[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4672896B2 - Regeneration method of incineration ash - Google Patents

Regeneration method of incineration ash Download PDF

Info

Publication number
JP4672896B2
JP4672896B2 JP2001110445A JP2001110445A JP4672896B2 JP 4672896 B2 JP4672896 B2 JP 4672896B2 JP 2001110445 A JP2001110445 A JP 2001110445A JP 2001110445 A JP2001110445 A JP 2001110445A JP 4672896 B2 JP4672896 B2 JP 4672896B2
Authority
JP
Japan
Prior art keywords
ash
heavy metal
vibrating sieve
incineration ash
incinerated ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001110445A
Other languages
Japanese (ja)
Other versions
JP2002301447A (en
Inventor
正孝 花嶋
隆行 島岡
真積 板谷
公昭 杉浦
貞夫 福田
武基 矢代
孝典 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001110445A priority Critical patent/JP4672896B2/en
Publication of JP2002301447A publication Critical patent/JP2002301447A/en
Application granted granted Critical
Publication of JP4672896B2 publication Critical patent/JP4672896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物などを焼却する焼却炉から排出された焼却灰に含まれているダイオキシン類などの有機塩素化合物を分解して無害化する焼却灰の再生方法に関する。
【0002】
【従来の技術】
都市ごみや産業廃棄物などを焼却する焼却炉から排出された焼却灰は、従来、そのままの状態、或いは、焼却灰中に混じっているハンガーなどの鉄片や、アルミ缶などの非鉄金属を取り除いた後、埋立地に運搬して埋め立てられていたが、埋立地の不足、天然骨材の不足、更には、天然骨材の採取に伴う環境破壊を減ずるために、上記の鉄片や非鉄金属などの不純物を除去した後、コンクリート用資材などへの有効利用が検討されている。一方、焼却灰に含まれる有機塩素化合物の濃度は、良好な燃焼条件下であれば非常に低く、環境基準を十分満足すると共に、一般土壌と同程度である。
【0003】
【発明が解決しようとする課題】
ところが、燃焼の悪い焼却炉では、焼却灰中の有機塩素化合物の濃度が高く、有効利用が困難な場合が生じていた。
そこで、焼却灰を物理的に処理して焼却灰中の有機塩素化合物の濃度を低減する方法や装置が多数提案されているが、処理次第では、有機塩素化合物の低減を計ることができても焼却灰の強度が低減し、再生骨材として再利用し難いものになることがある。
【0004】
本発明は、係る問題に鑑みてなされたものであり、その目的とするところは、焼却灰を、十分な強度を保持しつつ、焼却灰中の有機塩素化合物を徹底的に分解し、含有量減を目指すことで土壌環境基準を満足する再生骨材としてリサイクルし得る焼却灰の再生方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の課題を解決するため、本発明は、次のように構成されている。
すなわち、請求項1に係る発明は、所定の網目を有する第1振動篩によって焼却灰中の粗大物を分離する工程と、
第1振動篩を通過した焼却灰を磁力選別機によって焼却灰中の鉄片を分別した後、第1振動篩よりも網目の細かい第2振動篩によって焼却灰と中間の大きさを有する物とに分別する工程と、
第2振動篩を通過した粒径15mm以下、水分20%以下の焼却灰に重金属安定化剤を付与する重金属固定処理工程と、
重金属安定化剤が付与された焼却灰を、ダイオキシン分解装置によって混練するとともに、400℃〜550℃に急速加熱して有機塩素化合物を分解及び無害化する工程と、
無害化した焼却灰を40℃/min以上の冷却速度で急速冷却する工程とからなるものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
(1)第1の実施形態
図1は、本発明を実施するための第1番目の工程図であり、先ず、図示しない焼却炉から排出された焼却灰(以下、主灰という)aを、例えば、網目が80mm角の粗目振動篩1で処理して主灰a中に混じっている80mmを超える大形物bを除去する。この大形物bは、粗鉄用磁力選別機2によって鉄片cと粗粒焼却灰dに分別され、図示しない破砕機により破砕後、粗目振動篩1に戻される。
【0010】
一方、粗目振動篩1を通過した主灰aは、細鉄用磁力選別機3によって主灰中の鉄片cを除去した後、例えば、網目が15mm角の細目振動篩4によって15mmを超え、かつ80mm未満の中間の大きさの物eと、細目振動篩4を通過する主灰aとに分別される。主灰aは、ダイオキシン分解装置(以下、ダイオブレーカーという(登録商標))5によって主灰中の有機塩素化合物が分解、及び無害化される。
【0011】
図2に示すように、ダイオブレーカー5は、燃焼バーナーや電気ヒーターなどの加熱手段6を持つ筒形の加熱部7と、該加熱部7内にその軸方向に平行に設けられた1ないし数本(図では4本)の加熱管8と、該加熱管8を回転させる駆動装置(図示せず)と、前記加熱管8に主灰aを供給する定量フィーダー9と、加熱処理後の処理灰fを分解ガスgから分離して排出する灰排出装置(出口フード)10とから構成されている。
【0012】
ダイオブレーカー5は、空気流通下で、主灰aを400℃〜550℃程度に加熱し、主灰aに含まれている金属の触媒作用を利用してダイオキシン類の塩素を外したり、酸素架橋を切断したりする反応を生じさせることにより、ダイオキシン類を分解及び無害化するものであり、高いダイオキシン除去率を有することから設置面積や経済性の面でも優れた装置と言える。
【0013】
このダイオブレーカー5では、原灰ホッパー11に貯蔵された主灰aが定量フィーダー9及び移送フィーダー90によって加熱部7の加熱管8内に供給される。加熱管8は、電気ヒーターや、燃焼バーナーによって生ずる燃焼ガスなどによって外側から加熱されながら、図示しない駆動装置によって自転又は公転、或いは自転しながら公転する。なお、通常は、3〜15rpm程度の公転が採用される。
【0014】
上記加熱管8は、水平に対して数度程度、例えば、4°程度の下り勾配を持って出口側が低くなるように配置され、加熱管8内の主灰aは、加熱管8の回転に伴って攪拌されながら、均一に加熱され、順次、出口側に移送される。また、加熱管内部に軸方向に沿って設けた攪拌板(リフター)12により主灰aが掻き上げられて攪拌が促進される一方、伝熱面が増加することから伝熱効果の向上が計られている。
【0015】
主灰aは、加熱管8を通過する3〜10分程度の短時間の間に400〜550℃、好ましくは430〜480℃程度に急速加熱され、その間にダイオキシンなどの有機塩素化合物が熱分解し、無害化する。無害化した処理灰fは、分解ガスgと再結合を防ぐため、灰排出装置10で熱分解ガスgと分離される。
【0016】
灰排出装置10で熱分解ガスgから分離された処理灰fは、ダイオキシン類が再生成しないように冷却ジャケット付きの冷却ドラム13によって急速冷却され、常温の処理灰hとなって次工程である重金属固定処理工程14に移送される。
【0017】
即ち、処理灰fは、300℃近くなると、ダイオキシンを再生成するから、灰排出装置10で熱分解ガスgと分離された後、冷却ドラム13によって5分以内に100℃以下、好ましくは2分以内に80℃以下になるように急速冷却された後、次工程である重金属固定処理工程14に移送される。
【0018】
図3に示すように、重金属固定処理工程14では、処理灰サイロ15内の処理灰hをダスト切出機16で切り出して横型混合機17に供給する。この横型混合機17には、重金属安定化剤貯留槽18から重金属安定化剤注入ポンプ19によって供給される重金属安定化剤iと、プラント水jとが供給され、脱塩素化灰hに混合される。混練後の処理済灰kは、再生骨材m(図1参照)として再利用される。ここで使用される重金属安定化剤は、特に限定されず、市販のものを使用できる。好ましくは、無機系重金属安定化剤、特に好ましくは燐酸系重金属安定化剤が使用できる。
【0019】
図2に戻って説明すると、上記灰排出装置10で分離された熱分解ガスgは、押込みブロワー(図示せず)から供給される空気によって希釈されてダストコレクター(集じん機)(図示せず)に送られ、捕集された後、焼却炉などに搬送されて処理されたり、或いは活性炭吸着塔、触媒反応塔など(図示せず)を経て大気中に放出される。また、ダストコレクター(集じん機)で捕集された飛灰は、灰供給ホッパーに供給され、再度、加熱分解処理される。
【0020】
また、図1に戻って説明すると、細目振動篩3によって分別された15mmを超え、且つ80mm未満の大きさの残留物eは、風力選別機20によって風力選別され、残留物eに付着している未燃物nは、フィルターに捕集され、焼却炉に戻される。未燃物nが除かれた残留物e′は、非鉄選別機21によって非鉄金属pと、それ以外の物rとに分別される。非鉄金属以外の残留物rは、破砕機22によって15mm未満に破砕された後、再度、細鉄用磁力選別機3に戻され、再度、選別される。
【0021】
ダイオブレーカーの運転操作条件としては、下記の条件を満たすことが望ましい。即ち、
・主灰の粒径範囲 :15mm以下、好ましくは13mm以下
・主 灰 の 水 分 :25%以下、好ましくは20%以下
・加 熱 温 度 :400〜550℃、好ましくは430〜480℃
・加熱器出口の酸素濃度:0〜20%、好ましくは5〜15%
・加熱処理時間 :2〜10分、好ましくは3〜7分
・冷 却 速 度 :40℃/min以上、好ましくは150℃/min以上
【0022】
ここで、主灰の粒径が15mmを超えると、主灰を所定温度(400〜550℃)に短時間(2〜10分以内)で加熱することが難しくなる。
また、主灰の水分が25%を超えると、水分の蒸発に多くの熱エネルギーが費やされるため、熱損失が多大になるという問題がある。
【0023】
また、加熱温度が400℃未満の場合には、ダイオキシン類の分解率が50%台に留まる。また、550℃を超えると、主灰の強度が低下する恐れがある。
また、加熱処理時間が10分を超えるように設定すると、効率的でなくなる。
また、冷却速度を40℃/min未満に設定すると、ダイオキシン類の分解率が低下する恐れがある。
【0024】
(2)第2の実施形態
図4は、本発明を実施するための第2番目の工程図を示しているが、本発明は、ダイオブレーカー5と重金属固定処理工程14の順序を互いに入れ換えた点が異なるだけであるから、同じ部品に同じ符号を付けて詳しい説明については省略する。
しかし、ダイオブレーカー5の直前に重金属固定処理工程14を位置させると、ダイオブレーカー5を通過する間に主灰aと、重金属安定化剤iが混練されることから、混練機17が不要となる利点がある。
【0025】
(3)第3の実施形態
図5は、本発明を実施するための第3番目の工程図を示しているが、焼却炉の性能が良く、未燃物が少ない場合には、図5に示すように、風力選別機を省略することができる。
その他の部品は、第1の実施形態と同じであるから、同じ部品に同じ符号を付けて詳しい説明については省略する。
【0026】
(4)第4の実施形態
図6は、本発明方法を実施するための第4番目の工程図を示している。本発明のように、主灰aを直ちに破砕機22に投入して主灰aに混在しているハンガーなどの鉄片などを破砕すると、粗目振動篩及び粗鉄用磁力選別機を省略することが可能となり、機器構成数を低減させることが可能となる。
その他の部品は、第1の実施形態と同じであるから、同じ部品に同じ符号を付けて詳しい説明については省略する。
【0027】
(5)第5の実施形態
図7は、本発明方法を実施するための第5番目の工程図を示している。再生骨材mからの重金属溶出が問題ない場合は、重金属固定工程を無くすことができる。その他の部品は、第1の実施形態と同じであるから、同じ部品に同じ符号を付けて詳しい説明については省略する。
【0028】
【実施例】
(実施例1)
試験に供した再生骨材は、「表1」の2種類である。再生骨材Aは、DXNs(ダイオキシン類)の含有量が25pg-TEQ/gと低いため、主として、再生骨材Bを図8に示す管状炉試験に供した。試験は、温度依存性などについて実施した。
【0029】
試験条件は、
・反応温度:450〜500℃
・昇温時間:3〜4分
・保持時間:0分
・酸素供給量:10ml/min
・窒素供給量:90ml/min
・冷却時間:3分以内
・冷却:水による間接急冷却
を基本条件とし、試験に応じて条件を変化させた。なお、保持時間0分とは、再生骨材が所定温度に達した直後に冷却を開始することを示す。
【0030】
【表1】

Figure 0004672896
【0031】
温度依存性
反応温度を400℃、450℃、500℃と変化させ、反応温度がDXNs分解率に与える影響を調査した。その結果を図9に示す。再生骨材中のDXNsは、反応温度の上昇とともに分解が促進された。再生骨材A,B共、反応温度450℃以上でDXNs分解率80%以上の良好な結果を得た。このことから、DXNs分解には、450℃以上が適していることが分かった。
また、500℃で処理された再生骨材A及びB(図中、A(500),B(500))と同族体分布をブランク(A,B)と共に図10に示す。図10より全ての同族体が高効率で分解されていることが分かる。
【0032】
(実施例2)
管状炉試験の結果から、加熱脱塩素法により再生骨材中のDXNsが高効率で分解されることが明らかとなった。そこで、図11のダイオブレーカー(DB)を用いて再生骨材中のDXNsを分解処理(反応温度:500℃、処理時間:5分)した際の土質的性状を評価した。
【0033】
土壌的性状
加熱脱塩素処理(「表」及びダイオブレーカー処理前/処理後)における再生骨材Aの土質的性状(密度、粒度分布、締固め性、CBR)の調査結果を「表2」及び図12に示す。
【0034】
密度は、2.145g/cm3 から2.261g/cm3 へ増加していた。再生骨材中の有機物の燃焼(除去)と金属等の酸化のためと考えられる。粒度分布を図12に示すが、シルト分は、6.4%から9.5%に増加し、礫分(28.1%→26.8%)および砂分(65.4%→63.6%)が僅かに減少していた。これは、加熱条件下での攪拌作用による灰中の凝集分の崩壊によるものと考えられる。
【0035】
しかし、いずれも幅広く直線的であり、均等係数は、10以上、曲率係数は、約1であり、力学的性状に悪影響を与えないと予想されるものであった。
【0036】
最大乾燥密度は、僅かに減少していた。これは粒子分布と相関しており、シルト分の増加に伴い締固め性が低下したためと考えられる。力学的性状を示す修正CBRに著しい変化は認められず、加熱脱塩素処理に関わらず下層路盤材の基準値20%を満足していた。
【0037】
【表2】
Figure 0004672896
【0038】
【発明の効果】
上記のように、本発明は、焼却灰(主灰)を短時間で加熱分解処理するため、、土質的性状(物理的性状)に大きな影響を与えず、下層路盤材として有効利用することが可能である。
【図面の簡単な説明】
【図1】本発明の第1番目の実施工程を示す図である。
【図2】ダイオブレーカーの一部断面を含む斜視図である。
【図3】重金属固定処理工程の説明図である。
【図4】本発明の第2番目の実施工程を示す図である。
【図5】本発明の第3番目の実施工程を示す図である。
【図6】本発明の第4番目の実施工程を示す図である。
【図7】本発明の第5番目の実施工程を示す図である。
【図8】管状炉の概要図である。
【図9】反応温度依存性を示す図である。
【図10】同族体分布図である。
【図11】ダイオブレーカーの模式図である。
【図12】粒度分布図である。
【符号の説明】
1 第1振動篩
2 磁力選別機
4 第2振動篩
14 重金属固定処理工程
a 焼却灰
b 粗大物
c 鉄片
e 中間の大きさを有する物
h 処理灰
i 重金属安定化剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating incineration ash that decomposes and detoxifies organochlorine compounds such as dioxins contained in incineration ash discharged from incinerators that incinerate municipal waste and industrial waste.
[0002]
[Prior art]
Conventionally, incineration ash discharged from incinerators that incinerate municipal waste and industrial waste has been removed as it is, or iron pieces such as hangers mixed in incineration ash and non-ferrous metals such as aluminum cans have been removed. After that, it was transported to landfills and landfilled. However, in order to reduce the environmental damage caused by the collection of natural aggregates, the lack of landfills, natural aggregates, etc. After removing impurities, effective use for concrete materials is being studied. On the other hand, the concentration of the organic chlorine compound contained in the incinerated ash is very low under good combustion conditions, sufficiently satisfies the environmental standards, and is at the same level as general soil.
[0003]
[Problems to be solved by the invention]
However, incinerators with poor combustion have a high concentration of organochlorine compounds in the incineration ash, which makes it difficult to use effectively.
Therefore, many methods and equipment have been proposed to physically treat incineration ash to reduce the concentration of organochlorine compounds in the incineration ash, but depending on the treatment, even if it is possible to reduce the organochlorine compounds, The strength of incinerated ash may be reduced, making it difficult to reuse as recycled aggregate.
[0004]
The present invention has been made in view of such problems, and its object is to thoroughly decompose the organic chlorine compound in the incineration ash while maintaining sufficient strength, and the content of the incineration ash The aim is to provide a method for regenerating incinerated ash that can be recycled as recycled aggregate that satisfies the soil environmental standards.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows.
That is, the invention according to claim 1 is a step of separating coarse substances in the incinerated ash by a first vibrating sieve having a predetermined mesh;
After the incinerated ash that has passed through the first vibrating sieve is separated from the iron pieces in the incinerated ash by a magnetic separator, the second vibrating sieve with a finer mesh than the first vibrating sieve is used to make the incinerated ash into an intermediate size. A step of separating;
A heavy metal fixing treatment step for imparting a heavy metal stabilizer to the incinerated ash having a particle diameter of 15 mm or less and a water content of 20% or less that has passed through the second vibrating screen ;
Incineration ash provided with a heavy metal stabilizer is kneaded by a dioxin decomposition apparatus, and rapidly heated to 400 ° C. to 550 ° C. to decompose and detoxify the organic chlorine compound,
It comprises a step of rapidly cooling the detoxified incineration ash at a cooling rate of 40 ° C./min or more .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1) First embodiment Fig. 1 is a first process chart for carrying out the present invention. First, incineration ash discharged from an incinerator (not shown) (hereinafter referred to as main ash). ) A is treated with, for example, a coarse vibrating sieve 1 having a mesh size of 80 mm square to remove a large product b exceeding 80 mm mixed in the main ash a. The large-sized object b is separated into iron pieces c and coarse incineration ash d by the magnetic separator for coarse iron 2, and is returned to the coarse vibrating sieve 1 after being crushed by a crusher (not shown).
[0010]
On the other hand, the main ash a that has passed through the coarse vibrating sieve 1 is, for example, after the iron pieces c in the main ash have been removed by the fine iron magnetic separator 3, for example, the mesh exceeds 15 mm by the fine vibrating sieve 4 having a 15 mm square mesh, and It is separated into an object e having an intermediate size of less than 80 mm and a main ash a passing through the fine vibrating sieve 4. In the main ash a, an organic chlorine compound in the main ash is decomposed and detoxified by a dioxin decomposing apparatus (hereinafter referred to as “ registered trademark” ) 5.
[0011]
As shown in FIG. 2, the die breaker 5 includes a cylindrical heating part 7 having a heating means 6 such as a combustion burner or an electric heater, and one to several parts provided in the heating part 7 in parallel to the axial direction. This (four in the figure) heating tube 8, a driving device (not shown) for rotating the heating tube 8, a quantitative feeder 9 for supplying the main ash a to the heating tube 8, and a process after the heat treatment The ash discharge device (exit hood) 10 is configured to separate and discharge the ash f from the cracked gas g.
[0012]
The die breaker 5 heats the main ash a to about 400 ° C. to 550 ° C. under air flow, and removes the chlorine of dioxins by utilizing the catalytic action of the metal contained in the main ash a, or oxygen bridge This is a device that decomposes and renders the dioxins harmless by causing a reaction that cleaves and has a high dioxin removal rate, and thus can be said to be an excellent device in terms of installation area and economy.
[0013]
In the die breaker 5, the main ash a stored in the raw ash hopper 11 is supplied into the heating tube 8 of the heating unit 7 by the quantitative feeder 9 and the transfer feeder 90. The heating tube 8 is rotated or revolved by a driving device (not shown) or revolved while rotating while being heated from the outside by an electric heater or combustion gas generated by a combustion burner. Normally, revolutions of about 3 to 15 rpm are employed.
[0014]
The heating tube 8 is arranged to have a downward slope of about several degrees with respect to the horizontal, for example, about 4 °, and the outlet side is lowered, and the main ash a in the heating tube 8 is rotated by the rotation of the heating tube 8. While being stirred, it is heated uniformly and sequentially transferred to the outlet side. In addition, the main ash a is scraped up by the stirring plate (lifter) 12 provided in the heating tube along the axial direction to promote stirring, while the heat transfer surface increases, so that the heat transfer effect is improved. It has been.
[0015]
The main ash a is rapidly heated to 400 to 550 ° C., preferably about 430 to 480 ° C. in a short time of about 3 to 10 minutes passing through the heating tube 8, during which the organic chlorine compound such as dioxin is thermally decomposed. And detoxify. The detoxified treated ash f is separated from the pyrolysis gas g by the ash discharge device 10 in order to prevent recombination with the cracking gas g.
[0016]
The treated ash f separated from the pyrolysis gas g by the ash discharge device 10 is rapidly cooled by the cooling drum 13 with a cooling jacket so that dioxins are not regenerated, and becomes the treated ash h at room temperature, which is the next step. It is transferred to the heavy metal fixing process 14.
[0017]
That is, when the treated ash f is close to 300 ° C., dioxins are regenerated, and after being separated from the pyrolysis gas g by the ash discharge device 10, the cooling drum 13 causes the cooling ash 13 to within 100 minutes, preferably 2 minutes After being rapidly cooled to 80 ° C. or less within, it is transferred to the heavy metal fixing process 14 as the next process.
[0018]
As shown in FIG. 3, in the heavy metal fixing treatment step 14, the treated ash h in the treated ash silo 15 is cut out by the dust cutting machine 16 and supplied to the horizontal mixer 17. The horizontal mixer 17 is supplied with the heavy metal stabilizer i supplied from the heavy metal stabilizer storage tank 18 by the heavy metal stabilizer injection pump 19 and the plant water j, and is mixed with the dechlorinated ash h. The The treated ash k after kneading is reused as recycled aggregate m (see FIG. 1). The heavy metal stabilizer used here is not specifically limited, A commercially available thing can be used. Preferably, an inorganic heavy metal stabilizer, particularly preferably a phosphate heavy metal stabilizer can be used.
[0019]
Referring back to FIG. 2, the pyrolysis gas g separated by the ash discharge device 10 is diluted with air supplied from a push-in blower (not shown) to be dust collector (dust collector) (not shown). ) And collected, then transported to an incinerator or the like for processing, or discharged to the atmosphere through an activated carbon adsorption tower, a catalytic reaction tower (not shown), and the like. Moreover, the fly ash collected by the dust collector (dust collector) is supplied to an ash supply hopper, and again subjected to thermal decomposition.
[0020]
Further, returning to FIG. 1, the residue e having a size of more than 15 mm and less than 80 mm sorted by the fine vibrating screen 3 is subjected to wind sorting by the wind sorter 20 and adhered to the residue e. The unburned material n is collected by the filter and returned to the incinerator. The residue e ′ from which the unburned material n has been removed is separated into a non-ferrous metal p and a non-ferrous metal r by a non-ferrous sorter 21. The residue r other than the non-ferrous metal is crushed to less than 15 mm by the crusher 22, and then returned again to the fine iron magnetic separator 3 and again sorted.
[0021]
As a driving operation condition of the die breaker, it is desirable to satisfy the following conditions. That is,
-Particle size range of main ash: 15 mm or less, preferably 13 mm or less-Water content of main ash: 25% or less, preferably 20% or less-Heating temperature: 400-550 ° C, preferably 430-480 ° C
-Oxygen concentration at the heater outlet: 0-20%, preferably 5-15%
Heat treatment time: 2 to 10 minutes, preferably 3 to 7 minutes Cooling speed: 40 ° C./min or more, preferably 150 ° C./min or more
Here, when the particle size of the main ash exceeds 15 mm, it becomes difficult to heat the main ash to a predetermined temperature (400 to 550 ° C.) in a short time (within 2 to 10 minutes).
Moreover, when the water | moisture content of main ash exceeds 25%, since much heat energy is consumed for evaporation of a water | moisture content, there exists a problem that a heat loss becomes large.
[0023]
Further, when the heating temperature is less than 400 ° C., the decomposition rate of dioxins remains in the 50% range. Moreover, when it exceeds 550 degreeC, there exists a possibility that the intensity | strength of main ash may fall.
Further, if the heat treatment time is set to exceed 10 minutes, it is not efficient.
Moreover, when the cooling rate is set to less than 40 ° C./min, the decomposition rate of dioxins may be lowered.
[0024]
(2) Second embodiment Fig. 4 shows a second process chart for carrying out the present invention. The present invention is based on the order of the die breaker 5 and the heavy metal fixing treatment process 14. The only difference is that they are replaced with each other.
However, if the heavy metal fixing treatment step 14 is positioned immediately before the die obstruction 5, the main ash a and the heavy metal stabilizer i are kneaded while passing through the die obstruction 5, so that the kneader 17 becomes unnecessary. There are advantages.
[0025]
(3) Third embodiment FIG. 5 shows a third process chart for carrying out the present invention. When the performance of the incinerator is good and there are few unburned materials, FIG. As shown in FIG. 5, the wind power sorter can be omitted.
The other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0026]
(4) Fourth embodiment Fig. 6 shows a fourth process chart for carrying out the method of the present invention. If the main ash a is immediately put into the crusher 22 and iron pieces such as hangers mixed in the main ash a are crushed as in the present invention, the coarse vibrating screen and the coarse iron magnetic separator may be omitted. Thus, the number of device configurations can be reduced.
The other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0027]
(5) Fifth embodiment Fig. 7 shows a fifth process chart for carrying out the method of the present invention. If there is no problem with heavy metal elution from the recycled aggregate m, the heavy metal fixing step can be eliminated. The other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0028]
【Example】
Example 1
The two types of recycled aggregates used in the test are shown in “Table 1”. Since the recycled aggregate A has a low DXNs (dioxins) content of 25 pg-TEQ / g, the recycled aggregate B was mainly subjected to the tubular furnace test shown in FIG. The test was conducted for temperature dependence.
[0029]
Test conditions are
-Reaction temperature: 450-500 ° C
・ Temperature raising time: 3 to 4 minutes ・ Retention time: 0 minutes ・ Oxygen supply amount: 10 ml / min
・ Nitrogen supply amount: 90 ml / min
-Cooling time: within 3 minutes-Cooling: Indirect rapid cooling with water was the basic condition, and the conditions were changed according to the test. The holding time of 0 minutes indicates that cooling starts immediately after the recycled aggregate reaches a predetermined temperature.
[0030]
[Table 1]
Figure 0004672896
[0031]
Temperature dependence <br/> reaction temperature 400 ° C., 450 ° C., is changed from 500 ° C., the reaction temperature was investigated the effect on DXNs decomposition ratio. The result is shown in FIG. The degradation of DXNs in the regenerated aggregate was promoted as the reaction temperature increased. For both recycled aggregates A and B, good results were obtained with a DXNs decomposition rate of 80% or higher at a reaction temperature of 450 ° C or higher. From this, it was found that 450 ° C. or higher is suitable for DXNs decomposition.
Moreover, the reproduction | regeneration aggregates A and B processed in 500 degreeC (In the figure, A (500), B (500)) and homologue distribution are shown in FIG. 10 with a blank (A, B). FIG. 10 shows that all the homologues are decomposed with high efficiency.
[0032]
(Example 2)
From the results of the tubular furnace test, it became clear that DXNs in the recycled aggregate were decomposed with high efficiency by the heat dechlorination method. Therefore, the soil properties when DXNs in the recycled aggregate were decomposed (reaction temperature: 500 ° C., treatment time: 5 minutes) were evaluated using the die breaker (DB) of FIG.
[0033]
Soil properties The results of investigation of soil properties (density, particle size distribution, compaction, CBR) of recycled aggregate A in heat dechlorination treatment (before / after “table” and die breaker treatment) It shows in "Table 2" and FIG.
[0034]
The density increased from 2.145 g / cm 3 to 2.261 g / cm 3 . This is thought to be due to the combustion (removal) of organic substances in the recycled aggregate and the oxidation of metals and the like. The particle size distribution is shown in FIG. 12, and the silt content increases from 6.4% to 9.5%, gravel (28.1% → 26.8%) and sand (65.4% → 63.3%). 6%) decreased slightly. This is considered to be due to the collapse of the agglomerates in the ash due to the stirring action under heating conditions.
[0035]
However, all of them were wide and linear, the uniformity coefficient was 10 or more, the curvature coefficient was about 1, and were expected not to adversely affect the mechanical properties.
[0036]
The maximum dry density was slightly decreased. This correlates with the particle distribution, which is thought to be due to a decrease in compaction with increasing silt content. No significant change was observed in the modified CBR showing the mechanical properties, and the standard value of the lower roadbed material of 20% was satisfied regardless of the heat dechlorination treatment.
[0037]
[Table 2]
Figure 0004672896
[0038]
【The invention's effect】
As described above, in the present invention, incineration ash (main ash) is thermally decomposed in a short time, so that it does not significantly affect the soil properties (physical properties) and can be effectively used as a lower roadbed material. Is possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first implementation process of the present invention.
FIG. 2 is a perspective view including a partial cross-section of a die breaker.
FIG. 3 is an explanatory diagram of a heavy metal fixing treatment step.
FIG. 4 is a diagram showing a second implementation step of the present invention.
FIG. 5 is a diagram showing a third implementation process of the present invention.
FIG. 6 is a diagram showing a fourth implementation step of the present invention.
FIG. 7 is a diagram showing a fifth implementation step of the present invention.
FIG. 8 is a schematic view of a tubular furnace.
FIG. 9 is a graph showing reaction temperature dependency.
FIG. 10 is a homolog distribution map.
FIG. 11 is a schematic view of a die breaker.
FIG. 12 is a particle size distribution diagram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st vibration sieve 2 Magnetic sorting machine 4 2nd vibration sieve 14 Heavy metal fixed treatment process a Incinerated ash b Coarse thing c Iron piece e Medium thing h Treatment ash i Heavy metal stabilizer

Claims (1)

所定の網目を有する第1振動篩によって焼却灰中の粗大物を分離する工程と、
第1振動篩を通過した焼却灰を磁力選別機によって焼却灰中の鉄片を分別した後、第1振動篩よりも網目の細かい第2振動篩によって焼却灰と中間の大きさを有する物とに分別する工程と、
第2振動篩を通過した粒径15mm以下、水分20%以下の焼却灰に重金属安定化剤を付与する重金属固定処理工程と、
重金属安定化剤が付与された焼却灰をダイオキシン分解装置によって混練するとともに、400℃〜550℃に急速加熱して有機塩素化合物を分解及び無害化する工程と、
無害化した焼却灰を40℃/min以上の冷却速度で急速冷却する工程とからなる焼却灰の再生方法。
Separating a coarse product in the incinerated ash by a first vibrating sieve having a predetermined mesh;
After the incinerated ash that has passed through the first vibrating sieve is separated from the iron pieces in the incinerated ash by a magnetic separator, the second vibrating sieve with a finer mesh than the first vibrating sieve is used to make the incinerated ash into an intermediate size. A step of separating;
A heavy metal fixing treatment step for imparting a heavy metal stabilizer to the incinerated ash having a particle diameter of 15 mm or less and a water content of 20% or less that has passed through the second vibrating screen;
Incineration ash heavy metal stabilizer is applied while kneading by dioxins decomposition device, a step of degradation and detoxification of organic chlorine compounds are rapidly heated to 400 ° C. to 550 ° C.,
A method for regenerating incineration ash comprising a step of rapidly cooling detoxified incineration ash at a cooling rate of 40 ° C./min or more.
JP2001110445A 2001-04-09 2001-04-09 Regeneration method of incineration ash Expired - Lifetime JP4672896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110445A JP4672896B2 (en) 2001-04-09 2001-04-09 Regeneration method of incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110445A JP4672896B2 (en) 2001-04-09 2001-04-09 Regeneration method of incineration ash

Publications (2)

Publication Number Publication Date
JP2002301447A JP2002301447A (en) 2002-10-15
JP4672896B2 true JP4672896B2 (en) 2011-04-20

Family

ID=18962211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110445A Expired - Lifetime JP4672896B2 (en) 2001-04-09 2001-04-09 Regeneration method of incineration ash

Country Status (1)

Country Link
JP (1) JP4672896B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275973A (en) * 2003-03-18 2004-10-07 Mitsui Eng & Shipbuild Co Ltd Method for treating contaminated soil
JP4276533B2 (en) * 2003-12-26 2009-06-10 株式会社神鋼環境ソリューション Method and apparatus for suppressing increase in organochlorine compounds in fly ash in waste treatment facility
CN100458014C (en) * 2004-02-04 2009-02-04 同济大学 Method for making civil work engineering structure layer using domestic incinerator slag
JP4649256B2 (en) * 2005-04-04 2011-03-09 株式会社タクマ Garbage incinerator with incineration ash reformer
KR100762187B1 (en) 2006-09-28 2007-10-04 (주)태광프랜트 Bottom ash stabilization system for recycling of wastes burning ash
KR100984770B1 (en) * 2009-09-02 2010-10-04 진기철 Processing assembly of mine waste and processing method of mine waste using there of
CN106583036B (en) * 2016-12-28 2018-02-23 重庆大学 The enrichment method of ferrous mineral in a kind of rubbish heat treatment lime-ash
JP2018171591A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Method for treating general waste incineration ash
CN109107761B (en) * 2018-07-31 2019-10-29 安徽工业大学 A kind of sintering flue gas desulfurization ash preprocess method
CN109158156B (en) * 2018-09-05 2021-04-16 玉环市几偶孵化器有限公司 Soil remediation filtration system
CN110918591A (en) * 2019-11-27 2020-03-27 湖州神龙铝业有限公司 Electrolytic aluminum processing is with lime-ash sorting unit
JP7062748B2 (en) * 2020-12-28 2022-05-06 Jx金属株式会社 How to treat general waste incinerator ash

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141547A (en) * 1994-11-28 1996-06-04 Hitachi Zosen Corp Fly ash treatment equipment
JPH10151430A (en) * 1996-11-22 1998-06-09 Pollution Sci Kenkyusho:Kk Treatment for detoxifying harmful substance contained in ash discharged from incinerator
JPH10180222A (en) * 1996-12-26 1998-07-07 Nkk Corp Treatment of waste incineration fly ash
JP2000051816A (en) * 1998-08-07 2000-02-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for treating fly ash
JP2000079381A (en) * 1998-06-24 2000-03-21 Nippon Kankyo System:Kk Method and apparatus for treating burned ash
JP2000233174A (en) * 1998-12-18 2000-08-29 Takuma Co Ltd Incineration residue treatment method and production of aggregate and solidifying material using incineration residue
JP2001025735A (en) * 1999-04-06 2001-01-30 Mitsui Eng & Shipbuild Co Ltd Treatment of ash
JP2001149909A (en) * 1999-11-26 2001-06-05 Yujiro Baba Producing method of reclaimed sand using waste incineration residue as raw material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141547A (en) * 1994-11-28 1996-06-04 Hitachi Zosen Corp Fly ash treatment equipment
JPH10151430A (en) * 1996-11-22 1998-06-09 Pollution Sci Kenkyusho:Kk Treatment for detoxifying harmful substance contained in ash discharged from incinerator
JPH10180222A (en) * 1996-12-26 1998-07-07 Nkk Corp Treatment of waste incineration fly ash
JP2000079381A (en) * 1998-06-24 2000-03-21 Nippon Kankyo System:Kk Method and apparatus for treating burned ash
JP2000051816A (en) * 1998-08-07 2000-02-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for treating fly ash
JP2000233174A (en) * 1998-12-18 2000-08-29 Takuma Co Ltd Incineration residue treatment method and production of aggregate and solidifying material using incineration residue
JP2001025735A (en) * 1999-04-06 2001-01-30 Mitsui Eng & Shipbuild Co Ltd Treatment of ash
JP2001149909A (en) * 1999-11-26 2001-06-05 Yujiro Baba Producing method of reclaimed sand using waste incineration residue as raw material

Also Published As

Publication number Publication date
JP2002301447A (en) 2002-10-15

Similar Documents

Publication Publication Date Title
JPH09504987A (en) Combined asphalt plant and soil regeneration system
JP4438329B2 (en) Method for treating waste containing organic matter
JP4672896B2 (en) Regeneration method of incineration ash
JP5311007B2 (en) Heat treatment system and heat treatment method
US6887389B2 (en) Method and apparatus for recycling sewage sludge utilizing spent water-softener lime
JP3103719B2 (en) Apparatus and method for heat dechlorination of dust ash
JP2004275973A (en) Method for treating contaminated soil
KR102061159B1 (en) Method and apparatus for mixed thermal treatment of organic sludge and contaminated soil
JP2003253280A (en) Solid fuel
JP2004010673A (en) Carbonization system
JP5634961B2 (en) Sludge treatment method
JPH03204508A (en) Purifying treating method for sludge
CN217165234U (en) Slag treatment screening device for waste incineration
JP6573558B2 (en) Method and apparatus for treating incineration ash
JP2004230284A (en) Method for treating powder content containing combustible solid content
JP2000051816A (en) Method and apparatus for treating fly ash
JPH0952079A (en) Apparatus for treating shredder dust for reuse
JP3965621B2 (en) Incineration ash sorting and cleaning method
JP2004025152A (en) Treatment method of incineration ash
JP3922676B2 (en) Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue
TWI829579B (en) Methods of making derived fuels from waste
JP3917775B2 (en) Recycling method of incineration ash
JP2014145723A (en) Radioactive contaminant treatment method
JP3963339B2 (en) Method and apparatus for melting incineration ash and dust collection ash
JPS6157690A (en) Production of fuel from car scrap dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4672896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term