[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4801945B2 - Method for making fine particles of dry powder grains - Google Patents

Method for making fine particles of dry powder grains Download PDF

Info

Publication number
JP4801945B2
JP4801945B2 JP2005215775A JP2005215775A JP4801945B2 JP 4801945 B2 JP4801945 B2 JP 4801945B2 JP 2005215775 A JP2005215775 A JP 2005215775A JP 2005215775 A JP2005215775 A JP 2005215775A JP 4801945 B2 JP4801945 B2 JP 4801945B2
Authority
JP
Japan
Prior art keywords
particles
fluid
dry powder
powdered
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005215775A
Other languages
Japanese (ja)
Other versions
JP2007028972A (en
Inventor
克己 小出
Original Assignee
株式会社 アンフィニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アンフィニ filed Critical 株式会社 アンフィニ
Priority to JP2005215775A priority Critical patent/JP4801945B2/en
Publication of JP2007028972A publication Critical patent/JP2007028972A/en
Application granted granted Critical
Publication of JP4801945B2 publication Critical patent/JP4801945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cereal-Derived Products (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Description

本発明は、米、小麦、大麦等の米麦類、ライ麦、とうもろこし、あわ、そば等の雑穀類、大豆、小豆、そらまめ等の豆類等の穀物類を、従来公知の方法で粉末状に加工して乾燥粉末穀物類としたものを、前記穀物類の各素材の有効成分を劣化させることなく、例えばナノメーターサイズにまで、超微粒子化することにより、ビタミン等の有効成分を抽出し、該超微粒子化された粉末穀物類を食品として食する場合、人体への吸収性を高めることができる乾燥粉末穀物類の超微粒子化方法に関するものである。 The present invention processes rice grains such as rice, wheat, barley, and other rice grains, rye, corn, millet such as wax, buckwheat, etc., beans such as soybeans, red beans, broad beans, etc. into a powder form by a conventionally known method. The dried powder cereals are extracted, for example, into nanometer size, without degrading the active ingredients of each material of the cereals. The present invention relates to a method for making ultrafine particles of dry powder cereals that can increase the absorbability to the human body when eating finely divided powder cereals as food.

従来、米、小麦、大麦等の米麦類、ライ麦、とうもろこし、あわ、そば等の雑穀類、大豆、小豆、そらまめ等の豆類等の穀物類を、乾燥粉末穀物類とした加工食品が市販されている。また、穀物類を乾燥粉末とする方法につき、過去の特許文献を遡及検索すると、下記の特許文献1が公知である。 Traditionally, processed foods made from dried wheat grains such as rice, wheat, barley and other rice, rye, corn, miscellaneous grains such as awa, soba, soybeans, red beans, broad beans and other grains are commercially available. ing. Moreover, the following patent document 1 is well-known when the past patent document is retrospectively searched about the method of making grains into dry powder.

特開2004−24124号公報Japanese Patent Laid-Open No. 2004-24124

前記米、小麦、大麦等の米麦類、ライ麦、とうもろこし、あわ、そば等の雑穀類、大豆、小豆、そらまめ等の豆類等の穀物類等の穀物を、従来公知の方法により乾燥粉末穀物とした加工食品は、いずれも例えばナノメーターサイズにまで超微粒子化されていないため、ビタミン等の穀物の有効成分の抽出が充分でなく、これらを所謂健康食品として食する場合、穀物が保有する有効成分の人体への吸収性が悪いという課題があった。 Grains such as rice, wheat, barley and other rice grains, rye, corn, millet such as corn, soba, soybeans, red beans, beans such as broad bean, etc. None of the processed foods, for example, are made into ultrafine particles down to nanometer size, for example, and the extraction of active ingredients of grains such as vitamins is not sufficient. There was a problem that the absorbability of ingredients to the human body was poor.

更に、前記特許文献1には、穀物類を乾燥粉末にする旨の記載はあるが、前記穀物類の乾燥粉末が、例えばナノメーターサイズにまで超微粒子化されていないため、該穀物類の粉末を食しても、穀物類が保有するビタミン等の有効成分の人体への吸収性が悪いという課題があった。 Furthermore, although the said patent document 1 has the description to make cereal into dry powder, since the dry powder of the said cereal is not micronized to nanometer size, for example, the powder of this cereal Even when eating, the problem is that the absorption of active ingredients such as vitamins held by grains into the human body is poor.

本発明は、前記課題を解決すべくなされたもので、例えば前記特許文献1に記載されたような、従来公知の加工方法により粉末状に加工された乾燥粉末穀物類を、超微粒子化装置により、例えばナノメーターサイズにまで超微粒子化することにより、ビタミン等の有効成分が抽出されると共に、これを食品として食した場合、超微粒子化されているので人体への吸収性を高めることができる乾燥粉末穀物類の超微粒子化方法を提供しようとするものである。 The present invention has been made to solve the above-mentioned problems. For example, as described in Patent Document 1, dry powder cereals processed into a powder form by a conventionally known processing method can be obtained by using an ultrafine particle sizing device. For example, by making ultrafine particles down to nanometer size, active ingredients such as vitamins can be extracted, and when eaten as food, they are made into ultrafine particles, so the absorbability to the human body can be increased. An object of the present invention is to provide a method for making fine particles of dry powder grains.

本発明は、従来公知の加工方法により粉末状に加工された乾燥粉末穀物類を、粒径50μm以下に微粉砕して微粒子状の粉末穀物類粒子とし、且つ該粉末穀物類粒子と、水道水、または天然水を電解して得られた塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水とを混合した流状物を超微粒子化装置に高圧で圧送して、前記粉末穀物類粒子を含む流状物を高圧のもとで衝突させて、粉末穀物類粒子を破砕して超微粒子化して、ビタミン等の有効成分を流状物中に抽出し、該流状物を、乾燥機により乾燥して前記流状物中の水分を蒸発させて除去し、ビタミン等の有効成分の劣化を防いで、超微粒子状の乾燥粉末穀物類として取出すという方法を採用することにより、上記課題を解決した。 The present invention relates to dry powder cereals that have been processed into a powder by a conventionally known processing method, and finely pulverized to a particle size of 50 μm or less to form finely divided powder cereal particles. Or a liquid obtained by electrolyzing natural water, containing no chlorine, having a pH of 9 to 10, an oxidation-reduction potential of 200 mV or less, and mixed with electrolytically reduced water having characteristics including active hydrogen. It is pumped to a micronizer at high pressure, and the flow material containing the powdered cereal particles is collided under high pressure, and the powdered cereal particles are crushed into ultrafine particles to flow active ingredients such as vitamins. Extracted into a powder, the fluid is dried by a dryer to evaporate and remove the water in the fluid, preventing deterioration of active ingredients such as vitamins, and a dry powder in the form of ultrafine particles By adopting the method of taking out as cereals, the above section It was resolved.

本発明の乾燥粉末穀物類の超微粒子化方法によれば、従来公知の加工方法により粉末状に加工された乾燥粉末穀物類を、粒径50μm以下に微粉砕して微粒子状の粉末穀物類粒子とし、且つ該粉末穀物類粒子と、水道水、または天然水を電解して得られた塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水とを混合した流状物を超微粒子化装置に高圧で圧送して、前記粉末穀物類粒子を含む流状物を高圧のもとで衝突させて、粉末穀物類粒子を破砕して、例えばナノメーターサイズにまで超微粒子化して、ビタミン等の有効成分を流状物中に抽出し、然る後、前記流状物を乾燥機により乾燥して流状物中の水分を蒸発させて除去し、ビタミン等の有効成分の劣化を防止して、超微粒子状の乾燥粉末穀物類とすることができる。 According to the method for making ultrafine particles of dry powder cereals of the present invention, dry powder cereals processed into powder by a conventionally known processing method are finely pulverized to a particle size of 50 μm or less to form finely divided powder cereal particles. And does not contain chlorine obtained by electrolyzing the powdered cereal particles and tap water or natural water, has a pH of 9 to 10, an oxidation-reduction potential of 200 mV or less, and contains active hydrogen. A fluid mixed with electrolytically reduced water is pumped to a micronizer at high pressure, and the fluid containing the powdered cereal particles is collided under high pressure to crush the powdered cereal particles. For example, it is made into ultrafine particles down to nanometer size, and active ingredients such as vitamins are extracted into the fluid, and then the fluid is dried by a dryer to evaporate the water in the fluid. To prevent deterioration of active ingredients such as vitamins, It can be a particulate dry powder cereals.

そして、前記超微粒子状に加工された乾燥粉末穀物類を錠剤状、あるいは顆粒状等とすることにより、健康食品として採取すると、従来の粒子状の乾燥粉末穀物類に比して超微粒子化されているので、人体への吸収性が高く、ビタミン等の有効成分を効率よく人体に吸収することができる。 When the dried powder cereal processed into ultrafine particles is made into a tablet or granule, it is collected as a health food, resulting in ultrafine particles compared with conventional granular dry powder cereals. Therefore, it is highly absorbable to the human body, and active ingredients such as vitamins can be efficiently absorbed into the human body.

本発明を実施するための最良の形態につき詳細に説明する。本発明は、米、小麦、大麦等の米麦類、ライ麦、とうもろこし、あわ、そば等の雑穀類、大豆、小豆、そらまめ等の豆類等の穀物類を、従来公知の方法で粉末状に加工して乾燥粉末穀物類としたものを、粒径50μm以下に微粉砕して微粒子状の粉末穀物類粒子とし、且つ該粉末穀物類粒子を、塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水に、所定量を添加混入して粉末穀物類粒子を含む流状物とし、これを超微粒子化装置に高圧で圧送して、前記粉末穀物類粒子を含む流状物を高圧のもとで衝突させて、該粉末穀物類粒子を破砕して超微粒子化して、ビタミン等の有効成分を流状物中に抽出し、然る後、前記超微粒子化した粉末穀物類粒子を含む流状物を、乾燥機により乾燥して、前記流状物中の水分を蒸発させて除去し、超微粒子状の乾燥粉末穀物類とする。 The best mode for carrying out the present invention will be described in detail. The present invention processes rice grains such as rice, wheat, barley, and other rice grains, rye, corn, millet such as wax, buckwheat, etc., beans such as soybeans, red beans, broad beans, etc. into a powder form by a conventionally known method. The dried powder cereals are finely pulverized to a particle size of 50 μm or less to form fine powder cereal particles, and the powder cereal particles do not contain chlorine, have a pH of 9 to 10, and have a redox potential. A predetermined amount is added to and mixed with electrolytic reduced water having a characteristic of containing active hydrogen that is 200 mV or less to form a fluid containing powdered cereal particles, and this is pumped at a high pressure to an ultrafine particle device, The powdered cereal particle-containing fluid is collided under high pressure, the powdered cereal particle is crushed into ultrafine particles, and active ingredients such as vitamins are extracted into the fluid. Then, the fluid containing the ultrafine powdered cereal particles is put into a dryer. Ri dried and removed by evaporation of water in the flow-like material, and finely divided dry powder cereals.

本発明の実施例による乾燥粉末穀物類の超微粒子化方法は、塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水を使用する乾燥穀物類の超微粒子化方法である。そして、本発明による乾燥粉末穀物類の超微粒子化方法の第1工程は、米、小麦、大麦等の米麦類、ライ麦、とうもろこし、あわ、そば等の雑穀類、大豆、小豆、そらまめ等の豆類等の穀物類を、従来公知の加工方法、例えば前記特許文献1として記載した特開2004−24124号公報に開示されたような加工方法により乾燥粉末穀物類とし、且つ該乾燥粉末穀物類を流状物化する流状物化工程である。 Micronized method of a dry powder cereals according to Example of the present invention are free of chlorine, pH 9-10, comprising the oxidation-reduction potential less than 200mV, and using the electrolytic reduced water having the properties comprising an active hydrogen This is a method for making ultrafine particles of dried cereals. The first step of the method for making ultrafine particles of dry powder cereals according to the present invention includes rice grains such as rice, wheat, barley, rye, corn, cereals such as awa, soba, soybeans, red beans, broad beans, etc. The cereals such as beans are made into dry powder cereals by a conventionally known processing method, for example, the processing method disclosed in JP-A-2004-24124 described as Patent Document 1, and the dry powder cereals This is a fluidization process for forming a fluid.

すなわち、第1工程は、前記従来公知の方法により粉末状に加工された前記乾燥粉末穀物類を粉砕機等により粉砕して、特に限定する必要はないが、好ましくは、粒径50μm以下の微粒子状の粉末穀物類粒子とし、然る後、前記粉末穀物類粒子15〜25重量%、好ましくは20重量%を、水道水、または天然水を電解して得られた、塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水75〜85重量%、好ましくは80重量%中に添加混入して混合攪拌し、該混合液の調整を行ない、前記粉末穀物類粒子が、前記電解還元水中に均等に分散するよう調整して、粉末穀物類粒子と前記電解還元水との流状物とする工程である。 That is, in the first step, the dry powder cereal processed into a powder form by the conventionally known method is pulverized by a pulverizer or the like, and there is no particular limitation. After that, 15-25% by weight, preferably 20% by weight of the powdered cereal particles, obtained by electrolyzing tap water or natural water, containing no chlorine, pH 9 To 10 and an oxidation-reduction potential of 200 mV or less, and electroreduction water having the characteristics of containing active hydrogen in an amount of 75 to 85% by weight, preferably 80% by weight. And the powder cereal particles are adjusted so as to be evenly dispersed in the electrolytically reduced water to obtain a flow of powdered cereal particles and the electrolytically reduced water.

なお、本発明において、前記電解還元水を使用するのは、特に水道水の場合、水道水に含まれている塩素によって酸化されて、穀物類中のビタミン等の有効成分が劣化するのを防止すると共に、不純物の混入を防止し、更に、電解還元水が保有する前記特性を、本発明加工工程において利用することにより、高品質の超微粒子化された乾燥粉末穀物類を得るためである。 In the present invention, the electrolytically reduced water is used, particularly in the case of tap water, to prevent deterioration of active ingredients such as vitamins in grains due to oxidation by chlorine contained in tap water. At the same time, mixing of impurities is prevented, and furthermore, the above-mentioned properties possessed by electrolytically reduced water are used in the processing step of the present invention to obtain high-quality ultrafine-grained dry powder grains.

本発明で使用する電解還元水としては、特に限定する必要はないが、好ましくは、例えば日本トリム株式会社製の電解還元水整水器である「トリムイオンTI−8000」を使用して水道水を電解して生成された、電解酸性水と電解還元水のうち、電解還元水を使用する。前記「トリムイオンTI−8000」により生成された電解還元水は、pH9.6程度のアルカリ性で、酸化還元電位が−274mV程度で、且つ活性水素を含んでいることが知られている。 The electrolytic reduced water used in the present invention is not particularly limited, but preferably, tap water using, for example, “Trim Ion TI-8000”, which is an electrolytic reduced water adjuster manufactured by Japan Trim Co., Ltd. Electrolytically reduced water is used among electrolytic acid water and electrolytically reduced water produced by electrolyzing. It is known that the electrolytically reduced water produced by the “trim ion TI-8000” has an alkaline pH of about 9.6, an oxidation-reduction potential of about −274 mV, and contains active hydrogen.

前記「電解還元水」は、チタンに白金焼成した電極板を用いて水道水を電気分解して得られた水であって、還元力を持つ活性水素を豊富に含む水で、その結果さまざまな活性酸素を消去する力を持った水である。 The “electrolytically reduced water” is water obtained by electrolyzing tap water using an electrode plate obtained by calcining platinum on titanium, and is a water rich in active hydrogen having a reducing power. Water with the ability to erase active oxygen.

通常、水素原子(H)が2個結合して水素分子(H)として存在しているのが普通であるが、水素が分子として存在せず、原子で存在しているのが活性水素である。 Usually, two hydrogen atoms (H) are bonded together and exist as hydrogen molecules (H 2 ), but hydrogen does not exist as molecules, and atoms are present as active hydrogens. is there.

一方、活性酸素は、様々な病気を引き起こすと考えられ、その強い酸化力から清浄な細胞を破壊し、病気や老化の原因となる。活性酸素は通常の酸素より電子が1つ少ない電気的に不安定な状態となり、正常な細胞から電子を奪おう(酸化)とする。このように、電子を奪われた細胞は、酸化され死滅する。 On the other hand, active oxygen is thought to cause various diseases, destroys clean cells from its strong oxidizing power, and causes illness and aging. Active oxygen is in an electrically unstable state with one electron less than normal oxygen, and tries to take electrons from normal cells (oxidation). In this way, the cells that have been deprived of electrons are oxidized and killed.

そして、活性水素は、前記のように、水素が原子状態となることによって、電気的に不安定であるが、該活性水素が様々な病気の原因となる電気的に不安定な活性酸素と結びつき、無害な(H+O=HO)となって体外へ排出されることとなる。すなわち、活性水素は活性酸素を消去する能力がある。 As described above, active hydrogen is electrically unstable due to the atomic state of hydrogen, but the active hydrogen is associated with electrically unstable active oxygen that causes various diseases. , Harmless (H + O = H 2 O) and discharged outside the body. That is, active hydrogen has the ability to erase active oxygen.

本発明加工方法の第2工程は、粉末穀物類粒子の超微粒子化工程である。すなわち、第2工程は、前記工程で得られた前記粉末穀物類粒子と前記電解還元水との流状物を、従来公知の超微粒子化装置により前記流状物中の粉末穀物類粒子全体を、ナノメーターサイズにまで超微粒子化する工程である。 The second step of the processing method of the present invention is an ultrafine particle process of powdered grains. That is, in the second step, the powder cereal particles obtained in the above step and the electrolytically reduced water are used to remove the whole powder cereal particles in the fluid using a conventionally known ultrafine atomizer. This is the process of making ultrafine particles down to nanometer size.

前記超微粒子化装置としては、従来公知の装置を使用することができる。本発明においては、特に限定する必要はないが、好ましくは、例えば図1〜図8に示す、特許第2788010号として従来公知の「乳化装置」を、本発明加工方法の超微粒子化装置として使用することが推奨される。 A conventionally known apparatus can be used as the ultrafine particle forming apparatus. In the present invention, there is no particular limitation, but preferably, an “emulsifying device” conventionally known as, for example, Japanese Patent No. 2788010 shown in FIGS. 1 to 8 is used as an ultrafine particle forming device of the processing method of the present invention. It is recommended to do.

すなわち、超微粒子化装置Mは、図1に示すように、前記流状物の供給タンク11と、該流状物を加圧する高圧ポンプ12と、該高圧ポンプ12より圧送された流状物を高圧のもとで衝突させて粉末穀物類粒子を破砕して、ナノメーターサイズにまで超微粒子化する超微粒子化部材13と、該超微粒子化部材13から排出された超微粒子化された粉末穀物類成分を含む流状物を貯留する貯留槽14とにより構成されている。 That is, as shown in FIG. 1, the ultrafine particle device M is configured to supply the fluid supply tank 11, the high-pressure pump 12 that pressurizes the fluid, and the fluid that is pumped from the high-pressure pump 12. Ultrafine particle member 13 that collides under high pressure to crush powdered cereal particles into ultrafine particles down to nanometer size, and ultrafine particle powder particles discharged from ultrafine particle member 13 It is comprised by the storage tank 14 which stores the fluid containing a similar component.

前記超微粒子化部材13は、ケーシング15内において、第1円板16、第2円板17が密着固定して収納されており、これらの円板16・17には、板面に前記流状物が通過可能な幅の透孔16a・16bおよび17a・17bと、該透孔16a・16bおよび17a・17bを連結するスリット状の案内溝16c・17cがそれぞれ形成され、これらによって後述する流入路18、案内路19、混合室20および流出路21が形成される。 The ultrafine particle member 13 is housed in a casing 15 in which a first disk 16 and a second disk 17 are closely fixed, and these disks 16 and 17 have the above-mentioned flow shape on the plate surface. Through-holes 16a, 16b and 17a, 17b having widths through which objects can pass, and slit-shaped guide grooves 16c, 17c connecting the through-holes 16a, 16b, 17a, 17b are formed, respectively. 18, a guide path 19, a mixing chamber 20, and an outflow path 21 are formed.

前記第1・第2円板16・17を図2〜図6を参照しつつ説明すると、各円板16・17は焼結ダイヤ、単結晶ダイヤ等の耐摩耗性に富む材料によって同径に形成されている。 The first and second disks 16 and 17 will be described with reference to FIGS. 2 to 6. The disks 16 and 17 have the same diameter by a wear-resistant material such as a sintered diamond or a single crystal diamond. Is formed.

前記第1円板16は、図2、図3および図6に示すように、板面中心に対して上下対称位置に同径の流入用の透孔16a・16bが貫通形成され、また、第2円板17との密着面に前記透孔16a・16bの対面する端部側を連通する第1案内溝16cが刻設されている。 As shown in FIGS. 2, 3 and 6, the first disc 16 has inflow through holes 16 a and 16 b having the same diameter in a vertically symmetrical position with respect to the center of the plate surface. A first guide groove 16c that communicates the end portions of the through holes 16a and 16b facing each other is formed in the contact surface with the two-disc 17.

前記第2円板17は、図3〜図7に示すように、前記第1円板16との密着対向面に、該第1円板16の前記第1案内溝16cと直交するよう第2案内溝17cが刻設されると共に、該第2案内溝17cの両端に同径の流出用の透孔17a・17bが貫通形成されている。 As shown in FIGS. 3 to 7, the second disc 17 has a second surface so as to be orthogonal to the first guide groove 16 c of the first disc 16 on the close contact surface with the first disc 16. A guide groove 17c is formed, and outflow through holes 17a and 17b having the same diameter are formed at both ends of the second guide groove 17c.

前記構成より成る第1・第2円板16・17は、第1案内溝16cと第2案内溝17cとが十字状に直交するように密に重合して、第1円筒体22と第2円筒体23とをボルト24により一体に連結して形成されたケーシング15内に収納固定されて、超微粒子化部材13が形成される。そして、前記ケーシング15を構成する第1円筒体22の一方側の開口部22aが前記高圧ポンプ12に連結されると共に、第2円筒体23の他方側の開口部23aが前記貯留槽14に連結されている。 The first and second discs 16 and 17 having the above-described configuration are closely overlapped so that the first guide groove 16c and the second guide groove 17c are orthogonal to each other in a cross shape, and the first cylindrical body 22 and the second disc The cylindrical body 23 is housed and fixed in a casing 15 formed by integrally connecting the cylindrical body 23 with bolts 24 to form the ultrafine particle member 13. An opening 22 a on one side of the first cylindrical body 22 constituting the casing 15 is connected to the high-pressure pump 12, and an opening 23 a on the other side of the second cylindrical body 23 is connected to the storage tank 14. Has been.

前記ケーシング15内において、密に重合固定された第1円板16と第2円板17の第1案内溝16cと第2案内溝17cは十字状に直交して、前記第1・第2円板16・17の中心部に混合室20を形成する。また、前記流入用の透孔16a・16bは流入路18を、第1案内溝16cは中心に向かう案内路19を、更に第2案内溝17cと流出用の透孔17a・17bは流出路21をそれぞれ形成する。従って、図8に示すように、流入路18、案内路19、混合室20および流出路21の順序で、前記流状物が流れる液体通路が形成される。 In the casing 15, the first guide groove 16 c and the second guide groove 17 c of the first disc 16 and the second disc 17 which are closely superposed and fixed are orthogonal to each other in a cross shape, and the first and second circles are formed. A mixing chamber 20 is formed at the center of the plates 16 and 17. The inflow through holes 16a and 16b pass through the inflow path 18, the first guide groove 16c through the guide path 19 toward the center, and the second guide groove 17c and the outflow through holes 17a and 17b through the outflow path 21. Respectively. Therefore, as shown in FIG. 8, a liquid passage through which the fluid flows is formed in the order of the inflow path 18, the guide path 19, the mixing chamber 20, and the outflow path 21.

なお、図中、16d・17dは、それぞれの第1・第2円板16・17に設けた位置決め用透孔であって、該第1・第2円板16・17を密着重合して固定するときに、前記各位置決め用透孔16d・17dを貫通できるように重合して、図示していないピン等を該各位置決め用透孔16d・17dに貫通固定することにより、前記第1・第2案内溝16c・17cは、正確に十字状に直交して、該第1・第2円板16・17を固定することができる。 In the figure, 16d and 17d are positioning through holes provided in the first and second discs 16 and 17, respectively, and the first and second discs 16 and 17 are closely polymerized and fixed. When the first through second positioning holes 16d and 17d are polymerized so as to be able to pass through, and pins or the like (not shown) are fixed to the respective positioning through holes 16d and 17d. The two guide grooves 16c and 17c can accurately fix the first and second disks 16 and 17 orthogonally in a cross shape.

前記構成より成る超微粒子化装置Mの作用について説明すると、供給タンク11内に投入された前記粉末穀物類粒子を含む流状物を、130Mpa程度の圧力で、高圧ポンプ12により超微粒子化部材13を構成するケーシング15の一方側の開口部22aに圧送する。前記一方側の開口部22aに圧送された流状物は、第1円板16の2個の流入用の透孔16a・16bより高速となって流入し、更に、前記流入用の透孔16a・16bと第1案内溝16cの両端部とで形成される流入路18に高速流となって流れ、次いで、前記第2円板17の板面と第1案内溝16cとで形成された、圧送方向が対向する案内路19・19へとそれぞれ流れ方向が変換する。 The operation of the ultrafine particle device M having the above-described structure will be described. The flow material containing the powdered cereal particles charged in the supply tank 11 is converted to an ultrafine particle member 13 by a high-pressure pump 12 at a pressure of about 130 MPa. Is pumped to the opening 22a on one side of the casing 15 constituting the. The flow material fed to the opening 22a on the one side flows at a higher speed than the two inflow through holes 16a and 16b of the first disc 16, and further flows into the inflow through hole 16a. A high-speed flow flows in the inflow path 18 formed by 16b and both ends of the first guide groove 16c, and then formed by the plate surface of the second disc 17 and the first guide groove 16c. The flow direction is changed to the guide paths 19 and 19 with opposite pumping directions.

前記流れ方向が変換した流状物は、第1案内溝16cと第2案内溝17cとの直交する中心部に形成された混合室20において、圧送方向が対向する前記流状物の2つの流れが激しく衝突し、十字状に直交した第2案内溝17cに90度方向を変える際、該流状物が衝突、乱流し、更に前記第2案内溝17cの壁面に衝突して、キャビテーション(空洞化現象)が発生する。 The flow material in which the flow direction is changed is two flows of the flow material whose pumping directions are opposite to each other in the mixing chamber 20 formed in the center portion where the first guide groove 16c and the second guide groove 17c are orthogonal to each other. Violently collides and changes the direction of the second guide groove 17c perpendicular to the cross shape by 90 degrees, the flow material collides and turbulence, and further collides with the wall surface of the second guide groove 17c to cause cavitation (cavity). Phenomenon).

そして、このキャビテーションの空洞部が崩壊すると共に、局所的に非常に高い圧力差が引き起こされ、前記流状物中の固体粒子(粉末穀物類粒子)を破砕する。この固体粒子破砕現象は、数マイクロ秒という極めて短い時間内に生じ、流状物に瞬時に強大なエネルギーが加わり、このエネルギーにより粉末穀物類粒子全体を、例えばナノメーターサイズにまで超微粒子化して、粉末穀物類粒子中のビタミン等の有効成分の抽出が行われる。 And while the cavity part of this cavitation collapses, a very high pressure difference is caused locally, and the solid particle (powder grain particle | grains) in the said fluid is crushed. This solid particle crushing phenomenon occurs within a very short time of several microseconds, and a powerful energy is instantaneously added to the flow material, and this energy makes the whole powder grain particles into ultrafine particles, for example, nanometer size. Extraction of active ingredients such as vitamins in powdered cereal particles is performed.

前記粉末穀物類粒子を含む流状物が高圧で衝突して、流状物に瞬時に強大なエネルギーが加わると、水分子が分解してOHラジカルのような強力な活性酸素が発生し、該活性酸素が粉末穀物類粒子中のビタミン等の有効成分と反応して、これら有効成分が劣化してしまう。そこで、本発明においては、活性水素を含む電解還元水を使用しているので、前記超微粒子化作業で発生した活性酸素を活性水素で消去することにより、ビタミン等の有効成分の劣化を防止して、高品質の乾燥粉末穀物類を得ることができる。 When the fluid containing the powdered cereal particles collides at high pressure and momentary energy is applied to the fluid, water molecules are decomposed to generate strong active oxygen such as OH radicals, Active oxygen reacts with active ingredients such as vitamins in powdered cereal particles, and these active ingredients deteriorate. Therefore, in the present invention, since electrolytically reduced water containing active hydrogen is used, the active oxygen generated in the ultrafine particle work is eliminated with active hydrogen, thereby preventing deterioration of active ingredients such as vitamins. High quality dry powdered cereals.

前記のように、粉末穀物類粒子全体を超微粒子化することにより、有効成分が抽出された流状物は、第2案内溝17cと第1円板16の板面および流出用の透孔17a・17bとで形成された流出路21に、前記ケーシング15の他方側の開口部23aを経て無理なく排出され、貯留槽14に貯留される。前記流出路21を通過する間にも流状物は、第2案内溝17cの壁面、すなわち混合室20と対向する部位の壁面および流出用の透孔17a・17bと連通する端部壁面に衝突して超微粒子化が更に進行する。 As described above, the flow material from which the active ingredients are extracted by making the powdered grain particles into ultrafine particles is the second guide groove 17c, the plate surface of the first disc 16, and the outflow through holes 17a. -It discharges to the outflow path 21 formed by 17b through the opening 23a on the other side of the casing 15 without difficulty and is stored in the storage tank 14. Even while passing through the outflow path 21, the flow material collides with the wall surface of the second guide groove 17c, that is, the wall surface of the portion facing the mixing chamber 20 and the end wall surface communicating with the outflow through holes 17a and 17b. As a result, the formation of ultrafine particles further proceeds.

前記超微粒子化装置Mは、流状物の流路に2つの円板16・17を密に重合固定して配設し、該各円板16・17の重合面に形成したスリット状の案内溝16c・17cに流状物を通過させて、その流れの方向を変えつつ、壁面との衝突および流状物同士の衝突を行うようにして、粉末穀物類粒子を破砕すると共に、該粉末穀物類全体を超微粒子化し、ケーシング15外へ排出して貯留槽14に貯留するよう形成されている。 In the ultrafine particle device M, two discs 16 and 17 are densely superposed and arranged in a flow path of a fluid, and slit-shaped guides formed on the superposition surfaces of the discs 16 and 17 are arranged. While passing the fluid through the grooves 16c and 17c and changing the direction of the flow, the powder grains are crushed and the powder grains are crushed by colliding with the wall surface and colliding with the fluids. The entire structure is formed into ultrafine particles, discharged outside the casing 15 and stored in the storage tank 14.

前記超微粒子化装置Mに投入された粉末穀物類粒子の超微粒子化が、所定の粒径、例えば、ナノメーターサイズにまで達しない場合、一旦貯留槽14に貯留された流状物を、前記高圧ポンプ12により開口部12aに圧送して、複数回超微粒子化装置Mに投入して、超微粒子化工程を繰返すことにより、所定の粒径にまで超微粒子化された粉末穀物類粒子を得ることができる。 When the ultrafine particleization of the powdered cereal particles put into the ultrafine particle device M does not reach a predetermined particle size, for example, a nanometer size, the fluid once stored in the storage tank 14 is The powder grains particles that have been made ultrafine to a predetermined particle size are obtained by being pumped to the opening 12a by the high-pressure pump 12 and thrown into the ultrafine atomizer M a plurality of times and repeating the ultrafine particle making process. be able to.

なお、複数回に亘って超微粒子化工程を繰返す場合、超微粒子化されて行くに従って粉末穀物類粒子全体の表面積が大きくなることにより、水分比率が減少するため、スムーズに前記開口部12aに圧送できず目詰まりを起こす虞れもあり、更に、前記活性水素は短時間で消滅してしまうので、必要であれば、新たに前記電解還元水を少量、例えば2〜10重量%、好ましくは5重量%程度を前記流状物中に追加混入して、水分比率を高めて前記開口部12aへのスムーズな圧送を図ると共に、新たに追加混入された電解還元水の活性水素で、新たな超微粒子化工程により再度発生した活性酸素を消去するようにして超微粒子化してもよい。 In addition, when the ultrafine particle forming step is repeated a plurality of times, the surface area of the powdered cereal particles increases as the fine particle size is increased, so that the moisture ratio decreases. Further, the active hydrogen disappears in a short time, and if necessary, a small amount of the electrolytically reduced water is newly added, for example, 2 to 10% by weight, preferably 5%. About 5% by weight is additionally mixed in the flow material, and the water ratio is increased to achieve smooth pumping to the opening 12a. Ultrafine particles may be formed by erasing active oxygen generated again by the fine particle formation step.

更に、前記超微粒子化された粉末穀物類粒子は、前記電解還元水がpH9〜10程度のアルカリ性である場合、更にビタミン等の有効成分の抽出効率が高められ、前記粉末穀物類粒子中の有効成分がほとんど流状物中に抽出される。 Furthermore, when the electrolytically reduced water has an alkaline pH of about 9 to 10, the extraction efficiency of active ingredients such as vitamins is further enhanced, and the ultrafine powdered grain particles are effective in the powdered grain particles. Most of the components are extracted into the flow.

本発明加工方法の第3工程は、乾燥工程である。すなわち、第3工程は、前記第2工程で、超微粒子化された粉末穀物類粒子から有効成分を抽出した流状物を、乾燥機により乾燥して、前記流状物中の水分を蒸発して除去し、前記抽出された有効成分を含む塊状の乾燥粉末穀物類として取出す工程である。 The third step of the processing method of the present invention is a drying step. That is, in the third step, the fluid obtained by extracting the active ingredient from the ultrafine-grained powder grains particles in the second step is dried by a dryer to evaporate water in the fluid. And removing it as a bulk dry powder grain containing the extracted active ingredient.

本発明加工方法においては、前記乾燥機による乾燥は、スプレードライヤーや焙煎機等を用いた加熱乾燥、低温乾燥機による低温乾燥、またはフリーズドライによる凍結乾燥等、前記乾燥機を用いてのいずれの乾燥方法も使用することができるが、ビタミン等の有効成分の劣化を防止するためには、好ましくは低温乾燥機による低温乾燥、またはフリーズドライによる凍結乾燥が推奨される。 In the processing method of the present invention, the drying by the dryer may be any one of the drying methods such as heat drying using a spray dryer or roaster, low temperature drying using a low temperature dryer, or freeze drying using freeze drying. However, in order to prevent deterioration of active ingredients such as vitamins, it is preferable to use low temperature drying with a low temperature dryer or freeze drying with freeze drying.

本発明加工方法の第4工程は、乾燥粉末穀物類の解砕工程である。すなわち、第4工程は、前記第3工程の乾燥工程を経た水分が蒸発した後の乾燥粉末穀物類は塊状となっているので、該乾燥粉末穀物類を粉末状の最終製品、あるいは打錠して錠剤状等の最終製品とするため、前記塊状の乾燥粉末穀物類を細かくする解砕は、粉砕機等を用いて所定の粒径とする。 The 4th process of this invention processing method is a crushing process of dry powder grain. That is, in the fourth step, the dried powder cereals after the evaporation of the water after the drying step in the third step is agglomerated, so that the dried powder cereals are formed into a powdery final product or tableted. In order to obtain a final product such as a tablet, the pulverization of the lump-like dry powder grains is made to have a predetermined particle size using a pulverizer or the like.

前記第4工程終了後は、例えば、前記超微粒子化された乾燥粉末穀物類100%の健康食品とする場合は、超微粒子化された乾燥粉末穀物類をそのまま包装したり、あるいは、超微粒子化された乾燥粉末穀物類に他の成分を添加混入して健康食品とする場合、例えば、打錠機により打錠して錠剤状の製品とする。 After the completion of the fourth step, for example, in the case of making a health food with 100% dry powdered cereals, the dry powder cereals that have been microparticulated can be packaged as they are, or they can be made ultrafine. When other ingredients are added and mixed into the dried powdered cereals to obtain a health food, for example, it is tableted by a tableting machine to obtain a tablet-like product.

本発明乾燥粉末穀物類の超微粒子化方法において使用する超微粒子化装置の全体的システム図である。1 is an overall system diagram of an ultrafine particle forming apparatus used in an ultrafine particle forming method for dry powder grains according to the present invention. 本発明乾燥粉末穀物類の超微粒子化方法において使用する超微粒子化装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the ultrafine particle formation apparatus used in the ultrafine particle formation method of dry powder grain of this invention. 本発明乾燥粉末穀物類の超微粒子化方法において使用する超微粒子化装置を構成する第1円板の右側面図である。It is a right view of the 1st disk which comprises the ultrafine particle formation apparatus used in the ultrafine particle formation method of this invention dry powder grain. 図3のA−A縦断面図である。It is AA longitudinal cross-sectional view of FIG. 本発明乾燥粉末穀物類の超微粒子化方法において使用する超微粒子化装置を構成する第2円板の左側面図である。It is a left view of the 2nd disk which comprises the ultrafine-particle-ized apparatus used in the ultrafine-particle-izing method of this invention dry powder grain. 図5のB−B縦断面図である。It is BB longitudinal cross-sectional view of FIG. 本発明乾燥粉末穀物類の超微粒子化方法において使用する超微粒子化装置を構成する第1円板と、第2円板の斜視図である。It is a perspective view of the 1st disk and the 2nd disk which constitute the ultrafine particle formation device used in the ultrafine particle formation method of the dry powder grain of the present invention. 本発明乾燥粉末穀物類の超微粒子化方法において使用する超微粒子化装置の要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the ultrafine particle formation apparatus used in the ultrafine particle formation method of this invention dry powder grain.

M: 超微粒子化装置
13: 超微粒子化部材
16: 第1円板
16a・16b: 透孔
16c: 第1案内溝
17: 第2円板
17a・17b: 透孔
17c: 第2案内溝
36: 第1円板
36a: 透孔
36c: 案内溝
37: 第2円板
37a: 透孔
37c: 案内溝

M: Ultrafine particle device 13: Ultrafine particle member 16: First disk 16a, 16b: Through hole 16c: First guide groove 17: Second disk 17a, 17b: Through hole 17c: Second guide groove 36: First disc 36a: Through hole 36c: Guide groove 37: Second disc 37a: Through hole 37c: Guide groove

Claims (2)

従来公知の加工方法により粉末状に加工された乾燥粉末穀物類を、粒径50μm以下に微粉砕して微粒子状の粉末穀物類粒子とし、然る後、前記粉末穀物類粒子15〜25重量%を、水道水、または天然水を電解して得られた、塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水75〜85重量%中に添加混入して混合攪拌し、混合液の調整を行い、前記粉末穀物類粒子が、前記電解還元水中に均等に分散するよう調整して、粉末穀物類粒子と前記電解還元水との流状物とする第1工程と、
前記第1工程で、前記電解還元水中に粉末穀物類粒子を分散した流状物を、超微粒子化装置に投入して高圧で衝突させて、前記粉末穀物類粒子を破砕して粉末穀物類粒子全体を超微粒子化することにより、前記超微粒子化された粉末穀物類粒子から有効成分を前記流状物中に抽出する第2工程と、
前記第2工程で、超微粒子化された粉末穀物類粒子から有効成分を抽出した流状物を、乾燥機により乾燥して前記流状物中の水分を蒸発させて除去し、前記抽出された有効成分を含む塊状の乾燥粉末穀物類として取出す第3工程と、
前記第3工程で、塊状として取出された乾燥粉末穀物類を解砕して、所定の粒径とする第4工程とにより加工することを特徴とする乾燥粉末穀物類の超微粒子化方法。
Dry powder cereals processed into powder by a conventionally known processing method are finely pulverized to a particle size of 50 μm or less to form finely divided powder cereal particles. Thereafter, the powder cereal particles are 15 to 25 wt%. 75 to 85 weight percent electrolytically reduced water obtained by electrolyzing tap water or natural water, containing no chlorine, pH 9 to 10, a redox potential of 200 mV or less, and containing active hydrogen % And mixed and stirred to adjust the mixed solution, and the powdered cereal particles are adjusted to be evenly dispersed in the electrolytically reduced water, and the powdered cereal particles and the electrolytically reduced water are mixed. A first step of making a fluid,
In the first step, a flow material in which powdered cereal particles are dispersed in the electrolytically reduced water is introduced into an ultra-fine atomizer and collided at a high pressure to crush the pulverized cereal particles to obtain powdered cereal particles. A second step of extracting the active ingredient into the fluid from the ultrafine powdered cereal particles by micronizing the whole; and
In the second step, the fluid obtained by extracting the active ingredient from the powdered cereal particles that have been microparticulated is dried by a dryer to remove the water in the fluid by evaporating and removing the fluid. A third step of taking out as a bulk dry powder grain containing the active ingredient;
A method for making ultrafine particles of dry powder cereals, wherein the dry powder cereals taken out as a lump in the third step are crushed and processed into a predetermined particle size in the fourth step.
従来公知の加工方法により粉末状に加工された乾燥粉末穀物類を、粒径50μm以下に微粉砕して微粒子状の粉末穀物類粒子とし、然る後、前記粉末穀物類粒子15〜25重量%を、水道水、または天然水を電解して得られた、塩素を含まず、pH9〜10、酸化還元電位が200mV以下であって、且つ活性水素を含む特性を有する電解還元水75〜85重量%中に添加混入して混合攪拌し、混合液の調整を行い、前記粉末穀物類粒子が、前記電解還元水中に均等に分散するよう調整して、粉末穀物類粒子と前記電解還元水との流状物とする第1工程と、
前記第1工程で、前記電解還元水中に粉末穀物類粒子を分散した流状物を、超微粒子化装置に投入して高圧で衝突させて、前記粉末穀物類粒子を破砕する超微粒子化工程を、所定の粒径に達するまで、複数回前記流状物中に新たに前記電解還元水2〜10重量%を追加混入して繰返して行い、粉末穀物類粒子全体を超微粒子化することにより、前記超微粒子化された粉末穀物類粒子から有効成分を前記流状物中に抽出する第2工程と、
前記第2工程で、超微粒子化された粉末穀物類粒子から有効成分を抽出した流状物を、乾燥機により乾燥して前記流状物中の水分を蒸発させて除去し、前記抽出された有効成分を含む塊状の乾燥粉末穀物類として取出す第3工程と、
前記第3工程で、塊状として取出された乾燥粉末穀物類を解砕して、所定の粒径とする第4工程とにより加工することを特徴とする乾燥粉末穀物類の超微粒子化方法。
Dry powder cereals processed into powder by a conventionally known processing method are finely pulverized to a particle size of 50 μm or less to form finely divided powder cereal particles. Thereafter, the powder cereal particles are 15 to 25 wt%. 75 to 85 weight percent electrolytically reduced water obtained by electrolyzing tap water or natural water, containing no chlorine, pH 9 to 10, a redox potential of 200 mV or less, and containing active hydrogen % And mixed and stirred to adjust the mixed solution, and the powdered cereal particles are adjusted to be evenly dispersed in the electrolytically reduced water, and the powdered cereal particles and the electrolytically reduced water are mixed. A first step of making a fluid,
In the first step, an ultrafine particle forming step of crushing the powdered grain particles by introducing a flow material in which the powdered particle particles are dispersed in the electrolytically reduced water into an ultrafine particle making device and colliding with high pressure. until a predetermined particle size, performed repeatedly 2-10 wt% newly said electrolytic reduced water in a plurality of times before Symbol flow like material added entrained by micronized whole powder cereals grains A second step of extracting an active ingredient from the ultrafine powdered cereal particles into the fluid;
In the second step, the fluid obtained by extracting the active ingredient from the powdered cereal particles that have been microparticulated is dried by a dryer to remove the water in the fluid by evaporating and removing the fluid. A third step of taking out as a bulk dry powder grain containing the active ingredient;
A method for making ultrafine particles of dry powder cereals, wherein the dry powder cereals taken out as a lump in the third step are crushed and processed into a predetermined particle size in the fourth step.
JP2005215775A 2005-07-26 2005-07-26 Method for making fine particles of dry powder grains Expired - Fee Related JP4801945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215775A JP4801945B2 (en) 2005-07-26 2005-07-26 Method for making fine particles of dry powder grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215775A JP4801945B2 (en) 2005-07-26 2005-07-26 Method for making fine particles of dry powder grains

Publications (2)

Publication Number Publication Date
JP2007028972A JP2007028972A (en) 2007-02-08
JP4801945B2 true JP4801945B2 (en) 2011-10-26

Family

ID=37788971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215775A Expired - Fee Related JP4801945B2 (en) 2005-07-26 2005-07-26 Method for making fine particles of dry powder grains

Country Status (1)

Country Link
JP (1) JP4801945B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887862B2 (en) 2007-10-10 2011-02-15 Industrias Centli S.A. De C.V. Method and apparatus for separating, purifying, promoting interaction and improving combustion
US9546351B2 (en) 2010-04-12 2017-01-17 Industrias Centli, S.A. De C.V. Method and system for processing biomass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137072A (en) * 1984-07-30 1986-02-21 Yasahiro Morita Production of noodle
JPS645462A (en) * 1987-06-29 1989-01-10 Yoshiaki Matsuo Hydrating of grain flour
JP2788010B2 (en) * 1989-03-31 1998-08-20 ナノマイザー株式会社 Emulsifier
JPH0435787A (en) * 1990-05-31 1992-02-06 Omuko Higashi Nippon:Kk Alkali ion-containing water
JP3411991B2 (en) * 1997-08-25 2003-06-03 正一 大河内 Method for producing electrolyzed water and apparatus used therefor
JP3828665B2 (en) * 1997-09-02 2006-10-04 ホシザキ電機株式会社 Preparation method of flour kneaded dough for food
US6737099B2 (en) * 2001-03-29 2004-05-18 The United States Of America As Represented By The Secretary Of Agriculture Process for the deagglomeration and the homogeneous dispersion of starch particles
JP2004357628A (en) * 2003-06-06 2004-12-24 Katsumi Koide Method for processing pollen

Also Published As

Publication number Publication date
JP2007028972A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP6986525B2 (en) Solid formulations and methods for producing them, as well as supplements, food additives, and foods.
Gavahian et al. In-pack sonication technique for edible emulsions: Understanding the impact of acacia gum and lecithin emulsifiers and ultrasound homogenization on salad dressing emulsions stability
Dinesh et al. Sonochemical synthesis of amphoteric Cu0-Nanoparticles using Hibiscus rosa-sinensis extract and their applications for degradation of 5-fluorouracil and lovastatin drugs
JP4801945B2 (en) Method for making fine particles of dry powder grains
EP2527040A2 (en) Method for operating a jet mill and jet mill
CN106794995B (en) Porous silica silicon systems particle and cleansing cosmetic preparation
JP4560145B2 (en) Mycelium processing method of moss
JP4690136B2 (en) Method for making dry powder seaweed ultrafine particles
JP2007520603A5 (en)
JP4741878B2 (en) Collagen processing method
JP4718268B2 (en) Chlorella powder processing method
Shrimal et al. Ultrasonic enhanced emulsification process in 3D printed microfluidic device to encapsulate active pharmaceutical ingredients
KR100595962B1 (en) Process for producing granules containing branched amino acids
JP4718261B2 (en) Method for making fine powdery vegetables
EP1720419A2 (en) Nanoscale and supersaturated solutions of mineral or trace elements and a method for production of nanoparticles mixtures of nanoparticles, nanoscale solutions and general supersaturated solutions
JP2000102357A (en) Soybean-processed food using whole grain of soybean and production thereof
JP2007037529A (en) Method for processing pollen
JPS6127104B2 (en)
WO2003064332A1 (en) Method and apparatus for activating water
JP2007244316A (en) Method for producing propolis drink
JP2004357628A (en) Method for processing pollen
JP2009055883A (en) Method for producing beverage containing dried powdery food as raw material
KR102410546B1 (en) Granular Bath Preparation Containing Detoxed Surfur and Natural Mineral, and Method for Manufacturing the Same
JP2006223109A (en) Method for processing purple ipe
Zhang The role of nanoparticles in cosmetics and the potential harms of enhanced absorption: a review

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4801945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees