との間に配置された容量Cintの積分容量と、この積分容量に対してそれぞれ並列に接続された3個の他の積分容量と、3個の他の積分容量のそれぞれとオペアンプの出力との間にそれぞれ設けられた3個のスイッチとを有している。
シルベスター法によって生成される4次のアダマール行列からなる符号系列の各要素の列方向に沿った総和は、1列目が「4」であり、2列目〜4列目が「0」である。従って、この符号系列の1列目の各要素によりドライブラインを駆動するときに、静電容量列からの出力の値は、2列目〜4列目により駆動する場合に比べて著しく大きくなってアナログ積分器6Aの容量を超え、アナログ積分器6Aが飽和するおそれがある。
そこで、符号系列の各要素の列方向に沿った総和がアナログ積分器6Aが飽和する程度に大きい列により、ドライブラインを駆動するときは、アナログ積分器6Aの飽和を防止するように、アナログ積分器6Aに設けられたスイッチをオフからオンに切り替える。
シルベスター法によって生成されるアダマール行列は、1列目の要素が必ずすべて+1となり、列の要素の総和が他の列の総和よりも著しく大きくなり、アナログ積分器6Aが飽和するおそれが生じるが、上記のようにアナログ積分器6Aに設けられたスイッチをオフからオンに切り替えて、アナログ積分器6Aのゲインを切り替えることにより、アナログ積分器の飽和を防止することができる。
以上のように実施の形態3によれば、符号系列の列方向に沿った各要素の総和の絶対値に応じて、アナログ積分器のゲインを切り替えるので、アナログ積分器の飽和を防止することができる。
(アナログ積分器ゲイン切り替えの内積演算部ゲイン切り替えによる補償)
内積演算部9は、ゲインを切り替え可能なアナログ積分器6Aに出力された静電容量列からの出力をADC8によりAD変換したデジタル値と符号系列との内積演算に基づいて、各ドライブラインに対応する静電容量列の容量値を推定する。ここで、内積演算部9は、符号系列の列方向に沿った各要素の総和の絶対値に応じて、デジタル値の重み付けを切り替えて、アナログ積分器6Aのゲインとデジタル値の重み付けによるゲインとの積が、符号系列の各列ごとに一定にする。
(実施の形態4)
(内積計算の複数駆動による分割)
図11(a)及び(b)は実施の形態4に係るセンサパネルを駆動するための符号系列を説明するための図である。
図11(a)には、シルベスター法によって生成される4次のアダマール行列により構成される符号系列が示されている。この符号系列は、図10に示される符号系列と同様に、各要素の列方向に沿った総和は、1列目が「4」であり、2列目〜4列目が「0」である。従って、この符号系列の1列目の各要素によりドライブラインを駆動するときに、静電容量列からの出力の値は、2列目〜4列目により駆動する場合に比べて著しく大きくなってアナログ積分器6Aの容量を超え、アナログ積分器6Aが飽和するおそれがある。
そこで、図11(b)に示すように、符号系列の1列目の(1、1、1、1)を、(1、1、0、0)によって表される列と、(0、0、1、1)によって表される列との2列に分割することにより、4本のドライブラインの駆動を4回から5回にし、各要素の列方向に沿った総和「4」を「2」と「2」とに分割して、列方向に沿った総和の最大値を「4」がら「2」に低減して、アナログ積分器の飽和を防止する。
実施の形態4では、シルベスター法によって生成される4次のアダマール行列により構成される符号系列の例を示したが、本発明はこれに限定されない。4次以外の2次のアダマール行列により構成される符号系列に対して本発明を適用できるし、シルベスター法以外の方法により生成される任意の次数のアダマール行列により構成される符号系列に対しても本発明を適用することができる。
(実施の形態5)
(三角山型駆動方法)
図12は、実施の形態5に係るセンサパネルを駆動するための符号系列を説明するための図である。
実施の形態5に係るセンサパネルは、M本のドライブラインとL本のセンスラインとの間に形成される静電容量列のそれぞれに対して、シルベスター法によって生成される2次(M<2)のアダマール行列の各行に相当する+1または−1によって構成されて互いに直交する符号長N>Mの符号系列に基づいて、M本のドライブラインを並列に駆動する。図12には、16次のアダマール行列に基づくM(=13)本のドライブラインに対応した13行×16列の符号系列の例を示している。
図13は、センサパネルを駆動する方法を示すグラフである。横軸は、図12に示すN=16のアダマール行列の列方向に沿った位置を示している。縦軸は、このN=16のアダマール行列の列方向に沿った各要素の総和の絶対値を示している。
N=16のアダマール行列の第1列目は、要素がすべて1であるので、列方向に沿った位置(横軸)と列方向に沿った各要素の総和の絶対値(縦軸)との関係は、線形的に単調増加する線L1により表される。
N=16のアダマール行列の第9列目((2(4−1)+1)列目)は、第1行から第8行までがすべて1であり、第9行から第16行までがすべて−1であるので、列方向に沿った位置(横軸)と列方向に沿った各要素の総和の絶対値(縦軸)との関係は、線形的に単調増加した後、線形的に単調減少して底辺長さ16、高さ8の三角山型形状を形成する線L2によって表される。
N=16のアダマール行列の第5列目((24−1−24−2+1)列目)は、第1行から第4行までがすべて1であり、第5行から第8行までがすべて−1であり、第9行から第12行までがすべて1であり、第13行から第16行までがすべて−1である。従って、列方向に沿った位置(横軸)と列方向に沿った各要素の総和の絶対値(縦軸)との関係は、底辺長さ8、高さ4の三角山型形状を2個形成する線L3によって表される。第13列目((24−1+24−2+1)列目)も、第1行から第4行までがすべて1であり、第5行から第8行までがすべて−1であり、第9行から第12行までがすべて−1であり、第13行から第16行までがすべて1であるので、同様に、三角山型形状を2個形成する線L3によって表される。
第3列、第7列、第11列、及び第15列は、底辺長さ4、高さ2の三角山型形状を4個形成する線L4によって表される。第2列、第4列、第6列、第8列、第10列、第12列、第14列、及び第16列は、底辺の長さ2、高さ1の三角山型形状を8個形成する線L5により表される。
ここで、閾値Numを、符号系列の列方向に沿った各要素の総和の絶対値がこれを超えると、アナログ積分器6(図1)が飽和する値であるとする。図12及び図13に示す例では、Num=3であるとする。そして、ドライブライン数M=13であるとする。
線L5に対応する第2列、第4列、第6列、第8列、第10列、第12列、第14列、及び第16列、並びに、線L4に対応する第3列、第7列、第11列、及び第15列は、図13に示すように、いずれも、閾値Num=3を超えないので、M=13本のドライブラインを同時駆動しても、アナログ積分器6は飽和しない。
線L1に対応する第1列は、閾値Num=3を超えるので、閾値Num=3に基づいて、ドライブラインの1番目から順番に3本のドライブラインずつ4回駆動した後、ドライブラインDL13を駆動するように第1列を分割して駆動すると、アナログ積分器6は飽和しない。
一般的には、ドライブラインの1番目からNum×[M/Num]番目までをNum個ずつ駆動することを[M/Num]回繰り返した後、残りの(M/Num)の余りの個数を並列駆動する。ここで、[x]:xの整数部であり、後述する説明においても同様である。
線L2に対応する第9列は、閾値Num=3を超える。線L2に対応する第9列は、まず、ドライブラインの第2行目から第13行目までを符号系列の対応箇所により並列に駆動した後、ドライブラインの1行目を駆動する。
一般的には、ドライブラインの(2n−1−(M−2n−1))行目=(2−M)行目に基づく行からM行目までを並列に駆動した後、ドライブラインの1行目から(2n−1−(M−2n−1))行目=(2−M)行目までを、Num個ずつ駆動することを[(2n−1−(M−2n−1)−1)行目に基づく行/Num]回繰り返した後、残りの((2n−1−(M−2n−1)−1)行目に基づく行/Num)の余りの個数を並列駆動する。
実施の形態5で示す例では、n=4、M=13であるから、(2n−1−(M−2n−1))行目=3行目であるが、3行目から13行目までを並列駆動しても、符号系列の列方向の総和は+1であり、閾値Num=3よりも2小さい。従って、2行目から13行目までを並列駆動しても、符号系列の列方向の総和は+2であり、閾値Num=3よりも、まだ小さい。このため、(2n−1−(M−2n−1))行目は3行目であるが、閾値Numの値を考慮し、(2n−1−(M−2n−1))行目=3行目に基づく行として2行目を選択し、2行目から13行目までを並列駆動する。
線L3に対応する第5列及び第13列は、閾値Num=3を超える。線L3に対応する第5列及び第13列は、まず、ドライブラインの1行目から8行目までを同時に並列駆動する。そして、ドライブラインの10行目から13行目までを駆動する。次に、ドライブラインの9本目を駆動する。
一般的には、まず、ドライブラインの1行目から(2n−1)行目までを同時並列に駆動する。そして、ドライブラインの((2n−1+2n−2)−(M−(2n−1+2n−2)))行目に基づく行からM行目までを並列に駆動する。次に、ドライブラインの(2n−1+1)行目から((((2n−1+2n−2)−(M−(2n−1+2n−2)))に基づく行)−1)行目までを、Num個ずつ駆動することを[((((2n−1+2n−2)−(M−(2n−1+2n−2)))に基づく行))−(2n−1+1)/Num]回繰り返した後、残りの(((((2n−1+2n−2)−(M−(2n−1+2n−2)))に基づく行))−(2n−1+1)/Num)の余りの個数を並列駆動する。
実施の形態5で示す例では、n=4、M=13であるから、((2n−1+2n−2)−(M−(2n−1+2n−2)))行目=11行目であるが、11行目から13行目までを並列駆動しても、符号系列の列方向の総和は+1であり、閾値Num=3よりも2小さい。従って、10行目から13行目までを並列駆動しても、符号系列の列方向の総和は+2であり、閾値Num=3よりも、まだ小さい。このため、((2n−1+2n−2)−(M−(2n−1+2n−2)))行目=11行目であるが、閾値Numの値を考慮し、((2n−1+2n−2)−(M−(2n−1+2n−2)))行目=11行目に基づく行として10行目を選択し、10行目から13行目までを並列駆動する。
次に、ドライブライン数Mが12以下の場合のセンサパネル駆動方法を説明する。まず、8<M≦12の場合を説明する。線L1及び線L2の駆動方法は、前述した駆動方法と同じである。線L3の場合は、まず、ドライブラインの1行目から(2n−1)行目までを同時並列に駆動する。そして、ドライブラインの(2n−1)+1行目から(2n−1)+Num×[(M−(2n−1))/Num]番目までをNum個ずつ駆動することを[(M−(2n−1))/Num]回繰り返した後、残りの((M−(2n−1))/Num)の余りの個数を並列駆動する。
次に、4<M≦8の場合を説明する。線L1の駆動方法は、前述した線L1の駆動方法と同じである。線L2の駆動方法は、前述した線L1の駆動方法と同じである。線L3の駆動方法は、前述したドライブライン数M=13の場合の線L2の駆動方法と同じである。
M≦4の場合は、線L1の駆動方法は前述した線L1の駆動方法と同じであり、線L2及び線L3の駆動方法も、前述した線L1の駆動方法と同じである。
ここで、閾値Num=1となった場合のセンサパネル駆動方法を説明する。ドライブライン数M=13とする。線L1、線L2、及び線L3の駆動方法は、前述した閾値Num=3の場合の駆動方法と同じである。線L4の場合は、まず、ドライブラインの1行目から(2n−1+2n−2)行目までを同時並列に駆動する。そして、ドライブラインの(2n−1+2n−2)+1番目から(2n−1+2n−2)+Num×[(M−(2n−1+2n−2))/Num]番目までをNum個ずつ駆動することを[(M−(2n−1+2n−2))/Num]回繰り返した後、残りの((M−(2n−1+2n−2))/Num)の余りの個数を並列駆動する。
次(M<2)のアダマール行列の次数が増大して、n>4となったときも前述した駆動方法と同様の方法により駆動すればよい。
なお、符号系列の列方向に沿った位置と、列方向に沿った各要素の総和の絶対値との関係が図13に示す関係になっていない場合でも、符号系列の行の順番を入れ替えることにより、符号系列の列方向に沿った位置と、列方向に沿った各要素の総和の絶対値とが図13に示す関係を有するシルベスター法によって生成される2次(M<2)のアダマール行列とすることができるときは、当該符号系列の行の順番を入れ替えて、上記駆動方法を実施するように構成してもよい。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、マトリックス状に構成された線形系の係数、素子値、または静電容量を推定または検出する方法、及びこの方法に従って動作する集積回路、タッチセンサシステム、及び電子機器に適用することができる。また本発明は、指紋検出システムに適用することもできる。
1 タッチセンサシステム
2 センサパネル
3 集積回路
4 駆動部
5 推定部
6、6A アナログ積分器
7 スイッチ
8 AD変換器
9 内積演算部
10 RAM
11 アプリケーション処理部

Claims (28)

  1. M本のドライブラインと1本のセンスラインの間に形成される第1の線形素子列C1i(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の線形素子列C2i(i=1、…、M)のそれぞれに対して、長さNの直交するM個の符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の線形素子列からのN個の出力sFirst=(s11、s12、…、s1N)、及び、前記第2の線形素子列からのN個の出力sSecond=(s21、s22、…、s2N)を出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の線形素子列の線形素子の値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の線形素子列の線形素子の値を推定する推定工程とを包含することを特徴とする線形素子列値推定方法。
  2. 前記符号系列di=(di1、di2、…、diN)(i=1、…、M)の各要素は、+Vまたは−Vによって構成される請求項1記載の線形素子列値推定方法。
  3. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列C1i(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列C2i(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含することを特徴とする静電容量検出方法。
  4. 前記推定工程は、前記符号系列による1回の並列駆動ごとに、内積に必要な、符号に応じた加減算を実行する請求項3記載の静電容量検出方法。
  5. 前記出力工程は、前記第1の静電容量列からの出力sFirstを第1アナログ積分器に出力し、前記第2の静電容量列からの出力sSecondを第2アナログ積分器に出力し、
    前記推定工程は、前記第1アナログ積分器に出力された出力sFirstをAD変換器によりAD変換して前記出力sFirstと前記符号系列diとの内積演算を実行し、前記第2アナログ積分器に出力された出力sSecondを前記AD変換器によりAD変換して前記出力sSecondと前記符号系列diとの内積演算を実行する請求項3記載の静電容量検出方法。
  6. 前記出力工程は、前記第1の静電容量列からの出力sFirstをアナログ積分器に出力した後、前記第2の静電容量列からの出力sSecondを前記アナログ積分器に出力し、
    前記推定工程は、前記アナログ積分器に出力された出力sFirstをAD変換器によりAD変換して前記出力sFirstと前記符号系列diとの内積演算を実行し、前記アナログ積分器に出力された出力sSecondを前記AD変換器によりAD変換して前記出力sSecondと前記符号系列diとの内積演算を実行する請求項3記載の静電容量検出方法。
  7. 前記出力工程は、前記第1の静電容量列からの出力sFirstを第1アナログ積分器に出力し、前記第2の静電容量列からの出力sSecondを第2アナログ積分器に出力し、
    前記推定工程は、前記第1アナログ積分器に出力された出力sFirstを第1AD変換器によりAD変換して前記出力sFirstと前記符号系列diとの内積演算を実行し、前記第2アナログ積分器に出力された出力sSecondを第2AD変換器によりAD変換して前記出力sSecondと前記符号系列diとの内積演算を実行する請求項3記載の静電容量検出方法。
  8. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列C1i(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列C2i(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させる駆動部と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを備えたことを特徴とする集積回路。
  9. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列C1i(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列C2i(i=1、…、M)とを備えるセンサパネルと、
    上記センサパネルを制御する集積回路とを備えたタッチセンサシステムであって、
    上記集積回路は、前記第1の静電容量列C1i(i=1、…、M)、及び前記第2の静電容量列C2i(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)を出力させる駆動部と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを有することを特徴とするタッチセンサシステム。
  10. 請求項9記載のタッチセンサシステムと、
    前記タッチセンサシステムに設けられたセンサパネルに重ねて配置されているか、または、前記センサパネルを内蔵した表示パネルとを備えたことを特徴とする電子機器。
  11. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程は、前記アナログ積分器のリセット時にはVrefボルトで表される第1電圧により前記M本のドライブラインを駆動し、前記第1及び第2静電容量列からの出力のサンプリング時には、前記符号系列が前記+1の場合は(Vref+V)ボルトで表される第2電圧により、前記符号系列が前記−1の場合は(Vref−V)ボルトで表される第3電圧により前記M本のドライブラインを駆動することを特徴とする静電容量検出方法。
  12. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程は、前記符号系列が前記+1の場合は、前記アナログ積分器のリセット時に第1電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に第2電圧により前記ドライブラインを駆動し、前記符号系列が前記−1の場合は、前記アナログ積分器のリセット時に前記第2電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に前記第1電圧により前記ドライブラインを駆動することを特徴とする静電容量検出方法。
  13. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程の前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出してメモリに格納することを特徴とする静電容量検出方法。
  14. 前記推定工程は、前記メモリに格納された第1の静電容量列からのオフセット出力を前記出力sFirstから減算した結果と、前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記メモリに格納された第2の静電容量列からのオフセット出力を前記出力sSecondから減算した結果と、前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する請求項13記載の静電容量検出方法。
  15. 前記出力工程の前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出す動作を複数回繰り返して得られた複数個のオフセット出力を平均化してメモリに格納する請求項13記載の静電容量検出方法。
  16. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを備えた集積回路であって、
    前記駆動部は、前記符号系列が前記+1の場合は、前記アナログ積分器のリセット時に第1電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に第2電圧により前記ドライブラインを駆動し、前記符号系列が前記−1の場合は、前記アナログ積分器のリセット時に前記第2電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に前記第1電圧により前記ドライブラインを駆動することを特徴とする集積回路。
  17. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを備えた集積回路であって、
    前記駆動部は、前記第1及び第2静電容量からの出力を前記アナログ積分器に出力する前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出してメモリに格納することを特徴とする集積回路。
  18. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)とを備えるセンサパネルと、
    前記センサパネルを制御する集積回路とを備えたタッチセンサシステムであって、
    前記集積回路は、前記第1の静電容量列Ci1(i=1、…、M)、及び前記第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを有しており、
    前記駆動部は、前記符号系列が前記+1の場合は、前記アナログ積分器のリセット時に第1電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に第2電圧により前記ドライブラインを駆動し、前記符号系列が前記−1の場合は、前記アナログ積分器のリセット時に前記第2電圧により、前記第1及び第2静電容量列からの出力のサンプリング時に前記第1電圧により前記ドライブラインを駆動することを特徴とするタッチセンサシステム。
  19. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)とを備えるセンサパネルと、
    前記センサパネルを制御する集積回路とを備えたタッチセンサシステムであって、
    前記集積回路は、前記第1の静電容量列Ci1(i=1、…、M)、及び前記第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する駆動部と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定部とを有しており、
    前記駆動部は、前記第1及び第2静電容量からの出力を前記アナログ積分器に出力する前において、前記アナログ積分器のリセット時、及び前記第1及び第2静電容量列からの出力のサンプリング時に第1電圧により前記ドライブラインを駆動して、前記第1及び第2の静電容量列からの出力を前記アナログ積分器に出力し、前記第1及び第2の静電容量列からの出力をオフセット出力として前記アナログ積分器から読み出してメモリに格納することを特徴とするタッチセンサシステム。
  20. 請求項18または19記載のタッチセンサシステムと、
    前記タッチセンサシステムに設けられたセンサパネルに重ねて配置されているか、または、前記センサパネルを内蔵した表示パネルとを備えたことを特徴とする電子機器。
  21. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M、及びM<N)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程は、前記アナログ積分器の飽和を防止するために、前記符号系列の列方向に沿った各要素の総和の絶対値に応じて、前記アナログ積分器のゲインを切り替えることを特徴とする静電容量検出方法。
  22. 前記推定工程は、前記出力sFirstをAD変換した第1デジタル値と前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondをAD変換した第2デジタル値と前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定し、
    前記推定工程は、前記符号系列の列方向に沿った各要素の総和の絶対値に応じて、前記第1及び第2デジタル値の重み付けを切り替える請求項21記載の静電容量検出方法。
  23. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、各要素が+1または−1によって構成される長さNの直交する符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程は、前記アナログ積分器の飽和を防止するために、前記符号系列の列方向に沿った各要素の総和の絶対値に応じて、前記符号系列の列を複数の列に分割して、前記M本のドライブラインの駆動を複数回に分割することを特徴とする静電容量検出方法。
  24. (M=2 )本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記(M=2 )本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、シルベスター(sylvester)法によって生成される2 次のアダマール(Hadamard)行列の各行に相当する+1または−1によって構成されて互いに直交する符号長N=Mの符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程は、前記アナログ積分器の飽和を防止するために、前記符号系列の第1列目を複数の列に分割して、前記符号系列の第1列目に相当する駆動を複数回に分割することを特徴とする静電容量検出方法。
  25. M本のドライブラインと1本のセンスラインの間に形成される第1の静電容量列Ci1(i=1、…、M)、及び、上記M本のドライブラインと他の1本のセンスラインの間に形成される第2の静電容量列Ci2(i=1、…、M)のそれぞれに対して、シルベスター(sylvester)法によって生成される2 次(M<2 )のアダマール(Hadamard)行列の各行に相当する+1または−1によって構成されて互いに直交する符号長N>Mの符号系列di=(di1、di2、…、diN)(i=1、…、M)に基づいて、前記符号系列が前記+1の場合は+Vボルト、前記−1の場合は−Vボルトを印加するように前記M本のドライブラインを並列に駆動して、前記第1の静電容量列からの出力sFirst=(s11、s12、…、s1N)、及び、前記第2の静電容量列からの出力sSecond=(s21、s22、…、s2N)をアナログ積分器に出力する出力工程と、
    前記出力sFirstと前記符号系列diとの内積演算に基づいて、k1番目のドライブラインに対応する前記第1の静電容量列の容量値を推定し、前記出力sSecondと前記符号系列diとの内積演算に基づいて、k2番目のドライブラインに対応する前記第2の静電容量列の容量値を推定する推定工程とを包含する静電容量検出方法であって、
    前記出力工程は、前記符号系列の列方向に沿った各要素の総和の絶対値が前記アナログ積分器の飽和に関連する閾値Numを超える列を複数の列に分解して、前記符号系列の前記閾値Numを超える列に対応する駆動を複数回に分割することを特徴とする静電容量検出方法。
  26. 前記符号系列の列方向に沿った各要素の総和の絶対値が前記アナログ積分器の飽和に関連する閾値Numを超える列は、前記2 次のアダマール行列の1列目、(2 n−1 +1)列目、(2 n−1 +2 n−2 +1)列目、及び(2 n−1 −2 n−2 +1)列目のうちの少なくとも1つである請求項25記載の静電容量検出方法。
  27. [x]をxの整数部とし、
    前記2 次のアダマール行列の1列目が前記閾値Numを超える場合、ドライブラインの1番目からNum×[M/Num]番目までをNum個ずつ駆動することを[M/Num]回繰り返した後、残りの(M/Num)の余りの個数を並列駆動し、
    前記アダマール行列の(2 n−1 +1)列目が前記閾値Numを超える場合、ドライブラインの(2 n−1 −(M−2 n−1 ))行目に基づく行からM行目までを並列に駆動した後、ドライブラインの1行目から(2 n−1 −(M−2 n−1 )−1)行目に基づく行までを、Num個ずつ駆動することを[(2 n−1 −(M−2 n−1 )−1)行目に基づく行/Num]回繰り返した後、残りの((2 n−1 −(M−2 n−1 )−1)行目に基づく行/Num)の余りの個数を並列駆動し、
    前記アダマール行列の(2 n−1 +2 n−2 +1)列目が前記閾値Numを超える場合、まず、ドライブラインの1行目から(2 n−1 )行目までを同時並列に駆動し、そして、ドライブラインの((2 n−1 +2 n−2 )−(M−(2 n−1 +2 n−2 )))行目に基づく行からM行目までを並列に駆動し、次に、ドライブラインの(2 n−1 +1)行目から((2 n−1 +2 n−2 )−(M−(2 n−1 +2 n−2 )))行目に基づく行までを、Num個ずつ駆動することを[((((2 n−1 +2 n−2 )−(M−(2 n−1 +2 n−2 )))に基づく行))−(2 n−1 +1)/Num]回繰り返した後、残りの(((((2 n−1 +2 n−2 )−(M−(2 n−1 +2 n−2 )))に基づく行))−(2 n−1 +1)/Num)の余りの個数を並列駆動する請求項26記載の静電容量検出方法。
  28. 行の順番を入れ替えることにより、シルベスター法によって生成される2 次(M<2 )のアダマール行列からなる符号系列を生成し、当該符号系列に基づいて前記M本のドライブラインを並列に駆動する請求項25記載の静電容量検出方法。
JP2011022022A 2010-11-12 2011-02-03 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器 Active JP4927216B1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011022022A JP4927216B1 (ja) 2010-11-12 2011-02-03 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器
PCT/JP2011/065419 WO2012063520A1 (en) 2010-11-12 2011-06-29 Linear system coefficient estimating method, linear device column value estimating method, capacitance detecting method, integrated circuit, touch sensor system, and electronic device
US13/879,819 US9501451B2 (en) 2010-11-12 2011-06-29 Linear system coefficient estimating method, linear device column value estimating method, capacitance detecting method, integrated circuit, touch sensor system, and electronic device
CN201180053782.XA CN103201715B (zh) 2010-11-12 2011-06-29 线性设备列数值估计方法、电容检测方法、集成电路、触摸传感器系统以及电子设备
EP15199882.0A EP3012724A1 (en) 2010-11-12 2011-06-29 Linear system coefficient estimating method, linear device column value estimating method, capacitance detecting method, integrated circuit, touch sensor system, and electronic device
EP11840690.9A EP2638459A4 (en) 2010-11-12 2011-06-29 LINEAR SYSTEM COEFFICIENT ESTIMATING METHOD, LINEAR DEVICE COLUMN VALUE ESTIMATING METHOD, CAPACITANCE DETECTING METHOD, INTEGRATED CIRCUIT, TOUCH SENSOR SYSTEM, AND ELECTRONIC DEVICE
TW100124818A TWI476650B (zh) 2010-11-12 2011-07-13 線性系統係數推估方法、線性元件行值推估方法、電容檢測方法、積體電路、觸控感測器系統、電子裝置
US15/285,393 US9563323B1 (en) 2010-11-12 2016-10-04 Capacitance detecting method, integrated circuit, touch sensor system, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010253879 2010-11-12
JP2010253879 2010-11-12
JP2011022022A JP4927216B1 (ja) 2010-11-12 2011-02-03 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器

Publications (2)

Publication Number Publication Date
JP4927216B1 true JP4927216B1 (ja) 2012-05-09
JP2012118957A JP2012118957A (ja) 2012-06-21

Family

ID=46050679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022022A Active JP4927216B1 (ja) 2010-11-12 2011-02-03 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器

Country Status (6)

Country Link
US (2) US9501451B2 (ja)
EP (2) EP3012724A1 (ja)
JP (1) JP4927216B1 (ja)
CN (1) CN103201715B (ja)
TW (1) TWI476650B (ja)
WO (1) WO2012063520A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103844A1 (ja) * 2012-12-25 2014-07-03 シャープ株式会社 タッチセンサシステム
JP5845344B2 (ja) * 2012-05-30 2016-01-20 シャープ株式会社 タッチパネルシステムおよび電子機器
US9563306B2 (en) 2014-11-04 2017-02-07 Samsung Display Co., Ltd. Touch sensor and display device including the same
US9678613B2 (en) 2013-02-25 2017-06-13 Sharp Kabushiki Kaisha Input device and display
US9727190B2 (en) 2013-02-25 2017-08-08 Sharp Kabushiki Kaisha Electronic apparatus and information processing system
US9797931B2 (en) 2014-09-05 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Matrix device, measurement method of characteristics thereof, and driving method thereof
US9804719B2 (en) 2014-10-23 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US10043427B2 (en) 2014-09-05 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Matrix device, measurement method of characteristics thereof, and driving method thereof
US11972074B2 (en) 2022-07-12 2024-04-30 Sharp Kabushiki Kaisha Touch operation detection device and touch operation detection method

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924231B1 (ko) * 2010-10-29 2018-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 기억 장치
JP5231605B2 (ja) 2011-06-10 2013-07-10 シャープ株式会社 タッチパネルコントローラ、及びこれを用いた電子機器
WO2013046513A1 (ja) * 2011-09-30 2013-04-04 旭化成エレクトロニクス株式会社 タッチセンサの信号処理回路、およびタッチセンサ
JP5341224B2 (ja) 2012-04-04 2013-11-13 シャープ株式会社 タッチパネルコントローラ、集積回路、タッチパネルシステム、及び電子機器
US8913033B2 (en) * 2012-05-29 2014-12-16 Elo Touch Solutions, Inc. Projected capacitive touch sensor circuit
JP5394540B2 (ja) * 2012-06-25 2014-01-22 シャープ株式会社 タッチパネルコントローラ、集積回路、タッチパネル装置、及び電子機器。
JP5932523B2 (ja) * 2012-06-29 2016-06-08 シャープ株式会社 タッチパネルコントローラ、タッチパネルシステムおよび電子機器
JP5399538B2 (ja) * 2012-07-04 2014-01-29 シャープ株式会社 タッチパネルコントローラ、及びこれを用いた集積回路、タッチパネル装置、電子機器
WO2014038519A1 (ja) * 2012-09-05 2014-03-13 シャープ株式会社 タッチパネルコントローラ、及びこれを含む集積回路、タッチパネル装置、電子機器
US9335148B2 (en) 2012-09-11 2016-05-10 Sharp Kabushiki Kaisha Touch panel system, and capacitance value distribution detecting device having noise determining section
TWI507952B (zh) * 2012-11-08 2015-11-11 Mstar Semiconductor Inc 觸控系統及其電容量偵測裝置
CN103837748B (zh) * 2012-11-23 2017-06-16 晨星软件研发(深圳)有限公司 触控系统及其电容量检测装置
WO2014084089A1 (ja) * 2012-11-30 2014-06-05 シャープ株式会社 タッチパネルコントローラ、並びにこれを用いた電子機器
WO2014129091A1 (ja) * 2013-02-25 2014-08-28 シャープ株式会社 タッチパネルコントローラ、集積回路、タッチパネル装置、及び、電子機器
FR3004551A1 (fr) * 2013-04-15 2014-10-17 Fogale Nanotech Procede de detection capacitif multizone, dispositif et appareil mettant en oeuvre le procede
CN105308547A (zh) * 2013-06-20 2016-02-03 夏普株式会社 触摸面板控制器、集成电路、触摸面板装置和电子设备
KR101497405B1 (ko) * 2013-08-07 2015-03-04 주식회사 하이딥 터치패널 입력장치 및 그의 입력검출방법
KR101531162B1 (ko) * 2013-09-16 2015-06-25 주식회사 하이딥 터치패널 입력장치 및 그의 입력검출방법
KR101514545B1 (ko) * 2013-09-30 2015-04-22 삼성전기주식회사 정전용량 감지 장치
CN105637459B (zh) 2013-10-15 2018-12-18 夏普株式会社 触摸面板
US10289245B2 (en) 2014-05-22 2019-05-14 Novatek Microelectronics Corp. Touch apparatus, touch controller thereof and noise detection method
KR102249203B1 (ko) * 2014-09-05 2021-05-10 삼성전자주식회사 좌표 측정 장치 및 이의 구동 방법
WO2016046692A1 (ja) 2014-09-26 2016-03-31 株式会社半導体エネルギー研究所 マトリクス装置とその特性の測定方法、駆動方法
US9704572B2 (en) * 2015-03-20 2017-07-11 Sandisk Technologies Llc Sense amplifier with integrating capacitor and methods of operation
US10082916B2 (en) * 2015-07-08 2018-09-25 Samsung Electronics Co., Ltd. Circuit for cancelling offset capacitance of capacitive touch screen panel and device including the same
US10545612B2 (en) 2015-12-11 2020-01-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit, signal processing IC, and semiconductor device
US9984624B2 (en) 2015-12-28 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver IC, and electronic device
KR102533513B1 (ko) * 2016-06-30 2023-05-18 엘지디스플레이 주식회사 터치 센서의 구동 방법 및 회로와 이를 이용한 표시장치
KR102670998B1 (ko) * 2016-08-02 2024-05-30 삼성전자주식회사 화면 내장형 지문 센서의 출력 신호들을 리드아웃하는 아날로그 프론트 엔드와 이를 포함하는 장치
KR102600592B1 (ko) 2016-08-29 2023-11-10 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
DE112018001207T5 (de) 2017-03-07 2019-11-21 Semiconductor Energy Laboratory Co., Ltd. IC, Treiber-IC, Anzeigesystem und Elektronisches Gerät
CN107016970B (zh) * 2017-04-17 2019-12-24 深圳市华星光电半导体显示技术有限公司 Demux电路
JP2019066324A (ja) * 2017-09-29 2019-04-25 株式会社ジャパンディスプレイ 検出装置及び電子機器
DE112018005555T5 (de) * 2017-10-13 2020-07-02 Tactual Labs Co. Minimale ansteuerung von sendern zur erhöhung der schwebeerkennung
CN111801682A (zh) * 2018-03-14 2020-10-20 指纹卡有限公司 对指纹图案信号进行滤波的方法和指纹感测装置
WO2021064518A1 (ja) 2019-10-04 2021-04-08 株式会社半導体エネルギー研究所 表示モジュール、および電子機器
KR20220043999A (ko) 2020-09-29 2022-04-06 삼성디스플레이 주식회사 표시장치 및 표시장치의 구동 방법
KR20220084786A (ko) 2020-12-14 2022-06-21 주식회사 엘엑스세미콘 상호정전용량 터치센서를 위한 2레벨 코딩/디코딩 기반 터치센싱장치 및 터치센싱방법
JP2022115333A (ja) 2021-01-28 2022-08-09 株式会社ジャパンディスプレイ 検出装置
US20220351032A1 (en) * 2021-04-28 2022-11-03 Arm Limited Memory for Artificial Neural Network Accelerator

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944293A (ja) 1995-07-28 1997-02-14 Sharp Corp 電子機器
JP3251489B2 (ja) 1996-02-16 2002-01-28 シャープ株式会社 座標入力装置
US5940065A (en) * 1996-03-15 1999-08-17 Elo Touchsystems, Inc. Algorithmic compensation system and method therefor for a touch sensor panel
JP3281256B2 (ja) * 1996-04-24 2002-05-13 シャープ株式会社 座標入力装置
JPH11249813A (ja) * 1998-03-03 1999-09-17 Sharp Corp 表示一体型座標入力装置
JP4275865B2 (ja) * 1999-01-26 2009-06-10 キューアールジー リミテッド 容量性センサ及びアレイ
JP2000242770A (ja) * 1999-02-24 2000-09-08 Toshiba Corp 指の凹凸情報入力装置および個人認証装置
US6730863B1 (en) 1999-06-22 2004-05-04 Cirque Corporation Touchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
JP4036798B2 (ja) 2003-07-29 2008-01-23 アルプス電気株式会社 容量検出回路および検出方法並びに指紋センサ
JP2005114362A (ja) 2003-10-02 2005-04-28 Alps Electric Co Ltd 容量検出回路及び検出方法並びにそれを用いた指紋センサ
US7075316B2 (en) 2003-10-02 2006-07-11 Alps Electric Co., Ltd. Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
JP2005134240A (ja) 2003-10-30 2005-05-26 Alps Electric Co Ltd 容量検出回路及び検出方法並びにそれを用いた指紋センサ
JP4387773B2 (ja) 2003-11-25 2009-12-24 アルプス電気株式会社 容量検出回路及び検出方法並びにそれを用いた指紋センサ
JP4364609B2 (ja) 2003-11-25 2009-11-18 アルプス電気株式会社 容量検出回路及びそれを用いた指紋センサ
US7288946B2 (en) * 2005-06-03 2007-10-30 Synaptics Incorporated Methods and systems for detecting a capacitance using sigma-delta measurement techniques
US20070074913A1 (en) * 2005-10-05 2007-04-05 Geaghan Bernard O Capacitive touch sensor with independently adjustable sense channels
US7868874B2 (en) 2005-11-15 2011-01-11 Synaptics Incorporated Methods and systems for detecting a position-based attribute of an object using digital codes
JP2008134836A (ja) * 2006-11-28 2008-06-12 Wacom Co Ltd タッチパネル装置
TW200905538A (en) * 2007-07-31 2009-02-01 Elan Microelectronics Corp Touch position detector of capacitive touch panel and method of detecting the touch position
US8581852B2 (en) 2007-11-15 2013-11-12 Microsoft Corporation Fingertip detection for camera based multi-touch systems
JP4794010B2 (ja) 2008-01-16 2011-10-12 三菱自動車工業株式会社 タッチセンサ装置、制御方法、タッチパネル装置、及びプログラム
WO2009107415A1 (ja) * 2008-02-27 2009-09-03 セイコーインスツル株式会社 近接検出装置と近接検出方法
JP5133791B2 (ja) 2008-06-19 2013-01-30 株式会社ジャパンディスプレイイースト タッチパネル付き表示装置
US8717332B2 (en) 2008-07-31 2014-05-06 Gunze Limited Planar element, and touch switch
US9606663B2 (en) 2008-09-10 2017-03-28 Apple Inc. Multiple stimulation phase determination
US8237667B2 (en) * 2008-09-10 2012-08-07 Apple Inc. Phase compensation for multi-stimulus controller
JP5067763B2 (ja) 2008-10-08 2012-11-07 株式会社ジャパンディスプレイウェスト 接触検出装置、表示装置および接触検出方法
US8502787B2 (en) 2008-11-26 2013-08-06 Panasonic Corporation System and method for differentiating between intended and unintended user input on a touchpad
SE533704C2 (sv) * 2008-12-05 2010-12-07 Flatfrog Lab Ab Pekkänslig apparat och förfarande för drivning av densamma
EP2330487A4 (en) 2009-02-06 2014-03-12 Panasonic Corp IMAGE DISPLAY DEVICE
JP2011003071A (ja) * 2009-06-19 2011-01-06 Seiko Instruments Inc 近接検出装置および近接検出方法
US9058082B2 (en) 2009-08-12 2015-06-16 Cirque Corporation Synchronous timed orthogonal measurement pattern for multi-touch sensing on a touchpad
JP5127792B2 (ja) 2009-08-18 2013-01-23 キヤノン株式会社 情報処理装置、その制御方法、プログラム及び記録媒体
JP2011047774A (ja) 2009-08-26 2011-03-10 Seiko Instruments Inc 近接検出装置と近接検出方法
EP2506126A1 (en) 2009-11-25 2012-10-03 Nec Corporation Portable information terminal, input control method, and program
CN101751193B (zh) * 2010-01-11 2011-06-22 旭曜科技股份有限公司 电容式触控面板的感测电路
JP4955116B1 (ja) 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
JP5384598B2 (ja) * 2011-09-09 2014-01-08 シャープ株式会社 静電容量型タッチセンサパネル、及びこれを用いた静電容量型タッチセンサシステム、情報入出力装置
JP5350437B2 (ja) * 2011-06-27 2013-11-27 シャープ株式会社 タッチセンサシステム
JP5329681B2 (ja) 2012-01-06 2013-10-30 シャープ株式会社 タッチパネルシステムおよび電子機器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845344B2 (ja) * 2012-05-30 2016-01-20 シャープ株式会社 タッチパネルシステムおよび電子機器
WO2014103844A1 (ja) * 2012-12-25 2014-07-03 シャープ株式会社 タッチセンサシステム
US9678613B2 (en) 2013-02-25 2017-06-13 Sharp Kabushiki Kaisha Input device and display
US9727190B2 (en) 2013-02-25 2017-08-08 Sharp Kabushiki Kaisha Electronic apparatus and information processing system
US9797931B2 (en) 2014-09-05 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Matrix device, measurement method of characteristics thereof, and driving method thereof
US10043427B2 (en) 2014-09-05 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Matrix device, measurement method of characteristics thereof, and driving method thereof
US9804719B2 (en) 2014-10-23 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US9563306B2 (en) 2014-11-04 2017-02-07 Samsung Display Co., Ltd. Touch sensor and display device including the same
US11972074B2 (en) 2022-07-12 2024-04-30 Sharp Kabushiki Kaisha Touch operation detection device and touch operation detection method

Also Published As

Publication number Publication date
WO2012063520A1 (en) 2012-05-18
CN103201715A (zh) 2013-07-10
TW201224882A (en) 2012-06-16
US20170024039A1 (en) 2017-01-26
US9501451B2 (en) 2016-11-22
TWI476650B (zh) 2015-03-11
US20130211757A1 (en) 2013-08-15
EP3012724A1 (en) 2016-04-27
JP2012118957A (ja) 2012-06-21
CN103201715B (zh) 2016-11-23
EP2638459A1 (en) 2013-09-18
US9563323B1 (en) 2017-02-07
EP2638459A4 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP4927216B1 (ja) 線形素子列値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器
US8942937B2 (en) Linear device value estimating method, capacitance detection method, integrated circuit, touch sensor system, and electronic device
US9354757B2 (en) Touch sensor system, and electronic device
CN103248842B (zh) 固态图像感测装置
CN109756226B (zh) 参考dac的背景校准和adc中的量化非线性
US20100244859A1 (en) Deconvolution-based capacitive touch detection circuit and method
KR101927272B1 (ko) 연속 근사 레지스터 아날로그 디지털 컨버터
US10505562B2 (en) Circuit and method for generating reference signals for hybrid analog-to-digital convertors
KR101716782B1 (ko) 디지털-아날로그 변환 회로 및 이를 포함하는 아날로그-디지털 변환기
US8633844B2 (en) Performing digital windowing in an analog-to-digital converter (ADC)
KR101743800B1 (ko) A/d 변환기, 이미지 센서 디바이스 및 아날로그 신호로부터 디지털 신호를 생성하는 방법
KR20140106586A (ko) 정전용량 센서 인터페이스 및 방법
CN1148003C (zh) 模数变换器中的偏压补偿
TW201240354A (en) Test apparatus and test method of analog to digital converter
WO2015137416A1 (ja) 信号処理システム、タッチパネルシステム、及び、電子機器
JP5494273B2 (ja) Ad変換回路およびad変換方法
JP5670586B2 (ja) 線形素子値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、電子機器
JP5770315B2 (ja) タッチセンサシステム、及び電子機器
JP5864621B2 (ja) タッチセンサシステム、及び電子機器
WO2014103844A1 (ja) タッチセンサシステム
US10200055B2 (en) Glitch characterization in digital-to-analog conversion
JP2014520292A (ja) 線形素子値推定方法、静電容量検出方法、集積回路、タッチセンサシステム、及び電子機器
CN103947119A (zh) 在交错和多信道模数转换器中降低信道间耦合的方法和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4927216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350