JP5648300B2 - Steel continuous casting method - Google Patents
Steel continuous casting method Download PDFInfo
- Publication number
- JP5648300B2 JP5648300B2 JP2010062195A JP2010062195A JP5648300B2 JP 5648300 B2 JP5648300 B2 JP 5648300B2 JP 2010062195 A JP2010062195 A JP 2010062195A JP 2010062195 A JP2010062195 A JP 2010062195A JP 5648300 B2 JP5648300 B2 JP 5648300B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- steel
- continuous casting
- molten steel
- segregation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 73
- 239000010959 steel Substances 0.000 title claims description 73
- 238000009749 continuous casting Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 239000007790 solid phase Substances 0.000 claims description 15
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 238000005204 segregation Methods 0.000 description 37
- 238000007711 solidification Methods 0.000 description 20
- 230000008023 solidification Effects 0.000 description 20
- 238000012360 testing method Methods 0.000 description 11
- 238000005266 casting Methods 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012932 thermodynamic analysis Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、鋼の化学成分を規定することで、高抗張力鋼であっても中心偏析の鋼材々質特性への影響を少なくすることができ、耐水素誘起割れ特性に優れた鋳片を製造する方法に関する。 By defining the chemical composition of the steel, the present invention can reduce the influence of center segregation on the quality of steel materials even in high tensile strength steel, and produce a slab with excellent resistance to hydrogen-induced cracking. On how to do.
鋼の連続鋳造においては、取鍋からタンディッシュに注入された溶鋼は、タンディッシュの底部に設置された浸漬ノズルを介して水冷式の鋳型に注入され、その後、鋳型によって形成された凝固シェルを外殻とする鋳片が、鋳型下方に設けられた二次冷却帯でスプレーノズルから噴霧される冷却水によって冷却されながら鋳型下方に連続的に引き抜かれ、連続鋳造鋳片が製造されている。この場合、鋳型直下の二次冷却帯にはクーリンググリッドまたはサポートロールが配置され、更にこれらの下方にはガイドロールが配置されている。ガイドロールの一部は電動機と連結し、鋳片を引き抜くためのピンチロールの機能を有している。これらのクーリンググリッド、サポートロール及びガイドロールは、鋳片の支持・案内装置と呼ばれており、鋳片中の鋳片はこれらの支持・案内装置によって支持されることで、溶鋼静圧による鋳片凝固シェルの厚み方向への膨らみ(「バルジング」という)が抑制されている。 In continuous casting of steel, molten steel poured from a ladle into a tundish is poured into a water-cooled mold through an immersion nozzle installed at the bottom of the tundish, and then the solidified shell formed by the mold is used. The cast slab as the outer shell is continuously drawn out below the mold while being cooled by the cooling water sprayed from the spray nozzle in the secondary cooling zone provided below the mold, thereby producing a continuous cast slab. In this case, a cooling grid or a support roll is disposed in the secondary cooling zone immediately below the mold, and a guide roll is disposed below these. A part of the guide roll is connected to an electric motor and has a function of a pinch roll for pulling out a slab. These cooling grids, support rolls and guide rolls are called slab support / guide devices, and the slabs in the slab are supported by these support / guide devices so Swelling (referred to as “bulging”) in the thickness direction of the one-side solidified shell is suppressed.
ところで、鋼の凝固過程では、炭素、燐、硫黄などの溶質元素は、凝固時の再分配により未凝固の液相側に濃化される。これがデンドライト樹間に形成されるミクロ偏析である。連続鋳造機により鋳造されつつある鋳片の凝固収縮やロール間での凝固シェルのバルジングなどによって、鋳片中心部に空隙が形成されたり負圧が生じたりすると、この部分に溶鋼が吸引されるが、凝固末期の未凝固層には十分な量の溶鋼が存在しないので、上記のミクロ偏析によって濃縮された溶鋼が流動し、鋳片中心部に集積して凝固する。このようにして形成された偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べ格段に高濃度となっている。これを一般にマクロ偏析と呼び、その存在部位から、中心偏析と呼んでいる。 By the way, in the solidification process of steel, solute elements such as carbon, phosphorus and sulfur are concentrated on the unsolidified liquid phase side by redistribution during solidification. This is the microsegregation formed between dendrite trees. If a void is formed in the center of the slab or negative pressure is generated due to solidification shrinkage of the slab being cast by a continuous casting machine or bulging of the solidified shell between rolls, molten steel is sucked into this part. However, since a sufficient amount of molten steel does not exist in the unsolidified layer at the end of solidification, the molten steel concentrated by the microsegregation flows and accumulates in the center of the slab and solidifies. In the segregation spot formed in this way, the concentration of the solute element is much higher than the initial concentration of the molten steel. This is generally called macrosegregation, and is called central segregation because of its existence site.
中心偏析は、鋼製品の品質を劣化させる。例えば、石油輸送用や天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れ(「HIC」ともいう)が発生し、また、飲料用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現する。そのため、連続鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する対策が多数提案されている。尚、ラインパイプ材は、厚板ミルや熱延ミルにより製造された鋼板を、U加工、O加工、溶接、拡管(Expander)の各工程によって鋼管(「UOE鋼管」という)に成形することで製造されている。 Central segregation degrades the quality of steel products. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking (also referred to as “HIC”) occurs from the center segregation due to the action of sour gas, and is also used in beverage can products. In deep drawn materials, anisotropy appears in workability due to segregation of components. Therefore, many measures for reducing the center segregation of the slab have been proposed from the continuous casting process to the rolling process. The line pipe material is formed by forming a steel plate (called “UOE steel pipe”) from steel plates manufactured by thick plate mills or hot rolling mills by U processing, O processing, welding, and expanding processes. It is manufactured.
例えば、非特許文献1には、API−X56グレード以上の鋼管用スラブ鋳片において、耐HIC特性を高めるためには、溶鋼のC、Mn、P、Cu、Ni、Cr、Mo、Vの濃度(質量%)から算出されるPHIC(PHIC=C+Mn(α-0.22t)/6+2P(βe-0.21t+0.05)+(Cu+Ni)/15+(Cr+Mo+V)/5、但し、tは鋳片の均質処理時間(Hr)、α及びβはインデックス)を0.6以下にすることが効果的であることを開示している。 For example, Non-Patent Document 1 describes the concentration of C, Mn, P, Cu, Ni, Cr, Mo, and V in molten steel in order to improve the HIC resistance in a steel pipe slab slab of API-X56 grade or higher. P HIC calculated from (mass%) (P HIC = C + Mn (α-0.22t) / 6 + 2P (βe -0.21t +0.05) + (Cu + Ni) / 15 + (Cr + Mo + V ) / 5, where t is effective to make the slab homogeneous treatment time (Hr), α and β are indexes) 0.6 or less.
また、特許文献1には、HICを防止するためには、鋼板の化学成分を厳密に制御して中心偏析部の硬さを所定レベル以下(好ましくはHv250以下)とする必要があるとして、質量%で、C:0.02〜0.06%、Si:0.5%以下、Mn:0.8〜1.6%、P:0.008%以下、S:0.0008%以下、Al:0.08%以下、Nb:0.005〜0.035%、Ti:0.005〜0.025%、Ca:0.0005〜0.0035%を含有し、残部がFeおよび不可避不純物からなり、下式で表わされるCP値が0.95以下、Ceq値が0.30以上であるラインパイプ用鋼板が開示されている。
CP=4.46C(%)+2.37Mn(%)/6+[1.18Cr(%)+1.95Mo(%)+1.74V(%)]/5+[1.74Cu(%)+1.7Ni(%)]/15+22.36P(%)
Ceq=C(%)+Mn(%)/6+[Cr(%)+Mo(%)+V(%)]/5+[Cu(%)+Ni(%)]/15
Further, in Patent Document 1, in order to prevent HIC, it is necessary to strictly control the chemical composition of the steel sheet so that the hardness of the central segregation part is equal to or lower than a predetermined level (preferably Hv 250 or lower). %, C: 0.02 to 0.06%, Si: 0.5% or less, Mn: 0.8 to 1.6%, P: 0.008% or less, S: 0.0008% or less, Al : 0.08% or less, Nb: 0.005 to 0.035%, Ti: 0.005 to 0.025%, Ca: 0.0005 to 0.0035%, the balance from Fe and inevitable impurities Thus, a steel sheet for a line pipe having a CP value represented by the following formula of 0.95 or less and a Ceq value of 0.30 or more is disclosed.
CP = 4.46C (%) + 2.37Mn (%) / 6+ [1.18Cr (%) + 1.95Mo (%) + 1.74V (%)] / 5+ [1.74Cu (%) + 1.7Ni (%) ] /15+22.36P (%)
Ceq = C (%) + Mn (%) / 6+ [Cr (%) + Mo (%) + V (%)] / 5+ [Cu (%) + Ni (%)] / 15
また更に、特許文献2には、鋼の連続鋳造鋳片の中心偏析を種々の条件を反映させて予測する方法として、連続鋳造機のロール配置及び鋳片の鋳造条件に基づいてバルジング及び凝固収縮によって形成される最終凝固部における空隙の大きさを推定し、次いで、前記空隙の形成位置での鋳片中心部の固相率から流動限界固相率までの範囲の固相率に該当する残溶鋼の平均溶質濃度を算出し、この平均溶質濃度の残溶鋼が前記空隙を充填したとして、充填した残溶鋼の凝固進行に伴うミクロ偏析を計算し、このミクロ偏析の計算値に基づいて鋳片の中心偏析を予測する方法が開示されている。 Furthermore, in Patent Document 2, as a method for predicting the center segregation of a continuous cast slab of steel reflecting various conditions, bulging and solidification shrinkage based on the roll arrangement of the continuous caster and the casting conditions of the slab are disclosed. Then, the size of the void in the final solidified part formed by the above is estimated, and then the residual corresponding to the solid phase ratio in the range from the solid phase ratio at the center of the slab to the flow limit solid phase ratio at the position where the void is formed. Calculate the average solute concentration of the molten steel, and assume that the residual molten steel of this average solute concentration filled the voids, calculate the microsegregation as the solidification of the filled residual molten steel progresses, and based on the calculated value of this microsegregation, the slab A method for predicting the center segregation of is disclosed.
近年、石油輸送用や天然ガス輸送用のラインパイプ材においては、高強度が求められており、これまで合金成分として添加されていなかったTiなどによる固溶強化を図ることも多くなっている。また、Caによる介在物形態制御が不十分であったりすると、MnSなどが析出し、HICの起点になることもあり、溶鋼中のSの管理も重要である。また、高強度、高靱性を得る目的でNbの添加も行われているが、Nbの析出物(NbC)がHICの起点になることもある。 In recent years, line pipe materials for oil transportation and natural gas transportation have been required to have high strength, and solid solution strengthening with Ti, which has not been added as an alloy component, has been increasing. In addition, if the inclusion form control by Ca is insufficient, MnS or the like is precipitated, which may become the starting point of HIC, and management of S in molten steel is also important. Nb is also added for the purpose of obtaining high strength and high toughness, but Nb precipitates (NbC) may be the starting point of HIC.
これに対して、非特許文献1及び特許文献1では、鋼中のTi、S、Nbの影響については考慮しておらず、鋼の耐HIC特性を正確に把握できないという問題点がある。特許文献2は、C、Mn、P、Si、Cu、Niについては偏析の程度(係数)を開示するが、その他の成分については偏析の程度を開示せず、中心偏析を簡易的に判定することができないという問題点がある。 On the other hand, Non-Patent Document 1 and Patent Document 1 do not consider the effects of Ti, S, and Nb in steel, and have a problem that the HIC resistance characteristics of steel cannot be accurately grasped. Patent Document 2 discloses the degree of segregation (coefficient) for C, Mn, P, Si, Cu, and Ni, but does not disclose the degree of segregation for the other components, and simply determines the center segregation. There is a problem that can not be.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、高抗張力鋼であっても中心偏析の鋼材質への影響を少なくすることができ、耐HIC特性に優れる成分組成の鋳片を鋳造する方法を提供することである。 The present invention has been made in view of the above circumstances. The object of the present invention is to reduce the influence of central segregation on the steel material even in a high-strength steel, and to have a component composition with excellent HIC resistance. It is to provide a method for casting a slab.
上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、溶鋼のC、Si、Mn、P、S、Cr、Mo、V、Cu、Ni、Nb、Tiの濃度(質量%)から下記の(1)式で算出されるPSEGが4.3以下の溶鋼をタンディッシュから鋳型内に連続的に注入して鋳片を製造することを特徴とする。
PSEG=4.46[%C]+3.32[%Si]+2.37[%Mn]+22.36[%P]+14.87[%S]+1.18[%Cr]+2.0[%Mo]+1.74[%V]+1.74[%Cu]+1.7[%Ni]+7.95[%Nb]+7.1[%Ti]…(1)
The continuous casting method for steel according to the first invention for solving the above-mentioned problems is the concentration (mass%) of C, Si, Mn, P, S, Cr, Mo, V, Cu, Ni, Nb, Ti in molten steel. ) To produce a slab by continuously injecting molten steel having a P SEG of 4.3 or less calculated from the following equation (1) from the tundish into the mold.
P SEG = 4.46 [% C] +3.32 [% Si] +2.37 [% Mn] +22.36 [% P] +14.87 [% S] +1.18 [% Cr] +2.0 [% Mo] +1.74 [% V] +1.74 [% Cu] +1.7 [% Ni] +7.95 [% Nb] +7.1 [% Ti]… (1)
第2の発明に係る鋼の連続鋳造方法は、第1の発明において、連続鋳造用鋳型下端と鋳片の液相線クレータエンドとの間の凝固シェルに、意図的にバルジング力を作用させて、前記鋳片内部の未凝固層の厚みを5mm以内の範囲で増大させ、次いで、鋳片の厚み中心部の固相率が少なくとも0.4以下の時点から0.7以上になる時点まで、0.5〜1.5mm/分の圧下速度で鋳片を圧下することを特徴とする。 According to a second aspect of the present invention, there is provided a continuous casting method for steel according to the first aspect, wherein a bulging force is intentionally applied to the solidified shell between the lower end of the continuous casting mold and the liquidus crater end of the slab. , Increasing the thickness of the unsolidified layer inside the slab within a range of 5 mm, then from the time when the solid phase ratio of the thickness center of the slab is at least 0.4 or less to 0.7 or more, The slab is reduced at a reduction speed of 0.5 to 1.5 mm / min.
本発明によれば、鋼の化学成分から耐HIC特性を評価することが可能となり、事前に耐HIC特性の良否を判定することができる。また、すでに鋳造した鋳片について、HICの評価が予測と合致していない場合には、連続鋳造機の設備的な不具合や鋳造時の異常をチェックできるという効果もある。 According to the present invention, it becomes possible to evaluate the HIC resistance from the chemical composition of steel, and the quality of the HIC resistance can be determined in advance. In addition, if the HIC evaluation does not match the prediction for a cast slab that has already been cast, there is also an effect that it is possible to check for a facility failure of the continuous casting machine and an abnormality during casting.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明者らは、HIC試験での割れの発生及びその伝播挙動を、割れの起点と中心偏析部の組成との観点から詳細に調査し、その結果、耐HIC特性に優れた鋼を製造するためには、連続鋳造鋳片の中心偏析を予測することが重要であるとの知見を得た。 The present inventors investigated in detail the occurrence of cracks in the HIC test and the propagation behavior thereof from the viewpoint of the origin of cracks and the composition of the central segregation part, and as a result, manufactured steel having excellent HIC resistance. In order to achieve this, it was found that it is important to predict the center segregation of continuously cast slabs.
そこで、鋳片の中心偏析を特許文献2の方法を用いて予測した。即ち、鋼の連続鋳造鋳片の中心偏析を予測するにあたり、連続鋳造機のロール配置及び鋳片の鋳造条件に基づいてバルジング及び凝固収縮によって形成される最終凝固部における空隙の大きさを推定し、次いで、前記空隙の形成位置での鋳片中心部の固相率から流動限界固相率までの範囲の固相率に該当する残溶鋼の平均溶質濃度を算出し、この平均溶質濃度の残溶鋼が前記空隙を充填したとして、充填した残溶鋼の凝固進行に伴うミクロ偏析を計算し、このミクロ偏析の計算値に基づいて鋳片の中心偏析を予測した。 Therefore, the center segregation of the slab was predicted using the method of Patent Document 2. That is, in predicting the center segregation of a continuous cast slab of steel, the size of the void in the final solidified part formed by bulging and solidification shrinkage is estimated based on the roll arrangement of the continuous casting machine and the casting conditions of the slab. Next, the average solute concentration of the residual molten steel corresponding to the solid phase ratio in the range from the solid phase ratio at the center of the slab to the flow limit solid phase ratio at the void formation position is calculated, and the residual of this average solute concentration is calculated. Assuming that the molten steel filled the voids, the microsegregation accompanying solidification progress of the filled residual molten steel was calculated, and the center segregation of the slab was predicted based on the calculated value of the microsegregation.
この中心偏析の予測に際しては、中心偏析部における溶質の濃化挙動を熱力学的に解析し、溶質毎(合金元素毎)の偏析係数を算出した。濃化した偏析スポットが凝固する過程では、熱力学的な平衡分配係数に基づいて凝固界面での溶質分配が生じるため、最終的に形成される偏析部の濃化を熱力学的に求めることが可能である。 In predicting the center segregation, the concentration behavior of the solute in the center segregation part was analyzed thermodynamically, and the segregation coefficient for each solute (each alloy element) was calculated. In the process of solidification of the concentrated segregation spot, solute distribution at the solidification interface occurs based on the thermodynamic equilibrium distribution coefficient, so it is possible to thermodynamically determine the concentration of the segregation part that is finally formed. Is possible.
このようにして、熱力学的な解析で各合金成分の偏析係数を求め、求めた偏析係数から、下記の(1)式に示す中心偏析部のパラメーターPSEGを設定した。
PSEG=4.46[%C]+3.32[%Si]+2.37[%Mn]+22.36[%P]+14.87[%S]+1.18[%Cr]+2.0[%Mo]+1.74[%V]+1.74[%Cu]+1.7[%Ni]+7.95[%Nb]+7.1[%Ti]…(1)
種々の鋼種のHIC試験の結果から、PSEGと耐HIC特性とは強い相関があり、PSEGを4.3以下とすることで、HICが抑制されることを見出した。
Thus, the segregation coefficient of each alloy component was obtained by thermodynamic analysis, and the parameter P SEG of the center segregation part shown in the following equation (1) was set from the obtained segregation coefficient.
P SEG = 4.46 [% C] +3.32 [% Si] +2.37 [% Mn] +22.36 [% P] +14.87 [% S] +1.18 [% Cr] +2.0 [% Mo] +1.74 [% V] +1.74 [% Cu] +1.7 [% Ni] +7.95 [% Nb] +7.1 [% Ti]… (1)
From the results of HIC tests of various steel types, it was found that P SEG and HIC resistance were strongly correlated, and that H S was suppressed by setting P SEG to 4.3 or less.
本発明は、これらの検討結果に基づくものであり、溶鋼のC、Si、Mn、P、S、Cr、Mo、V、Cu、Ni、Nb、Tiの濃度(質量%)から上記の(1)式で算出されるPSEGが4.3以下の溶鋼をタンディッシュから鋳型内に連続的に注入して鋳片を製造することを特徴とする。 The present invention is based on these examination results. From the concentration (mass%) of C, Si, Mn, P, S, Cr, Mo, V, Cu, Ni, Nb, and Ti in molten steel, (1 A molten steel having a P SEG of 4.3 or less calculated by the above formula is continuously poured from a tundish into a mold to produce a slab.
本発明は、ラインパイプ材などの高抗張力鋼を対象とするものであり、従って、下記の(2)式で示す炭素当量Ceqが0.25以上の鋼に適用する。但し、(2)式における各元素記号は、鋼中の濃度(質量%)を表している。
Ceq=[%C]+[%Mn]/6+([%Cr]+[%Mo]+[%V])/5+([%Cu]+[%Ni])/15…(2)
炭素当量Ceqが0.25未満の場合は、強度が低く、高抗張力鋼にはなり得ない。
The present invention is intended for high-tensile steel such as line pipe material, and is therefore applicable to steel having a carbon equivalent Ceq of 0.25 or more shown by the following formula (2). However, each element symbol in the formula (2) represents the concentration (mass%) in the steel.
Ceq = [% C] + [% Mn] / 6 + ([% Cr] + [% Mo] + [% V]) / 5 + ([% Cu] + [% Ni]) / 15… (2)
When the carbon equivalent Ceq is less than 0.25, the strength is low and the steel cannot be a high strength steel.
本発明を実施する連続鋳造機は、特に限定する必要はないが、鋳片の中心偏析が抑制されることから、連続鋳造機内において、未凝固層を有する凝固末期の鋳片をガイドロールなどの鋳片支持ロールによって凝固収縮量程度の圧下速度で徐々に圧下(「軽圧下」という)しながら鋳造することの可能な連続鋳造機で実施することが好ましい。これは、凝固収縮量程度の圧下速度で軽圧下することにより、凝固収縮による溶鋼の流動が防止され、中心偏析が抑制されるからである。尚、鋳片を軽圧下する範囲の鋳片支持ロールを「軽圧下帯」と呼んでいる。 The continuous casting machine for carrying out the present invention is not particularly limited. However, since the center segregation of the slab is suppressed, the slab at the end of solidification having an unsolidified layer in the continuous casting machine is used as a guide roll. It is preferable to carry out with a continuous casting machine capable of casting while being gradually reduced (referred to as “light reduction”) at a reduction speed of about the solidification shrinkage by the slab support roll. This is because when the steel sheet is lightly reduced at a reduction speed of about the amount of solidification shrinkage, the flow of molten steel due to the solidification shrinkage is prevented, and central segregation is suppressed. In addition, the slab support roll in a range where the slab is lightly reduced is called a “lightly reduced belt”.
この場合、更に、連続鋳造用鋳型下端と鋳片の液相線クレータエンドとの間で、鋳片の凝固シェルに、意図的にバルジング力を作用させて、鋳片内部の未凝固層の厚みを5mm以内の範囲で増大させることの可能な連続鋳造機であることが好ましい。ガイドロールなどの鋳片支持ロールのロール間隔を鋳造方向下流側に向かって徐々に増加させることで、意図的にバルジング力を作用させることができる。これは、鋳片の短辺部は鋳片中心部まで凝固完了しており変形抵抗が高く、鋳片支持ロールで圧下しても鋳片短辺部が抵抗となって圧下力が鋳片厚み中心部の未凝固部まで作用しない場合が発生するが、意図的にバルジングさせた後に軽圧下する場合には、鋳片の幅方向中央部が鋳片短辺と同じ厚みになるまでは鋳片短辺部は鋳片支持ロールと接触せず、鋳片厚み中心部の未凝固部まで圧下力が有効に作用し、軽圧下による中心偏析軽減効果をより一層享受できるからである。 In this case, the thickness of the unsolidified layer inside the slab is further increased by intentionally applying a bulging force to the solidified shell of the slab between the lower end of the continuous casting mold and the liquidus crater end of the slab. It is preferable that the continuous casting machine can increase the thickness within a range of 5 mm or less. A bulging force can be intentionally applied by gradually increasing the roll interval of the slab support roll such as a guide roll toward the downstream side in the casting direction. This is because the short side of the slab has been solidified to the center of the slab and the deformation resistance is high, and even if the slab support rolls down, the short side of the slab becomes a resistance and the rolling force is reduced by the thickness of the slab. The case where it does not work up to the unsolidified part of the center part occurs, but when lightly reducing after intentionally bulging, the slab is kept until the central part in the width direction of the slab becomes the same thickness as the short side of the slab This is because the short side portion does not come into contact with the slab support roll, the rolling force acts effectively up to the unsolidified portion at the center portion of the slab thickness, and the center segregation mitigating effect due to light reduction can be further enjoyed.
鋳片を意図的にバルジングさせる場合、鋳片の内部の未凝固層が少ない時点でバルジングさせると、中心偏析は却って悪化するが、鋳片内部に未凝固層が潤沢に存在する時点、換言すれば、鋳片の液相線クレータエンド位置よりも鋳造方向上流側でバルジングさせても、この時点では、溶質元素の濃化されていない初期濃度の溶鋼が鋳片内部に潤沢に存在し、この溶鋼が容易に流動するので、この時点におけるバルジングは中心偏析の原因とはならない。 When the slab is intentionally bulged, if the bulging is performed when there is little unsolidified layer inside the slab, the center segregation is worsened, but in other words, when there is plenty of unsolidified layer inside the slab. For example, even if bulging is performed upstream of the liquid phase crater end position of the slab in the casting direction, at this point, there is plenty of molten steel with an initial concentration in which the solute elements are not concentrated. Since molten steel flows easily, bulging at this point does not cause central segregation.
尚、鋳片の液相線とは、鋳片の化学成分によって決まる凝固開始温度であり、例えば、下記の(3)式から求めることができる。
TL=1536-(78×[%C]+7.6×[%Si]+4.9×[%Mn]+34.4×[%P]+38×[%S]+4.7×[%Cu]+3.1×[%Ni]+1.3×[%Cr]+3.6×[%Al])…(3)
但し、(3)式において、TLは液相線温度(℃)、各元素記号は、鋼中の濃度(質量%)を表している。
The liquidus of the slab is the solidification start temperature determined by the chemical composition of the slab, and can be obtained from the following equation (3), for example.
TL = 1536- (78 × [% C] + 7.6 × [% Si] + 4.9 × [% Mn] + 34.4 × [% P] + 38 × [% S] + 4.7 × [% Cu] + 3.1 × [ % Ni] + 1.3 × [% Cr] + 3.6 × [% Al]) ... (3)
However, in the formula (3), TL represents the liquidus temperature (° C.), and each element symbol represents the concentration (mass%) in the steel.
鋳片の液相線クレータエンド位置は、二次元伝熱凝固計算により求められる鋳片内部の温度勾配と(1)式で定まる液相線温度とを照らし合わせることで求めることができる。また、鋳造中の鋳片の厚み中心部に金属製のピンを打ち込み、金属製ピンの溶融状態を調べることからも、液相線クレータエンド位置を求めることができる。 The liquidus crater end position of the slab can be obtained by comparing the temperature gradient inside the slab obtained by the two-dimensional heat transfer solidification calculation with the liquidus temperature determined by the equation (1). The liquid phase crater end position can also be obtained by driving a metal pin into the center of the thickness of the slab during casting and examining the molten state of the metal pin.
鋳片の軽圧下は、少なくとも、鋳片の厚み中心部の固相率が0.4以下の時点から開始し、鋳片厚み中心部の固相率が0.7以上となる時点まで行う。これは、鋳片厚み中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に濃化溶鋼の流動が発生する可能性があり、これにより中心偏析が発生し、軽圧下の効果を十分に発揮することができず、また、溶鋼の流動は、固相率が0.7を超えるまで発生する可能性があり、それよりも早期に軽圧下を停止してしまうと、濃化溶鋼の流動が発生し、これにより中心偏析が発生して、軽圧下の効果を十分に発揮することができないからである。 The light reduction of the slab starts at least when the solid phase ratio at the thickness center portion of the slab is 0.4 or less and continues until the solid phase ratio at the thickness center portion of the slab becomes 0.7 or more. This is because, even if light reduction starts after the solid phase ratio at the center of the slab thickness exceeds 0.4, the flow of concentrated molten steel may occur before that, which causes center segregation. However, the effect of light reduction cannot be fully exhibited, and the flow of molten steel may occur until the solid phase ratio exceeds 0.7, and the light reduction is stopped earlier than that. If this occurs, the flow of the concentrated molten steel occurs, which causes central segregation, and the effect of light reduction cannot be fully exhibited.
鋳片の厚み中心部の固相率は、液相線クレータエンド位置を求める場合と同様に、二次元伝熱凝固計算によって求めることができる。鋳片厚み中心部の固相率が1.0となる位置が凝固完了位置(固相線クレータエンド位置)であり、液相線クレータエンド位置は、鋳片厚み中心部の固相率がゼロとなる最も下流側の位置に該当する。 The solid phase ratio at the center of the thickness of the slab can be obtained by two-dimensional heat transfer solidification calculation as in the case of obtaining the liquidus crater end position. The position where the solid phase ratio at the center of the slab thickness is 1.0 is the solidification completion position (solid line crater end position), and the solid phase ratio at the center of the slab thickness is zero at the liquid phase crater end position. Corresponds to the most downstream position.
化学成分が、C:0.05質量%(以下、「%」と記す)、Si:0.3%、Mn:1.3%、P:0.005%、S:0.005%、Ti:0.01%、sol.Al:0.04%、Nb:0.04%、Cu;0.15%の溶鋼を、0.4〜1.6mm/分の範囲の圧下速度で、厚み250mm、幅1950mmのスラブ鋳片に鋳造し、その後、スラブ鋳片を厚板ミルで厚鋼板に圧延し、更に厚鋼板をUOE鋼管に製管し、厚鋼板及びUOE鋼管でのHIC試験結果から、中心偏析を軽減するためには、鋳片の圧下速度は0.5〜1.5mm/分の範囲内とすることが好ましいことが分かった。 Chemical components are C: 0.05 mass% (hereinafter referred to as “%”), Si: 0.3%, Mn: 1.3%, P: 0.005%, S: 0.005%, Ti : 0.01%, sol.Al: 0.04%, Nb: 0.04%, Cu; 0.15% molten steel at a reduction speed in the range of 0.4 to 1.6 mm / min, thickness 250 mm , Cast into a slab slab having a width of 1950 mm, and then rolling the slab slab into a thick steel plate with a thick plate mill, further forming the thick steel plate into a UOE steel pipe, and from the results of the HIC test with the thick steel plate and the UOE steel pipe, In order to reduce the center segregation, it was found that the reduction speed of the slab is preferably in the range of 0.5 to 1.5 mm / min.
圧下速度が0.5mm/分未満の場合は、圧下速度が凝固収縮量に対して小さ過ぎて、濃化溶鋼の流動を抑えることができない恐れがあり、一方、圧下速度が1.5mm/分を超える場合は、圧下速度が凝固収縮量よりも大きくなり、濃化溶鋼を絞り出すことによって、鋳片中心部に負偏析を形成する恐れがあり、更に、鋳片支持ロールへの荷重が高くなり、鋳片支持ロールのベアリングの損傷が起きやすくなる観点からも望ましくない。また、中心偏析の改善のための鋳片の総圧下量は2〜6mm程度とすれば十分である。 When the rolling speed is less than 0.5 mm / min, the rolling speed is too small with respect to the solidification shrinkage, and the flow of the concentrated molten steel may not be suppressed. On the other hand, the rolling speed is 1.5 mm / min. If it exceeds, the reduction speed becomes larger than the amount of solidification shrinkage, and squeezing out the concentrated molten steel may cause negative segregation at the center of the slab, and further increases the load on the slab support roll. This is also not desirable from the viewpoint of easily causing damage to the bearing of the slab support roll. Further, it is sufficient that the total reduction amount of the slab for improving the center segregation is about 2 to 6 mm.
以上説明したように、本発明によれば、鋼の化学成分から耐HIC特性を評価することが可能となり、事前に耐HIC特性の良否を判定することができ、耐HIC特性に優れた鋳片を安定して得ることが実現される。 As described above, according to the present invention, it is possible to evaluate the HIC resistance from the chemical composition of steel, and it is possible to determine the quality of the HIC resistance in advance, and the slab excellent in the HIC resistance Is obtained stably.
長さ14mの軽圧下帯を有する垂直曲げ型スラブ連続鋳造機を用い、二次冷却帯の上部で鋳片を意図的にバルジング(バルジング量:4.8mm)させた後、前記軽圧下帯で鋳片を軽圧下しつつ鋳造し、得られた鋳片を厚鋼板に圧延し、この厚鋼板からUOE鋼管を製造し、UOE鋼管のHIC試験を実施した。 Using a vertical bending slab continuous casting machine having a light pressure lower belt of 14 m in length, the slab was intentionally bulged (bulging amount: 4.8 mm) at the upper part of the secondary cooling zone, and then the light pressure lower belt The slab was cast while being lightly reduced, and the obtained slab was rolled into a thick steel plate. A UOE steel pipe was produced from the thick steel plate, and a HIC test of the UOE steel pipe was performed.
化学成分が、表1に示す22種類の溶鋼を1.4m/分の鋳造速度で、幅1950mm、厚み250mmの鋳片に鋳造した。タンディッシュ内の溶鋼過熱度は35〜48℃、二次冷却水量は比水量で1.48L/kgとした。圧下速度は、0.4〜1.6mm/分の範囲で鋳造毎に変更した。UOE鋼管におけるHIC試験は、試験溶液をNACE溶液(5%NaCl+0.5%CH3COOHの硫化水素飽和溶液、pH=3.7)とし、浸漬時間を96時間、試験溶液温度を25℃として実施し、試験片に割れが発生した場合には、その試験片を超音波探傷法によって調べ、割れ部の面積率(CAR:Crack Area Ratio、単位%)で評価した。CAR値が高いほどHICが発生したことを意味している。尚、比水量とは、鋳造される鋳片1kgあたりの冷却水量(リットル)を表す数値である。 The 22 types of molten steel shown in Table 1 were cast into slabs having a width of 1950 mm and a thickness of 250 mm at a casting speed of 1.4 m / min. The degree of superheated molten steel in the tundish was 35 to 48 ° C., and the amount of secondary cooling water was 1.48 L / kg in terms of specific water. The rolling speed was changed for each casting in the range of 0.4 to 1.6 mm / min. The HIC test on the UOE steel pipe was carried out using a NACE solution (5% NaCl + 0.5% CH 3 COOH hydrogen sulfide saturated solution, pH = 3.7) as the test solution, an immersion time of 96 hours, and a test solution temperature of 25 ° C. When a crack occurred in the test piece, the test piece was examined by an ultrasonic flaw detection method and evaluated by the area ratio (CAR: Crack Area Ratio, unit%) of the cracked portion. A higher CAR value means that HIC has occurred. The specific water amount is a numerical value representing the cooling water amount (liter) per 1 kg of cast slab.
表1に、鋼の化学成分、化学成分から算出されるPSEG、軽圧下帯での鋳片の圧下速度、HIC試験によるCARを示す。 Table 1 shows the chemical composition of steel, P SEG calculated from the chemical composition, the reduction speed of the slab in the light reduction zone, and the CAR by the HIC test.
図1に、PSEGとCARとの関係を示す。図1からも明らかなように、PSEGの増加に伴ってCARが増加する。最近の需要家の仕様では、CARを5%以下とすることが一般的であり、PSEGが4.3以下であれば、CARを5%以下に抑制できることが分かった。 FIG. 1 shows the relationship between P SEG and CAR. As is clear from FIG. 1, the CAR increases with an increase in P SEG . In recent customer specifications, it is common that the CAR is 5% or less, and if P SEG is 4.3 or less, the CAR can be suppressed to 5% or less.
これに対して、圧下速度は0.5〜1.5mm/分であるものの、PSEGが本発明の範囲を超えた試験No.12〜15、18〜20、及び、圧下速度が0.5〜1.5mm/分の範囲外であり且つPSEGが本発明の範囲を超えた試験No16、17、21、22ではCARが5%を超えており、特に試験No16、17、21、22では10%を超える高い値であった。 On the other hand, although the rolling speed is 0.5 to 1.5 mm / min, the test Nos. 12 to 15 and 18 to 20 in which P SEG exceeds the range of the present invention, and the rolling speed is 0.5. In tests No16, 17, 21, and 22 where P SEG is outside the range of the present invention outside the range of ˜1.5 mm / min, the CAR exceeds 5%, especially in tests No16, 17, 21, and 22. It was a high value exceeding 10%.
Claims (2)
PSEG=4.46[%C]+3.32[%Si]+2.37[%Mn]+22.36[%P]+14.87[%S]+1.18[%Cr]+2.0[%Mo]+1.74[%V]+1.74[%Cu]+1.7[%Ni]+7.95[%Nb]+7.1[%Ti]…(1) Concentrations of C, Si, Mn, P, S, Cr, Mo, V, Cu, Ni, Nb, Ti in molten steel having chemical components of at least C, Si, Mn, P, S, Ni, Cr, Nb , V A molten steel having a P SEG of 4.3 or less calculated from (mass%) by the following equation (1) is continuously poured from a tundish into a mold to produce a slab. Continuous casting method.
P SEG = 4.46 [% C] +3.32 [% Si] +2.37 [% Mn] +22.36 [% P] +14.87 [% S] +1.18 [% Cr] +2.0 [% Mo] +1.74 [% V] +1.74 [% Cu] +1.7 [% Ni] +7.95 [% Nb] +7.1 [% Ti]… (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010062195A JP5648300B2 (en) | 2010-03-18 | 2010-03-18 | Steel continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010062195A JP5648300B2 (en) | 2010-03-18 | 2010-03-18 | Steel continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011194421A JP2011194421A (en) | 2011-10-06 |
JP5648300B2 true JP5648300B2 (en) | 2015-01-07 |
Family
ID=44873284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010062195A Active JP5648300B2 (en) | 2010-03-18 | 2010-03-18 | Steel continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5648300B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6075336B2 (en) * | 2014-07-15 | 2017-02-08 | Jfeスチール株式会社 | Steel continuous casting method |
JP6115735B2 (en) * | 2014-07-25 | 2017-04-19 | Jfeスチール株式会社 | Steel continuous casting method |
EP3266602B1 (en) * | 2015-03-04 | 2019-09-04 | Fujico Co., Ltd. | Briquette roller and method for producing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3261556B2 (en) * | 1994-04-08 | 2002-03-04 | 新日本製鐵株式会社 | Continuous casting method |
JP2000237855A (en) * | 1999-02-17 | 2000-09-05 | Nippon Steel Corp | Method for continuously casting billet |
JP4687629B2 (en) * | 2006-10-13 | 2011-05-25 | 住友金属工業株式会社 | Metal continuous casting method |
JP5145746B2 (en) * | 2007-03-29 | 2013-02-20 | Jfeスチール株式会社 | Continuous casting slab manufacturing method, continuous casting machine |
-
2010
- 2010-03-18 JP JP2010062195A patent/JP5648300B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011194421A (en) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10144057B2 (en) | Method for manufacturing forged steel roll | |
JP4830612B2 (en) | Continuous casting method for slabs for extra heavy steel plates | |
JP4725437B2 (en) | Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate | |
JP6115735B2 (en) | Steel continuous casting method | |
JP5600929B2 (en) | Manufacturing method of continuous cast slab | |
JP4609330B2 (en) | Continuous casting method of ultra-thick steel plates with excellent internal quality and slabs for ultra-thick steel plates | |
JP5686062B2 (en) | Steel continuous casting method | |
JP6384679B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP5648300B2 (en) | Steel continuous casting method | |
JP2007302908A (en) | High tensile strength steel plate and its manufacturing method | |
JP2005305516A (en) | Continuous casting method, and extra-thick steel plate excellent in inner quality and producing method therefor | |
JP5206239B2 (en) | Continuous casting method of high N content duplex stainless steel | |
JP5045408B2 (en) | Manufacturing method of continuous cast slab | |
JP4997983B2 (en) | Continuous casting method for slabs for extra heavy steel plates | |
JP5131662B2 (en) | Continuous casting method for slabs | |
JP4813817B2 (en) | Steel manufacturing method | |
JP2014231086A (en) | Method for continuously casting steel | |
JP3402291B2 (en) | Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate | |
JP4687629B2 (en) | Metal continuous casting method | |
JP2006341297A (en) | Continuous casting method, and continuously cast slab | |
JP3671868B2 (en) | Method for casting high Cr steel | |
Stalheim et al. | Guidelines for production of API pipelines steels suitable for hydrogen induced cracking (HIC) service applications | |
JP2004307931A (en) | Continuously cast piece, and casting method therefor | |
JP2000094101A (en) | Continuously cast slab, continuous casting method thereof and production of thick steel plate | |
JP3298519B2 (en) | Steel sheet free of hydrogen defects and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141014 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5648300 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |