JP4866889B2 - ハニカム成形体の乾燥方法 - Google Patents
ハニカム成形体の乾燥方法 Download PDFInfo
- Publication number
- JP4866889B2 JP4866889B2 JP2008248899A JP2008248899A JP4866889B2 JP 4866889 B2 JP4866889 B2 JP 4866889B2 JP 2008248899 A JP2008248899 A JP 2008248899A JP 2008248899 A JP2008248899 A JP 2008248899A JP 4866889 B2 JP4866889 B2 JP 4866889B2
- Authority
- JP
- Japan
- Prior art keywords
- drying
- formed body
- honeycomb formed
- honeycomb
- hot air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/241—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening using microwave heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/34—Heating or cooling presses or parts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/30—Drying methods
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/006—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects the gas supply or exhaust being effected through hollow spaces or cores in the materials or objects, e.g. tubes, pipes, bottles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/32—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
- F26B3/34—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
- F26B3/343—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects in combination with convection
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/606—Drying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B2210/00—Drying processes and machines for solid objects characterised by the specific requirements of the drying good
- F26B2210/02—Ceramic articles or ceramic semi-finished articles
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Dispersion Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Drying Of Solid Materials (AREA)
Description
うに、過熱水蒸気、又は水蒸気と加熱空気との混合ガスを炉内に導入しながら前記マイク
ロ波乾燥又は誘電乾燥にてハニカム成形体を乾燥させる、前記[1]〜[6]のいずれか
に記載のハニカム成形体の乾燥方法。
体を加熱させる予備加熱工程を有する、前記[1]〜[7]のいずれかに記載のハニカム
成形体の乾燥方法。
A‐1.本発明のハニカム成形体の乾燥方法の概要:
本発明のハニカム成形体の乾燥方法(以下、「本発明の乾燥方法」)は、セラミック原料、水、及びバインダーを含有する原料組成物からなり、図1又は2の斜視図にて示すハニカム成形体1のように、隔壁2によって区画された流体の流路となる複数のセル3を有する未焼成のハニカム成形体1を乾燥する方法である。本発明の乾燥方法は、例えば図1及び2の模式図にて示す構造の未焼成のハニカム成形体1に対して、まず、マイクロ波乾燥、又は図3の模式図にて示すような誘電乾燥装置21を用いる誘電乾燥にて、ハニカム成形体を加熱及び乾燥させる第1工程を行う。続いて、本発明の乾燥方法は、第1工程後、図4の模式図にて示すような熱風乾燥装置11を用いて、湿球温度50〜100℃に調湿した熱風をセル3に通過させる熱風乾燥にてハニカム成形体1を乾燥させる第2工程を行う。ここでいう「熱風」とは、乾球温度100℃以上の気体の流れのことをいう。なお、熱風を構成する気体の組成は、特に制限はない。
本発明のハニカム成形体の乾燥方法において、乾燥されるハニカム成形体は、例えば、図1又は2の斜視図にて示すようなハニカム成形体1のように、隔壁2によって区画された流体の流路となる複数のセル3を有するものである。また、ハニカム成形体1は、通常、セル3が開口している端面7と複数のセル3を囲繞するように外周壁4が配設されることによって構成されている。なお、セル3の軸方向(流路方向)と直行する断面形状は限定されず、図1及び2の斜視図にて示すハニカム成形体1のような四角柱及び円柱をはじめとする形状を任意に選択することができる。
ハニカム成形体は、例えば、セラミック原料、水、及びバインダーを含有する原料組成物を混合・混練後、脱気しながら円柱状等の粘土(以下、粘土塊と称する)を作製し、この粘土塊を押出成形することにより作製する。
原料組成物からは、混合・混練後、脱気しながら円柱状等の粘土塊を作製する。この粘土塊から、例えば、押出成形等によって、図1の斜視図にて示す構造を有するハニカム成形体1が成形される。マイクロ波乾燥の際にハニカム成形体1全体に対して電磁波を有効に照射させる、あるいは誘電乾燥の際にハニカム成形体1全体に高周波電流を通電させるため、本発明の乾燥方法により乾燥されるハニカム成形体1は、下記式(I)の条件を満たす大きさ及び誘電特性を有することが好ましく、さらに下記式(II)の条件を満たす大きさ及び誘電特性を有することがより好ましい。
図1又は2の斜視図に示すような構造にて成形された直後のハニカム成形体1の隔壁2及び外周壁4は、多量の水を含有する。そこで、このハニカム成形体1の隔壁2及び外周壁4より水を蒸発させて乾燥させるため、未焼成の段階でハニカム成形体1の乾燥を行う。本発明の乾燥方法は、この未焼成の段階でのハニカム成形体を乾燥させる方法であり、まず、以下に説明するような、マイクロ波乾燥又は誘電乾燥による第1工程を行う。
本発明の乾燥方法の第1工程にて用いられるマイクロ波乾燥は、乾燥炉内に設置された未焼成のハニカム成形体に対して、電磁波(マイクロ波)を照射することにより実施する。このマイクロ波乾燥でハニカム成形体に照射される電磁波(マイクロ波)の発振周波数は、300〜10000MHzであるが、工業用加熱炉に利用される周波数である915MHzや2450MHzの発振周波数が設備コストの観点からより好ましい。
本発明の乾燥方法の第1工程にて用いられる誘電乾燥は、例えば、図4の模式図にて示す誘電乾燥装置21内に、図2の斜視図にて示すハニカム成形体1を設置し、誘電乾燥装置21内にてハニカム成形体1の上方と下方に相対する電極22間に高周波電流を通電させ、ハニカム成形体1の隔壁2及び外周壁4の内部に生じる誘電損失によって、ハニカム成形体1の隔壁2及び外周壁4の内部から加熱して乾燥させることで実施する。即ち、誘電乾燥装置21においては、ハニカム成形体1は、自らの内部の電界分布に比例して、加熱されて乾燥する。この誘電乾燥で通電させる高周波電流の発振周波数は、3〜100MHzが好ましい。さらに、上述のマイクロ波乾燥にて照射される電磁波の発振周波数と同様に均一乾燥の観点から、本発明の乾燥方法の第1工程にて用いられる誘電乾燥では、上記式(I)の条件を満たす発振周波数がより好ましく、上記式(II)の条件を満たす発振周波数が最も好ましい。また、工業用加熱炉に利用される周波数である6〜50MHzの発振周波数が設備コストの観点からより好ましい。
A‐3‐1.熱風乾燥の概要:
本発明の乾燥方法の第2工程は、図1の斜視図にて示すハニカム成形体1を乾燥する例として説明すると、上述のマイクロ波乾燥又は誘電乾燥による第1工程後、図5の模式図にて示すような熱風乾燥装置11内にハニカム成形体1を設置し、湿球温度50〜100℃に調湿した熱風をハニカム成形体1のセル3に通過させる熱風乾燥にてハニカム成形体1を乾燥させる。
本発明の第2工程の熱風乾燥において、ハニカム成形体1のセル3に熱風を通過されるために用いる装置としては、例えば、図5の模式図にて示す熱風乾燥装置11を挙げることができる。図5の模式図にて示す熱風乾燥装置11は、乾燥室12を内部に有し、この乾燥室12内は、ハニカム成形体1を設置するワーク載置板15により上方チャンバ17と下方チャンバ18とに隔てられる。さらに、下方チャンバ18の下部に蒸気供給部として蒸気ノズル13を、この蒸気ノズル13とワーク載置板15との間に整流用パンチングプレート14を配置する。
B‐1‐1.ハニカム成形体の乾燥:
(実施例1)
(1)ハニカム成形体:
図2の斜視図にて示す外形のハニカム成形体1の乾燥を行った。ハニカム成形体1は、セラミックス原料、バインダーとしてメチルセルロース(MC)を3質量%およびヒドロキシプロピルメチルセルロース(HPMC)を1質量%、及び水を原料組成物とし、この原料組成物を混合・混練後、脱気しながら円柱状の粘土塊を作製した。この粘土塊からハニカム成形体1(外径×流路長:286mmφ×370mm、セル数:300セル、隔壁厚み:0.305mm)を押出成形した。なお、このハニカム成形体1の成形直後の含水率は、27%であった。まず、このハニカム成形体1をマイクロ波乾燥による第1工程にて乾燥した。なお、このハニカム成形体1は、断面開口面積比0.63、ハニカム成形体の原料組成物の誘電率(ε)28.6、誘電損失係数(tanδ)0.20、発振周波数2450MHzの電磁波に対する電力半減深度(L)0.013m、上記式(I)の左辺の値6.9(<10)であった。
まず、第1工程として、ハニカム成形体1をマイクロ波乾燥した。マイクロ波乾燥は、乾球温度60℃及び湿球温度60℃の雰囲気下において、発振周波数2450MHz、出力24kWの電磁波を9分間照射し、ハニカム成形体1を加熱することにより行った。なお、マイクロ波乾燥後、マイクロ波乾燥直後でのハニカム成形体1の質量と同一のハニカム成形体1の絶乾燥状態での質量とを測定することにより算出した、マイクロ波乾燥後のハニカム成形体1の含水率は10%であった。よって、(マイクロ波乾燥後の含水率)/(成形直後の含水率)×100、にて表される第1工程後のハニカム成形体の含水率比は37%であった。
マイクロ波乾燥後の第2工程として、ハニカム成形体1に対して、図5の模式図にて示す熱風乾燥装置11を用いて、ハニカム成形体1のセル3が開口する端面7をワーク載置板15の上面に合わせる形態にてハニカム成形体1をワーク載置板15上に設置した。下方チャンバ18から熱風を送風し、ハニカム成形体1のセル3に熱風を通過させることにより、6分間、熱風乾燥した。なお、熱風乾燥装置11では、ワーク載置板15の下面に穴を開口させた制限板19を貼り合わせることにより、下方チャンバ18から上方チャンバ17に流れる全ての熱風は、ワーク載置板15に設置されたハニカム成形体1のセル3を通過させた。熱風は、乾球温度120℃、湿球温度60℃、流量60m3/分とした。以上の工程により、実施例1のハニカム成形体の乾燥を実施した。
熱風乾燥にて送風する熱風の湿球温度が50℃、乾燥時間5分であったこと以外は、実施例1と同様にハニカム成形体1の乾燥を実施した。
熱風乾燥にて送風する熱風の湿球温度が80℃、乾燥時間10分であったこと以外は、実施例1と同様にハニカム成形体1の乾燥を実施した。
熱風乾燥にて送風する熱風の乾球温度が220℃、乾燥時間2分であったこと以外は、実施例1と同様にハニカム成形体1の乾燥を実施した。
熱風乾燥にて送風する熱風の湿球温度が34℃、乾燥時間4分であったこと以外は、実施例1と同様にハニカム成形体1の乾燥を実施した。
第1工程後のハニカム成形体の含水率比が15%、乾燥時間5分であったこと以外は、実施例1と同様にハニカム成形体1の乾燥を実施した。
熱風乾燥にて送風する熱風の乾球温度が220℃であったこと以外は、実施例5と同様にハニカム成形体1の乾燥を実施した。
熱風乾燥にて送風する熱風の湿球温度が34℃であったこと以外は、実施例5と同様にハニカム成形体1の乾燥を実施した。
実施例1〜6及び比較例1,2により乾燥したハニカム成形体1について、隔壁2及び外周壁4のひび割れ(キレ)とセルの変形の発生を目視により検査した結果を表1及び2に示す。第1工程後のハニカム成形体の含水率比が37%の実験群である実施例1〜4及び比較例1において、実施例1〜4ではハニカム成形体のひび割れ及びセルの変形が観察されなかったが、比較例1ではハニカム成形体のひび割れが3体中3体に観察された。第1工程後のハニカム成形体の含水率比が15%の実験群である実施例5、6及び比較例2において、実施例5及び6ではハニカム成形体のひび割れ及びセルの変形が観察されなかったが、比較例2ではハニカム成形体のセルの変形が60体中38体に観察された。なお、実施例4及び6では、ハニカム成形体1に含有されるバインダーの燃焼が生じた。
ハニカム成形体1の隔壁2又は外周壁4のひび割れが生じやすい条件下にある第1工程後のハニカム成形体の含水率比37%のハニカム成形体1を熱風乾燥する場合、実施例1〜4のように湿球温度50〜80℃に調湿した熱風をハニカム成形体1のセル3に通過される熱風乾燥により、ハニカム成形体1の隔壁2又は外周壁4にひび割れ(キレ)は完全に抑止された。対照的に、従来の熱風乾燥である湿球温度34℃の熱風を用いた比較例1では、乾燥後のハニカム成形体1の隔壁2又は外周壁4にひび割れ(キレ)が高頻度で発生した。ハニカム成形体1の隔壁2又は外周壁4の変形が生じやすい条件下にある第1工程後のハニカム成形体の含水率比15%のハニカム成形体を熱風乾燥する場合、実施例5及び6のように湿球温度60℃に調湿した熱風をハニカム成形体1のセル3に通過される熱風乾燥により、ハニカム成形体1の隔壁2又は外周壁4に変形は完全に抑止された。対照的に、従来の熱風乾燥である湿球温度34℃の熱風を用いた比較例2では、乾燥後のハニカム成形体1の隔壁2又は外周壁4に変形が高頻度で発生した。以上から、第2工程の熱風乾燥にてハニカム成形体のセルを通過せせる熱風の湿球温度を50〜100℃とする本発明の乾燥方法は、変形、破損等の不具合の発生を抑制することが示された。さらに、この熱風乾燥にて送風される熱風の乾球温度が100〜200℃の条件では、ハニカム成形体に含まれるバインダーの燃焼が防止された。
B‐2‐1.ハニカム成形体の乾燥:
(実施例7)
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.025mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値3.2(<5)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が60%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は100℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.013mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値6.9(<10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が60%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は100℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.013mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値8.5(<10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が60%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は95℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.0095mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値11.2(>10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が60%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は30℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.0095mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値13.8(>10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が60%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は25℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.025mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値3.2(<5)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が80%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は100℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.013mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値6.9(<10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が80%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は60℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.013mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値8.5(<10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が80%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は40℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状の
ハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60
℃とし、電磁波に対する電力半減深度(L)0.0095mにて発振周波数2450MH
zの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)
の左辺の値11.2(>10)であった。この第1工程では、第1工程後のハニカム成形
体の含水率比が80%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム
成形体の中心部の温度は25℃であった。次いで乾球温度120℃、湿球温度50℃の熱
風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、
ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
表3にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.0095mにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。なお、上記式(I)の左辺の値13.8(>10)であった。この第1工程では、第1工程後のハニカム成形体の含水率比が80%となるまでハニカム成形体1を乾燥させた。第1工程後のハニカム成形体の中心部の温度は25℃であった。次いで乾球温度120℃、湿球温度50℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1の含水率が1%未満となるまで乾燥させた。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、実施例7と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、実施例8と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、実施例9と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、参考例1と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、参考例2と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、実施例10と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、実施例11と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、実施例12と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、参考例3と同様にハニカム成形体1の乾燥を実施した(表4)。
第2工程の熱風乾燥にて送風する熱風の湿球温度が80℃であったこと以外は、参考例4と同様にハニカム成形体1の乾燥を実施した(表4)。
実施例7〜18および参考例1〜8により乾燥したハニカム成形体1について、隔壁2及び外周壁4のひび割れ(キレ)と変形の発生を目視により検査した結果を表3及び表4に示す。
第2工程の熱風乾燥にて送風される熱風の湿球温度が50℃である実施例7〜12および参考例1〜4から構成される実験群、同湿球温度が80℃である実施例13〜18および参考例5〜8から構成される実験群それぞれにについて、上記式(I)の左辺の値について評価する。両実験群のそれぞれにおいて、この上記式(I)の左辺の値が小さい実施例ほど、第1工程後のハニカム成形体の中心部の温度が高くなり、続く第2工程に対して良好な乾燥状態を設定できることが示された。したがって、この上記式(I)の左辺の値が小さい実施例ほど、ハニカム成形体1の隔壁2及び外周壁4におけるひび割れ(キレ)と変形の発生が低減されることが示された。第1工程後のハニカム成形体の含水率比が60%の場合の実施例7〜9および参考例1,2では、対照となる同含水率比80%の場合の実施例10〜12および参考例3,4と比較して、ハニカム成形体1の隔壁2及び外周壁4におけるひび割れ(キレ)と変形の発生が低減されることが示された。同じ傾向は、実施例13〜15および参考例5,6と実施例16〜18および参考例7,8との間でも示された。
B‐3‐1.ハニカム成形体の乾燥:
(実施例19)
表5にて示される直径D、断面開口面積比A、誘電率ε、誘電損失δを示す円柱形状のハニカム成形体1(図2)に対して、乾球温度60℃、湿球温度60℃の雰囲気下にて2分間加熱する予備加熱工程の後、乾燥炉内の雰囲気を乾球温度60℃、湿球温度60℃とし、電磁波に対する電力半減深度(L)0.025mmにて発振周波数2450MHzの電磁波を8分間照射するマイクロ波乾燥にて第1工程を行った。この第1工程では、第1工程後のハニカム成形体の含水率比が5%となるまでハニカム成形体1を乾燥させた。次いで乾球温度120℃、湿球温度60℃の熱風をハニカム成形体1のセル3に通過させる熱風乾燥による第2工程を行うことにより、ハニカム成形体1を乾燥させた。
予備加熱工程における雰囲気の湿球温度が35℃であったこと以外は、実施例19と同様にハニカム成形体の乾燥を実施した(表5)。
第1工程における乾燥炉内の雰囲気の湿球温度が35℃であること以外は、実施例19と同様にハニカム成形体の乾燥を実施した(表5)。
実施例19〜21により乾燥したハニカム成形体1について、隔壁2及び外周壁4のひび割れ(キレ)と変形の発生を目視により検査した結果、実施例19については隔壁2及び外周壁4におけるひび割れ(キレ)と変形は観察されなかったが、実施例20及び21については隔壁2及び外周壁4におけるひび割れ(キレ)と変形が観察された(表5)。
以上の実施例19〜21の結果から、本発明の乾燥方法において、予備加熱工程及び第1乾燥工程でのハニカム成形体が設置される雰囲気の湿球温度を50℃以上とすると、隔壁2及び外周壁4におけるひび割れ(キレ)と変形の発生が抑止されることが示された。
Claims (8)
- セラミック原料、水、及びバインダーを含有する原料組成物からなる、隔壁によって区画された流体の流路となる複数のセルを有する未焼成のハニカム成形体の乾燥方法であって、
マイクロ波乾燥又は誘電乾燥にて前記ハニカム成形体を加熱及び乾燥させる第1工程と、
前記第1工程後、湿球温度50〜100℃に調湿した熱風を前記セルに通過させる熱風乾燥にて前記ハニカム成形体を乾燥させる第2工程と、を有し、
前記第1の工程においては、
下記式(I)の条件を満たす大きさ及び誘電特性を有する前記ハニカム成形体を、下記式(I)の条件を満たす発振周波数の前記電磁波の照射による前記マイクロ波乾燥又は下記式(I)の条件を満たす発振周波数の前記高周波電流の通電による前記誘電乾燥にて乾燥させるハニカム成形体の乾燥方法。
- 前記原料組成物に含有される前記バインダーは、熱ゲル化特性及び/又は熱硬化性を有する、請求項1に記載のハニカム成形体の乾燥方法。
- 前記原料組成物の前記バインダーの含有量は、1〜10質量%である、請求項1又は2に記載のハニカム成形体の乾燥方法。
- 前記第2工程は、前記熱風乾燥における前記熱風の乾球温度が100〜200℃である、請求項1〜3のいずれか一項に記載のハニカム成形体の乾燥方法。
- 前記第1工程において、前記ハニカム成形体の成形直後に対する前記第1工程後のハニカム成形体の含水率比が5〜60%となるように前記ハニカム成形体を乾燥させ、前記第2工程において、残余の水を蒸発させて前記ハニカム成形体を乾燥させる、請求項1〜4のいずれか一項に記載のハニカム成形体の乾燥方法。
- 前記第1工程において、前記マイクロ波乾燥を用いる場合には発振周波数が300〜10000MHzの電磁波を照射して前記ハニカム成形体を乾燥させ、前記誘電乾燥を用いる場合には発振周波数が3〜100MHzの高周波電流を通電させて前記ハニカム成形体を乾燥させる、請求項1〜5のいずれか一項に記載のハニカム成形体の乾燥方法。
- 前記第1工程において、乾燥炉内の雰囲気が湿球温度50℃〜100℃となるように、
過熱水蒸気、又は水蒸気と加熱空気との混合ガスを炉内に導入しながら前記マイクロ波乾
燥又は誘電乾燥にて前記ハニカム成形体を乾燥させる、請求項1〜6のいずれか一項に記
載のハニカム成形体の乾燥方法。 - 前記第1工程の前に、湿球温度50〜100℃の雰囲気下にて前記ハニカム成形体を加
熱させる予備加熱工程を有する、請求項1〜7のいずれか一項に記載のハニカム成形体の
乾燥方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008248899A JP4866889B2 (ja) | 2008-09-26 | 2008-09-26 | ハニカム成形体の乾燥方法 |
US12/537,598 US8075829B2 (en) | 2008-09-26 | 2009-08-07 | Method for drying honeycomb formed article |
EP09252114.5A EP2168741B1 (en) | 2008-09-26 | 2009-09-02 | Method for drying honeycomb formed article |
CN2009101776061A CN101684046B (zh) | 2008-09-26 | 2009-09-24 | 用于干燥蜂窝成形体的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008248899A JP4866889B2 (ja) | 2008-09-26 | 2008-09-26 | ハニカム成形体の乾燥方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010076328A JP2010076328A (ja) | 2010-04-08 |
JP4866889B2 true JP4866889B2 (ja) | 2012-02-01 |
Family
ID=41531753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008248899A Active JP4866889B2 (ja) | 2008-09-26 | 2008-09-26 | ハニカム成形体の乾燥方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8075829B2 (ja) |
EP (1) | EP2168741B1 (ja) |
JP (1) | JP4866889B2 (ja) |
CN (1) | CN101684046B (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4866889B2 (ja) * | 2008-09-26 | 2012-02-01 | 日本碍子株式会社 | ハニカム成形体の乾燥方法 |
JP5388916B2 (ja) * | 2010-03-17 | 2014-01-15 | 日本碍子株式会社 | ハニカム成形体の乾燥方法 |
JP5486374B2 (ja) * | 2010-03-30 | 2014-05-07 | 日本碍子株式会社 | ハニカム成形体の乾燥装置、及び乾燥方法 |
CA2803866A1 (en) * | 2010-06-25 | 2011-12-29 | Dow Global Technologies Llc | Drying method for ceramic greenware |
CN103347975A (zh) * | 2010-12-30 | 2013-10-09 | 圣戈本陶瓷及塑料股份有限公司 | 形成成型的磨料颗粒的方法 |
JP5856877B2 (ja) * | 2011-03-07 | 2016-02-10 | 住友化学株式会社 | グリーンハニカム成形体の乾燥方法及び乾燥装置 |
DE102012006423A1 (de) * | 2012-03-30 | 2013-10-02 | Lapp Insulators Gmbh | Verfahren zur elektrischen Vortrocknung eines keramischen Rohlings |
US8782921B2 (en) * | 2012-06-28 | 2014-07-22 | Corning Incorporated | Methods of making a honeycomb structure |
US9931763B2 (en) * | 2012-08-30 | 2018-04-03 | Corning Incorporated | System and method for controlling the peripheral stiffness of a wet ceramic extrudate |
US10173933B2 (en) * | 2013-05-06 | 2019-01-08 | Corning Incorporated | Rapid drying of ceramic greenwares |
US9789633B2 (en) | 2014-06-04 | 2017-10-17 | Corning Incorporated | Method and system for crack-free drying of high strength skin on a porous ceramic body |
US10960572B2 (en) | 2015-03-25 | 2021-03-30 | Corning Incorporated | Systems for and methods of drying the skin of a cellular ceramic ware |
JP6384673B2 (ja) * | 2015-04-08 | 2018-09-05 | パナソニックIpマネジメント株式会社 | 乾燥装置 |
CN105108894A (zh) * | 2015-09-18 | 2015-12-02 | 董志强 | 一种瓷砖布料方法及瓷砖布料装置 |
DE112017001714T5 (de) | 2016-03-30 | 2018-12-20 | Ngk Insulators, Ltd. | Verfahren zum Trocknen eines Wabenformkörpers und Verfahren zur Herstellung einer Wabenstruktur |
JP7016267B2 (ja) * | 2017-03-24 | 2022-02-04 | 日本碍子株式会社 | 柱状ハニカム成形体の乾燥方法及び柱状ハニカム構造体の製造方法 |
US11168033B2 (en) * | 2017-03-24 | 2021-11-09 | Ngk Insulators, Ltd. | Method for drying columnar honeycomb formed body and method for producing columnar honeycomb structure |
JP6559727B2 (ja) * | 2017-03-28 | 2019-08-14 | 日本碍子株式会社 | ハニカム構造体の製造方法 |
JP2022126503A (ja) * | 2021-02-18 | 2022-08-30 | 日本碍子株式会社 | ハニカム構造体の製造方法及び電気加熱式担体の製造方法 |
CN114907897B (zh) * | 2022-05-17 | 2023-02-28 | 赣州中科拓又达智能装备科技有限公司 | 一种高速机器人的生产工艺及装置 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2922980B2 (ja) * | 1990-05-23 | 1999-07-26 | イビデン株式会社 | ハニカム構造のセラミックス焼結体の製造方法 |
US5263263A (en) * | 1993-02-26 | 1993-11-23 | Corning Incorporated | Rotary dielectric drying of ceramic honeycomb ware |
JP2813127B2 (ja) | 1994-03-11 | 1998-10-22 | 日本碍子株式会社 | セラミック成形体の乾燥方法 |
US5543096A (en) | 1994-09-12 | 1996-08-06 | Corning Incorporated | Method for producing activated carbon bodies having silicone resin binder |
US5538681A (en) * | 1994-09-12 | 1996-07-23 | Corning Incorporated | Drying process to produce crack-free bodies |
JP2002283329A (ja) | 2001-01-16 | 2002-10-03 | Denso Corp | ハニカム成形体の製造方法及び乾燥装置 |
JP4131103B2 (ja) * | 2001-01-16 | 2008-08-13 | 株式会社デンソー | ハニカム成形体の製造方法及び乾燥装置 |
DE10201299A1 (de) | 2001-01-16 | 2002-08-29 | Denso Corp | Verfahren zur Anfertigung eines Wabenkörpers und Trockensystem |
JP2003103181A (ja) * | 2001-09-28 | 2003-04-08 | Ngk Insulators Ltd | ハニカム触媒、ハニカム中間体及びハニカム触媒の製造方法 |
JP4207422B2 (ja) * | 2001-12-04 | 2009-01-14 | 株式会社デンソー | ハニカム成形体の製造方法及び製造装置 |
WO2005023503A1 (ja) | 2003-09-02 | 2005-03-17 | Ngk Insulators, Ltd. | ハニカム成形体の乾燥方法及び乾燥装置 |
CN100577383C (zh) * | 2003-09-02 | 2010-01-06 | 日本碍子株式会社 | 蜂窝状成型体的干燥方法及干燥装置 |
CN100441991C (zh) * | 2003-09-04 | 2008-12-10 | 日本碍子株式会社 | 蜂窝状结构体的干燥方法 |
JP2005216599A (ja) * | 2004-01-28 | 2005-08-11 | Hitachi Display Devices Ltd | マイクロ波加熱装置 |
JP5537807B2 (ja) * | 2006-08-31 | 2014-07-02 | 日本碍子株式会社 | ハニカム構造体の製造方法 |
JP2008110541A (ja) | 2006-10-31 | 2008-05-15 | Denso Corp | ハニカム成形体の製造方法および乾燥装置 |
EP2079571B1 (en) * | 2007-03-30 | 2015-12-23 | Corning Incorporated | Method and applicator for selective electromagnetic drying of ceramic-forming mixture |
JP5616059B2 (ja) * | 2007-04-27 | 2014-10-29 | 日本碍子株式会社 | ハニカムフィルタ |
WO2008143225A1 (ja) * | 2007-05-18 | 2008-11-27 | Hitachi Metals, Ltd. | セラミックハニカム構造体の製造方法及びセラミックハニカム構造体 |
US7704296B2 (en) * | 2007-11-27 | 2010-04-27 | Corning Incorporated | Fine porosity low-microcracked ceramic honeycombs and methods thereof |
JPWO2009122535A1 (ja) * | 2008-03-31 | 2011-07-28 | イビデン株式会社 | ハニカム構造体の製造方法 |
JP4866889B2 (ja) * | 2008-09-26 | 2012-02-01 | 日本碍子株式会社 | ハニカム成形体の乾燥方法 |
US9314727B2 (en) * | 2008-11-26 | 2016-04-19 | Corning Incorporated | Cordierite forming batch compositions and cordierite bodies manufactured therefrom |
-
2008
- 2008-09-26 JP JP2008248899A patent/JP4866889B2/ja active Active
-
2009
- 2009-08-07 US US12/537,598 patent/US8075829B2/en active Active
- 2009-09-02 EP EP09252114.5A patent/EP2168741B1/en active Active
- 2009-09-24 CN CN2009101776061A patent/CN101684046B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
EP2168741B1 (en) | 2013-08-14 |
US8075829B2 (en) | 2011-12-13 |
US20100078859A1 (en) | 2010-04-01 |
EP2168741A3 (en) | 2011-03-16 |
JP2010076328A (ja) | 2010-04-08 |
CN101684046A (zh) | 2010-03-31 |
EP2168741A2 (en) | 2010-03-31 |
CN101684046B (zh) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4866889B2 (ja) | ハニカム成形体の乾燥方法 | |
JP5388916B2 (ja) | ハニカム成形体の乾燥方法 | |
JP5525258B2 (ja) | セラミックハニカム構造体の製造方法及びセラミックハニカム構造体 | |
US9707515B2 (en) | Honeycomb structure | |
JP6126434B2 (ja) | ハニカム構造体 | |
JP4842986B2 (ja) | セラミックス成形体の乾燥方法 | |
US8584375B2 (en) | Method of drying honeycomb article, and drying apparatus therefor | |
US8551579B2 (en) | Method for producing ceramic honeycomb structure | |
JP6259327B2 (ja) | ハニカム構造体 | |
US9885271B2 (en) | Honeycomb structure | |
JP2005131800A (ja) | 多孔質セラミックハニカム構造体の製造方法 | |
US11573052B2 (en) | Method for manufacturing honeycomb structure | |
JP5282053B2 (ja) | ハニカム構造体の製造方法 | |
US20180283783A1 (en) | Method for manufacturing honeycomb structure | |
US8191281B2 (en) | Method of drying honeycomb formed article | |
JP2018034112A (ja) | ハニカムフィルタ | |
JP7016267B2 (ja) | 柱状ハニカム成形体の乾燥方法及び柱状ハニカム構造体の製造方法 | |
CN114956856A (zh) | 蜂窝结构体的制造方法及电加热式载体的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4866889 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |