[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4855435B2 - Optical fiber core contrast method and apparatus - Google Patents

Optical fiber core contrast method and apparatus Download PDF

Info

Publication number
JP4855435B2
JP4855435B2 JP2008091289A JP2008091289A JP4855435B2 JP 4855435 B2 JP4855435 B2 JP 4855435B2 JP 2008091289 A JP2008091289 A JP 2008091289A JP 2008091289 A JP2008091289 A JP 2008091289A JP 4855435 B2 JP4855435 B2 JP 4855435B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
light
pulse test
test light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008091289A
Other languages
Japanese (ja)
Other versions
JP2009244610A (en
Inventor
奈月 本田
則幸 荒木
裕司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008091289A priority Critical patent/JP4855435B2/en
Publication of JP2009244610A publication Critical patent/JP2009244610A/en
Application granted granted Critical
Publication of JP4855435B2 publication Critical patent/JP4855435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow contrasting cores for respective optical fibers between an optical splitter and an ONU in a PON system and contrasting cores for optical fibers which does not bring about leaked light in bending the optical fibers. <P>SOLUTION: In the method of contrasting cores of optical fiber being a work target out of a plurality of optical fibers, such a configuration is provided that pulse test light is sent from one end of the work target optical fiber with a prescribed sending period T and the reception intensity of a prescribed polarized component of return light reflected on the other end and returned after a prescribed time. Polarization fluctuation is given to the pulse test light and the return light at the other end of the work target optical fiber, and the reception intensity of the prescribed polarization component of the return light returned the prescribed time after having sent the pulse test light is detected, and it is detected whether or not the reception intensity is varied due to the polarization fluctuation to specify the optical fiber in which the polarization fluctuation has been given to the pulse test light. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光線路の建設や保守作業時に、作業対象の光ファイバを特定するための光ファイバ心線対照方法および装置に関する。   The present invention relates to an optical fiber core comparison method and apparatus for specifying an optical fiber to be worked during construction or maintenance work of an optical line.

従来の光ファイバ心線対照装置は、作業対象の光ファイバへ試験光を入射し、光ファイバに加えた曲げにより漏洩する試験光を観測し、当該試験光が検出されればその光ファイバを作業対象として特定する構成であった。これを「心線対照」という。   The conventional optical fiber core line contrast device enters the test light into the optical fiber to be worked, observes the test light leaked by bending applied to the optical fiber, and if the test light is detected, the optical fiber is operated. The configuration was specified as the target. This is called “heart-line contrast”.

図8は、従来の光ファイバ心線対照装置の構成例を示す(特許文献1、特許文献2)。
図において、局側終端装置OLT(Optical Line Terminal)とユーザ側終端装置ONU(Optical Network Unit) は、光ファイバを束ねた光ファイバケーブル50を介して接続される。作業対象の光ファイバ51に対して、OLT側の光カプラ52を介して心線対照用試験光源53から試験光を入射し、光ファイバ51のONU側で曲げ部54を用いて曲げを生じさせ、その曲げにより漏洩する試験光を光検出器(PD)55で検出する。ここで、OLTとONUとの間の通信光よりも長波長の試験光を用い、光ファイバ51の遠端(ONUの入力端)に配置した試験光遮断フィルタ56で試験光を遮断する構成により、通信光に影響を与えずに試験光を用いた心線対照が可能になっている。
FIG. 8 shows a configuration example of a conventional optical fiber core wire contrast device (Patent Document 1, Patent Document 2).
In the figure, a station-side terminator OLT (Optical Line Terminal) and a user-side terminator ONU (Optical Network Unit) are connected via an optical fiber cable 50 in which optical fibers are bundled. Test light is incident on the work target optical fiber 51 from the optical fiber 51 on the optical fiber 51 via the OLT-side optical coupler 52 and is bent using the bending portion 54 on the ONU side of the optical fiber 51. The test light leaking due to the bending is detected by a photodetector (PD) 55. Here, the test light having a wavelength longer than that of the communication light between the OLT and the ONU is used, and the test light is blocked by the test light blocking filter 56 disposed at the far end of the optical fiber 51 (input end of the ONU). Therefore, it is possible to perform the contrast control using the test light without affecting the communication light.

なお、光ファイバ心線対照装置は、所内装置として光カプラ52および心線対照用試験光源53と、所外装置として曲げ部54および光検出器55から構成される。作業者は、所内装置を用いて作業対象の光ファイバ51に試験光を入射し、所外装置を用いて光ファイバ51から漏洩する試験光を検出することにより、通信光が伝送中であってもサービスを中断することなく心線対照を行うことができる。
特開平01−237509号公報 特開平02−001632号公報
The optical fiber core wire contrast device includes an optical coupler 52 and a core wire contrast test light source 53 as an in-house device, and a bending portion 54 and a photodetector 55 as external devices. The operator enters the test light into the optical fiber 51 to be worked using the in-house device, detects the test light leaking from the optical fiber 51 using the outside device, and the communication light is being transmitted. You can also perform heart contrast without interrupting service.
Japanese Patent Laid-Open No. 01-237509 Japanese Patent Laid-Open No. 02-001632

ところで、従来の光ファイバ心線対照装置は、OLTとONUが1対1で接続される光ネットワークシステムでは問題ないが、光スプリッタを介して1つのOLTに複数のONUを収容するPON(Passive Optical Network) システムでは問題が生じる。それは、心線対照用試験光源から1本の光ファイバに入射した試験光が光スプリッタを介して複数の光ファイバに均等に分配されるので、ONU側でその複数の光ファイバについて個別に心線対照ができないことである。   By the way, the conventional optical fiber core line contrast device has no problem in the optical network system in which the OLT and the ONU are connected one-to-one, but a PON (Passive Optical) that accommodates a plurality of ONUs in one OLT via an optical splitter. Problems arise with Network) systems. The test light incident on one optical fiber from the test light source for controlling the core wire is evenly distributed to the plurality of optical fibers via the optical splitter. There is no contrast.

また、近年は光ファイバ運用の作業性を向上させるため、曲げに対して損失変動が生じにくい、すなわち曲げによる漏洩光が発生しにくい光ファイバが用いられている。このような光ファイバとしては、光ファイバコアの周囲に空孔を設け、低屈折率のクラッド層により強い光閉じ込め効果を実現したホールアシストファイバ等が開発されている。この光ファイバに対して曲げによる漏洩光を観測する従来方法では心線対照ができない。   Further, in recent years, in order to improve the workability of optical fiber operation, an optical fiber is used in which loss fluctuation hardly occurs with respect to bending, that is, leakage light due to bending does not easily occur. As such an optical fiber, a hole assist fiber or the like in which holes are provided around an optical fiber core and a strong light confinement effect is realized by a low refractive index cladding layer has been developed. The conventional method of observing leaked light due to bending with respect to this optical fiber cannot perform contrast control.

本発明は、PONシステムにおける光スプリッタとONU間の複数の光ファイバのそれぞれに対する心線対照、また曲げに対して漏洩光を発生しない光ファイバに対する心線対照を可能にする光ファイバ心線対照方法および装置を提供することを目的とする。   The present invention relates to an optical fiber core contrast method that enables a core contrast for each of a plurality of optical fibers between an optical splitter and an ONU in a PON system, and a core contrast for an optical fiber that does not generate leakage light with respect to bending. And an object to provide an apparatus.

第1の発明は、一方の光ファイバと光ファイバ長が互いに異なる他方の複数の光ファイバが光スプリッタを介して接続され、一方の光ファイバの一端からパルス試験光を送出し、他方の複数の光ファイバの他端でそれぞれ反射して一方の光ファイバの一端に戻り、その戻り光の時間位置に応じて他方の複数の光ファイバが判別されるときに、その戻り光の時間位置に対する所定の偏光成分の受光強度を検出し、他方の複数の光ファイバの中から作業対象の光ファイバを特定する光ファイバ心線対照方法において、パルス試験光を、一方の光ファイバと他方の複数の光ファイバのうち最長の光ファイバを合せた光往復時間よりも長く設定された送出周期Tで送出し、作業対象の光ファイバの他端で側圧または曲げまたは捻りを加えて、パルス試験光および戻り光に、パルス試験光の送出周期Tに対して1/(2T)より低く、かつ20Hzより高く設定された変調周波数の偏波変動を与え、一方の光ファイバの一端で、パルス試験光を送出してから作業対象光ファイバに対応する時間位置の戻り光の所定の偏光成分の受光強度を送出周期Tで複数回サンプリングし、その受光強度の時間変動を周波数解析し、作業対象光ファイバに与えた偏波変動変調周波数成分の有無を検出して波変動を与えた光ファイバを特定する。 In the first invention, one optical fiber and another optical fiber having different optical fiber lengths are connected via an optical splitter, pulse test light is transmitted from one end of the one optical fiber, and the other plural optical fibers are transmitted. when reflected respectively at the other end of the optical fiber returns to the one end of the hand of the optical fiber, the other of the plurality of optical fibers is determined in accordance with the time position of the return beam, a predetermined relative time position of the return beam In the optical fiber core-line contrast method for detecting the received light intensity of the polarization component of the optical fiber and identifying the optical fiber to be worked out from the other plurality of optical fibers, the pulse test light is converted into one optical fiber and the other plurality of light. sending the longest optical fiber transmission cycle is set longer than the light reciprocating time combined T of the fiber, in addition to lateral pressure or bending or twisting at the other end of the work target of the optical fiber, pulse trial Polarization fluctuations at a modulation frequency set lower than 1 / (2T) and higher than 20 Hz with respect to the transmission period T of the pulse test light are given to the light and the return light, and the pulse test is performed at one end of one optical fiber. After the light is sent out, the received light intensity of the predetermined polarization component of the return light at the time position corresponding to the work optical fiber is sampled a plurality of times at the send cycle T, the time variation of the received light intensity is frequency-analyzed, and the work light and detecting the presence or absence of the components of the modulation frequency of the polarization fluctuation given to fiber to identify the optical fiber gave polarization fluctuation.

第2の発明は、一方の光ファイバと光ファイバ長が互いに異なる他方の複数の光ファイバが光スプリッタを介して接続され、一方の光ファイバの一端からパルス試験光を送出し、他方の複数の光ファイバの他端でそれぞれ反射して一方の光ファイバの一端に戻り、その戻り光の時間位置に応じて他方の複数の光ファイバが判別されるときに、その戻り光の時間位置に対する所定の偏光成分の受光強度を検出し、他方の複数の光ファイバの中から作業対象の光ファイバを特定する光ファイバ心線対照装置において、パルス試験光を、一方の光ファイバと他方の複数の光ファイバのうち最長の光ファイバを合せた光往復時間よりも長く設定された送出周期Tで送出するパルス試験光送出手段と、作業対象の光ファイバの他端で側圧または曲げまたは捻りを加えて、パルス試験光および戻り光に、パルス試験光の送出周期Tに対して1/(2T)より低く、かつ20Hzより高く設定された変調周波数の偏波変動を与える手段と、一方の光ファイバの一端で、パルス試験光を送出してから作業対象光ファイバに対応する時間位置の戻り光の所定の偏光成分の受光強度を送出周期Tで複数回サンプリングし、その受光強度の時間変動を周波数解析し、作業対象光ファイバに与えた偏波変動変調周波数成分の有無を検出して波変動を与えた光ファイバを特定する心線対照手段とを備える。 In the second invention, one optical fiber and the other optical fibers having different optical fiber lengths are connected via an optical splitter, and pulse test light is transmitted from one end of the one optical fiber, and the other plural optical fibers are transmitted. when reflected respectively at the other end of the optical fiber returns to the one end of the hand of the optical fiber, the other of the plurality of optical fibers is determined in accordance with the time position of the return beam, a predetermined relative time position of the return beam In the optical fiber core-line contrast device that detects the received light intensity of the polarization component of the optical fiber and identifies the optical fiber to be worked from among the other optical fibers, the pulse test light is transmitted to one optical fiber and the other optical fibers. lateral pressure or bending also at the other end of the longest pulse test light transmitting means for transmitting a long, set transmission period T than the light reciprocating time combined optical fiber, work target of the optical fibers of the fiber Added twist, the pulsed test light and return light, and means for providing 1 / (2T) than the low relative transmission period T of the pulse test light, and a polarization fluctuation of the set high modulation frequency from 20 Hz, whereas After receiving the pulse test light at one end of the optical fiber, the received light intensity of the predetermined polarization component of the return light at the time position corresponding to the work optical fiber is sampled a plurality of times at the transmission period T, and the time of the received light intensity And a core line contrast means for analyzing the frequency of the fluctuation and detecting the presence / absence of a modulation frequency component of the polarization fluctuation given to the work target optical fiber to identify the optical fiber given the polarization fluctuation.

本発明は、PONシステムの光スプリッタで分岐する複数の光ファイバの遠端からの戻り光の受光時間と、作業対象の光ファイバで偏波変動を与えたときに戻り光の所定の偏光成分の受光強度の変化を検出することにより、作業対象の光ファイバに対する心線対照が可能となる。   The present invention provides a light receiving time of return light from the far ends of a plurality of optical fibers branched by an optical splitter of a PON system, and a predetermined polarization component of the return light when polarization fluctuation is given to the optical fiber to be worked on. By detecting a change in the received light intensity, it is possible to perform a core contrast with respect to the optical fiber to be worked.

本発明は、PONシステムの光スプリッタで分岐する複数の光ファイバの遠端からの戻り光の受光時間と、作業対象の光ファイバで所定の変調周波数の偏波変動を与えたときに戻り光の所定の偏光成分の受光強度の時間変動から変調周波数成分を検出することにより、作業対象の光ファイバに対する心線対照が可能となる。   In the present invention, the light reception time of the return light from the far ends of a plurality of optical fibers branched by the optical splitter of the PON system, and the polarization of the return light when a polarization fluctuation of a predetermined modulation frequency is given to the optical fiber to be worked on. By detecting the modulation frequency component from the time variation of the received light intensity of a predetermined polarization component, it is possible to perform a core contrast with respect to the optical fiber to be worked.

また、本発明は、戻り光の所定の偏光成分の受光強度を観測するので、曲げに対して漏洩光を発生しない光ファイバに対する心線対照が可能になる。   In addition, since the present invention observes the received light intensity of a predetermined polarization component of the return light, it is possible to perform a core contrast with respect to an optical fiber that does not generate leakage light with respect to bending.

(第1の実施形態)
図1は、本発明の光ファイバ心線対照装置の第1の実施形態を示す。
図において、PONシステムは、OLTに接続される光ファイバ11と、複数m個のONUにそれぞれ接続される光ファイバ13−1〜13−mが、m分岐の光スプリッタ12を介して接続される構成である。OLTと光スプリッタ12とを接続する光ファイバ11には光カプラ14が挿入され、光カプラ14の試験ポートに心線対照用所内装置20が接続される。心線対照用所内装置20は、OLTとONU間の通信光とは異なる波長のパルス試験光を出力する。このパルス試験光は、光カプラ14から光ファイバ11に入射して伝搬し、光スプリッタ12で光ファイバ13−1〜13−mに分配される。光ファイバ13−1〜13−mの遠端(各ONUの入力端)には、通信光を透過しパルス試験光を遮断かつ反射する試験光遮断フィルタ15が挿入される。光ファイバを伝搬する光に偏波変動を与える心線対照用所外装置30は、心線対照を行う光ファイバ(ここでは13−mとする)に取り付ける。
(First embodiment)
FIG. 1 shows a first embodiment of the optical fiber core wire contrast device of the present invention.
In the figure, in the PON system, an optical fiber 11 connected to an OLT and optical fibers 13-1 to 13-m connected to a plurality of m ONUs are connected via an m-branch optical splitter 12. It is a configuration. An optical coupler 14 is inserted into the optical fiber 11 that connects the OLT and the optical splitter 12, and the optical fiber reference internal device 20 is connected to the test port of the optical coupler 14. The core wire control in-house device 20 outputs pulse test light having a wavelength different from that of the communication light between the OLT and the ONU. The pulse test light enters the optical fiber 11 from the optical coupler 14 and propagates, and is distributed by the optical splitter 12 to the optical fibers 13-1 to 13-m. A test light blocking filter 15 that transmits communication light and blocks and reflects pulse test light is inserted at the far end (input end of each ONU) of the optical fibers 13-1 to 13-m. An external device 30 for contrasting the core that gives polarization fluctuation to the light propagating through the optical fiber is attached to an optical fiber (13-m in this case) that performs the core contrast.

心線対照用所内装置20は、偏光消光比が大きいパルス試験光を出力する光源21、光カプラ22、偏光子23、光検出器(PD)24、信号制御・処理部25、データベース26により構成される。光源21から出力されたパルス試験光は、光カプラ22、光カプラ14を介して光ファイバ11に入射し、試験光遮断フィルタ15で反射した戻り光は光カプラ14、光カプラ22、偏光子23を介して光検出器24に入力する。偏光子23は戻り光の所定の偏光成分を透過し、光検出器24はその所定の偏光成分の戻り光を受光する。信号制御・処理部25は、光源21が出力するパルス試験光の送出周期T(秒)を制御し、光検出器24で検出される所定の偏光成分の戻り光の受光時間および受光強度をモニタし、心線対照処理を行う構成である。   The intracenter device 20 for controlling the core wire includes a light source 21 that outputs pulse test light having a large polarization extinction ratio, an optical coupler 22, a polarizer 23, a photodetector (PD) 24, a signal control / processing unit 25, and a database 26. Is done. The pulse test light output from the light source 21 enters the optical fiber 11 via the optical coupler 22 and the optical coupler 14, and the return light reflected by the test light blocking filter 15 is the optical coupler 14, the optical coupler 22, and the polarizer 23. Is input to the photodetector 24. The polarizer 23 transmits a predetermined polarization component of the return light, and the photodetector 24 receives the return light of the predetermined polarization component. The signal control / processing unit 25 controls the transmission period T (second) of the pulse test light output from the light source 21, and monitors the light reception time and light reception intensity of the return light of the predetermined polarization component detected by the photodetector 24. And it is the structure which performs a core line contrast process.

ここで、心線対照用所内装置20から光ファイバ11に入射したパルス試験光は、ONUまでの光線路中のコネクタ接続点や遠端等で反射して心線対照用所内装置20に戻るが、コネクタ接続点での反射減衰量は40dB程度である。したがって、心線対照用所内装置20の光検出器24で検出される主な戻り光は、光ファイバ13−1〜13−mの遠端に設けた試験光遮断フィルタ15で発生する反射減衰量0〜14dBのフレネル反射光である。   Here, the pulse test light incident on the optical fiber 11 from the optical fiber reference device 20 is reflected at the connector connection point in the optical line to the ONU, the far end, etc., and returns to the optical fiber reference device 20. The return loss at the connector connection point is about 40 dB. Therefore, the main return light detected by the photodetector 24 of the intracardiac contrast device 20 is the return loss generated by the test light blocking filter 15 provided at the far end of the optical fibers 13-1 to 13-m. 0-14 dB Fresnel reflected light.

光スプリッタ12と各ユーザ宅のONUをそれぞれ接続する光ファイバ13−1〜13−mの各光ファイバ長L1 〜Lm は、それぞれの心線番号を対応させてデータベース26に登録し、信号制御・処理部25から参照可能としておく。ここでは、簡単のためにL1 ,L2 ,…,Lm の順に長くなり、光ファイバ13−mの光ファイバ長Lm を最長とする。光ファイバ11の光ファイバ長をLF としたとき、心線対照用所内装置20と最長の光ファイバ13−mの遠端に接続される試験光遮断フィルタ15との距離Lは、
L=LF +Lm
となる。このとき、心線対照用所内装置20が出力するパルス試験光の送出周期Tは、最長の光ファイバ13−mの遠端までの距離を往復する時間2L/vよりも長く設定する必要がある。vは光ファイバ中のパルス試験光の速度である。
The optical fiber lengths L 1 to L m of the optical fibers 13-1 to 13 -m connecting the optical splitter 12 and the ONUs of the respective user houses are registered in the database 26 in association with the respective core numbers. Reference can be made from the control / processing unit 25. Here, for the sake of simplicity, the length becomes longer in the order of L 1 , L 2 ,..., L m , and the optical fiber length L m of the optical fiber 13- m is the longest. When the optical fiber length of the optical fiber 11 was set to L F, the distance between the core wire control for house device 20 and the longest optical fiber test light blocking filter 15 connected to the far end of the 13-m L is
L = L F + L m
It becomes. At this time, it is necessary to set the transmission period T of the pulse test light output from the optical fiber reference device 20 longer than the time 2 L / v for reciprocating the distance to the far end of the longest optical fiber 13-m. . v is the speed of the pulse test light in the optical fiber.

また、光ファイバ13−1〜13−mの各光ファイバ長L1 〜Lm は互いに異なり、その最小の光ファイバ長差(分解能)Lr とパルス試験光のパルス幅wとの関係は、
Lr >w・v/2
と設定する必要がある。以上の設定に基づくパルス試験光および戻り光のタイムチャートを図2(1),(2) に示す。
The optical fiber lengths L 1 to L m of the optical fibers 13-1 to 13-m are different from each other, and the relationship between the minimum optical fiber length difference (resolution) Lr and the pulse width w of the pulse test light is
Lr> w · v / 2
It is necessary to set. 2 (1) and 2 (2) show time charts of the pulse test light and the return light based on the above settings.

心線対照用所内装置20から時間nTで送出したパルス試験光は、光ファイバ11を伝搬して光スプリッタ12でm分岐し、光ファイバ13−1〜13−mを伝搬してそれぞれ試験光遮断フィルタ15で反射し、それぞれの戻り光が逆の経路を辿って心線対照用所内装置20の偏光子23を介して光検出器24に受光する。各戻り光の受光強度をP1n〜Pmnとする。各戻り光が受光する時間は、それぞれの往復伝搬遅延時間に応じて、
nT+2(LF+L1)/v
nT+2(LF+L2)/v

nT+2(LF+Lm)/v
となる。信号制御・処理部25は、光ファイバ13−1〜13−mのそれぞれの遠端からの戻り光の受光時間と受光強度P1n〜Pmnをモニタする。なお、光検出器24は偏光子23を通過する所定の偏光成分の受光強度を検出する構成であり、また各戻り光の偏光状態が同一とは限らないので、図2(2) に示すように各戻り光の受光強度P1n〜Pmnにバラツキが生じる。
The pulse test light transmitted from the core wire control in-house device 20 at time nT propagates through the optical fiber 11 and is branched into m by the optical splitter 12, and propagates through the optical fibers 13-1 to 13-m to block the test light. Reflected by the filter 15, each return light follows the reverse path and is received by the light detector 24 via the polarizer 23 of the intracardiac contrast device 20. The received light intensity of each return light is P 1n to P mn . The time for each return light to be received depends on the respective round-trip propagation delay time,
nT + 2 (L F + L 1 ) / v
nT + 2 (L F + L 2 ) / v
...
nT + 2 (L F + L m ) / v
It becomes. The signal control / processing unit 25 monitors the light reception time and the light reception intensities P 1n to P mn of the return light from the far ends of the optical fibers 13-1 to 13-m. Note that the photodetector 24 is configured to detect the received light intensity of a predetermined polarization component that passes through the polarizer 23, and the polarization state of each return light is not necessarily the same, as shown in FIG. 2 (2). In addition, the received light intensity P 1n to P mn of each return light varies.

以上の前提を踏まえて、作業対照の光ファイバ13−mに心線対照用所外装置30を取り付けて側圧を加え、図3に示すように光ファイバの断面形状を変化させる。すると、x方向およびy方向のモード速度が変化し、光ファイバ13−mを伝搬するパルス試験光および戻り光の偏波が変動する。この偏波変動は、戻り光が心線対照用所内装置20の偏光子23を介して光検出器24に受光したときに、受光強度Pmnの変化として現れ、信号制御・処理部25がこれをモニタする。 Based on the above premise, the external device 30 for controlling the core wire is attached to the working optical fiber 13-m and a lateral pressure is applied, and the cross-sectional shape of the optical fiber is changed as shown in FIG. Then, the mode speeds in the x direction and the y direction change, and the polarization of the pulse test light and return light propagating through the optical fiber 13-m fluctuates. This polarization fluctuation appears as a change in the received light intensity P mn when the return light is received by the photodetector 24 via the polarizer 23 of the optical fiber reference device 20, and the signal control / processing unit 25 To monitor.

一方、信号制御・処理部25はデータベース26を参照し、各戻り光の時間位置から光ファイバ長L1 〜Lm を対応させ、さらに光ファイバ13−1〜13−mの心線番号を対応させる。そして、時間nTで送出したパルス試験光に対する戻り光の受光強度Pxnの変化を検出した場合に、心線対照用所外装置30で側圧を加えた光ファイバは光ファイバ13−xであると識別する。本実施形態の例では、心線対照用所外装置30を用いて光ファイバ13−mに側圧を加えたときに、戻り光の受光強度Pmnに変化がみられた場合には、光ファイバ13−mに側圧を加えたものと識別する。このようにして、PONシステムの光スプリッタ12の下部の光ファイバ13−1〜13−mに対する心線対照、また曲げに対して漏洩光を発生しない光ファイバに対する心線対照が可能になる。 On the other hand, the signal control / processing unit 25 refers to the database 26, associates the optical fiber lengths L 1 to L m from the time positions of the respective return lights, and further supports the core numbers of the optical fibers 13-1 to 13-m. Let When the change in the received light intensity P xn of the return light with respect to the pulse test light transmitted at time nT is detected, the optical fiber to which the side pressure is applied by the external device 30 for contrast control is the optical fiber 13-x. Identify. In the example of this embodiment, when a side pressure is applied to the optical fiber 13-m using the external device 30 for controlling the core wire, if a change is detected in the received light intensity P mn of the return light, the optical fiber It is identified as 13-m plus lateral pressure. In this way, it is possible to perform a core contrast for the optical fibers 13-1 to 13-m below the optical splitter 12 of the PON system and an optical fiber that does not generate leakage light with respect to bending.

(第2の実施形態)
第1の実施形態は、心線対照の光ファイバに対応する戻り光について、他の光ファイバに対応する戻り光の受光強度との比較ではなく、心線対照用所外装置30によって与えた偏波変動による受光強度の変化を検出する構成である。すなわち、図2(2) に示すように、各戻り光の所定の偏光成分の受光強度P1n〜Pmnにバラツキがある中から、受光強度が変化している戻り光を特定し、対応する光ファイバを識別する必要があった。
(Second Embodiment)
In the first embodiment, the return light corresponding to the optical fiber for contrasting the cores is not compared with the received light intensity of the return light corresponding to the other optical fibers, but the offset given by the external device 30 for controlling the cores is not used. In this configuration, a change in received light intensity due to wave fluctuation is detected. That is, as shown in FIG. 2 (2), the return light whose received light intensity is changing is identified from the variations in the received light intensity P 1n to P mn of the predetermined polarization component of each return light, and the corresponding light is dealt with. There was a need to identify the optical fiber.

また、パルス試験光が伝搬する光ファイバケーブルが揺らぐことにより、光ファイバ中の偏波がゆるやかに変動し、その揺らぎの周波数成分は約20Hz以下であることが知られている(フジクラ技報 108号,pp.14-18 、http://www.fujikura.co.jp/00/gihou/gihou.html)。したがって、心線対照用所内装置20における戻り光の受光強度には、偏波のゆるやかな変動に伴う誤差が含まれることがあり、このDC〜20Hz程度の周波数成分を除去しながら心線対照を行う必要がある。   In addition, it is known that the optical fiber cable through which the pulse test light propagates fluctuates, so that the polarization in the optical fiber fluctuates gently, and the frequency component of the fluctuation is about 20 Hz or less (Fujikura Technical Report 108 No., pp.14-18, http://www.fujikura.co.jp/00/gihou/gihou.html). Accordingly, the received light intensity of the return light in the intra-center apparatus 20 for core-line contrast may include an error due to a gradual change in polarization, and the core-line contrast is performed while removing the frequency component of about DC to 20 Hz. There is a need to do.

以上の状況を踏まえて、心線対照用所外装置30によって与えた偏波変動による受光強度の変化を確実に検出するには、心線対照用所外装置30が光ファイバに加える側圧を周波数fで変調し、心線対照所内装置20で戻り光の受光強度から変調周波数fの成分を検出する方法が有効である。以下、その方法について説明する。   Based on the above situation, in order to reliably detect the change in the received light intensity due to the polarization fluctuation given by the core contrast external device 30, the lateral pressure applied to the optical fiber by the core contrast external device 30 is set to the frequency. A method of modulating with f and detecting the component of the modulation frequency f from the received light intensity of the return light with the intracardiac contrast in-house device 20 is effective. The method will be described below.

心線対照所内装置20では、光ファイバ13−mに対応する時間位置の戻り光の受光強度について、パルス試験光をT秒間隔でN回(Nは2以上の整数)入射させるときのk番目(kは1〜Nの整数)のパルス試験光に対する戻り光の受光強度をPmkとしたときに、当該戻り光の受光強度Pmkを周期Tでサンプリングし、N回の受光強度Pmkの積算値を
ΣPmk (kは1〜N)
と表することができる。この受光強度Pmkの時系列変化を図4に示す。なお、光ファイバ13−mに対応する戻り光のN回の受光強度Pmkの積算値について加算平均処理を行う必要はない。
In the intracardiac contrast center apparatus 20, the received light intensity of the return light at the time position corresponding to the optical fiber 13-m is kth when the pulse test light is incident N times (N is an integer of 2 or more) at intervals of T seconds. When the received light intensity of the return light with respect to the pulse test light (k is an integer of 1 to N) is P mk , the received light intensity P mk of the return light is sampled at a period T, and the N times of received light intensity P mk The integrated value is ΣP mk (k is 1 to N)
It can be expressed as FIG. 4 shows the time series change of the received light intensity P mk . Note that it is not necessary to perform the averaging process on the integrated value of the N received light intensities P mk of the return light corresponding to the optical fiber 13-m.

この受光強度Pmkの時系列変化を包絡線検波し、FFT(フーリエ変換回路)を用いて周波数成分を解析すると、心線対照用所外装置30で光ファイバ13−mに加えた側圧の変調周波数fを検出することができる。すなわち、図5に示すように受光強度Pmkに変調周波数fの成分が検出された場合には、側圧を加えた光ファイバ13−mの心線対照が可能になる。なお、戻り光の受光強度Pmkには、図5に示すように、光ファイバケーブルの揺らぎによる偏波変動の周波数成分(20Hz以下)が含まれるが、必要に応じて本周波数成分を除去すればよい。 When the time series change of the received light intensity P mk is envelope-detected and the frequency component is analyzed using an FFT (Fourier transform circuit), the side pressure applied to the optical fiber 13-m by the external device 30 for contrast control is adjusted. The frequency f can be detected. That is, as shown in FIG. 5, when the component of the modulation frequency f is detected in the received light intensity P mk , the optical fiber 13-m can be compared with the optical fiber 13-m to which a lateral pressure is applied. The received light intensity P mk of the return light includes a frequency component (20 Hz or less) of polarization fluctuation due to fluctuation of the optical fiber cable as shown in FIG. 5, but this frequency component can be removed if necessary. That's fine.

ここで、受光強度の変調周波数fの成分は、パルス試験光を送出する周期Tでサンプリングし、1/(2T) の周波数まで検出することが可能である。サンプリング周期Tは短いほど測定時間を短縮し、高周波変調を検出することができるが、上記のようにパルス試験光の送出周期Tを最長の光ファイバを光が往復する時間2L/vよりも長くする場合には、変調周波数fは最長の光ファイバの線路長Lによって制限され、
20Hz<f<1/(2・2L/v)
の範囲で設定する。例えば、線路長20kmのとき、変調周波数fは20Hzから 2.5kHzの範囲で設定すればよい。
Here, the component of the modulation frequency f of the received light intensity can be sampled at a period T at which the pulse test light is transmitted and detected up to a frequency of 1 / (2T). The shorter the sampling period T, the shorter the measurement time and the higher frequency modulation can be detected. As described above, the transmission period T of the pulse test light is longer than the time 2 L / v during which light travels back and forth through the longest optical fiber. The modulation frequency f is limited by the line length L of the longest optical fiber,
20Hz <f <1 / (2.2L / v)
Set within the range. For example, when the line length is 20 km, the modulation frequency f may be set in the range of 20 Hz to 2.5 kHz.

(第1,第2の実施形態の変形)
心線対照用所外装置30は、光ファイバに側圧をかける代わりに、同様に偏波を変動させる構成であれば、例えば曲げを与える構成、捻りを与える構成であってもよい。また、曲げによって漏洩光が発生する従来の光ファイバであっても、側圧、曲げ、捻り等によって偏波が変動するので、本発明の方法および装置による心線対照が可能である。
(Modification of the first and second embodiments)
The external device 30 for contrasting the core wire may be configured to bend or twist, for example, as long as it is a configuration that similarly changes the polarization instead of applying a side pressure to the optical fiber. Further, even in a conventional optical fiber in which leakage light is generated by bending, the polarization changes due to side pressure, bending, twisting, and the like, so that the cords can be controlled by the method and apparatus of the present invention.

第1,第2の実施形態による心線対照は、OLTとONUが1対1で接続される光スプリッタ12を含まない光線路構成にも適用可能である。   The optical fiber line contrast according to the first and second embodiments can be applied to an optical line configuration that does not include the optical splitter 12 in which the OLT and the ONU are connected on a one-to-one basis.

インサービス中の光線路でない場合には、光カプラ14を介さず、心線対照用所内装置20を光ファイバ11に直接接続する構成としてもよい。   When the optical line is not in service, the optical fiber 11 may be directly connected to the optical fiber reference device 20 without using the optical coupler 14.

光ファイバ13−1〜13−mの距離情報がない場合、すなわち図2(b) に示す各戻り光がどの光ファイバからの戻り光であるか示す情報がない場合には、各光ファイバの遠端のごく近傍に心線対照用所外装置30を配置し、第1,第2の実施形態の手法を用いて予め、各光ファイバの戻り光の遅延時間との対応関係、すなわち光ファイバ13−1〜13−mの距離情報を求めておけばよい。また、ONU側からOTDR試験等を実施して光ファイバ13−1〜13−mの距離情報を取得しておいてもよい。   When there is no distance information of the optical fibers 13-1 to 13-m, that is, when there is no information indicating from which optical fiber each return light shown in FIG. The external device 30 for contrasting the core wire is arranged in the very vicinity of the far end, and the correspondence relationship with the delay time of the return light of each optical fiber in advance using the technique of the first and second embodiments, that is, the optical fiber What is necessary is just to obtain | require the distance information of 13-1 to 13-m. Further, distance information of the optical fibers 13-1 to 13-m may be acquired by performing an OTDR test or the like from the ONU side.

(第3の実施形態)
図6は、本発明の光ファイバ心線対照装置の第3の実施形態を示す。ここでは、作業者が現場で心線対照を行う場合の作業手順に基づいて説明するが、心線対照の基本的な原理については第1,第2の実施形態と同様であり、図1に示す光ファイバ心線対照装置の各部と対応するものは同一符号を付して説明を省略する。
(Third embodiment)
FIG. 6 shows a third embodiment of the optical fiber core line contrast device of the present invention. Here, the description will be made based on the work procedure when the operator performs the core contrast on site, but the basic principle of the core contrast is the same as in the first and second embodiments, and FIG. Components corresponding to those of the optical fiber core wire contrast device shown are denoted by the same reference numerals and description thereof is omitted.

図6において、OLTには複数の光ファイバ11−1〜11−3が接続され、それぞれに光カプラ14が挿入される。図面では省略しているが、複数の光ファイバ11−1〜11−3にはそれぞれ光スプリッタ12が接続され、それぞれ複数の光ファイバ13を介してONUが接続される。心線対照用所内装置20は、光源21から出力されるパルス試験光を、複数の光ファイバ11−1〜11−3にそれぞれ挿入された光カプラ14のいずれかに入力する光スイッチ27を備える。光スイッチ27は、信号制御・処理部25の制御により接続先の切り替えを行う。なお、光スイッチ27は、心線対照用所内装置20の外部に備えてもよいし、また所内の人の操作によってもよい。心線対照用所内装置20の信号制御・処理部25と心線対照用所外装置30の通信・表示部31は、通信ネットワーク32を介して通信を行う機能を含む。なお、心線対照用所内装置20と心線対照用所外装置30の通信形態は特に限定されるものではなく、既存の公衆無線通信システム等の利用が可能である   In FIG. 6, a plurality of optical fibers 11-1 to 11-3 are connected to the OLT, and an optical coupler 14 is inserted into each of them. Although not shown in the drawing, an optical splitter 12 is connected to each of the plurality of optical fibers 11-1 to 11-3, and an ONU is connected to each of the plurality of optical fibers 13. The intracardiac contrast device 20 includes an optical switch 27 that inputs the pulse test light output from the light source 21 to one of the optical couplers 14 inserted into each of the plurality of optical fibers 11-1 to 11-3. . The optical switch 27 switches connection destinations under the control of the signal control / processing unit 25. In addition, the optical switch 27 may be provided outside the in-house device 20 for controlling the core wire, or may be operated by a person in the in-house. The signal control / processing unit 25 of the intracardiac contrast device 20 and the communication / display unit 31 of the core contrast external device 30 include a function of performing communication via the communication network 32. In addition, the communication form of the core wire contrast in-house device 20 and the core wire contrast external device 30 is not particularly limited, and an existing public wireless communication system or the like can be used.

作業者は、現場で光ファイバ11−1に接続される心線対照の光ファイバ(ここでは13−m)に対して、心線対照用所外装置30を用いて偏波変動を与えるとともに、通信・表示部31から通信ネットワーク32を介して心線対照用所内装置20の信号制御・処理部25に、心線対照の光ファイバ情報および試験指示を送信する操作を行う。心線対照用所内装置20の信号制御・処理部25は、通信ネットワーク32を介して心線対照用所外装置20からの信号を受信すると、光ファイバ11−1〜11−3に挿入された光カプラ14の試験ポートと光スイッチ27のポートの対応関係情報をもつデータベース26を参照し、心線対照の光ファイバ13−mの情報に基づいてパルス試験光を入力する光ファイバ11−1を特定し、光スイッチ27を制御してパルス試験光が光ファイバ11−1に入力されるように制御する。   The operator gives a polarization fluctuation to the optical fiber (13-m in this case) that is connected to the optical fiber 11-1 in the field using the external apparatus 30 for controlling the optical fiber, An operation of transmitting optical fiber information and test instructions for optical fiber contrast is performed from the communication / display unit 31 via the communication network 32 to the signal control / processing unit 25 of the intra-cardiac optical device 20. When the signal control / processing unit 25 of the intracardiac contrast device 20 receives a signal from the core contrast external device 20 via the communication network 32, the signal control / processing unit 25 is inserted into the optical fibers 11-1 to 11-3. By referring to the database 26 having correspondence information between the test port of the optical coupler 14 and the port of the optical switch 27, the optical fiber 11-1 to which the pulse test light is input based on the information of the optical fiber 13-m of the core line contrast In particular, the optical switch 27 is controlled to control the pulse test light to be input to the optical fiber 11-1.

次に、第1,第2の実施形態で説明したように、心線対照用所内装置20の信号制御・処理部25は、例えば図7に示す戻り光の受光強度の周波数解析例のように、受光強度に変動が生じている戻り光を検出し、パルス試験光を送出してから当該戻り光が検出されるまでの時間から、戻り光が発生する光ファイバ長を判定し、さらにデータベース26を参照して対応する光ファイバ13−mの心線番号を取得する。この心線番号の情報は、心線対照用所内装置20の信号制御・処理部25から通信ネットワーク32を介して心線対照用所外装置30の通信・表示部31に転送され、光ファイバ13−mの心線番号を表示させる。これにより、作業者は、心線対照用所外装置30を用いて偏波変動を与えた光ファイバ13−mを識別することができる。   Next, as described in the first and second embodiments, the signal control / processing unit 25 of the intracardiac contrast device 20 performs, for example, a frequency analysis example of the received light intensity of the return light illustrated in FIG. Then, the return light in which the received light intensity varies is detected, the length of the optical fiber in which the return light is generated is determined from the time from when the pulse test light is sent to when the return light is detected. To obtain the core number of the corresponding optical fiber 13-m. The information of the core number is transferred from the signal control / processing unit 25 of the intra-core device 20 for core-line comparison to the communication / display unit 31 of the external device 30 for core-line control via the communication network 32, and the optical fiber 13. -M core number is displayed. As a result, the operator can identify the optical fiber 13-m having the polarization fluctuation by using the external device 30 for controlling the core wire.

なお、作業者が光ファイバ11−1に接続される光ファイバ13−mの心線対照を行う際に、間違えて例えば光ファイバ11−2に接続される光ファイバに偏波変動を与え、光ファイバ11−1に接続される光ファイバ13−mを心線対照として心線対照用所内装置20に通知した場合には、次のようになる。心線対照用所内装置20の信号制御・処理部25は、パルス試験光を光ファイバ11−2に送出し、その戻り光の受光強度を変動をモニタする。しかし、作業者は、光ファイバ11−1に接続される光ファイバ13−mに偏波変動を与えており、光ファイバ11−2に接続される光ファイバには何ら偏波変動は与えていないので、図7(2) に示すように、心線対照用所内装置20では受光強度が変動する戻り光を観測できない。この場合には、心線対照用所内装置20は心線対照用所外装置30に対して、試験を実施した光線路には心線対照の光ファイバが存在しないことを通知する。   In addition, when an operator performs the optical fiber 13-m connected to the optical fiber 11-1, the optical fiber 13-m is mistakenly given, for example, a polarization fluctuation is given to the optical fiber connected to the optical fiber 11-2. When the optical fiber 13-m connected to the fiber 11-1 is notified to the in-core device 20 for core line control as the core wire reference, the following is performed. The signal control / processing unit 25 of the cord-line contrast in-house device 20 sends pulse test light to the optical fiber 11-2, and monitors the variation of the received light intensity of the return light. However, the operator gives a polarization fluctuation to the optical fiber 13-m connected to the optical fiber 11-1, and gives no polarization fluctuation to the optical fiber connected to the optical fiber 11-2. Therefore, as shown in FIG. 7 (2), the intracenter device 20 for contrast control cannot observe the return light whose received light intensity varies. In this case, the in-core device 20 for controlling the core wire notifies the out-of-device device 30 for checking the core wire that there is no optical fiber for controlling the core wire in the optical line subjected to the test.

本発明の光ファイバ心線対照装置の第1の実施形態を示す図。The figure which shows 1st Embodiment of the optical fiber core wire contrast apparatus of this invention. パルス試験光と戻り光を示す図。The figure which shows pulse test light and return light. 側圧による光ファイバの変形例を示す図。The figure which shows the modification of the optical fiber by a side pressure. 本発明の第2の実施形態における戻り光の受光強度の時間変動例を示す図。The figure which shows the example of the time fluctuation | variation of the light reception intensity | strength of the return light in the 2nd Embodiment of this invention. 本発明の第2の実施形態における戻り光の受光強度の周波数解析例を示す図。The figure which shows the frequency analysis example of the light reception intensity | strength of the return light in the 2nd Embodiment of this invention. 本発明の光ファイバ心線対照装置の第3の実施形態を示す図。The figure which shows 3rd Embodiment of the optical fiber core wire contrast apparatus of this invention. 本発明の第3の実施形態における戻り光の受光強度の周波数解析例を示す図。The figure which shows the frequency analysis example of the light reception intensity | strength of the return light in the 3rd Embodiment of this invention. 従来の光ファイバ心線対照装置の構成例を示す図。The figure which shows the structural example of the conventional optical fiber core wire contrast apparatus.

符号の説明Explanation of symbols

OLT 局側終端装置
ONU ユーザ側終端装置
11,13 光ファイバ
12 光スプリッタ
14 光カプラ
15 試験光遮断フィルタ
20 心線対照用所内装置
21 光源
22 光カプラ
23 偏光子
24 光検出器(PD)
25 信号制御・処理部
26 データベース
27 光スイッチ
30 心線対照用所外装置
31 通信・表示部
32 通信ネットワーク
OLT Station-side terminator ONU User-side terminator 11, 13 Optical fiber 12 Optical splitter 14 Optical coupler 15 Test light blocking filter 20 Optical fiber reference device 21 Light source 22 Optical coupler 23 Polarizer 24 Photo detector (PD)
25 Signal Control / Processing Unit 26 Database 27 Optical Switch 30 External Device for Control of Core Wire 31 Communication / Display Unit 32 Communication Network

Claims (2)

一方の光ファイバと光ファイバ長が互いに異なる他方の複数の光ファイバが光スプリッタを介して接続され、一方の光ファイバの一端からパルス試験光を送出し、他方の複数の光ファイバの他端でそれぞれ反射して一方の光ファイバの一端に戻り、その戻り光の時間位置に応じて他方の複数の光ファイバが判別されるときに、その戻り光の時間位置に対する所定の偏光成分の受光強度を検出し、他方の複数の光ファイバの中から作業対象の光ファイバを特定する光ファイバ心線対照方法において、
前記パルス試験光を、前記一方の光ファイバと前記他方の複数の光ファイバのうち最長の光ファイバを合せた光往復時間よりも長く設定された送出周期Tで送出し、
前記作業対象の光ファイバの他端で側圧または曲げまたは捻りを加えて、前記パルス試験光および前記戻り光に、前記パルス試験光の送出周期Tに対して1/(2T)より低く、かつ20Hzより高く設定された変調周波数の偏波変動を与え、
前記一方の光ファイバの一端で、前記パルス試験光を送出してから前記作業対象光ファイバに対応する時間位置の前記戻り光の所定の偏光成分の受光強度を前記送出周期Tで複数回サンプリングし、その受光強度の時間変動を周波数解析し、前記作業対象光ファイバに与えた偏波変動前記変調周波数成分の有無を検出して前記偏波変動を与えた光ファイバを特定する
ことを特徴とする光ファイバ心線対照方法。
One optical fiber and another optical fiber having different optical fiber lengths are connected via an optical splitter, and pulse test light is transmitted from one end of one optical fiber, and the other end of the other optical fibers is returning to one end of the hand of the optical fiber and reflected respectively, in accordance with the time position of the return light when the other of the plurality of optical fibers is determined, the received light intensity of the predetermined polarization component to the time position of the return beam In the optical fiber core contrast method for detecting the optical fiber and identifying the optical fiber to be worked from among the other plurality of optical fibers,
The pulse test light is transmitted at a transmission period T set longer than an optical reciprocation time of the longest optical fiber of the one optical fiber and the other plurality of optical fibers,
A lateral pressure, bending, or twisting is applied to the other end of the optical fiber to be worked, and the pulse test light and the return light are lower than 1 / (2T) with respect to the transmission period T of the pulse test light and 20 Hz. Gives the polarization fluctuation of the modulation frequency set higher,
At one end of the one optical fiber, after receiving the pulse test light, the received light intensity of a predetermined polarization component of the return light at a time position corresponding to the work optical fiber is sampled a plurality of times at the transmission period T. , that the frequency analysis of the time variation of the received light intensity, identifying the optical fiber gave Kihen wave fluctuations before checking for possible component of the modulation frequency of the polarization fluctuation given to the work object optical fiber An optical fiber core contrast method characterized.
一方の光ファイバと光ファイバ長が互いに異なる他方の複数の光ファイバが光スプリッタを介して接続され、一方の光ファイバの一端からパルス試験光を送出し、他方の複数の光ファイバの他端でそれぞれ反射して一方の光ファイバの一端に戻り、その戻り光の時間位置に応じて他方の複数の光ファイバが判別されるときに、その戻り光の時間位置に対する所定の偏光成分の受光強度を検出し、他方の複数の光ファイバの中から作業対象の光ファイバを特定する光ファイバ心線対照装置において、
前記パルス試験光を、前記一方の光ファイバと前記他方の複数の光ファイバのうち最長の光ファイバを合せた光往復時間よりも長く設定された送出周期Tで送出するパルス試験光送出手段と、
前記作業対象の光ファイバの他端で側圧または曲げまたは捻りを加えて、前記パルス試験光および前記戻り光に、前記パルス試験光の送出周期Tに対して1/(2T)より低く、かつ20Hzより高く設定された変調周波数の偏波変動を与える手段と、
前記一方の光ファイバの一端で、前記パルス試験光を送出してから前記作業対象光ファイバに対応する時間位置の前記戻り光の所定の偏光成分の受光強度を前記送出周期Tで複数回サンプリングし、その受光強度の時間変動を周波数解析し、前記作業対象光ファイバに与えた偏波変動前記変調周波数成分の有無を検出して前記偏波変動を与えた光ファイバを特定する心線対照手段と
を備えたことを特徴とする光ファイバ心線対照装置。
One optical fiber and another optical fiber having different optical fiber lengths are connected via an optical splitter, and pulse test light is transmitted from one end of one optical fiber, and the other end of the other optical fibers is returning to one end of the hand of the optical fiber and reflected respectively, in accordance with the time position of the return light when the other of the plurality of optical fibers is determined, the received light intensity of the predetermined polarization component to the time position of the return beam In the optical fiber core-line contrast device that detects the optical fiber to be worked from among the other plurality of optical fibers,
A pulse test light sending means for sending the pulse test light at a sending cycle T set longer than an optical reciprocation time of the longest optical fiber of the one optical fiber and the other plurality of optical fibers;
A lateral pressure, bending, or twisting is applied to the other end of the optical fiber to be worked, and the pulse test light and the return light are lower than 1 / (2T) with respect to the transmission period T of the pulse test light and 20 Hz. Means for providing polarization fluctuations at a higher modulation frequency;
At one end of the one optical fiber, after receiving the pulse test light, the received light intensity of a predetermined polarization component of the return light at a time position corresponding to the work optical fiber is sampled a plurality of times at the transmission period T. , core wire that frequency analysis of the time variation of the received light intensity, identifying the optical fiber gave Kihen wave fluctuations before checking for possible component of the modulation frequency of the polarization fluctuation given to the work object optical fiber An optical fiber optical fiber contrast device comprising: a contrast means.
JP2008091289A 2008-03-31 2008-03-31 Optical fiber core contrast method and apparatus Active JP4855435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091289A JP4855435B2 (en) 2008-03-31 2008-03-31 Optical fiber core contrast method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091289A JP4855435B2 (en) 2008-03-31 2008-03-31 Optical fiber core contrast method and apparatus

Publications (2)

Publication Number Publication Date
JP2009244610A JP2009244610A (en) 2009-10-22
JP4855435B2 true JP4855435B2 (en) 2012-01-18

Family

ID=41306563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091289A Active JP4855435B2 (en) 2008-03-31 2008-03-31 Optical fiber core contrast method and apparatus

Country Status (1)

Country Link
JP (1) JP4855435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392914B2 (en) * 2010-02-19 2014-01-22 日本電信電話株式会社 Optical fiber measuring device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566004B2 (en) * 1989-03-02 1996-12-25 古河電気工業株式会社 Optical fiber cable identification method and its identification device
JPH04204805A (en) * 1990-11-30 1992-07-27 Furukawa Electric Co Ltd:The Method for identifying optical cable
JPH05142096A (en) * 1991-11-21 1993-06-08 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for collating optical cable
JP3324612B2 (en) * 1992-07-31 2002-09-17 日本電信電話株式会社 Core line contrast method of branch type optical line
JP2001215168A (en) * 2000-02-01 2001-08-10 Fujikura Ltd Method and system for comparing and inspecting optical fiber
JP2004077233A (en) * 2002-08-14 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> Optical fiber pair identifying method and device therefor
JP2004093407A (en) * 2002-08-30 2004-03-25 Nippon Telegraph & Telephone East Corp Apparatus and method for identifying coated optical fiber
JP2006133176A (en) * 2004-11-09 2006-05-25 Nippon Telegr & Teleph Corp <Ntt> Core wire contrast system and the core wire contrast method

Also Published As

Publication number Publication date
JP2009244610A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP3282242B1 (en) Optical time-domain reflectometer
CN102571199B (en) A kind of fiber failure detection method and device
CN104202084B (en) A kind of device and method monitoring TDM optical network link failure
JP4324581B2 (en) Optical fiber condition monitoring device and method in optical network
CN104655591B (en) A kind of optical cable generaI investigation device and method of detection beating position
CN107332101B (en) It is a kind of can Dynamic Execution optical time domain reflection detection component and detection method
US7099581B2 (en) OTDR arrangement for detecting faults in an optical transmission system on a span by span basis
WO2014002741A1 (en) Optical path monitoring method and optical path monitoring system
JP2008294528A (en) Device and method for monitoring and measuring optical fiber fault on passive optical network
JP6196124B2 (en) Optical fiber transmission line monitoring system
CN108879305A (en) A kind of distant pump pumping source device and control method with OTDR function
CN100479353C (en) Optical cable line real-time monitoring system and its method
US12061131B2 (en) Judgment device and judgment method
CN104205676A (en) Optical line terminal, optical transceiver module, system, and fiber detection method
CN105959058B (en) A kind of device and method of quick detection TDM optical network link failure
Urban et al. OTM-and OTDR-based cost-efficient fiber fault identification and localization in passive optical network
JP4855435B2 (en) Optical fiber core contrast method and apparatus
TWI359577B (en)
JP4819165B2 (en) Optical communication system and monitoring method thereof
Yuksel et al. Centralised optical monitoring of tree-structured passive optical networks using a Raman-assisted OTDR
US11105710B2 (en) Single OTDR measurement for a plurality of fibers
JP5907907B2 (en) Optical line characteristic analyzer and analysis method thereof
Cen et al. Advanced fault-monitoring scheme for ring-based long-reach optical access networks
JP5215166B2 (en) Optical fiber core contrast method and apparatus
CN219514082U (en) Multi-wavelength optical time domain reflectometer capable of carrying out optical test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350