[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4259164B2 - Quality monitoring device and quality monitoring method for continuous cast slab - Google Patents

Quality monitoring device and quality monitoring method for continuous cast slab Download PDF

Info

Publication number
JP4259164B2
JP4259164B2 JP2003102991A JP2003102991A JP4259164B2 JP 4259164 B2 JP4259164 B2 JP 4259164B2 JP 2003102991 A JP2003102991 A JP 2003102991A JP 2003102991 A JP2003102991 A JP 2003102991A JP 4259164 B2 JP4259164 B2 JP 4259164B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
amount
slab
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003102991A
Other languages
Japanese (ja)
Other versions
JP2004306085A (en
Inventor
淳 久保田
晋一 杉山
善充 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003102991A priority Critical patent/JP4259164B2/en
Publication of JP2004306085A publication Critical patent/JP2004306085A/en
Application granted granted Critical
Publication of JP4259164B2 publication Critical patent/JP4259164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality monitoring device which determines the amount of inclusions in cast slabs in real time for every cast slabs by taking the information on the refining process of molten steel which is the upper stream process of a continuous casting process into consideration as well. <P>SOLUTION: The problem described above is solved by the quality monitoring device for the continuous cast slabs provided with a means 8 for finding the determination standard for the amount of the deoxidation product produced in the refining process for molten steel, a means 8 for finding the determination standard for the floating amount of the inclusions within a tundish of a continuous casting process, a means 8 for finding the determination standard for the entangling amount of the mold powder within the casting mold of the continuous casting process, a means 8 for deciding whether the rolling of the cast slab in an unmended state is permissible or not by comparing the above three found determination standards with acceptance standard for the cast slab quality. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造鋳片の品質を鋳片毎にリアルタイムで判定することの可能な品質監視装置、並びに、この品質監視装置を用いた連続鋳造鋳片の品質監視方法に関するものである。
【0002】
【従来の技術】
鋼の連続鋳造鋳片では、その表層部には縦割れ、横割れ、ノロカミ、ブローホールなどの表面欠陥が発生し、又、その内部には非金属介在物(以下「介在物」と記す)、中心偏析などの内部欠陥が発生し、これらは、圧延後の最終製品における表面疵などの品質欠陥の原因となり、最終製品の歩留り低下の主たる原因となっていた。そのため、その表面に許容量以上の欠陥が発生した鋳片は、圧延する前に鋳片表面の溶削などの表面手入れにより欠陥が除去されてきた。
【0003】
ところで、省エネルギー及び省資源の観点から、鋳造された直後の高温の連続鋳造鋳片を、無手入れのまま熱間圧延機に搬送して直接圧延する若しくは加熱炉に搬送して所定温度まで加熱・昇温した後に圧延する、所謂熱間直送圧延プロセスが広く行われるようになった。熱間直送圧延プロセスによって鋼板を製造する場合、鋳片にはこれらの欠陥が無いことが必要であり、そのため、これらの欠陥を回避する様々な手段が開発されている。例えば、縦割れは、鋳型内での抜熱を少なくするモールドパウダーの開発によって軽減され、介在物は、取鍋内の溶鋼上に存在するスラグの酸化度低下(スラグ改質)や電磁力を用いた鋳型内溶鋼の流動制御によって軽減されている。その結果、これらの欠陥は大幅に低減し、熱間直送圧延プロセス対象量の拡大のみならず、広範な鋼種に亘る鋳片の表面無手入れ化の拡大に寄与している。
【0004】
しかしながら、溶鋼を扱う連続鋳造工程では、基準通りの鋳造操業を行っていた場合でも、突発的な外乱、例えば浸漬ノズルのAl23 による閉塞などによって基準操業から逸脱した鋳造操業を余儀なくされ、目的とする品質レベルの鋳片を製造できない場合が発生する。この部位の鋳片を、熱間直送圧延プロセスによって圧延した場合や、冷却後に無手入れのまま圧延工程に直送して圧延した場合には、最終製品で品質欠陥の発生する恐れが極めて高くなる。従って、この部位の鋳片は、熱間直送圧延プロセス或いは無手入れのままでの圧延対象から除外し、表面手入れを施すなどの運用変更を実施する必要がある。
【0005】
このような鋳片の運用を行うためには、鋳片1本1本の品質をリアルタイムで監視して判定し、熱間直送圧延プロセス或いは無手入れ圧延の可否を判断する必要がある。そのため、鋳片の品質をオンラインでリアルタイムに判定する手段が幾つか提案されている。
【0006】
例えば、特許文献1には、タンディッシュや浸漬ノズル或いは鋳型に配置された操業状況を監視するセンサー群により検出された検出情報を制御用コンピューターに入力して、検出情報から現状操業状況を把握し、把握した現状操業を品質要求情報に基づく最適鋳造条件と対比させ、現状操業が品質要求レベルを満足しているか否かの品質判定を行うと共に、品質要求レベルを満足していない場合には品質要求を満たす最適鋳造条件に制御する品質制御方法が開示されており、又、特許文献2には、鋳型内の溶鋼湯面レベル変動量と、タンディッシュから鋳型への溶鋼注入量調節器の開度変動量とを検出し、前記湯面レベル変動量及び開度変動量が所定値よりも小さい場合に、その部位の鋳片を正常と判断する品質判定方法が開示されている。
【0007】
【特許文献1】
特開平7−47453号公報
【0008】
【特許文献2】
特開2000−233265号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記特許文献1及び特許文献2に開示されるように、従来の鋳片品質判定方法では、タンディッシュ内及び鋳型内の挙動に関する情報のみから鋳片の品質を判定しており、連続鋳造工程の上工程である溶鋼の精錬工程の情報が加味されていない。連続鋳造鋳片の品質のうちで特に介在物量は、連続鋳造工程によってのみ決まるものではなく、精錬工程によっても支配される。そのため、従来の品質判定方法では、的確に且つ精度良く鋳片の品質判定が行われていたとは云い難い。
【0010】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造工程の上工程である溶鋼の精錬工程の情報も加味して、鋳片の介在物量を鋳片毎にリアルタイムで判定する品質監視装置を提供することであり、更に、この品質監視装置を用いた連続鋳造鋳片の品質監視方法を提供することである。
【0011】
【課題を解決するための手段】
上記課題を解決するための本願第1の発明に係る連続鋳造鋳片の品質監視装置は、転炉精錬終了時の溶鋼中酸素濃度、二次精錬の真空脱炭精錬後の溶鋼中酸素濃度、これらの溶鋼中酸素濃度から計算されるAl酸化量のうちの1種または2種以上のデータに基づいて、溶鋼の精錬工程における脱酸生成物発生量の判定尺度を求める手段と、タンディッシュ内の溶鋼滞留量、タンディッシュ内の溶鋼湯面高さ、タンディッシュ内の平均滞留時間のうちの1種または2種以上のデータに基づいて、連続鋳造工程のタンディッシュ内における介在物浮上量の判定尺度を求める手段と、鋳型内の湯面変動量、浸漬ノズル左右両側の湯面位置の高低差、鋳型銅板に埋設された測温素子で測定される鋳型銅板温度のうちの1種または2種以上のデータに基づいて、連続鋳造工程の鋳型内におけるモールドパウダー巻込み量の判定尺度を求める手段と、求めた前記3つのそれぞれの判定尺度をオーダー毎に定まる鋳片品質の合否基準に照合して、当該鋳片の無手入れのままでの圧延の可否を判定する手段と、を具備することを特徴とするものである。
【0012】
第2の発明に係る連続鋳造鋳片の品質監視装置は、第1の発明において、前記モールドパウダー巻込み量の判定尺度を、鋳型銅板に埋設された測温素子で測定される鋳型銅板温度の鋳型幅方向温度分布形態に基づいて求めることを特徴とするものである。
【0013】
第3の発明に係る連続鋳造鋳片の品質監視方法は、第1の発明又は第2の発明に記載の連続鋳造鋳片の品質監視装置によって判定された、無手入れのままでの圧延の可否の判定結果が、合格の鋳片のみを無手入れのまま圧延工程に直送し、不合格の鋳片は圧延工程に直送せずに別運用することを特徴とするものである。
【0014】
本発明に係る連続鋳造鋳片の品質監視方法は、連続鋳造工程のみならず、溶鋼精錬工程における脱酸生成物の発生量を加味して鋳片の介在物量を判定しているので、的確に且つ精度良く鋳片介在物量の判定を行うことが可能となる。又、各工程で判定の尺度となる指標を特に重要な1つに絞り、しかもそれぞれが独立しているので、複雑なロジックを用いることなく、鋳片介在物量の判定を行うことができる。尚、本発明における「無手入れのままでの圧延」とは、熱間直送圧延プロセスのみならず、鋳片を冷却した後に無手入れのまま圧延工程に搬送して加熱後圧延するプロセスも対象としており、文字通り、無手入れのまま圧延する全てのプロセスを対象とするものである。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1は、本発明の実施形態の一例を示す図であり、本発明に係る連続鋳造鋳片の品質監視方法を実施する際の全体構成の概略図である。
【0016】
図1に示すように、本発明は、溶鋼の精錬工程1と、精錬工程1で溶製された溶鋼を鋳造する連続鋳造工程2と、連続鋳造工程2で製造された連続鋳造鋳片を熱間圧延する圧延工程3とから構成される鉄鋼製品の製造工程に適用され、精錬工程1及び連続鋳造工程2の操業データが製鋼工程制御計算機8に入力され、製鋼工程制御計算機8では、鋳片1本1本の品質がリアルタイムで判定される。製鋼工程制御計算機8は、精錬工程1から連続鋳造工程2までの情報を管理する計算機であり、製品の規格や納期などのオーダー情報が一貫管理計算機(図示せず)から入力されており、製鋼工程制御計算機8の一部の機能を、本発明に係る連続鋳造鋳片の品質監視装置として利用したものである。溶鋼の精錬工程1は、通常、転炉精錬及び二次精錬で構成される。
【0017】
精錬工程1の操業データとしては、転炉における溶鋼精錬量、精錬時間、酸素使用量、転炉精錬終了時の溶鋼成分、取鍋内スラグ厚み、取鍋内スラグの改質の有無など、二次精錬では、例えばRH真空脱ガス設備における処理時間、到達真空度、精錬終了時の溶鋼成分などが入力される。製鋼工程制御計算機8は、入力されたこれらの精錬工程1の操業データの中から、溶鋼をAlで脱酸したときに発生する脱酸生成物(Al23 )の発生量を把握することができる操業データを用いて、脱酸生成物発生量を判定するための尺度となる判定尺度を算出して求める。
【0018】
脱酸生成物の発生量を把握することができる操業データとしては、転炉精錬終了時の溶鋼中酸素濃度や、転炉精錬の後にRH真空脱ガス設備などで真空脱炭精錬を施す場合には真空脱炭精錬後の溶鋼中酸素濃度、更には、これらの酸素濃度から計算されるAl酸化量などを用いることができる。これらの操業データに基づき、製鋼工程制御計算機8では、溶鋼中の脱炭生成物発生量の判定尺度を求める。判定尺度を求めるに当り、鋼材製品の炭素濃度、Si濃度及びAl濃度の規格毎に幾つかに鋼種を分類し、分類した鋼種毎に閾値を設定し、入力された操業データと閾値とを対比し、閾値との乖離程度によって判定尺度を算出する。この場合、例えば溶鋼中の酸素濃度が低いほど判定尺度は小さくなるものとし、判定尺度が小さいほど脱酸生成物の発生量が少ないものとする。
【0019】
連続鋳造工程2の操業データとしては、タンディッシュ4内の溶鋼滞留量、溶鋼温度、溶鋼湯面高さ、取鍋とタンディッシュ4との間を空気から遮断するためのロングノズル先端のタンディッシュ内溶鋼中への浸漬深さ、鋳型5内の湯面位置、湯面変動量、鋳型銅板温度、タンディッシュ4と鋳型5との間を空気から遮断するための浸漬ノズルへのAr吹込み量などが入力される。製鋼工程制御計算機8は、入力されたこれらの連続鋳造工程2の操業データの中から、タンディッシュ4内における介在物浮上量を把握することができる操業データを用いて、タンディッシュ4内のおける介在物浮上量を判定するための尺度となる判定尺度を算出して求めると共に、鋳型5内におけるモールドパウダー巻込み量を把握することができる操業データを用いて、鋳型5内におけるモールドパウダー巻込み量を判定するための尺度となる判定尺度を算出して求める。
【0020】
タンディッシュ4内における介在物浮上量を把握することができる操業データとしては、タンディッシュ4内の溶鋼滞留量及び溶鋼湯面高さを用いることができる。又、タンディッシュ4内の溶鋼滞留量と鋳片の引き抜き速度とから定まるタンディッシュ4内の平均滞留時間を用いてもよい。更に、タンディッシュ4内の溶鋼温度をこれらの操業データと関連させた関数としてもよい。これらの操業データに基づき、製鋼工程制御計算機8では、タンディッシュ4内における介在物浮上量の判定尺度を求める。判定尺度を求める際には、上記と同様に、鋼材製品の炭素濃度、Si濃度及びAl濃度の規格毎に幾つかに鋼種を分類し、分類した鋼種毎に閾値を設定し、入力された操業データと閾値とを対比し、閾値との乖離程度によって判定尺度を算出する。この場合、例えば溶鋼滞留量が多いほど或いは平均滞留時間が長いほど判定尺度は小さくなるものとし、判定尺度が小さいほど介在物の浮上量が多く、鋳片中の介在物量は少ないものとする。
【0021】
鋳型5内におけるモールドパウダー巻込み量を把握することができる操業データとしては、鋳型5内の湯面変動量や浸漬ノズルを挟んだ左右両側の湯面位置の高低差などからも把握することは可能であるが、モールドパウダーの巻込みを正確に把握する観点から、鋳型銅板幅方向に埋設した測温素子によって測定される鋳型銅板温度を用いることが好ましい。以下に、鋳型銅板温度とモールドパウダー巻込みとの関係を説明する。
【0022】
本発明者等は、実機における計測、モデル実験並びに数値解析を行い、種々の鋳造条件について、鋳型内の溶鋼流動状況と、そのときの鋳型幅方向の鋳型銅板温度分布形態との関係を調査した。図2に鋳型内溶鋼の流動状況と鋳型銅板温度の分布形態との対比を模式的に示す。尚、図2において、10は鋳型短辺銅板、11は鋳型内の溶鋼湯面、12は浸漬ノズル、13は吐出孔、14は吐出流であり、吐出流14は矢印でその流れの方向を表わしている。
【0023】
パターン0では、長辺銅板に沿った面においては、鋳型幅方向全体に亘って穏やかな上昇流であり、鋳型幅方向の測温素子の測定値に大きな差は現れない。即ち、温度ピークが顕著に表れない場合で、鋳型温度分布形態は鋳型幅全体に亘って平坦である。一方、パターン1では、浸漬ノズル12内に吹き込まれたArの浮上に随伴した浸漬ノズル12の近傍の上昇流が支配的となり、溶鋼湯面11では浸漬ノズル12から鋳型短辺銅板10に向かって溶鋼は流れる。このため、鋳型銅板幅方向の温度分布では、浸漬ノズル12の近傍で高くなり、浸漬ノズル12の近傍に大きな温度ピークが1つ発生する。又、パターン2では、浸漬ノズル12からの吐出流14の慣性力が大きく、吐出流14は鋳型短辺銅板10に衝突した後に上下に分岐し、溶鋼湯面11では鋳型短辺銅板10から浸漬ノズル12に向かう溶鋼流となる。この場合、溶鋼湯面11での溶鋼流速は比較的速い。このときは、鋳型短辺銅板10の近傍の銅板温度が高くなり、大きな温度ピークが左右の鋳型短辺銅板10の近傍に存在する温度分布形態となる。
【0024】
このように、温度分布形態はパターン0、1、2の3種類に大別できる。しかし、実際にはこの3種類のパターン以外の温度パターンが存在する。例えば、図2に示すパターン3は、Arの浮上に随伴する浸漬ノズル12近傍の上昇流と、吐出流14の慣性力とが、共に支配的な場合に発生し、浸漬ノズル12近傍と鋳型短辺銅板10近傍とに温度ピークが現われて、3つの温度ピークを持った温度分布形態となる。しかし、このパターンはパターン1とパターン2との組み合せと考えることができる。これ以外の他の場合も、パターン0、パターン1、及びパターン2の組み合せにより表わされることを確認した。
【0025】
以上の調査から、鋳造条件により溶鋼流動状況は様々に変化し、この溶鋼流動状況と対応して、様々な温度分布形態が存在することが分かった。そして、鋳片表面におけるモールドパウダー巻込みの判定の際には、これらの流動状況を考慮して、対応する温度分布形態から判定することが重要且つ可能であることが分かった。
【0026】
先ず、溶鋼流動状況がパターン1の場合について説明する。溶鋼流動状況がパターン1の場合には、浸漬ノズル12の近傍でArの浮上が集中しており、浮上するAr気泡径も大きい。この気泡が溶鋼湯面11から離脱するときに溶鋼湯面11を乱してモールドパウダーが巻込まれたり、或いは、気泡そのものが捕捉されてブロー疵の原因となる。このとき、図3(a)に示すような鋳型銅板の幅方向温度分布のうちの最大値(Tmax )を、Arによる溶鋼湯面11の乱れの大きさを表わす1つの因子と考えることができ、従って、最大値(Tmax )が大きすぎる場合には、Arによるモールドパウダーの巻込みを予測することができる。
【0027】
又、溶鋼湯面11に速い流れと遅い流れの両方が存在すると、この溶鋼流速の勾配はモールドパウダーに作用する剪断応力と関係し、勾配の値が大きいほどモールドパウダーが削り込まれ易くなる。この流速の勾配は鋳型銅板温度の勾配として検出される。そこで、図3(b)に示すように、浸漬ノズル12を中心として、鋳型幅方向左側の温度分布の最大値(TL1)から最小値(TL2)を差し引いた値(TL1−TL2)と、鋳型幅方向右側の温度分布の最大値(TR1)から最小値(TR2)を差し引いた値(TR1−TR2)のうちで、大きい方の値(以下、「最大高低温度差」と記す)を、Arによる溶鋼湯面11の乱れの大きさを表わす他の1つの因子と考えることができ、従って、最大高低温度差の大小によっても、Arによるモールドパウダーの巻込みを予測することができる。
【0028】
次に、溶鋼流動状況がパターン2の場合について説明する。溶鋼流動状況がパターン2のように、溶鋼湯面11に比較的速い流れの溶鋼流が存在する場合には、この流れにより溶鋼湯面11を覆うモールドパウダーが削り込まれる恐れがある。溶鋼流速が速ければ鋳型銅板温度も高くなる。そこで、図4(a)に示すような鋳型銅板の幅方向温度分布のうちの最大値(Tmax )を、溶鋼湯面11における溶鋼の最大速度を表わす因子と考えることができ、従って、最大値(Tmax )が大きすぎる場合には、モールドパウダーが削り込まれることが予測できる。
【0029】
又、溶鋼流動状況がパターン2のように、溶鋼湯面11に比較的速い流れと遅い流れの両方が存在すると、前述したように、この溶鋼流速の勾配はモールドパウダーに作用する剪断応力と関係し、勾配の値が大きいほどモールドパウダーが削り込まれ易くなる。この流速の勾配は鋳型銅板温度の勾配として検出される。そこで、図4(b)に示すように、浸漬ノズル12を中心として鋳型幅方向左側の温度分布の最大値(TL1)から最小値(TL2)を差し引いた値(TL1−TL2)と、鋳型幅方向右側の温度分布の最大値(TR1)から最小値(TR2)を差し引いた値(TR1−TR2)のうちで、大きい方の値、即ち最大高低温度差を流速勾配の大きさを表わす因子と考えることができ、従って、最大高低温度差の大小によりモールドパウダーの削り込みの有無を予測することができる。
【0030】
更に、溶鋼流動状況がパターン2の場合、鋳型幅方向左右の溶鋼湯面11の溶鋼流速のバラツキが大きいときには、流れのぶつかり合うところで渦を発生させ易く、モールドパウダーを巻込む恐れがある。そこで、図4(c)に示すように、浸漬ノズル12を中心として鋳型幅方向の左側温度分布の最大値(TL1)と右側温度分布の最大値(TR1)との差の絶対値(以下、「最大左右温度差」と記す)を、渦によるモールドパウダーの巻込みに影響を及ぼす偏流度を表わす因子と考えることができ、従って、この最大温度左右差の大小によって渦によるモールドパウダー巻込みの有無を予測することができる。
【0031】
更に、鋳型内溶鋼の流動状況が、例えばパターン1からパターン3のように変化する場合や、パターン2であっても片側の吐出流14の流速が他方に比べて速くなる場合には、鋳型内の溶鋼流動は乱れて溶鋼湯面11の変動量も大きくなり、モールドパウダー巻込みの発生する確率が高くなる。通常、鋳型内で観測される流動変動は、その周期を数十秒として緩やかに変化するが、この周期より短い時間で変化する場合には、モールドパウダー巻込みの発生頻度が高くなる。この溶鋼流動の変化は、鋳型銅板温度の単位時間当りの温度変動量として検出されるので、鋳型幅方向の鋳型銅板温度の単位時間当りの温度変動量のうちで最大値を把握し、この最大値の大小によってもモールドパウダー巻込みの有無を予測することができる。
【0032】
ところで、鋳型銅板温度の測定結果からモールドパウダーの巻込みを判定する場合には、鋳型銅板の測温位置を鋳型内の溶鋼湯面11の位置から鋳片引抜き方向に10〜135mm離れた範囲とする必要がある。溶鋼湯面位置から10mm未満の範囲は鋳造中の溶鋼湯面11の変動により鋳型銅板温度が昇降するため、溶鋼流動による鋳型銅板温度の変化を正確に把握することができず、又、溶鋼湯面11から135mmを越えた下方の位置では、溶鋼流動の変化による鋳型銅板温度の変化量が少なくなり、正確に鋳型銅板温度の変化量を把握することができないからである。又、鋳型幅方向に200mm以内の間隔で測温位置を設置することが好ましい。尚、図3は、溶鋼流動状況がパターン1のときの鋳型銅板温度の幅方向分布及び鋳型銅板温度の最大値、最小値を模式的に示す図であり、図4、は溶鋼流動状況がパターン2のときの鋳型銅板温度の幅方向分布及び鋳型銅板温度の最大値、最小値を模式的に示す図である。パターン0の場合には、モールドパウダーの巻込みを発生させるほどの溶鋼流速が溶鋼湯面11に存在せず、モールドパウダーの巻込みは発生しない。
【0033】
製鋼工程制御計算機8では、鋳型銅板温度の測定値から以上説明した方法を用いて、鋳型5内におけるモールドパウダーの巻込み量の判定尺度を求める。判定尺度を求める際には、使用するモールドパウダーの種類を化学組成、溶融状態での粘度毎に幾つかグループ分類し、分類したグループ毎にそれぞれ閾値を設定し、入力された測温データと閾値とを対比し、閾値との乖離程度によって判定尺度を算出する。この場合、例えば最大高低温度差が低いほど判定尺度は小さくなるものとし、判定尺度が小さいほどモールドパウダー巻込み量は少ないと判定する。
【0034】
製鋼工程制御計算機8は、このようにして求めた脱酸生成物発生量、介在物浮上量、モールドパウダー巻込み量のそれぞれの判定尺度と、一貫管理計算機から入力されたオーダー毎に定まる鋳片品質の合否基準とを照合し、該当する鋳片の無手入れのままでの圧延の可否を判定し、その合否判定結果を鋳片物流制御計算機9に送信する。合否判定を受けた鋳片物流制御計算機9は、仕分工程6において合格の鋳片と不合格の鋳片とを仕分けする。合否基準はオーダー毎に定められており、例えば、表面厳格材の場合には、合否の境界値となる判定尺度を小さい数値に設定するなどすることができる。
【0035】
合格の鋳片は無手入れのまま圧延工程3に直送され、熱間直送圧延プロセス或いは加熱炉で加熱された後に当初の計画通りの製品へと圧延される。一方、不合格の鋳片は、一旦鋳片冷却場7に仮置きされ、不合格の程度に応じてその運用が決定される。即ち、不合格程度が小さい場合には、鋳片表面の目視監察と部分的な溶削手入れ処理若しくは別運用処理などが施され、不合格程度が大きい場合には、鋳片表面の前面溶削手入れ処理や屑化処理などが施される。
【0036】
以上説明したように、本発明に係る連続鋳造鋳片の品質監視装置並びに品質監視方法は、連続鋳造工程2のみならず、溶鋼の精錬工程1における脱酸生成物の発生量を加味して鋳片の介在物量を判定しているので、的確に且つ精度良く鋳片介在物量の判定を行うことが可能となる。その結果、最終製品における欠陥発生率を低減することが達成され、製造コストの削減に貢献する。又、各工程で判定の尺度となる指標を特に重要な1つに絞り、しかもそれぞれが独立しているので、複雑なロジックを用いることなく、鋳片の介在物量判定を行うことができる。
【0037】
【発明の効果】
本発明に係る連続鋳造鋳片の品質監視装置並びに品質監視方法によれば、連続鋳造工程のみならず、溶鋼の精錬工程における脱酸生成物の発生量を加味して鋳片の介在物量を判定しているので、的確に且つ精度良く鋳片の品質判定を行うことが可能となり、その結果、最終製品における欠陥発生率を低減することが達成され、製造コストの削減に貢献すると云う工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す図であり、本発明に係る連続鋳造鋳片の品質監視方法を実施する際の全体構成の概略図である。
【図2】鋳型内溶鋼の流動状況と鋳型銅板温度の分布形態との対比を模式的に示した図である。
【図3】溶鋼流動状況がパターン1のときの鋳型銅板温度の幅方向分布、及び鋳型銅板温度の最大値、最小値を模式的に示した図である。
【図4】溶鋼流動状況がパターン2のときの鋳型銅板温度の幅方向分布、及び鋳型銅板温度の最大値、最小値を模式的に示した図である。
【符号の説明】
1 精錬工程
2 連続鋳造工程
3 圧延工程
4 タンディッシュ
5 鋳型
6 仕分工程
7 鋳片冷却場
8 製鋼工程制御計算機
9 鋳片物流制御計算機
10 鋳型短辺銅板
11 溶鋼湯面
12 浸漬ノズル
13 吐出孔
14 吐出流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quality monitoring device capable of determining the quality of a continuous cast slab in real time for each slab, and to a quality monitoring method of a continuous cast slab using this quality monitoring device.
[0002]
[Prior art]
In continuous cast slabs of steel, surface defects such as vertical cracks, horizontal cracks, blades and blowholes occur in the surface layer, and non-metallic inclusions (hereinafter referred to as “inclusions”) are present in the interior. In addition, internal defects such as center segregation occurred, which caused quality defects such as surface defects in the final product after rolling, and were a main cause of a decrease in yield of the final product. Therefore, the slab in which the defect more than the allowable amount has occurred on its surface has been removed by surface care such as surface cutting of the slab surface before rolling.
[0003]
By the way, from the viewpoint of energy saving and resource saving, the high-temperature continuous cast slab immediately after casting is directly transferred to a hot rolling mill without maintenance or directly transferred to a heating furnace and heated to a predetermined temperature. The so-called hot direct feed rolling process, in which rolling is performed after the temperature has been raised, has been widely performed. When a steel sheet is produced by a hot direct rolling process, the slab needs to be free of these defects, and various means for avoiding these defects have been developed. For example, vertical cracks are mitigated by the development of mold powder that reduces heat removal in the mold, and inclusions reduce slag oxidation (slag modification) and electromagnetic force on the molten steel in the ladle. It is mitigated by the flow control of the molten steel used in the mold. As a result, these defects are greatly reduced, contributing not only to an increase in the amount of hot direct rolling process, but also to an increase in the surface maintenance of slabs across a wide range of steel types.
[0004]
However, in the continuous casting process that handles molten steel, even if the casting operation was performed as standard, forced operation deviating from the standard operation was forced due to sudden disturbance, for example, the clogging of the immersion nozzle with Al 2 O 3 , etc. Occasionally a slab of the desired quality level cannot be produced. When the slab of this part is rolled by a hot direct feed rolling process, or when it is directly fed to the rolling step without cooling after cooling and rolled, the risk of quality defects in the final product becomes extremely high. Therefore, it is necessary to carry out operational changes such as excluding the slab of this part from the hot direct feed rolling process or unrolled rolling target and performing surface maintenance.
[0005]
In order to operate such a slab, it is necessary to monitor and judge the quality of each slab in real time to determine whether a hot direct feed rolling process or unmaintained rolling is possible. Therefore, several means for determining the quality of the slab in real time online have been proposed.
[0006]
For example, in Patent Document 1, detection information detected by a sensor group that monitors an operation status arranged in a tundish, an immersion nozzle, or a mold is input to a control computer, and the current operation status is grasped from the detection information. The current operation is compared with the optimum casting conditions based on the quality requirement information, and the quality is judged whether the current operation satisfies the quality requirement level. If the quality requirement level is not satisfied, the quality is determined. A quality control method for controlling to an optimum casting condition that satisfies the requirements is disclosed, and Patent Document 2 discloses the amount of molten steel surface level fluctuation in the mold and the opening of a regulator for pouring molten steel into the mold from the tundish. A quality determination method is disclosed in which the slab of the part is determined to be normal when the molten metal level fluctuation amount and the opening fluctuation amount are smaller than predetermined values.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-47453
[Patent Document 2]
JP 2000-233265 A [0009]
[Problems to be solved by the invention]
However, as disclosed in Patent Document 1 and Patent Document 2 described above, in the conventional slab quality determination method, the quality of the slab is determined only from information regarding the behavior in the tundish and in the mold, and continuous casting. The information of the refining process of the molten steel which is the upper process of the process is not taken into consideration. Among the quality of the continuous cast slab, the amount of inclusions is not particularly determined only by the continuous casting process, but is also governed by the refining process. Therefore, it is difficult to say that the quality judgment of the slab has been accurately and accurately performed by the conventional quality judgment method.
[0010]
The present invention has been made in view of the above circumstances, and the object of the present invention is to consider the amount of inclusions in the slab in real time for each slab in consideration of information on the refining process of molten steel, which is the upper process of the continuous casting process. And a quality monitoring method for continuous cast slabs using this quality monitoring device.
[0011]
[Means for Solving the Problems]
The quality monitoring device for continuous cast slabs according to the first invention of the present application for solving the above-mentioned problems is the oxygen concentration in molten steel at the end of converter refining, the oxygen concentration in molten steel after vacuum decarburization refining in secondary refining, based on one or more data among the Al oxide amount calculated from in these molten steel oxygen concentration, means for determining determining measure of deoxidation products generated amount of molten steel refining process, the tundish The amount of inclusion floating in the tundish in the continuous casting process based on one or more of the following data: molten steel retention amount, molten steel surface height in the tundish, and average residence time in the tundish One or two of the means for obtaining a judgment scale, the amount of fluctuation of the molten metal level in the mold, the difference in height between the positions of the molten metal on the left and right sides of the immersion nozzle, and the temperature of the mold copper plate measured by the temperature measuring element embedded in the mold copper plate Based on more than species data There are, by matching means for obtaining a judgment measure of mold powder entrainment amount of the mold of the continuous casting process, the three slab acceptance criteria of quality determined each decision metric for each order obtained, the slab Means for determining whether or not rolling can be performed without maintenance.
[0012]
According to a second aspect of the present invention, there is provided a quality monitoring device for a continuous cast slab according to the first aspect of the present invention, wherein the mold powder entrainment amount is determined based on a mold copper plate temperature measured by a temperature measuring element embedded in the mold copper plate. It is obtained based on the temperature distribution form in the mold width direction.
[0013]
The continuous cast slab quality monitoring method according to the third aspect of the invention is determined by the continuous cast slab quality monitoring device according to the first aspect or the second aspect of the invention as to whether or not rolling can be performed without maintenance. The determination result is characterized in that only a passing slab is directly sent to the rolling process without care, and the unsuccessful slab is operated separately without being sent directly to the rolling process.
[0014]
Since the quality monitoring method of the continuous cast slab according to the present invention determines the amount of inclusions in the slab not only in the continuous casting process but also in the amount of deoxidation products generated in the molten steel refining process, it is accurately determined. In addition, the amount of slab inclusions can be determined with high accuracy. Moreover, since the index used as the scale of determination in each process is narrowed down to one particularly important and each is independent, the amount of slab inclusions can be determined without using complicated logic. In addition, the “rolling without maintenance” in the present invention is not limited to the hot direct feed rolling process, but also covers the process in which the slab is cooled and transported to the rolling process without heating and rolled after heating. Literally, it covers all processes of rolling without maintenance.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram illustrating an example of an embodiment of the present invention, and is a schematic diagram of an overall configuration when a quality monitoring method for a continuous cast slab according to the present invention is carried out.
[0016]
As shown in FIG. 1, the present invention heats a molten steel refining process 1, a continuous casting process 2 for casting the molten steel produced in the refining process 1, and a continuous cast slab manufactured in the continuous casting process 2. It is applied to a manufacturing process of a steel product composed of a rolling process 3 that performs hot rolling, and operation data of a refining process 1 and a continuous casting process 2 are input to a steelmaking process control computer 8. The quality of each one is determined in real time. The steelmaking process control computer 8 is a computer that manages information from the refining process 1 to the continuous casting process 2. Order information such as product standards and delivery dates is input from an integrated management computer (not shown). A part of the function of the process control computer 8 is used as a quality monitor for a continuous cast slab according to the present invention. The molten steel refining process 1 is usually composed of converter refining and secondary refining.
[0017]
The operation data of refining process 1 includes the amount of steel refining in the converter, the refining time, the amount of oxygen used, the composition of the molten steel at the end of converter refining, the slag thickness in the ladle, and whether or not the slag in the ladle is modified. In the next refining, for example, the processing time in the RH vacuum degassing facility, the ultimate vacuum, the molten steel component at the end of refining, and the like are input. The steelmaking process control computer 8 grasps the generation amount of deoxidation products (Al 2 O 3 ) generated when molten steel is deoxidized with Al from the input operation data of the refining process 1. Using the operation data that can be determined, a determination scale that is a scale for determining the amount of deoxidation product generated is calculated and obtained.
[0018]
The operation data that can grasp the amount of deoxidation products generated include oxygen concentration in molten steel at the end of converter refining, and vacuum decarburization refining using RH vacuum degassing equipment after converter refining. The oxygen concentration in the molten steel after vacuum decarburization refining, and the amount of Al oxidation calculated from these oxygen concentrations can be used. Based on these operational data, the steelmaking process control computer 8 obtains a determination scale for the amount of decarburized product generated in the molten steel. In obtaining the judgment scale, the steel grades are classified into several categories according to the standards of carbon concentration, Si concentration and Al concentration of steel products, and threshold values are set for each classified steel grade, and the input operation data is compared with the threshold values. The determination scale is calculated based on the degree of deviation from the threshold. In this case, for example, the lower the oxygen concentration in the molten steel, the smaller the determination scale, and the smaller the determination scale, the smaller the amount of deoxidation product generated.
[0019]
The operation data of the continuous casting process 2 includes the amount of molten steel retained in the tundish 4, the molten steel temperature, the molten steel surface height, and the tundish at the tip of the long nozzle for blocking between the ladle and the tundish 4 from the air. The immersion depth in the inner molten steel, the position of the molten metal surface in the mold 5, the amount of molten metal fluctuation, the temperature of the mold copper plate, and the amount of Ar blown into the immersion nozzle for blocking the space between the tundish 4 and the mold 5 from the air Etc. are entered. The steelmaking process control computer 8 can place the tundish 4 in the tundish 4 by using the operation data that can grasp the amount of inclusion floating in the tundish 4 from the input operation data of the continuous casting process 2. While calculating and obtaining a determination scale that is a scale for determining the amount of inclusion floating, the operation data that can grasp the amount of mold powder in the mold 5 is used, and the mold powder is entrained in the mold 5. A determination scale that is a scale for determining the amount is calculated and obtained.
[0020]
As operation data that can grasp the amount of inclusion floating in the tundish 4, the molten steel retention amount and the molten steel surface height in the tundish 4 can be used. Moreover, you may use the average residence time in the tundish 4 which becomes settled from the molten steel residence amount in the tundish 4 and the drawing speed of a slab. Furthermore, the molten steel temperature in the tundish 4 may be a function associated with these operation data. Based on these operation data, the steelmaking process control computer 8 obtains a determination scale for the amount of inclusion floating in the tundish 4. When obtaining the judgment scale, as described above, classify the steel types into several standards for the carbon concentration, Si concentration and Al concentration of the steel product, set a threshold value for each classified steel type, and enter the operation The data and the threshold value are compared, and a determination scale is calculated based on the degree of deviation from the threshold value. In this case, for example, the larger the retained steel amount or the longer the average residence time, the smaller the determination scale, and the smaller the determination scale, the greater the amount of inclusion floating, and the smaller the amount of inclusion in the slab.
[0021]
As operation data that can grasp the amount of mold powder entrained in the mold 5, it is possible to grasp from the amount of fluctuation of the molten metal level in the mold 5 and the height difference between the left and right molten metal surface positions across the immersion nozzle. Although possible, it is preferable to use a mold copper plate temperature measured by a temperature measuring element embedded in the width direction of the mold copper plate from the viewpoint of accurately grasping the entrainment of the mold powder. Below, the relationship between mold copper plate temperature and mold powder entrainment is demonstrated.
[0022]
The present inventors conducted measurements, model experiments, and numerical analysis in an actual machine, and investigated the relationship between the molten steel flow situation in the mold and the mold copper plate temperature distribution form in the mold width direction at various casting conditions. . FIG. 2 schematically shows a comparison between the flow state of molten steel in the mold and the distribution form of the mold copper plate temperature. In FIG. 2, 10 is a mold short-side copper plate, 11 is a molten steel surface in the mold, 12 is an immersion nozzle, 13 is a discharge hole, 14 is a discharge flow, and the discharge flow 14 is indicated by an arrow in the direction of the flow. It represents.
[0023]
In the pattern 0, the surface along the long side copper plate has a gentle upward flow over the entire mold width direction, and a large difference does not appear in the measured values of the temperature measuring elements in the mold width direction. That is, when the temperature peak does not appear remarkably, the mold temperature distribution form is flat across the entire mold width. On the other hand, in the pattern 1, the upward flow in the vicinity of the immersion nozzle 12 associated with the floating of Ar blown into the immersion nozzle 12 becomes dominant, and on the molten steel surface 11, from the immersion nozzle 12 toward the mold short side copper plate 10. Molten steel flows. For this reason, the temperature distribution in the mold copper plate width direction becomes high in the vicinity of the immersion nozzle 12, and one large temperature peak is generated in the vicinity of the immersion nozzle 12. In the pattern 2, the inertia force of the discharge flow 14 from the immersion nozzle 12 is large, the discharge flow 14 branches up and down after colliding with the mold short side copper plate 10, and the molten steel surface 11 is immersed from the mold short side copper plate 10. It becomes a molten steel flow toward the nozzle 12. In this case, the molten steel flow velocity at the molten steel surface 11 is relatively fast. At this time, the temperature of the copper plate in the vicinity of the mold short-side copper plate 10 is high, and a large temperature peak is present in the vicinity of the left and right mold short-side copper plates 10.
[0024]
As described above, the temperature distribution forms can be roughly divided into three types of patterns 0, 1, and 2. However, there are actually temperature patterns other than these three types of patterns. For example, the pattern 3 shown in FIG. 2 occurs when the upward flow in the vicinity of the immersion nozzle 12 accompanying the floating of Ar and the inertial force of the discharge flow 14 are dominant, and the vicinity of the immersion nozzle 12 and the mold short. A temperature peak appears in the vicinity of the side copper plate 10, and a temperature distribution form having three temperature peaks is obtained. However, this pattern can be considered as a combination of pattern 1 and pattern 2. In other cases, it was confirmed that the pattern 0, the pattern 1, and the pattern 2 were represented by combinations.
[0025]
From the above investigation, it was found that the molten steel flow situation varied depending on the casting conditions, and that there were various temperature distribution forms corresponding to this molten steel flow situation. And when determining the mold powder entrainment on the surface of the slab, it was found that it is important and possible to determine from the corresponding temperature distribution form in consideration of these flow conditions.
[0026]
First, the case where the molten steel flow state is pattern 1 will be described. When the molten steel flow state is pattern 1, the floating of Ar is concentrated in the vicinity of the immersion nozzle 12, and the diameter of the rising Ar bubble is large. When the bubbles leave the molten steel surface 11, the molten steel surface 11 is disturbed and mold powder is wound up, or the bubbles themselves are captured and cause blow defects. At this time, the maximum value (T max ) in the temperature distribution in the width direction of the mold copper plate as shown in FIG. 3A is considered as one factor representing the magnitude of the turbulence of the molten steel surface 11 due to Ar. Therefore, when the maximum value (T max ) is too large, the entrainment of mold powder by Ar can be predicted.
[0027]
Further, when both a fast flow and a slow flow are present on the molten steel surface 11, the gradient of the molten steel flow velocity is related to the shear stress acting on the mold powder, and the larger the gradient value, the easier the mold powder is cut. The gradient of the flow velocity is detected as the gradient of the mold copper plate temperature. Therefore, as shown in FIG. 3 (b), around the immersion nozzle 12, the maximum value of the temperature distribution in the mold width direction left minimum value (T L1) (T L2) by subtracting the value (T L1 -T L2 ) And the value (T R1 −T R2 ) obtained by subtracting the minimum value (T R2 ) from the maximum value (T R1 ) of the temperature distribution on the right side of the mold width direction (hereinafter referred to as “maximum high and low temperature”). Can be considered as another factor that represents the magnitude of the turbulence of the molten steel surface 11 caused by Ar. Therefore, the entrainment of the mold powder by Ar is also affected by the magnitude of the maximum temperature difference. Can be predicted.
[0028]
Next, the case where the molten steel flow state is pattern 2 will be described. When a molten steel flow having a relatively fast flow exists on the molten steel surface 11 as in the pattern 2, the mold powder covering the molten steel surface 11 may be scraped by this flow. If the molten steel flow rate is fast, the mold copper plate temperature also becomes high. Therefore, the maximum value (T max ) of the temperature distribution in the width direction of the mold copper plate as shown in FIG. 4 (a) can be considered as a factor representing the maximum speed of the molten steel on the molten steel surface 11, and therefore the maximum If the value (T max ) is too large, it can be predicted that the mold powder will be shaved.
[0029]
In addition, when the molten steel flow situation is pattern 2, when both a relatively fast flow and a slow flow exist on the molten steel surface 11, the gradient of the molten steel flow velocity is related to the shear stress acting on the mold powder as described above. However, the larger the gradient value, the easier the mold powder is cut. The gradient of the flow velocity is detected as the gradient of the mold copper plate temperature. Therefore, as shown in FIG. 4 (b), the maximum value of the temperature distribution in the mold width direction left around the immersion nozzle 12 from the minimum value (T L1) (T L2) by subtracting the value (T L1 -T L2) And the value (T R1 -T R2 ) obtained by subtracting the minimum value (T R2 ) from the maximum value (T R1 ) of the temperature distribution on the right side of the mold width direction, the larger value, that is, the maximum height difference is the flow velocity. It can be considered as a factor representing the magnitude of the gradient, and therefore, the presence or absence of cutting of the mold powder can be predicted by the magnitude of the maximum temperature difference.
[0030]
Furthermore, when the molten steel flow state is pattern 2, when the variation in molten steel flow velocity of the molten steel surface 11 on the left and right in the mold width direction is large, a vortex is likely to be generated where the flow collides, and mold powder may be involved. Therefore, as shown in FIG. 4C, the absolute value of the difference between the maximum value (T L1 ) of the left side temperature distribution in the mold width direction and the maximum value (T R1 ) of the right side temperature distribution around the immersion nozzle 12 ( (Hereinafter referred to as the “maximum left / right temperature difference”) can be considered as a factor representing the degree of drift affecting the entrainment of the mold powder due to the vortex. Presence or absence of inclusion can be predicted.
[0031]
Further, when the flow state of the molten steel in the mold changes, for example, from pattern 1 to pattern 3, or even in pattern 2, the flow rate of the discharge flow 14 on one side is faster than the other, the inside of the mold The molten steel flow is disturbed, and the amount of fluctuation of the molten steel surface 11 increases, and the probability of occurrence of mold powder entrainment increases. Usually, the flow fluctuation observed in the mold changes gently with its period set to several tens of seconds, but when it changes in a time shorter than this period, the occurrence frequency of mold powder entrainment increases. This change in molten steel flow is detected as a temperature fluctuation amount per unit time of the mold copper plate temperature. Therefore, the maximum value of the temperature fluctuation amount per unit time of the mold copper plate temperature in the mold width direction is grasped, and this maximum The presence or absence of mold powder entrainment can also be predicted based on the magnitude of the value.
[0032]
By the way, when determining the entrainment of the mold powder from the measurement result of the mold copper plate temperature, the temperature measurement position of the mold copper plate is in the range of 10 to 135 mm away from the position of the molten steel surface 11 in the mold in the slab drawing direction. There is a need to. In the range of less than 10 mm from the molten steel surface position, the temperature of the mold copper plate rises and falls due to the fluctuation of the molten steel surface 11 during casting. Therefore, it is impossible to accurately grasp the change in the mold copper plate temperature due to the molten steel flow. This is because, at a position below 135 mm from the surface 11, the amount of change in the mold copper plate temperature due to the change in molten steel flow decreases, and the amount of change in the mold copper plate temperature cannot be accurately grasped. Moreover, it is preferable to install temperature measuring positions at intervals of 200 mm or less in the mold width direction. 3 is a diagram schematically showing the width direction distribution of the mold copper plate temperature and the maximum and minimum values of the mold copper plate temperature when the molten steel flow state is pattern 1. FIG. 4 shows the pattern of the molten steel flow state. 2 is a diagram schematically showing a width direction distribution of a mold copper plate temperature and a maximum value and a minimum value of the mold copper plate temperature when 2. FIG. In the case of pattern 0, there is no molten steel flow rate on the molten steel surface 11 enough to cause the mold powder to be entrained, and no mold powder is entrained.
[0033]
The steelmaking process control computer 8 obtains a determination scale for the amount of mold powder entrapped in the mold 5 using the method described above from the measured value of the mold copper plate temperature. When calculating the judgment scale, the type of mold powder to be used is classified into several groups for each chemical composition and viscosity in the molten state, and a threshold value is set for each classified group. And a determination scale is calculated according to the degree of deviation from the threshold. In this case, for example, the smaller the maximum height difference, the smaller the determination scale, and the smaller the determination scale, the smaller the amount of mold powder involved.
[0034]
The steelmaking process control computer 8 determines the deoxidation product generation amount, the inclusion floating amount, and the mold powder entrainment amount determined in this way, and the slab determined for each order input from the consistent management computer. The quality pass / fail criterion is checked to determine whether or not the corresponding slab can be rolled without being maintained, and the pass / fail judgment result is transmitted to the slab distribution control computer 9. The slab physical distribution control computer 9 that has received the pass / fail judgment sorts the slabs that are accepted and rejected in the sorting step 6. The pass / fail criterion is determined for each order. For example, in the case of a strict surface material, a determination scale serving as a pass / fail boundary value can be set to a small numerical value.
[0035]
The passed slab is directly sent to the rolling step 3 without being maintained, heated to a hot direct feed rolling process or a heating furnace, and then rolled into a product as originally planned. On the other hand, the rejected slab is temporarily placed in the slab cooling field 7 and its operation is determined according to the degree of rejection. That is, when the degree of rejection is small, visual inspection of the slab surface and partial scouring or separate operation processing are performed, and when the degree of rejection is large, front surface slab cutting on the slab surface is performed. Care treatment and scrapping treatment are performed.
[0036]
As described above, the quality monitoring apparatus and quality monitoring method for continuous cast slabs according to the present invention are not limited to continuous casting process 2 but are cast in consideration of the amount of deoxidation products generated in molten steel refining process 1. Since the amount of inclusions in the piece is determined, the amount of inclusions in the slab can be determined accurately and accurately. As a result, a reduction in the defect occurrence rate in the final product is achieved, contributing to a reduction in manufacturing costs. Moreover, since the index used as a determination scale in each process is narrowed down to one particularly important, and each is independent, the inclusion amount of the slab can be determined without using complicated logic.
[0037]
【The invention's effect】
According to the quality monitoring apparatus and quality monitoring method for continuous cast slabs according to the present invention, the amount of inclusions in the slab is determined by taking into account the amount of deoxidation products generated not only in the continuous casting process but also in the refining process of molten steel. Therefore, it is possible to judge the quality of the slab accurately and accurately, and as a result, it is possible to reduce the defect occurrence rate in the final product and contribute to the reduction of manufacturing costs. Effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention, and is a schematic diagram of an overall configuration when performing a quality monitoring method for a continuous cast slab according to the present invention.
FIG. 2 is a diagram schematically showing a comparison between a flow state of molten steel in a mold and a distribution form of mold copper plate temperature.
FIG. 3 is a diagram schematically showing a width direction distribution of a mold copper plate temperature and a maximum value and a minimum value of the mold copper plate temperature when the molten steel flow state is pattern 1;
4 is a diagram schematically showing a width direction distribution of a mold copper plate temperature and a maximum value and a minimum value of the mold copper plate temperature when the molten steel flow state is pattern 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refining process 2 Continuous casting process 3 Rolling process 4 Tundish 5 Mold 6 Sorting process 7 Slab cooling field 8 Steelmaking process control computer 9 Slab distribution control computer 10 Mold short side copper plate 11 Molten steel surface 12 Immersion nozzle 13 Discharge hole 14 Discharge flow

Claims (3)

転炉精錬終了時の溶鋼中酸素濃度、二次精錬の真空脱炭精錬後の溶鋼中酸素濃度、これらの溶鋼中酸素濃度から計算されるAl酸化量のうちの1種または2種以上のデータに基づいて、溶鋼の精錬工程における脱酸生成物発生量の判定尺度を求める手段と、タンディッシュ内の溶鋼滞留量、タンディッシュ内の溶鋼湯面高さ、タンディッシュ内の平均滞留時間のうちの1種または2種以上のデータに基づいて、連続鋳造工程のタンディッシュ内における介在物浮上量の判定尺度を求める手段と、鋳型内の湯面変動量、浸漬ノズル左右両側の湯面位置の高低差、鋳型銅板に埋設された測温素子で測定される鋳型銅板温度のうちの1種または2種以上のデータに基づいて、連続鋳造工程の鋳型内におけるモールドパウダー巻込み量の判定尺度を求める手段と、求めた前記3つのそれぞれの判定尺度をオーダー毎に定まる鋳片品質の合否基準に照合して、当該鋳片の無手入れのままでの圧延の可否を判定する手段と、を具備することを特徴とする、連続鋳造鋳片の品質監視装置。 Data of one or more of oxygen concentration in molten steel at the end of converter refining, oxygen concentration in molten steel after vacuum decarburization refining in secondary refining, and Al oxidation amount calculated from these oxygen concentrations in molten steel Based on the above, out of the means for obtaining a judgment scale for the amount of deoxidation product generated in the refining process of molten steel, the amount of molten steel retained in the tundish, the molten steel surface height in the tundish, and the average residence time in the tundish Based on one or more of the above data, means for obtaining a judgment scale for the amount of inclusion floating in the tundish of the continuous casting process, the amount of molten metal surface fluctuation in the mold, and the position of the molten metal surface on both sides of the immersion nozzle Based on the data of one or more of the mold copper plate temperature measured by the temperature measuring element embedded in the mold copper plate, the determination scale of the amount of mold powder entrained in the mold of the continuous casting process Demand Means that collates said three slab acceptance criteria of quality determined each decision metric for each order obtained, comprising means for determining whether the rolling remain free care of the slab, the A quality monitoring device for continuously cast slabs. 前記モールドパウダー巻込み量の判定尺度を、鋳型銅板に埋設された測温素子で測定される鋳型銅板温度の鋳型幅方向温度分布形態に基づいて求めることを特徴とする、請求項1に記載の連続鋳造鋳片の品質監視装置。  The determination scale of the mold powder entrainment amount is obtained based on a mold width direction temperature distribution form of a mold copper plate temperature measured by a temperature measuring element embedded in the mold copper plate. Quality monitoring device for continuous cast slabs. 請求項1又は請求項2に記載の連続鋳造鋳片の品質監視装置によって判定された、無手入れのままでの圧延の可否の判定結果が、合格の鋳片のみを無手入れのまま圧延工程に直送し、不合格の鋳片は圧延工程に直送せずに別運用することを特徴とする、連続鋳造鋳片の品質監視方法。  The determination result of whether or not to allow unrolled rolling as judged by the quality monitoring device for continuous cast slabs according to claim 1 or claim 2 is a rolling process in which only unsuccessful rolling slabs are left uncleaned. A method for monitoring the quality of a continuously cast slab, characterized in that the directly cast and rejected slabs are operated separately without being directly sent to the rolling process.
JP2003102991A 2003-04-07 2003-04-07 Quality monitoring device and quality monitoring method for continuous cast slab Expired - Lifetime JP4259164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102991A JP4259164B2 (en) 2003-04-07 2003-04-07 Quality monitoring device and quality monitoring method for continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102991A JP4259164B2 (en) 2003-04-07 2003-04-07 Quality monitoring device and quality monitoring method for continuous cast slab

Publications (2)

Publication Number Publication Date
JP2004306085A JP2004306085A (en) 2004-11-04
JP4259164B2 true JP4259164B2 (en) 2009-04-30

Family

ID=33466272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102991A Expired - Lifetime JP4259164B2 (en) 2003-04-07 2003-04-07 Quality monitoring device and quality monitoring method for continuous cast slab

Country Status (1)

Country Link
JP (1) JP4259164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029011A (en) * 2017-11-27 2020-03-17 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Steel plant maintenance support device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790284B2 (en) * 2005-02-25 2011-10-12 Jfeスチール株式会社 Steel continuous casting method
KR100709000B1 (en) * 2005-10-04 2007-04-18 주식회사 포스코 A on-line quality prediction system for stainless steel slab and the predicting method using it
JP4816130B2 (en) * 2006-02-22 2011-11-16 Jfeスチール株式会社 A method for producing a continuous cast slab of steel and a surface defect repair system for the slab.
JP5098528B2 (en) * 2007-09-10 2012-12-12 Jfeスチール株式会社 Defect detection method for continuous cast slab and processing method for continuous cast slab
JP5169098B2 (en) * 2007-09-14 2013-03-27 Jfeスチール株式会社 Quality prediction apparatus, quality prediction method and manufacturing method
JP5169096B2 (en) * 2007-09-14 2013-03-27 Jfeスチール株式会社 Quality prediction apparatus, quality prediction method, and product manufacturing method
JP5617293B2 (en) * 2009-06-02 2014-11-05 Jfeスチール株式会社 Slab surface state prediction method and slab surface state prediction apparatus
JP5476918B2 (en) * 2009-10-20 2014-04-23 Jfeスチール株式会社 Operation method of continuous cast slab based on quality judgment
JP5730744B2 (en) * 2011-10-31 2015-06-10 トヨタ自動車株式会社 Magnet strip manufacturing method and manufacturing apparatus
KR101797312B1 (en) * 2015-12-11 2017-11-14 주식회사 포스코 Processing apparatus for Cast-Finishing and Processing Method thereof
CN111220614B (en) * 2018-11-27 2023-05-09 宝山钢铁股份有限公司 Method for rapidly evaluating quality of molten steel
CN110991916A (en) * 2019-12-10 2020-04-10 马鞍山钢铁股份有限公司 Casting blank quality judgment system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029011A (en) * 2017-11-27 2020-03-17 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Steel plant maintenance support device
KR102338546B1 (en) 2017-11-27 2021-12-14 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Steel plant maintenance support device

Also Published As

Publication number Publication date
JP2004306085A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4259164B2 (en) Quality monitoring device and quality monitoring method for continuous cast slab
JP4829972B2 (en) Stainless steel slab quality online prediction system and prediction method using the same
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JP3337692B2 (en) Quality prediction and quality control of continuous cast slab
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
KR101257260B1 (en) Method for predicting quality of slab using defect index of impurities comeing off submerged entry nozzle
CN108607968B (en) Continuous casting machine tundish slag entrapment forecasting method based on slag tapping detection
CN113543907B (en) Continuous casting method for slab casting blank
JP2010029936A (en) Casting mold for continuous casting, and continuous casting method for steel
JP2009214150A (en) Surface defect-determining method for continuously cast slab and method for producing the same
JP3622422B2 (en) Tundish for continuous casting of steel
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
KR101344897B1 (en) Device for predicting quality of plate in continuous casting and method therefor
JP3541594B2 (en) Method for controlling molten steel flow in continuous casting mold
JP5413054B2 (en) Method and apparatus for determining surface maintenance of slab during continuous casting
JP4325451B2 (en) Method for detecting surface defect of continuous cast slab and removing method thereof
Camisani-Calzolari et al. Control structure for the reduction of defects in continuous casting
JP7014203B2 (en) Estimating method of crater end position of cast slab in continuous casting and its equipment
JP4409167B2 (en) Continuous casting method
KR101546259B1 (en) Methods for manufacturing coil
CN118122977A (en) Method for reducing slag rolling of sheet billet continuous casting machine
JPH05337618A (en) Method for evaluating flow condition in inner part of mold for continuous casting
JP2010099697A (en) Continuous casting method for molten steel
JPH0538562A (en) Method for detecting drift flow in inner part of mold for continuous casting
JP2011036894A (en) Method and device for determination of surface care of cast slab in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term