JP4790284B2 - Steel continuous casting method - Google Patents
Steel continuous casting method Download PDFInfo
- Publication number
- JP4790284B2 JP4790284B2 JP2005050122A JP2005050122A JP4790284B2 JP 4790284 B2 JP4790284 B2 JP 4790284B2 JP 2005050122 A JP2005050122 A JP 2005050122A JP 2005050122 A JP2005050122 A JP 2005050122A JP 4790284 B2 JP4790284 B2 JP 4790284B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- steel
- less
- casting
- heat removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
本発明は、鋼の連続鋳造方法に関し、詳しくは、鋼とくに極低炭素軟鋼の連続鋳造鋳片を表面手入なしで次工程の熱間圧延に供することができる鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting method of steel, and more particularly, to a continuous casting method of steel in which a continuous cast slab of steel, particularly extremely low carbon mild steel, can be subjected to hot rolling in the next step without surface maintenance.
自動車用外板を主用途とする極低炭素軟鋼は、極めて清浄な表面品質が要求されるため、従来、極低炭素軟鋼の連続鋳造スラブは、その全数に対し、スラブ精整ライン(非特許文献1参照)にて溶削あるいはグラインダ研削などの表面手入を施した後、熱間圧延に供されている。
極低炭素軟鋼は量産鋼種であり、従来はこれを全数表面手入しているため、スラブ精整ラインの負荷が大きく、またコスト削減の阻害要因となっているという問題があった。しかし、極低炭素軟鋼スラブを他鋼種と同様の判定基準によって表面手入の実行有無に振り分けた場合を想定すると、大きな歩留り低下につながる虞があるので、極低炭素軟鋼ではスラブ無手入化に踏み切ることができず、前記問題は未解決のままであった。なお、極低炭素軟鋼以外の鋼に関しては、無手入材では品質ばらつきが比較的大きく、一方、手入材では品質は安定しているが過剰サービス傾向となりがちであり、手入なしでも品質を安定させうる連続鋳造方法の確立が望まれていた。 Extremely low carbon mild steel is a mass-produced steel grade, and all of them have been surface-treated in the past. Therefore, there has been a problem that the load on the slab finishing line is large and is an obstacle to cost reduction. However, assuming that ultra-low carbon mild steel slabs are sorted according to the same criteria as other steel types for whether surface maintenance is performed, there is a risk of significant yield reduction. The problem remains unresolved. Regarding steels other than ultra-low carbon mild steel, quality variation is relatively large with untreated materials, while quality is stable with care materials, but tends to be over-serviced. It has been desired to establish a continuous casting method that can stabilize the temperature.
そこで、本発明は、鋼とくに極低炭素軟鋼をスラブ無手入化しても冷間圧延後に手入材に比肩する表面品質合格率を確保しうる鋼の連続鋳造方法を提供することを目的とする。ここで、極低炭素軟鋼とは、C:0.001mass%以下を含有する鋼を指す。 Accordingly, an object of the present invention is to provide a continuous casting method of steel capable of ensuring a surface quality pass rate comparable to that of a treated material after cold rolling even if steel, particularly extremely low carbon mild steel, is made free of slabs. To do. Here, the ultra-low carbon mild steel refers to steel containing C: 0.001 mass% or less.
前記目的を達成した本発明は、鋼を鋳造幅1450mm未満で連続鋳造するにあたり、下記(1)式で定義される有効Ar量:5L/ton以下の操業条件で鋳造し、該鋳造中に下記(2)式で定義される偏流率を測定し、該測定値が6.0%以下の鋳片はこれを無手入れ材とすることを特徴とする鋼の連続鋳造方法である。
また、本発明は、鋼を鋳造幅1450mm以上で連続鋳造するにあたり、ノズル浸漬深さ:290mm未満、下記(1)式で定義される有効Ar量:5L/ton以下の操業条件で鋳造し、該鋳造中に下記(2)式で定義される偏流率を測定し、該測定値が6.0%以下の鋳片はこれを無手入れ材とすることを特徴とする鋼の連続鋳造方法である。
The present invention that has achieved the above object is to cast steel under an operating condition of an effective Ar amount defined by the following formula (1): 5 L / ton or less during continuous casting of steel with a casting width of less than 1450 mm. The drift rate defined by the formula (2) is measured, and the slab whose measured value is 6.0% or less is a non-care material. This is a continuous casting method for steel.
Further, in the present invention, when continuously casting steel with a casting width of 1450 mm or more, the nozzle immersion depth is less than 290 mm, the effective Ar amount defined by the following equation (1): 5 L / ton or less, under the operating conditions, A drift rate defined by the following formula (2) is measured during the casting, and a slab having a measured value of 6.0% or less is treated as a non-care material. is there.
記
有効Ar量=ノズル内溶鋼への単位時間あたりのArガス吹き込み量/スループット(単位時間あたりの鋳込み溶鋼量)(L/ton)‥‥(1)
偏流率=|2面抜熱量−4面抜熱量|/2-4面平均抜熱量×100(%)‥‥(2)
ここで、2面と4面は、鋳型長辺方向両端面(鋳型の両短辺面)のいずれか一方と他方を指す。
Effective Ar amount = Ar gas blow amount per unit time into molten steel in nozzle / throughput (amount of cast molten steel per unit time) (L / ton) (1)
Diffusion rate = | Two-surface heat removal amount−4-surface heat removal amount // 2−4 surface average heat removal amount × 100 (%) (2)
Here, the 2nd surface and the 4th surface indicate either one or the other of both end surfaces in the mold long side direction (both short side surfaces of the mold).
本発明によれば、連続鋳造製の極低炭素軟鋼スラブ無手入材の冷間圧延後の表面欠陥による格落率が従来の同鋼スラブ手入材のそれ以下になる。よって極低炭素軟鋼スラブの大部分を無手入化することができるようになり、スラブ精整ラインの負荷軽減およびコスト削減を達成することができる。なお、極低炭素軟鋼以外の鋼に適用した場合も同様の効果を得ることが可能である。 According to the present invention, the rate of degradation due to surface defects after cold rolling of ultra-low carbon mild steel slabs that are continuously cast is less than that of conventional slabs. Therefore, most of the ultra-low carbon mild steel slab can be made free, and the load reduction and cost reduction of the slab finishing line can be achieved. The same effect can be obtained when applied to steels other than ultra-low carbon mild steel.
本発明者は前記目的を達成するために、無手入可能となるための鋳造条件を模索した。そして従来の手入省略条件には考慮されていなかったところの、実際の鋳型内溶鋼流動に大きく関わる指標として、以下の三要因を用いるのが有効であると考えた。
[1] 偏流率:
鋼の連続鋳造時には、例えば図1に示すように、二孔の浸漬ノズル1の一孔から鋳型2の相対する二短辺面の一方(例えば2面)へ向かう吐出流Fと、他孔から他方(例えば4面)へ向かう吐出流F'とで、溶鋼流速に差が生じる、すなわち偏流が発生する場合が往々にしてある。偏流が発生すると、局所的なメニスカス流速不足およびパウダ溶融阻害が生じ、スラブ表面欠陥が助長される。また、偏流発生時には溶鋼流速の大きい側(例えば2面側)の抜熱量(鋳型冷却水による溶鋼からの抜熱量)は、反対側(例えば4面側)のそれよりも大きくなる。つまり、偏流が発生すると相対する二短辺面同士で抜熱量に差が生じる。この差は偏流の程度が大きいほど大きい。よって、偏流率を前記(2)式のごとく抜熱量と関係づけて定義し、これを指標とすれば、偏流の程度ひいてはスラブ表面欠陥の程度を推定できると考えた。
In order to achieve the above object, the present inventor has sought for casting conditions for enabling maintenance. And I thought that it was effective to use the following three factors as an index largely related to the actual flow of molten steel in the mold, which was not considered in the conventional condition for omitting care.
[1] Drift rate:
At the time of continuous casting of steel, for example, as shown in FIG. 1, the discharge flow F from one hole of the two-hole immersion nozzle 1 toward one of the two short side surfaces facing the mold 2 (for example, two surfaces) and the other hole There is often a case where a difference occurs in the flow velocity of the molten steel, that is, uneven flow occurs between the discharge flow F ′ toward the other side (for example, four sides). When drift occurs, local meniscus flow velocity deficiency and powder melting inhibition occur, and slab surface defects are promoted. In addition, when drift occurs, the amount of heat removal (the amount of heat removed from the molten steel by the mold cooling water) on the side where the molten steel flow velocity is large (for example, the second surface side) is larger than that on the opposite side (for example, the four surfaces). That is, when a drift occurs, a difference in heat removal occurs between the two short side surfaces facing each other. This difference increases as the degree of drift increases. Therefore, it was considered that the drift rate was defined in relation to the amount of heat removed as in the above equation (2), and if this was used as an index, the degree of drift and thus the degree of slab surface defects could be estimated.
[2] 有効Ar量:
鋼の連続鋳造では、浸漬ノズルのノズル詰まり防止および鋳型内溶鋼中の介在物の浮上促進のために、ノズル内溶鋼へのArガス吹き込みが行われる。このとき、前記(1)式で定義される有効Ar量が大きすぎても小さすぎても、図2の右半分に示すように、吐出流F'の短辺面到達時の流動が不安定になり、大きすぎる場合は気泡がはじけて玉地金が発生するなどにより、表面欠陥が助長され、小さすぎる場合は介在物浮上効果が不足して内部欠陥が助長される。よって、表面欠陥を抑制して無手入化を図るためには有効Ar量をある上限以下に規制することが肝要であると考えた。なお下限規制は内部欠陥抑制に対しては有効であるが、表面欠陥に対しては効果に乏しいと考えられる。
[2] Effective Ar amount:
In the continuous casting of steel, Ar gas is blown into the molten steel in the nozzle in order to prevent nozzle clogging of the immersion nozzle and to promote the floating of inclusions in the molten steel in the mold. At this time, even when the effective Ar amount defined by the equation (1) is too large or too small, as shown in the right half of FIG. 2, the flow when the discharge flow F ′ reaches the short side surface is unstable. If it is too large, the surface defect is promoted by the bubble bursting and the ball ingot is generated, and if it is too small, the inclusion flotation effect is insufficient and the internal defect is promoted. Therefore, in order to suppress surface defects and achieve maintenance, it was considered important to limit the effective Ar amount to a certain upper limit. The lower limit is effective for suppressing internal defects, but is considered to be ineffective for surface defects.
[3] 鋳造幅およびノズル浸漬深さ:
鋳造幅が広い場合、ノズル浸漬深さ(ノズルを浸漬した状態でのメニスカスからノズル孔中心までの距離)が深いと、浸漬ノズル近傍(長辺面中央部)の凝固殻と溶鋼との界面における溶鋼流速が不足し、凝固殻にトラップされる介在物量が増えて、表面欠陥(あるいは表面下潜在欠陥)の増加につながる。そこで、表面欠陥を抑制して無手入化を図るためには、鋳造幅がある程度以上大きい場合、ノズル浸漬深さをある程度以下に規制することが必要であると考えた。
[3] Casting width and nozzle immersion depth:
When the casting width is wide, if the nozzle immersion depth (distance from the meniscus to the center of the nozzle hole when the nozzle is immersed) is deep, at the interface between the solidified shell near the immersion nozzle (long side surface center) and the molten steel The molten steel flow rate is insufficient, and the amount of inclusions trapped in the solidified shell increases, leading to an increase in surface defects (or subsurface latent defects). Therefore, in order to suppress surface defects and eliminate the need for maintenance, it was considered necessary to regulate the nozzle immersion depth to a certain extent when the casting width is larger than a certain extent.
上記の考えに基いて、極低炭素軟鋼の連続鋳造スラブの無手入実験を行った。この実験では、極低炭素軟鋼の連続鋳造スラブから無作為に選んだ複数のスラブを無手入のまま熱間圧延後冷間圧延し、得られた冷間圧延コイルについて、長さ100mあたり表面欠陥が1個でも検出された場合、そのコイルに対応するスラブをNGスラブとし、異なるヒートのNGスラブ比率と上記三要因の関係を解析した。このNGスラブ判定基準は冷間圧延後の検査での通常の表面品質合否判定基準よりも格段に厳しいものである。鋳造幅1450mm以上の広幅鋳造の場合についての結果を図3に示す。なお、図3では、NGスラブ比率に代えて、実験対象としたスラブ全部に対するNGスラブ比率をベースとした相対比であるNGスラブ比率インデックスを示した。 Based on the above idea, an uncontrolled experiment was conducted on a continuous cast slab of ultra-low carbon mild steel. In this experiment, a plurality of slabs randomly selected from continuous cast slabs of ultra-low carbon mild steel were hot-rolled and then cold-rolled without care, and the obtained cold-rolled coils were subjected to a surface per 100 m length. When even one defect was detected, the slab corresponding to the coil was determined as an NG slab, and the relationship between the NG slab ratio of different heats and the above three factors was analyzed. This NG slab criterion is much stricter than the normal surface quality acceptance criterion in the inspection after cold rolling. The result in the case of wide casting with a casting width of 1450 mm or more is shown in FIG. In FIG. 3, instead of the NG slab ratio, an NG slab ratio index, which is a relative ratio based on the NG slab ratio with respect to all the slabs to be tested, is shown.
図3より、NGスラブ比率インデックスが0.0であったヒートは、条件A(ノズル浸漬深さ:290mm未満)、条件B(偏流率:6.0%以下)、条件C(有効Ar量:5.0L/ton以下)の三条件がすべて満たされた(「満たす」は「☆」で示す)ものである。残り(条件A〜Cの1つ又は2つ以上が満たされていないもの)のうち、条件A,Bを満たし、条件Cは満たさない(「満たさない」は「★」で示す)ヒートではNGスラブ比率インデックスが0.4である。さらにその残りのうち条件Aは満たすが条件Bは満たさず、条件Cについては満たす場合と満たさない場合のいずれであるか未判別(「未判別」は「−」で示す)であるヒートではNGスラブ比率インデックスが1.1である。これらを除いた残り、すなわち条件Aを満たさず条件B,Cについては未判別であるヒートでは、NGスラブ比率インデックスは2.1である。 From FIG. 3, the heat having an NG slab ratio index of 0.0 is condition A (nozzle immersion depth: less than 290 mm), condition B (drift rate: 6.0% or less), condition C (effective Ar amount: 5.0 L / ton or less) is satisfied (“satisfy” is indicated by “☆”). Of the remaining (one or more of the conditions A to C are not satisfied), the conditions A and B are satisfied, and the condition C is not satisfied (“not satisfied” is indicated by “★”). The slab ratio index is 0.4. Further, among the remaining conditions, the condition A is satisfied but the condition B is not satisfied, and the condition C is not determined whether it is satisfied or not satisfied (“unidentified” is indicated by “−”). The slab ratio index is 1.1. In the heat excluding these, that is, the heat that does not satisfy the condition A and has not yet been determined for the conditions B and C, the NG slab ratio index is 2.1.
すなわち、この結果は、要因〔3〕の鋳造幅が1450mm以上の広幅鋳造の場合、要因〔3〕のノズル浸漬深さが290mm未満であること(条件A)、要因〔1〕の偏流率が6.0%以下であること(条件B)、要因〔2〕の有効Ar量が5.0L/ton以下であること(条件C)、の三条件を満たすヒートからのスラブの無手入材では、冷間圧延後に表面欠陥が発生せず、一方、これら三条件のいずれか一つ以上が満たされないヒートからのスラブの無手入材では、冷間圧延後に表面欠陥が発生する場合があり、しかも、満足しない条件の数が二、三と増すにつれて、その発生頻度は増加することを示しており、このことから、広幅鋳造の場合、上記三要因に係る三条件を満たすヒートからのスラブは、これを無手入材としても、冷間圧延後の表面品質検査での格落率が悪化(上昇)することはないことがわかった。 That is, this result shows that, in the case of wide casting where the casting width of the factor [3] is 1450 mm or more, the nozzle immersion depth of the factor [3] is less than 290 mm (condition A), and the drift rate of the factor [1] is Slab free material from heat satisfying the three conditions of 6.0% or less (Condition B) and the effective Ar amount of the factor [2] is 5.0 L / ton or less (Condition C) However, surface defects do not occur after cold rolling, while surface defects may occur after cold rolling in slab-free materials from heat that do not satisfy any one or more of these three conditions. In addition, as the number of unsatisfied conditions increases to a few, the frequency of occurrence increases. From this, in the case of wide casting, slabs from heat that satisfy the three conditions according to the above three factors are shown. Even if this is not necessary, It was found that the downgrade rate in the surface quality inspection after rolling did not deteriorate (increase).
また、鋳造幅1450mm未満の狭幅鋳造の場合についても同様の解析を行ったところ、この場合には、条件Aは解除されること、すなわち、ノズル浸漬深さが290mm未満であるか以上であるかにかかわらず、偏流率が6.0%以下(条件B)、有効Ar量が5.0L/ton以下(条件C)の二条件を満たすヒートからのスラブは、これを無手入材としても、冷間圧延後の表面品質検査での格落率が悪化(上昇)することはないことがわかった。 Moreover, when the same analysis was performed also in the case of narrow casting with a casting width of less than 1450 mm, in this case, the condition A is canceled, that is, the nozzle immersion depth is less than or equal to 290 mm. Regardless of this, slabs from heat that satisfy the two conditions of a drift rate of 6.0% or less (Condition B) and an effective Ar amount of 5.0 L / ton or less (Condition C) should be used as a maintenance-free material. However, it was found that the downgrade rate in the surface quality inspection after cold rolling did not deteriorate (increase).
上記知見に基づいて、本発明では、鋼を鋳造幅1450mm未満で連続鋳造するにあたり、前記(1)式で定義される有効Ar量:5L/ton以下の操業条件で鋳造し、該鋳造中に前記(2)式で定義される偏流率を測定し、該測定値が6.0%以下の鋳片はこれを無手入れ材とすることとし、また、鋼を鋳造幅1450mm以上で連続鋳造するにあたり、ノズル浸漬深さ:290mm未満、前記(1)式で定義される有効Ar量:5L/ton以下の操業条件で鋳造し、該鋳造中に前記(2)式で定義される偏流率を測定し、該測定値が6.0%以下の鋳片はこれを無手入れ材とすることとしたのである。 Based on the above knowledge, in the present invention, when continuously casting steel with a casting width of less than 1450 mm, the effective Ar amount defined by the above formula (1) is cast under operating conditions of 5 L / ton or less, and during the casting, The drift rate defined by the above equation (2) is measured, and a slab whose measured value is 6.0% or less is to be made a maintenance-free material, and steel is continuously cast with a casting width of 1450 mm or more. In this case, the nozzle immersion depth is less than 290 mm, the effective Ar amount defined by the formula (1) is cast under the operating condition of 5 L / ton or less, and the drift rate defined by the formula (2) is set during the casting. The slab of which the measured value was 6.0% or less was determined to be a maintenance-free material.
なお、偏流率については、これを制御しながら鋳造できればそれに越したことはないが、実際にはその制御は極めて困難であるため、監視項目とせざるを得なかった。この偏流率を与える(2)式の抜熱量は、対向二短辺面における鋳型冷却水の単位通水量あたりの水温上昇量から求めることができる。 As for the drift rate, if it can be cast while controlling this, it will not exceed that, but in reality it is extremely difficult to control, so it has to be a monitoring item. The amount of heat removed from equation (2) that gives this drift rate can be determined from the amount of increase in the water temperature per unit water flow rate of the mold cooling water on the opposing two short sides.
本発明に則り、極低炭素軟鋼の連続鋳造スラブの無手入化を実施した。これまでに実施した広幅鋳造分について冷間圧延後の検査ラインで通常どおりに表面品質の合否判定を行って求めた格落率を、従来の手入材についての実績と比較し、従来をベースとした相対比である格落率指標にて図4に示す。図示のように、本発明に則って無手入化した場合、格落率は従来の手入材に比し良化(低減)した。 In accordance with the present invention, ultra-low carbon mild steel continuous cast slabs were made free of maintenance. Compared with the results of conventional care materials, the rate of deterioration obtained by performing pass / fail judgment of surface quality as usual on the inspection line after cold rolling for the wide castings carried out so far FIG. 4 shows the disability rate index as a relative ratio. As shown in the figure, when the maintenance was made in accordance with the present invention, the rate of decline was improved (reduced) compared to the conventional maintenance materials.
これは、本発明の実施により、極低炭素軟鋼の連続鋳造操業条件が厳格に規制された結果、スラブ表面疵の深さが熱間圧延デスケーリングにおいてほとんど除去されうる程度にまで低減したためであろうと考えられる。これに対し、従来の手入材のスラブ鋳造条件では、溶削等の手入に次ぐ熱間圧延デスケーリングによっても残存する程度の深さを有するスラブ表面疵あるいは表面下潜在欠陥が発生する場合が少なくなかったのであろう。 This is because the implementation of the present invention strictly controlled the continuous casting operation conditions of ultra-low carbon mild steel, and as a result, the slab surface flaw depth was reduced to such an extent that it could be almost removed by hot rolling descaling. It's thought to be. On the other hand, in the case of conventional slab casting conditions for slabs, slab surface defects or subsurface latent defects with a depth that remains even after hot rolling descaling after care such as cutting There must have been many.
1 浸漬ノズル
2 鋳型
3 溶鋼
F 吐出流
1 Immersion nozzle 2 Mold 3 Molten steel F Discharge flow
Claims (2)
記
有効Ar量=ノズル内溶鋼への単位時間あたりのArガス吹き込み量/スループット(単位時間あたりの鋳込み溶鋼量)(L/ton)‥‥(1)
偏流率=|2面抜熱量−4面抜熱量|/2-4面平均抜熱量×100(%)‥‥(2)
ここで、2面と4面は、鋳型長辺方向両端面(鋳型の両短辺面)のいずれか一方と他方を指す。 When continuously casting steel with a casting width of less than 1450 mm, the effective Ar amount defined by the following formula (1): cast under operating conditions of 5 L / ton or less, and the drift defined by the following formula (2) during the casting A continuous casting method for steel, characterized in that the rate is measured, and the slab whose measured value is 6.0% or less is used as a maintenance-free material.
Effective Ar amount = Ar gas blow amount per unit time into molten steel in nozzle / throughput (amount of cast molten steel per unit time) (L / ton) (1)
Diffusion rate = | Two-surface heat removal amount−4-surface heat removal amount // 2−4 surface average heat removal amount × 100 (%) (2)
Here, the 2nd surface and the 4th surface indicate either one or the other of both end surfaces in the mold long side direction (both short side surfaces of the mold).
記
有効Ar量=ノズル内溶鋼への単位時間あたりのArガス吹き込み量/スループット(単位時間あたりの鋳込み溶鋼量)(L/ton)‥‥(1)
偏流率=|2面抜熱量−4面抜熱量|/2-4面平均抜熱量×100(%)‥‥(2)
ここで、2面と4面は、鋳型長辺方向両端面(鋳型の両短辺面)のいずれか一方と他方を指す。 In continuous casting of steel with a casting width of 1450 mm or more, the nozzle immersion depth is less than 290 mm, the effective Ar amount defined by the following formula (1) is cast under operating conditions of 5 L / ton or less, and the following ( 2) A continuous casting method for steel characterized in that the drift rate defined by the equation is measured, and a slab whose measured value is 6.0% or less is made a maintenance-free material.
Effective Ar amount = Ar gas blow amount per unit time into molten steel in nozzle / throughput (amount of cast molten steel per unit time) (L / ton) (1)
Diffusion rate = | Two-surface heat removal amount−4-surface heat removal amount // 2−4 surface average heat removal amount × 100 (%) (2)
Here, the 2nd surface and the 4th surface indicate either one or the other of both end surfaces in the mold long side direction (both short side surfaces of the mold).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005050122A JP4790284B2 (en) | 2005-02-25 | 2005-02-25 | Steel continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005050122A JP4790284B2 (en) | 2005-02-25 | 2005-02-25 | Steel continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006231375A JP2006231375A (en) | 2006-09-07 |
JP4790284B2 true JP4790284B2 (en) | 2011-10-12 |
Family
ID=37039595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005050122A Expired - Fee Related JP4790284B2 (en) | 2005-02-25 | 2005-02-25 | Steel continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4790284B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113500173B (en) * | 2021-06-11 | 2022-10-11 | 上海大学 | Control method for molten steel flow field form of medium-section slab crystallizer |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60180654A (en) * | 1984-02-29 | 1985-09-14 | Nippon Steel Corp | Method and device for controlling shape of bath surface in mold for continuous casting |
JPH0673732B2 (en) * | 1988-04-12 | 1994-09-21 | 川崎製鉄株式会社 | Continuous casting method for steel |
JP2962788B2 (en) * | 1990-08-22 | 1999-10-12 | 川崎製鉄株式会社 | Control method of drift of molten steel in continuous casting mold |
JPH05329591A (en) * | 1992-05-27 | 1993-12-14 | Kawasaki Steel Corp | Method for preventing drift of molten steel poured in continuous casting mold |
JP3252769B2 (en) * | 1997-09-12 | 2002-02-04 | 日本鋼管株式会社 | Flow control method of molten steel in continuous casting mold |
JP2003181609A (en) * | 1999-03-02 | 2003-07-02 | Jfe Engineering Kk | Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting |
JP3598078B2 (en) * | 2001-06-13 | 2004-12-08 | 新日本製鐵株式会社 | A method for estimating and visualizing a flow velocity vector distribution in a continuous casting mold, and an apparatus therefor. |
JP4259164B2 (en) * | 2003-04-07 | 2009-04-30 | Jfeスチール株式会社 | Quality monitoring device and quality monitoring method for continuous cast slab |
-
2005
- 2005-02-25 JP JP2005050122A patent/JP4790284B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006231375A (en) | 2006-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2394756B1 (en) | Titanium slab for hot-rolling, and smelting method and rolling method therefor | |
JP6115735B2 (en) | Steel continuous casting method | |
JP4495224B2 (en) | Slabs with excellent solidification structure | |
EP2269750A1 (en) | Method for continuous casting of steel and electromagnetic stirrer usable therefor | |
KR102635630B1 (en) | Continuous casting method of steel | |
JP2004263203A (en) | High-carbon steel wire rod with high strength and high toughness | |
JP5999294B2 (en) | Steel continuous casting method | |
JP4790284B2 (en) | Steel continuous casting method | |
JP4462440B2 (en) | Method for producing hot-rolled bearing steel | |
JP6787359B2 (en) | Continuous steel casting method | |
JP5648300B2 (en) | Steel continuous casting method | |
JP6954514B1 (en) | Continuous casting method | |
JP2004167561A (en) | Method for continuously casting high carbon steel bloom | |
JP2008261036A (en) | Method for cooling continuously cast bloom | |
JP2000015412A (en) | Method for continuously casting steel | |
JP6852798B2 (en) | Continuous steel casting method | |
JP3259270B2 (en) | Continuous casting method | |
JP7355285B1 (en) | Continuous steel casting method | |
Shabalov et al. | Central Chemical and Structural Segregation Heterogeneity in Continuously Cast Slabs | |
KR100397295B1 (en) | Reduction of surface sliver defects in 304 series stainless steel castings | |
WO2023190018A1 (en) | Method for continuous casting of steel | |
JP2004263204A (en) | High-carbon steel wire rod with high strength and high toughness, and manufacturing method therefor | |
RU2397041C2 (en) | Method for production of rolled iron from uninterruptedly-casted stocks | |
JP2005074460A (en) | Continuous casting method of slab of extremely low carbon steel | |
JP2004137540A (en) | Method for hot rolling austenitic stainless steel billet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |