[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100984770B1 - Processing assembly of mine waste and processing method of mine waste using there of - Google Patents

Processing assembly of mine waste and processing method of mine waste using there of Download PDF

Info

Publication number
KR100984770B1
KR100984770B1 KR1020090082381A KR20090082381A KR100984770B1 KR 100984770 B1 KR100984770 B1 KR 100984770B1 KR 1020090082381 A KR1020090082381 A KR 1020090082381A KR 20090082381 A KR20090082381 A KR 20090082381A KR 100984770 B1 KR100984770 B1 KR 100984770B1
Authority
KR
South Korea
Prior art keywords
tailings
heat treatment
mine waste
raw material
processing assembly
Prior art date
Application number
KR1020090082381A
Other languages
Korean (ko)
Inventor
진기철
Original Assignee
진기철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 진기철 filed Critical 진기철
Priority to KR1020090082381A priority Critical patent/KR100984770B1/en
Application granted granted Critical
Publication of KR100984770B1 publication Critical patent/KR100984770B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B15/00Combinations of apparatus for separating solids from solids by dry methods applicable to bulk material, e.g. loose articles fit to be handled like bulk material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/26Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a helical path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/04Heating arrangements using electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/18Sludges, e.g. sewage, waste, industrial processes, cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A processing assembly of mine waste and a processing method of mine waste using thereof are provided to block environmental contamination fundamentally in recycling tailing. CONSTITUTION: A processing assembly of mine waste(100) comprises: a material input part(110); a heat treatment unit(120) transferring the input material and heating it; and a material discharge part(150); a power supply unit(130). The material discharge part includes a magnet(153) dividing a magnetic materials and a non-magnetic material. The heat treatment unit includes a screw(121) transferring tailings and a cylinder for supporting the screw, and at least one heater for heating the tailings.

Description

광산폐기물 가공조립체 및 이를 이용한 광산폐기물 가공방법{PROCESSING ASSEMBLY OF MINE WASTE AND PROCESSING METHOD OF MINE WASTE USING THERE OF}Mine Waste Processing Assembly and Mine Waste Processing Method Using the Mine Waste Processing Assembly TECHNICAL WASTE AND PROCESSING METHOD OF MINE WASTE USING THERE OF

본 발명은 광산 폐기물인 광미(鑛尾, tailing)를 가공하는 조립체 및 이를 이용한 광산폐기물 가공방법에 관한 것이다.The present invention relates to an assembly for processing tailings (tailing) which is mine waste and a mine waste processing method using the same.

광미(鑛尾, tailing)는 광산에서 채광된 광석을 모래와 같이 미세하게 분해하여 비중을 이용한 비중선광법 등을 통하여 추출 후 남은 광산 폐기물로서 비소, 황, 카드뮴 등의 성분을 포함하고 있어 주변의 하천 및 토양을 오염시키는 오염물질로 인식되고 있다. 특히, 비소는 살충제 등에 사용되는 물질로서 피부에 닿으면 피부가 헐거나 염증이 생기며 일정량 이상 섭취할 경우 생명이 위태로울 수도 있으며, 황은 빗물 또는 지하수를 산성으로 바꾸어 광미에 포함되어 있는 중금속을 용출시켜 주변의 하천 및 토양을 심각하게 오염시킨다. The tailings are mine wastes left after extraction through the specific gravity mining method using specific gravity after finely decomposing ore mined in the mine like sand and contains components such as arsenic, sulfur and cadmium. It is recognized as a pollutant that pollutes rivers and soils. In particular, arsenic is a substance used in insecticides, etc. When the skin touches, the skin may break down or become inflamed.If it is ingested over a certain amount, it may endanger life. Seriously contaminates rivers and soils.

그런데 광미에는 환경오염물질 뿐만 아니라 금속들(금, 은, 철 등의 희귀금속)이 결합된 금속클러스터를 포함하고 있어 자원적 가치로서도 활용될 수 있다.The tailings, however, contain metal clusters combined with metals (rare metals such as gold, silver and iron) as well as environmental pollutants, which can be used as resource values.

그리하여 광미에 포함되어 있는 환경오염물질을 제거하고 자원을 재활용하는 선행기술로는 대한민국 등록특허10-0318754호(발명의 명칭: 금광선광폐기물로부터 건식방법에 의한 유가광물의 분리회수방법) 등이 있다.Thus, as a prior art for removing environmental pollutants contained in the tailings and recycling resources, there is a Korean Patent No. 10-0318754 (name of the invention: a method for separating and recovering valuable minerals by dry method from gold mining wastes). .

하지만 상기 인용기술은 광미를 재활용함에 있어 습식공정이 아닌 건식공정을 사용하여 습식공정으로 인해 환경오염물질이 방류되는 것을 예방하는 기술만을 개시하고 있을 뿐, 근본적으로 광미에 포함되어 있는 환경오염물질 및 자원을 분리하지 못하는 문제가 있다.However, the above-mentioned cited technology discloses only the technology for preventing the discharge of environmental pollutants due to the wet process by using a dry process rather than a wet process in recycling the tailings, and essentially the environmental pollutants contained in the tailings and There is a problem of not separating resources.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 광미(鑛尾, tailing)에 포함되어 있는 환경오염물질을 제거함과 동시에 광미에 포함되어 있는 광물을 효율적으로 재활용하기 위한 기술을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a technology for efficiently recycling the minerals contained in the tailings while removing environmental pollutants contained in the tailings. .

이러한 목적을 달성하기 위하여 본 발명의 일 태양에 따른 광산폐기물 가공조립체는 원료가 투입되는 원료투입부; 상기 원료투입부를 통하여 투입된 원료를 이송하고 가열하는 열처리부; 상기 열처리부에 의하여 이송된 원료를 배출하기 위한 원료배출부; 및 상기 열처리부에 동력을 공급하기 위한 동력공급부; 를 포함하며; 상기 원료배출부는 자성물질과 비자성물질을 분리하기 위한 자석을 더 포함하는 것을 특징으로 한다.Mine waste processing assembly according to an aspect of the present invention to achieve this object is a raw material input unit the raw material; A heat treatment part for transferring and heating the raw material introduced through the raw material input part; A raw material discharge part for discharging the raw material transferred by the heat treatment part; And a power supply unit for supplying power to the heat treatment unit. It includes; The raw material discharge part further comprises a magnet for separating the magnetic material and the nonmagnetic material.

그리고 상기 열처리부는 광미(鑛尾, tailing)를 이송시키기 위한 스크류; 상기 스크류를 지지하기 위한 실린더; 및 상기 실린더 내부의 광미(鑛尾, tailing)를 가열하기 위한 적어도 하나 이상의 히터; 를 포함하는 것을 특징으로 한다.And the heat treatment unit screw for transporting tailings (鑛 尾, tailing); A cylinder for supporting the screw; At least one heater for heating tailings in the cylinder; Characterized in that it comprises a.

또한, 상기 적어도 하나 이상의 히터는 서로 병렬로 연결되며, 상기 실린더의 접선면을 따라 사각의 형태로 한면에 15개씩 총 60개의 히터가 마련되는 것을 특징으로 한다.In addition, the at least one heater is connected in parallel to each other, characterized in that a total of 60 heaters are provided in each of 15 in a square shape along the tangential surface of the cylinder.

그리고 상기 포집부는 3개의 구획으로 나뉘어지며, 기체를 냉각시키기 위한 냉각제 를 포함하는 것을 특징으로 한다.And the collection is divided into three compartments, characterized in that it comprises a coolant for cooling the gas.

한편, 이러한 목적을 달성하기 위하여 본 발명의 일 태양에 따른 광산폐기물 가공방법은 미립 광미와 불순물 및 폐석을 선별하기 위한 진동선별단계; 상기 진동선별단계를 통해 선별된 광미에 포함되어 있는 수분을 제거하는 광산폐기물건조단계; 상기 광산폐기물건조단계를 통하여 건조된 광미(鑛尾, tailing)를 가열하는 열처리단계; 상기 열처리단계를 통하여 승화된 기체를 포집하는 기체포집단계; 및 상기 기체포집단계를 거친 광미에서 자성물질과 비자성물질을 분리하기 위하여 고주파전자석에 자력을 인가 후 자성물질과 비자성물질을 분리하는 분리선별단계; 를 포함하는 것을 특징으로 한다.On the other hand, in order to achieve this object, the mine waste processing method according to an aspect of the present invention comprises a vibration screening step for screening fine tailings and impurities and waste-rock; A mine waste drying step of removing moisture contained in the tailings selected through the vibration selection step; A heat treatment step of heating tailings dried by the mine waste drying step; A gas collecting step of collecting the sublimed gas through the heat treatment step; And a separation and sorting step of separating magnetic material and nonmagnetic material after applying magnetic force to the high frequency electromagnet to separate the magnetic material and the nonmagnetic material from the tailings which have undergone the gas collection step. Characterized in that it comprises a.

또한, 상기 열처리단계 및 상기 기체포집단계 사이에 상기 열처리단계를 통하여 가열된 광미에 포함되어 있는 산화철 및 유화철을 철로 환원시키는 산화철환원단계를 더 포함하는 것을 특징으로 한다.The method may further include an iron oxide reduction step for reducing iron oxide and iron emulsion contained in the tailings heated through the heat treatment step between the heat treatment step and the gas collection step to iron.

본 발명에 의하면, 단순히 광산폐기물인 광미(鑛尾, tailing)를 자원으로서 활용하는 것이 아니라 환경오염물질이 제거된 광미를 자원으로서 활용하는 것이기 때문에 광미의 재활용 과정에서 발생될 수 있는 환경오염을 원척전으로 차단하는 효과가 있다.According to the present invention, since the tailings, which are mine wastes, are not used as resources, but the tailings from which environmental pollutants have been removed are used as resources. It is effective in blocking the vertebrae.

또한, 광산폐기물인 광미에 포함되어 있는 불순물을 제거 후 자력을 이용하 여 자성물질과 비자성물질을 분리하기 때문에 미량의 금속클러스터를 포함한 광미의 경우에도 자력을 통하여 검출이 가능하며, 이를 통하여 금, 은 및 철 등의 희귀금속이 재활용 되지 못하고 버려지는 것을 예방할 수 있다.In addition, since magnetic and non-magnetic substances are separated by using magnetic force after removing impurities contained in mine tailings, which are mine wastes, it can be detected by magnetic force even in the case of tailings including trace metal clusters. Rare metals such as silver and iron can be prevented from being recycled and discarded.

또한, 광산폐기물인 광미에 환경오염물질을 단순히 제거하는 것이 아니라 별도의 포집부를 통해 포집하기 때문에 환경오염물질을 자원으로서 재활용하는 경제적인 효과가 있다.In addition, there is an economical effect of recycling environmental pollutants as a resource because it is collected through a separate collector rather than simply removing the environmental pollutants in the mine tailings.

본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명하되, 이미 주지되어진 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다.The preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings, in which the technical parts already known will be omitted or compressed for simplicity of explanation.

<구성에 대한 설명><Description of Configuration>

본 발명에 따른 광산폐기물 가공조립체(100)는 광산폐기물인 광미(鑛尾, tailing)로 인한 환경오염을 줄이고, 광미에 포함되어 있는 광물을 자원으로써 활용하는 기술에 관계한다.The mine waste processing assembly 100 according to the present invention relates to a technology for reducing environmental pollution caused by tailings, which are mine wastes, and utilizing minerals contained in the tailings as resources.

도1은 본 발명에 따른 광산폐기물 가공조립체(100)에 대한 구성도이다.1 is a block diagram of a mine waste processing assembly 100 according to the present invention.

본 발명에 따른 광산폐기물 가공조립체(100)는, 도1에서 참조되는 바와 같이, 원료투입부(110), 열처리부(120), 동력공급부(130), 포집부(140), 원료배출부(150) 등을 포함하여 이루어진다.In the mine waste processing assembly 100 according to the present invention, as shown in FIG. 1, the raw material input unit 110, the heat treatment unit 120, the power supply unit 130, the collecting unit 140, and the raw material discharge unit ( 150) and the like.

원료투입부(110)는 원료인 광미가 투입되는 곳으로서 원료투입호퍼(111) 및 투입구(112)로 이루어지며, 이러한 원료투입호퍼(111)에 투입되는 광미의 양은 광산폐기물 가공조립체(100)의 규격 및 광미가 가열되는 시간을 고려하여 적정하게 조절될 수 있으며, 바람직하게는 1분에 약 100kg의 광미가 투입되도록 마련된다.Raw material input section 110 is a place where the tailings as a raw material is made of a raw material input hopper 111 and the input port 112, the amount of the tailings injected into the raw material input hopper 111 is a mine waste processing assembly (100) In consideration of the specification and the time that the tailings are heated, it can be appropriately adjusted, preferably provided that about 100kg of tailings is added in one minute.

열처리부(120)는 원료투입부(110)를 통하여 투입된 광미를 가열하여 황 및 비소를 승화시키고 광미에 포함되어 있는 금속클러스터의 불순물을 제거하여 자성을 형성시킨 후 이송시키는 곳으로써 도2를 참조하여 이를 보다 상세히 설명하기로 한다.The heat treatment part 120 heats the tailings introduced through the raw material input part 110 to sublimate sulfur and arsenic, and removes impurities from the metal clusters contained in the tailings to form a magnetic material and then transfer them. This will be described in more detail.

도2에 도시된 바와 같이, 열처리부(120)는 스크류(121), 실린더(122), 히터(123), 내화벽돌(124), 단열재(125) 및 철판(126) 등이 내부로부터 외부로 순차적으로 내장되어 이루어진다.As shown in FIG. 2, the heat treatment part 120 includes a screw 121, a cylinder 122, a heater 123, a firebrick 124, a heat insulating material 125, and an iron plate 126 from inside to outside. It is built sequentially.

스크류(121)는 원료투입부(110)를 통해 투입된 광미를 이송시키기 위한 장치로써, 광미의 가열온도에 따라 다양한 회전주기를 갖으며, 바람직하게는 1분에 2회전하도록 마련된다. 또한, 스크류(121)의 회전에 따른 광미의 이동거리는 광산폐기물 가공조립체(100)의 규격 및 광미의 가열시간에 따라 다양하게 결정될 수 있지만, 바람직하게는 스크류(121)가 1회전할 때 광산폐기물 가공장치의 길이(L)의 10분의 1을 이동할 수 있도록 마련된다.The screw 121 is a device for transferring the tailings introduced through the raw material input part 110, and has a variety of rotation periods in accordance with the heating temperature of the tailings, and is preferably provided to rotate two times per minute. In addition, the movement distance of the tailings according to the rotation of the screw 121 may be variously determined according to the specifications of the mine waste processing assembly 100 and the heating time of the tailings, but preferably, when the screw 121 rotates once, It is provided so that a tenth of the length L of the processing apparatus can be moved.

실린더(122)는 내부에 중공이 마련된 원통형상으로 스크류(121)의 외주면을 따라 마련되며, 원료투입부(110)를 통하여 투입된 광미가 스크류(121)의 회전을 통 하여 이송되는 곳이다.The cylinder 122 is provided along the outer circumferential surface of the screw 121 in a cylindrical shape having a hollow provided therein, and is a place where the tailings introduced through the raw material input part 110 are transferred through the rotation of the screw 121.

히터(123)는 광미를 가열하기 위한 장치로써 히터(123) 전체의 온도를 일정하게 유지하고 실린더(122) 내부의 광미를 균일하게 가열하기 위하여 적어도 하나 이상의 히터가 접지(G)된 형태로 마련되며, 이러한 적어도 하나 이상의 히터(123)는 서로 병렬로 연결되는 것이 바람직하다. 또한, 히터(123)는 광미를 균일하게 가열하기 위해 실린더(122)의 접선면을 따라 사각의 형태로 한면에 15개씩 총 60개의 히터(123)가 마련되는 것이 바람직하다. 이러한 히터(123)의 온도는 황 및 비소를 승화시킬 수 있는 온도인 613도를 유지하면 되지만, 광미 내부에 존재하는 황 및 비소를 모두 613도 이상으로 가열하기 위하여 약 700 내지 800℃를 유지하는 것이 바람직하다. 아울러 히터의 일측에는 온도를 측정하기 위한 온도감지센서(123a)가 마련되는 것이 바람직하다.The heater 123 is a device for heating the tailings and is provided in a form in which at least one heater is grounded (G) to maintain a constant temperature of the entire heater 123 and to uniformly heat the tailings inside the cylinder 122. At least one heater 123 is preferably connected in parallel with each other. In addition, the heater 123 is preferably provided with a total of 60 heaters 123, each 15 in a square shape along the tangential surface of the cylinder 122 to uniformly heat the tailings. The temperature of the heater 123 may be maintained at 613 degrees, which is a temperature capable of subliming sulfur and arsenic, but is maintained at about 700 to 800 degrees Celsius in order to heat all the sulfur and arsenic present in the tailings to more than 613 degrees. It is preferable. In addition, one side of the heater is preferably provided with a temperature sensor 123a for measuring the temperature.

이와 같이, 히터(123)의 온도를 700 내지 800℃로 유지함으로써 광미에 포함되어 있는 금속클러스터의 자성이 강화된다.As such, by maintaining the temperature of the heater 123 at 700 to 800 ° C, the magnetism of the metal cluster contained in the tailings is strengthened.

한편, 광미에 포함되어 있는 산화철의 산소는 약 540℃에서 철과 분리되는데, 광미의 온도가 540℃ 이상을 유지하기 때문에 철과 재결합하지 못하고 황 및 비소 기체가 포집부(140)로 방출된다.On the other hand, the oxygen of iron oxide contained in the tailings is separated from iron at about 540 ℃, because the temperature of the tailings is maintained at 540 ℃ or more and the iron and arsenic gas is released to the collecting unit 140 without recombination with iron.

내화벽돌(124)은 히터(123)의 외벽면을 따라 마련되는 장치로써, 히터(123)에서 발생되는 열충격을 견디어 광산폐기물 가공조립체(100)의 파손을 방지한다. 이러한 내화벽돌(124)은 열충격저항이 크며, 화학적 침식에 강한 재질이라면 어떠한 것이라도 가능하지만 SK26(1580℃) 이상의 내화도(refractoriness)를 가진 재료 로 이루어지는 것이 바람직하다.Refractory brick 124 is provided along the outer wall surface of the heater 123, to withstand thermal shock generated in the heater 123 to prevent damage to the mine waste processing assembly (100). The refractory brick 124 has a high thermal shock resistance and may be any material as long as it is resistant to chemical erosion, but it is preferably made of a material having a refractoriness of SK26 (1580 ° C.) or more.

단열재(125)는 히터(123)에서 발생되는 열이 광산폐기물 가공조립체(100)의 외부로 유출되는 것을 방지하기 위한 장치로써 내화벽돌(124)의 외벽면을 따라 마련된다.The heat insulating material 125 is provided along the outer wall surface of the refractory brick 124 as a device for preventing heat generated from the heater 123 from leaking to the outside of the mine waste processing assembly 100.

철판(126)은 광산폐기물 가공조립체(100)의 내구도를 증진시키기 위해서 단열재(125)의 외벽면을 따라 마련되는 장치로써, 내부 및 외부의 충격으로부터 견디기 위하여 약 3mm의 두께로 이루어지는 것이 바람직하다.Iron plate 126 is a device provided along the outer wall surface of the heat insulating material 125 to enhance the durability of the mine waste processing assembly 100, it is preferably made of a thickness of about 3mm to withstand the impact from the inside and outside.

동력공급부(130)는 스크류(121)를 회전시키기 위한 동력을 공급하는 곳으로써, 스크류(121)의 회전속도를 조절할 수 있도록 가감속이 가능한 모터(131) 및 축기어(132, 133)가 포함된다.The power supply unit 130 supplies power for rotating the screw 121, and includes a motor 131 and shaft gears 132 and 133 capable of accelerating and decelerating so as to adjust a rotation speed of the screw 121. .

포집부(140)는 히터(123)에 의해 가열된 광미에서 발생되는 황 및 비소와 같은 유해한 기체를 포집하여 환경오염을 방지하기 위한 것으로써, 냉각제(R)를 이용하여 광산폐기물 가공조립체(100)에 의하여 발생된 황 및 비소 등의 유해한 기체를 저온으로 냉각시켜 안전하게 배출하며, 광산폐기물 가공조립체(100)에 투입되는 광미의 양과 광미에 포함되어 있는 황 및 비소의 성분비를 고려하여 3개의 구획으로 이루어지는 것이 바람직하다.The collecting unit 140 collects harmful gases such as sulfur and arsenic generated from the tailings heated by the heater 123 to prevent environmental pollution. The mine waste processing assembly 100 using the coolant R is collected. The harmful gases such as sulfur and arsenic generated by) are cooled to low temperature and safely discharged, and the three compartments are considered in consideration of the amount of tailings injected into the mine waste processing assembly 100 and the component ratios of sulfur and arsenic contained in the tailings. It is preferable that it consists of.

원료배출부(150)는 광산폐기물 가공조립체(100)를 통해 비소 및 황이 제거된 광미를 분리하여 배출하는 장치로써 배출구(151), 제1콤베이어벨트(152), 고주파전자석(153), 규사호퍼(154), 금속호퍼(155) 및 제2콤베이어벨트(156) 등을 포함하여 마련된다.The raw material discharge unit 150 is a device for separating and discharging the tailings from which arsenic and sulfur have been removed through the mine waste processing assembly 100, and an outlet 151, a first conveyor belt 152, a high frequency electromagnet 153, and silica sand. The hopper 154, the metal hopper 155, and the second conveyor belt 156 may be provided.

제1콤베이어벨트(152)는 배출구(151)를 통해 배출된 원료를 이송시키는 장치로써, 열처리부(120)에 의해 가열된 원료를 이송시키기 위하여 열충격저항이 큰 단열 콤베이어벨트로 이루어지는 것이 바람직하다. 이러한 제1콤베이어벨트(152)의 일측에는 열처리부(120)에 의해 황 및 비소가 승화되어 자성에 대한 반응이 향상된 금속클러스터(광미에 포함되어 있는 금속 덩어리)와, 자성이 거의 없는 규사 및 규산과 같은 부산물을 분리 획득하기 위한 고주파전자석(153)이 마련된다. 이와 같은 고주파전자석(153)으로 인해 자성이 거의 없는 규사 및 규산과 같은 비자성물질은 제1콤베이어벨트(152)를 따라 흘러내려 규사호퍼(154)로 이송되며, 자성이 향상된 금속클러스터와 같은 자성물질은 고주파전자석(153)이 마련된 제1콤베이어벨트(152)를 따라 금속호퍼(155)로 이송된다. 또한 규사호퍼(154)는 제2콤베이어벨트(156)와 연결되어 규소 및 규산과 같은 부산물을 적재하는 장소에 설치될 수 있다.The first conveyor belt 152 is a device for transferring the raw material discharged through the discharge port 151, it is preferable that the first conveyor belt 152 is made of a thermal insulation resistance belt having a large thermal shock resistance in order to transfer the raw material heated. Do. On one side of the first conveyor belt 152 is a metal cluster (metal mass contained in the tailings) and sulfur and arsenic are sublimed by the heat treatment unit 120 to improve the response to the magnetic, silica and little magnetic A high frequency electromagnet 153 is provided to separate and obtain a byproduct such as silicic acid. Due to the high frequency electromagnet 153, nonmagnetic materials such as silica and silicic acid having little magnetism flow down the first conveyor belt 152 to be transferred to the silica sand hopper 154, and the magnetic cluster is improved. The magnetic material is transferred to the metal hopper 155 along the first conveyor belt 152 provided with the high frequency electromagnet 153. In addition, the silica sand hopper 154 may be connected to the second conveyor belt 156 may be installed at a place for loading by-products such as silicon and silicic acid.

한편, 열처리부(120)를 통과한 광미는 산화철의 산소, 유황 및 비소가 분리된 상태이므로 자성에 대한 반응성이 더욱 강해서 약한 자력으로 다량의 금속클러스터를 획득할 수 있다.On the other hand, the tailings passing through the heat treatment unit 120 is a state in which oxygen, sulfur and arsenic of iron oxide are separated, so that the reactivity to the magnetic is stronger, so that a large amount of metal clusters can be obtained with weak magnetic force.

아울러 본 발명에 따른 광산폐기물 가공조립체(100)는 원료투입부(110)를 통해 투입된 광미가 중력 및 관성력에 의해 스크류(121)의 진행속도보다 빨리 실린더(122)를 이동하는 것을 방지하기 위하여 지면을 기준으로 15도 기울어져 있는 것이 바람직하다.In addition, the mine waste processing assembly 100 according to the present invention is ground in order to prevent the tailings introduced through the raw material input unit 110 to move the cylinder 122 faster than the traveling speed of the screw 121 by gravity and inertia forces. It is preferable that it is inclined by 15 degrees.

<방법에 대한 설명><Description of the method>

다음으로 상기에서 설명한 방법에 대해 도4 및 도5에 도시된 흐름도를 따라 편의상 순서를 붙여 설명하되, 도1 내지 도3을 참조하여 설명한다.Next, the method described above will be described in order of convenience according to the flowcharts shown in FIGS. 4 and 5, but will be described with reference to FIGS. 1 to 3.

본 발명에 따른 광산폐기물 가공방법은 광산폐기물 가공조립체를 이용하여 광미(鑛尾, tailing)를 가공하는 기술에 관계한다.The mine waste processing method according to the present invention relates to a technique for processing tailings using a mine waste processing assembly.

이하에서는 도4를 참조하여 광산폐기물 가공방법을 단계별로 설명한다.Hereinafter, with reference to Figure 4 will be described step by step for the mine waste processing method.

1. 진동선별단계(S310)1. Vibration screening step (S310)

진동스크류를 이용하여 미립 광미와 불순물 및 폐석을 선별한다.A vibrating screw is used to sort out fine tailings, impurities and waste-rock.

2. 광산폐기물건조단계(S320)2. Mine waste drying step (S320)

단계S310을 거쳐 선별된 광미를 건조기(50~100℃)로 건조하여 광산폐기물인 광미에 포함되어 있는 수분을 제거한다.The tailings selected through step S310 are dried with a dryer (50-100 ° C.) to remove moisture contained in the tailings which are mine wastes.

3. 열처리단계(S330)3. Heat treatment step (S330)

단계S320을 거쳐 수분이 제거된 광미를 광산폐기물 가공조립체(100)의 열처리부(120)를 통하여 약 700 내지 800℃로 가열한다.The tailings from which the water is removed through step S320 are heated to about 700 to 800 ° C. through the heat treatment unit 120 of the mine waste processing assembly 100.

이때, 광미에 포함되어 있는 철, 금, 은, 황 비소, 산소, 연 및 아연은 열에 의해 광미에서 분리된다.At this time, iron, gold, silver, sulfur arsenic, oxygen, lead and zinc contained in the tailings are separated from the tailings by heat.

4. 기체포집단계(S340)4. Gas collection step (S340)

단계S330에서 분리된 황 및 비소기체는 광산폐기물 가공조립체(100)의 포집부(140)를 통과하여 포집부(140)로 이동한다.Sulfur and arsenic gas separated in step S330 passes through the collecting unit 140 of the mine waste processing assembly 100 and moves to the collecting unit 140.

5. 자력인가단계(S350)5. Self-applying step (S350)

단계S330을 거쳐 자성에 대한 반응이 향상된 금속클러스터(광미에 포함된 금속덩어리) 및 자성이 거의 없는 규소 및 규산과 같은 부산물을 분리하기 위하여 고주파전자석(153)을 이용하여 자력을 인가한다.The magnetic force is applied using the high frequency electromagnet 153 to separate the by-products such as the metal cluster (the metal mass contained in the tailings) and the almost no magnetic silicon and silicic acid through the step S330.

즉, 자성물질과 비자성물질을 분리하기 위하여 고주파전자석(153)에 자력을 인가한다.That is, magnetic force is applied to the high frequency electromagnet 153 to separate the magnetic material and the nonmagnetic material.

6. 분리선별단계(S360)6. Separation screening step (S360)

단계S350에서 자력이 인가된 전자석을 통하여 자성물질과 비자성물질을 분리한다. 금속클러스터(광미에 포함된 금속덩어리)와 규소 및 규산과 같은 부산물은 서로 다른 호퍼(154, 155)를 통하여 모이게 된다.In step S350, the magnetic material and the nonmagnetic material are separated through the electromagnet to which the magnetic force is applied. Metal clusters (metal masses contained in the tailings) and by-products such as silicon and silicic acid are collected through different hoppers 154 and 155.

이때, 규소 및 규산과 같은 부산물은 건축자재 및 시멘트 등의 재료로 사용된다. At this time, by-products such as silicon and silicic acid are used as materials for building materials and cement.

이하에서는 도5를 참조하여 본 발명에 따른 광산폐기물 가공방법의 또 다른 실시형태를 단계별로 설명한다.Hereinafter, with reference to FIG. 5, another embodiment of the mine waste processing method according to the present invention will be described step by step.

1. 진동선별단계(S410)1. Vibration screening step (S410)

진동스크류를 이용하여 미립 광미와 불순물 및 폐석을 선별한다.A vibrating screw is used to sort out fine tailings, impurities and waste-rock.

2. 광산폐기물 건조단계(S420)2. Mine waste drying step (S420)

단계S410을 거쳐 선별된 광미를 건조기(50~100℃)로 건조하여 광산폐기물인 광미에 포함되어 있는 수분을 제거한다.The tailings selected through step S410 are dried with a dryer (50-100 ° C.) to remove moisture contained in the tailings which are mine wastes.

3. 열처리단계(S430)3. Heat treatment step (S430)

단계S420을 거쳐 수분이 제거된 광미를 광산폐기물 가공조립체(100)의 열처리부(120)를 통하여 가열한다.The tailings from which the moisture is removed through step S420 are heated through the heat treatment unit 120 of the mine waste processing assembly 100.

4. 산화철 및 유화철환원단계(S440)4. Iron oxide and iron emulsion reduction step (S440)

단계S430을 열처리단계를 통해 700 내지 800℃ 이상으로 가열된 광미에 포함되어 있는 산화철 및 유화철의 산소, 유황 및 비소가 철과 분리된다. 산화철에서 분리된 산소는 포집부(140)를 통하여 포집된다. Oxygen, sulfur, and arsenic of iron oxide and iron emulsion contained in the tailings heated to 700 to 800 ° C. or higher through the heat treatment step S430 are separated from iron. Oxygen separated from the iron oxide is collected through the collecting unit 140.

5. 기체포집단계(S450)5. Gas collection step (S450)

단계S430을를 거쳐 613℃ 이상으로 가열된 광미에서 승화된 황 및 비소 기체를 포집부(140)를 통하여 포집한다.Sulfur and arsenic gas sublimed in the tailings heated to 613 ° C. or higher through step S430 are collected through the collecting unit 140.

6. 고주파인가단계(S460)6. High frequency application step (S460)

단계S430 및 단계S440을 거쳐 전도성이 향상된 금속클러스터(광미에 포함된 금속덩어리)를 추출하기 위하여 고주파전자석(153)에 고주파를 인가한다.High frequency is applied to the high frequency electromagnet 153 in order to extract the metal cluster (metal mass contained in the tailings) having improved conductivity through steps S430 and S440.

7. 금속클러스터 및 규산분말 분리단계(S470)7. Metal cluster and silicate powder separation step (S470)

단계S460을 거쳐 고주파가 인가된 고주파전자석(153)을 통해 금속클러스터와 규산분말을 분리한다.The metal cluster and the silicic acid powder are separated through the high frequency electromagnet 153 to which high frequency is applied through step S460.

위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해 되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings. However, since the above-described embodiments have only been described with reference to preferred examples of the present invention, the present invention is limited to the above embodiments. It should not be understood that the scope of the present invention is to be understood by the claims and equivalent concepts described below.

도1은 본 발명에 따른 광산폐기물 가공조립체의 개략도이다.1 is a schematic diagram of a mine waste processing assembly according to the present invention.

도2는 본 발명에 따른 광산폐기물 가공조립체의 분해 사시도이다.Figure 2 is an exploded perspective view of the mine waste processing assembly according to the present invention.

도3은 본 발명에 따른 광산폐기물 가공방법의 흐름도이다.3 is a flowchart of a mine waste processing method according to the present invention.

도4는 본 발명에 따른 광산폐기물 가공방법의 또 다른 흐름도이다.Figure 4 is another flow chart of the mine waste processing method according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : 광산폐기물 가공조립체100: mine waste processing assembly

110 : 원료투입부110: input material

111 : 원료투입호퍼 112 : 투입구111: raw material input hopper 112: inlet

120 : 열처리부120: heat treatment unit

121 : 스크류 122 : 실린더121: screw 122: cylinder

123 : 히터 123a : 온도감지센서123: heater 123a: temperature sensor

124 : 내화벽돌124: fireproof brick

125 : 단열재 126 : 철판125: heat insulating material 126: iron plate

130 : 동력공급부130: power supply unit

131 : 모터 132 : 축기어131: motor 132: shaft gear

133 : 축기어133: shaft gear

140 : 포집부140: collecting unit

150 : 원료배출부150: raw material discharge part

151 : 배출구 152 : 제1콤베이어벨트151: outlet 152: the first conveyor belt

153 : 고주파전자석 154 : 규사호퍼153: high frequency electromagnet 154: silica sand hopper

155 : 금속호퍼 156 : 제2콤베이어벨트155: metal hopper 156: second conveyor belt

Claims (6)

삭제delete 원료가 투입되는 원료투입부;Raw material input unit into which the raw material is input; 상기 원료투입부를 통하여 투입된 원료를 이송하고 가열하는 열처리부;A heat treatment part for transferring and heating the raw material introduced through the raw material input part; 상기 열처리부에 의하여 이송된 원료를 배출하기 위한 원료배출부; 및A raw material discharge part for discharging the raw material transferred by the heat treatment part; And 상기 열처리부에 동력을 공급하기 위한 동력공급부; 를 포함하며;A power supply unit for supplying power to the heat treatment unit; It includes; 상기 원료배출부는 자성물질과 비자성물질을 분리하기 위한 자석을 더 포함하고,The raw material discharge part further includes a magnet for separating the magnetic material and the nonmagnetic material, 상기 열처리부는 The heat treatment unit 광미(鑛尾, tailing)를 이송시키기 위한 스크류;Screws for conveying tailings; 상기 스크류를 지지하기 위한 실린더; 및A cylinder for supporting the screw; And 상기 실린더 내부의 광미(鑛尾, tailing)를 가열하기 위한 적어도 하나 이상의 히터; 를 포함하는 것을 특징으로 하는At least one heater for heating tailings in the cylinder; Characterized in that it comprises 광산폐기물 가공조립체.Mine Waste Processing Assembly. 제2항에 있어서,The method of claim 2, 상기 적어도 하나 이상의 히터는 서로 병렬로 연결되며,The at least one heater is connected in parallel with each other, 상기 실린더의 접선면을 따라 사각의 형태로 한면에 15개씩 총 60개의 히터가 마련되는 것을 특징으로 하는A total of 60 heaters are provided, each 15 in a square shape along the tangential surface of the cylinder. 광산폐기물 가공조립체.Mine Waste Processing Assembly. 제2항에 있어서,The method of claim 2, 상기 열처리부에 의해 가열된 원료에서 배출되는 기체를 포집하기 위한 포집부; 를 더 포함하고,A collecting unit for collecting the gas discharged from the raw material heated by the heat treatment unit; More, 상기 포집부는 3개의 구획으로 나뉘어지며,The collecting part is divided into three compartments, 기체를 냉각시키기 위한 냉각제 를 포함하는 것을 특징으로 하는 And a coolant for cooling the gas. 광산 폐기물 가공조립체.Mine Waste Processing Assembly. 삭제delete 미립 광미와 불순물 및 폐석을 선별하기 위한 진동선별단계;Vibration screening step for screening fine tailings and impurities and waste-rock; 상기 진동선별단계를 통해 선별된 광미에 포함되어 있는 수분을 제거하는 광산폐기물건조단계;A mine waste drying step of removing moisture contained in the tailings selected through the vibration selection step; 상기 광산폐기물건조단계를 통하여 건조된 광미(鑛尾, tailing)를 가열하는 열처리단계;A heat treatment step of heating tailings dried by the mine waste drying step; 상기 열처리단계를 통하여 승화된 기체를 포집하는 기체포집단계; 및A gas collecting step of collecting the sublimed gas through the heat treatment step; And 상기 기체포집단계를 거친 광미에서 자성물질과 비자성물질을 분리하기 위하여 고주파전자석에 자력을 인가 후 자성물질과 비자성물질을 분리하는 분리선별단계; 를 포함하고,A separation and separating step of applying magnetic force to the high frequency electromagnet to separate the magnetic material and the nonmagnetic material in order to separate the magnetic material and the nonmagnetic material from the tailings which have undergone the gas collection step; Including, 상기 열처리단계 및 상기 기체포집단계 사이에 상기 열처리단계를 통하여 가열된 광미에 포함되어 있는 산화철 및 유화철을 철로 환원시키는 산화철환원단계를 더 포함하는 것을 특징으로 하는And an iron oxide reduction step for reducing the iron oxide and the iron emulsion contained in the tailings heated through the heat treatment step between the heat treatment step and the gas collecting step to iron. 광산폐기물 가공방법.Mine waste processing method.
KR1020090082381A 2009-09-02 2009-09-02 Processing assembly of mine waste and processing method of mine waste using there of KR100984770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090082381A KR100984770B1 (en) 2009-09-02 2009-09-02 Processing assembly of mine waste and processing method of mine waste using there of

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090082381A KR100984770B1 (en) 2009-09-02 2009-09-02 Processing assembly of mine waste and processing method of mine waste using there of

Publications (1)

Publication Number Publication Date
KR100984770B1 true KR100984770B1 (en) 2010-10-04

Family

ID=43134880

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082381A KR100984770B1 (en) 2009-09-02 2009-09-02 Processing assembly of mine waste and processing method of mine waste using there of

Country Status (1)

Country Link
KR (1) KR100984770B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904733B2 (en) 2006-10-26 2011-03-08 Samsung Electronics Co., Ltd. Computer system and control method thereof, and remote control system
KR101416679B1 (en) 2013-02-13 2014-07-09 이혁수 Carbonization device using high frequency for food waste and industrial waste
CN112139003A (en) * 2020-09-16 2020-12-29 栾运宇 A separation filters and conveying drying device for charcoal powder
CN112620091A (en) * 2021-01-07 2021-04-09 广州光义化工科技发展有限公司 A edulcoration device for molecular sieve production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000026801A (en) * 1998-10-23 2000-05-15 이경운 Method for separation and collection of organic minerals from dressing ore wastes of gold mine
JP2002301447A (en) * 2001-04-09 2002-10-15 Masataka Hanashima Method for use of incineration ash
KR20030089108A (en) * 2002-05-16 2003-11-21 한국지질자원연구원 A using method with raw material of ceramic by treatment mine waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000026801A (en) * 1998-10-23 2000-05-15 이경운 Method for separation and collection of organic minerals from dressing ore wastes of gold mine
KR100318754B1 (en) 1998-10-23 2002-04-22 곽영훈 Separation and recovery method of valuable minerals by dry method from gold mine beneficiation waste
JP2002301447A (en) * 2001-04-09 2002-10-15 Masataka Hanashima Method for use of incineration ash
KR20030089108A (en) * 2002-05-16 2003-11-21 한국지질자원연구원 A using method with raw material of ceramic by treatment mine waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904733B2 (en) 2006-10-26 2011-03-08 Samsung Electronics Co., Ltd. Computer system and control method thereof, and remote control system
KR101416679B1 (en) 2013-02-13 2014-07-09 이혁수 Carbonization device using high frequency for food waste and industrial waste
CN112139003A (en) * 2020-09-16 2020-12-29 栾运宇 A separation filters and conveying drying device for charcoal powder
CN112620091A (en) * 2021-01-07 2021-04-09 广州光义化工科技发展有限公司 A edulcoration device for molecular sieve production

Similar Documents

Publication Publication Date Title
CN104289513B (en) A kind of mercury contaminated soil thermal desorption processing means and processing method
CN104428066A (en) A process and system for dry recovery of iron-ore fines and superfines and a magnetic separation unit
KR100984770B1 (en) Processing assembly of mine waste and processing method of mine waste using there of
JPS62294140A (en) Treatment of slag produced in iron making plant
AU2009294834B2 (en) Method for separating rich ore particles from agglomerates which contain said rich ore particles and magnetizable particles attached thereto, especially Fe3O4
JP2014141719A (en) Operation method of rotary kiln
CA2963990C (en) Process and system for totally dry ore-dressing through a magnetic separation unit
KR20160115143A (en) Sludge drying apparatus
KR101124756B1 (en) Processing assembly of a raw ore powder and processing method of a raw ore using there of
CN105817640A (en) Production process for manufacturing reduced iron powder with steel ball grinding iron cement
JP4776211B2 (en) Method and apparatus for removing foreign matter in slag
JP3237054B2 (en) Recycling equipment for concrete waste
JPH0348624B2 (en)
US3712598A (en) Rotary apparatus for treating colemanite ore
JP2009203117A (en) Treatment device and method of cement kiln exhaust gas
KR101853330B1 (en) Apparatus for recycling moulding sand
WO2011027919A2 (en) Assembling process for mine waste and method for processing mine waste using same
JPH09278501A (en) Reduction of alkali and chlorine in apparatus for producing cement
JP7100602B2 (en) Incinerator ash treatment method and treatment equipment
WO2022003143A1 (en) Method for the thermal treatment of mineral raw materials
KR100469583B1 (en) Apparatus and Process for purifying fly ash by using a continuous operating reactor with rotary guide blades
JP4479476B2 (en) Waste concrete recycling method using asphalt plant
JP2001198831A (en) Disposal method for shot blasting chip
RU2806659C1 (en) Method of heat treatment of sodium-potassium alumina-containing charge
JP2004256318A (en) Method and apparatus for recycling waste concrete utilizing asphalt plant

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee