[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3922676B2 - Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue - Google Patents

Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue Download PDF

Info

Publication number
JP3922676B2
JP3922676B2 JP35496999A JP35496999A JP3922676B2 JP 3922676 B2 JP3922676 B2 JP 3922676B2 JP 35496999 A JP35496999 A JP 35496999A JP 35496999 A JP35496999 A JP 35496999A JP 3922676 B2 JP3922676 B2 JP 3922676B2
Authority
JP
Japan
Prior art keywords
ash
fine
incineration
treatment
solidified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35496999A
Other languages
Japanese (ja)
Other versions
JP2000233174A (en
Inventor
武 篠原
正秀 西垣
仁 石崎
貴夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Sumitomo Osaka Cement Co Ltd
Original Assignee
Takuma KK
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Sumitomo Osaka Cement Co Ltd filed Critical Takuma KK
Priority to JP35496999A priority Critical patent/JP3922676B2/en
Publication of JP2000233174A publication Critical patent/JP2000233174A/en
Application granted granted Critical
Publication of JP3922676B2 publication Critical patent/JP3922676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみ、産業廃棄物等の焼却炉から排出される焼却残渣の処理方法に関し、更に詳細には、焼却残渣を粒径毎に分級して処理することにより処理効率の高効率化を図り、しかも処理物の有効利用を図ることのできる焼却残渣処理方法並びに焼却残渣を用いた骨材及び固化材の製造方法に関する。
【0002】
【従来の技術】
一般に、都市ごみや産業廃棄物等は焼却処分により減量化されている。従って、焼却炉からは日々大量の焼却残渣(以下、焼却灰とも云う)が排出され、古くから埋立処分等の方法により処理されてきた。
しかし、近年における廃棄物の急増は埋立処分場の不足を招き、また焼却灰の風による飛散も問題となっている。特に、焼却灰中に含まれる猛毒のダイオキシン類や、重金属の溶出といった環境汚染の問題は社会的に極めて大きく、従来から埋立処分に替る方法や有効利用法が種々検討されてきた。
【0003】
これらの方法の中で、近年特に注目されてきたものに、焼却灰の溶融固化処理法があり、既に実用に供されている。焼却灰は溶融固化することにより、その容積を1/2〜1/3に減らすことができる。また、重金属等の有害物質の溶出防止やダイオキシン類の完全分解が可能である。その溶融スラグは道路用材、コンクリート骨材などとして再利用できるから、最終埋立処分場の延命効果を有している。
しかし、大量の焼却灰を溶融固化処理するには膨大な熱エネルギーが必要となり、設備費やランニングコストを増大させるばかりでなく、省エネルギーの見地からも問題があった。
【0004】
また、焼却灰をセメント原料の一部としてセメントキルンに投入し、ポルトランドセメントにする方法がある。この方法は、商業運転されているセメント製造技術により容易に実現でき、設備コストも安価である。
しかし、焼却場とセメント工場とがかなり離隔しているという立地的制約があり、また焼却灰中に存在している塩素成分がセメントの品質に悪影響を及ぼすという欠点がある。従って、焼却灰を汎用ポルトランドセメントには利用し難く、セメントの用途が限られるという問題を有していた。
【0005】
更に、焼却灰の安価な有効利用法として、焼却灰を乾燥粉砕し、これに添加剤およびセメントを加えて固化剤とする方法がある。この固化剤は軟弱土壌や浚渫汚泥等の土壌固化剤として利用でき、比較的高価に販売できる。
しかし、この方法では含有される重金属類が溶出する危険性がある。例えば鉛の溶解性はpH依存性を有しており、そのpH条件が満たされるとかなりの量の鉛が溶出する。また、ダイオキシン類が熱分解されずに残留し、乾燥粉砕時に一部のダイオキシン類が排ガスと共に大気中に放散する等の問題があった。
【0006】
【発明が解決しようとする課題】
上述したように、焼却残渣又は焼却灰の従来処理方法には多くの問題があった。埋立処分法では、埋立地問題・重金属溶出問題・ダイオキシン問題があり、溶融固化処理方法ではコストやエネルギー消費問題が大きい。
また、セメント原料への利用ではセメントの品質の問題があり、土壌固化剤への利用では鉛溶出問題・ダイオキシン問題が発生している。
【0007】
【課題を解決するための手段】
本発明は上記欠点を解消するためになされたものであり、請求項1の発明に係る焼却残渣処理方法は、焼却炉から排出される焼却灰から大型不燃物や金属を除去する第1工程と、除去後の焼却灰を粒径が20mm以上の粗粒灰と5〜20mmの中粒灰と2〜5mmの細粒灰と2mm以下の微粒灰に分級する第2工程と、粗粒灰と中粒灰はそのまま回収し、細粒灰は重金属固定処理をして回収し、微粒灰はダイオキシン分解処理をする第3工程からなることを特徴とするものである。
【0008】
請求項2の発明に係る焼却残渣処理方法は、請求項1の発明における第3工程において、細粒灰に固化材化処理を併せて行うことを特徴とするものである。
【0009】
請求項3の発明に係る固化材の製造方法は、請求項又は請求項の発明の第3工程で得られる細粒灰の処理物を固化材として活用することを特徴とするものである。
【0010】
請求項4の発明に係る固化材の製造方法は、請求項の発明の第2工程で得られる粗粒灰と中粒灰の何れか一方又は両方を粉砕して細粒灰とし、請求項の発明で得られる固化材と混合して活用することを特徴とするものである。
【0011】
請求項5の発明に係る固化材の製造方法は、請求項の発明の第2工程で得られる粗粒灰と中粒灰の何れか一方又は両方を粉砕して細粒灰とし、この細粒灰に重金属固定処理と固化材化処理の何れか一方又は両方を施したあと、請求項の発明で得られる固化材と混合して活用することを特徴とするものである。
【0014】
【発明の実施の形態】
焼却灰の従来処理法の欠点は、焼却灰の性質が焼却灰全体に共通して存在すると判断し、焼却灰の全体を一括処理しようとしてきたことである。そこで、本発明者等は、焼却灰が粒径に依存して異なった性質を有するのではないかと着眼した。
【0015】
従来処理法の問題点の中で、重金属類の溶出とダイオキシン類の放出が大きいから、焼却灰の重金属類含有量とダイオキシン類含有量に着目し、その粒径依存性を研究することにした。
即ち、焼却灰を粗粒灰・中粒灰・細粒灰及び微粒灰に分けて、各々の重金属類含有量とダイオキシン類含有量を測定し、粒径(粒度とも云う)毎に顕著な差異があれば、その特性に適した処理法と有効利用法を確立することである。
【0016】
そこで基準となる重金属類濃度とダイオキシン類濃度を定めておかなければならない。重金属類濃度の許容値としては土壌環境基準とするのが主流であるから、これを表1に示す。
【0017】
【表1】

Figure 0003922676
【0018】
ダイオキシン類の許容値としては、オランダ、ドイツで設定されている土壌中のダイオキシン類の許容値が参考となる。オランダの場合を表2に、ドイツの場合を表3に示す。オランダでは、土壌の法的基準は設定されていないが、ガイドライン値として表2の値が1987年に提案された。ドイツでは、土壌中濃度の参考値が1991年に表3として提案されている。この参考値は強制的なものではないが、多くの州政府により実践されている。参考文献としては、環境庁が発行するダイオキシン排出抑制対策検討会報告(平成9年5月)がある。ここでTEQは毒性等価換算値を指称する。
【0019】
【表2】
Figure 0003922676
【0020】
【表3】
Figure 0003922676
【0021】
次に、本発明者等は、大型ストーカ式都市ごみ焼却炉の焼却灰を分析することにした。図1は都市ごみ焼却炉の要部構成図である。クレーン2により都市ごみをホッパー4内に投下し、都市ごみを矢印順に乾燥ストーカ6、燃焼ストーカ8、後燃焼ストーカ10、灰出コンベア12および灰出バンカ14へと送る。
【0022】
図1において、後燃焼ストーカ10の排出口より焼却灰を採取し、また後燃焼ストーカ10下のシュートからリドリング灰を採取した。焼却灰およびリドリング灰ともに、サンプルAと、サンプルBの2種類を採取した。従って、サンプルAは焼却灰Aとリドリング灰Aからなり、サンプルBは焼却灰Bとリドリング灰Bからなる。リドリンク灰は、灰の全量に対するリドリンク灰の量の割合を推定するために採取した。
【0023】
サンプルAおよびBは、図2の分析フローに従って分析された。即ち、焼却灰サンプルは乾燥後、物理組成分析にかけられ、クリンカ、がれき、石、灰、ガラス、陶器、金属類の含有量が測定された。また、乾灰を50mm角ふるいにかけて大型の不燃物、金属等を除去し、残った前処理灰を分析にかけた。
【0024】
前処理灰をふるいにかけて粒径毎に分級する。即ち、20mm以上の粗粒灰、5〜20mmの中粒灰、2〜5mmの細粒灰、2mm以下の微粒灰の4粒径に分級し、各々についてダイオキシン類含有量、重金属類含有量、重金属類溶出量を分析した。重金属類溶出量については、環境庁告示第46号溶出試験(環告46号と略称する)が行なわれた。
【0025】
表4に分析項目が一覧化されており、実施された試験に○が付されている。また、後述するように、必要な粒度に対しては固化強度テストまたは重金属安定化テストが行なわれた。
【0026】
【表4】
Figure 0003922676
【0027】
図3にはサンプルの物理組成が示されている。例えば、サンプルAはリドリング灰12.4%と焼却灰87.6%からなり、この焼却灰は42.5%のガラ(50mm角以上)と45.1%の6種物理組成に分けられる。つまり、粗粒灰、中粒灰、細粒灰および微粒灰を合計したものの物理組成が前記の6種物理組成になる。サンプルBも同様に考えてよい。
【0028】
粗粒灰、中粒灰、細粒灰および微粒灰の分析結果が表5にまとめられている。サンプルAおよびBについて、粒度分布、ダイオキシン類分析、Pb分析、Cd分析、pH分析がなされた。
【0029】
【表5】
Figure 0003922676
【0030】
表5の結果から明らかなように、粒度分布については粗粒灰と中粒灰の合計が過半数を占めている。また、ダイオキシン類については、その90%以上が微粒灰に含まれており、粗粒灰・中粒灰・細粒灰では、表3のドイツ基準における0.005ng−TEQ/g以下であるから、土地利用に何ら制限のない安全な灰である。ドイツ基準では5ng−TEQ/kgとなっており単位換算により上述の値になることを注意しておく。
【0031】
重金属類については、細かい灰の方が含有量、溶出量ともに高い傾向がある。Pbでは、粗粒灰および中粒灰の環告46号の値は、表1の土壌環境基準値0.01mg/l以下である。また、Cdでは、全ての灰で環告46号の値は土壌環境基準値0.01mg/l未満である。pHは細かい灰程高くなる傾向にある。
【0032】
以上の結果をまとめると、粗粒灰および中粒灰はダイオキシン類および重金属類共に基準値以下である。細粒灰ではダイオキシン類は基準値以下だが、重金属類では基準値を越えている。微粒灰では、ダイオキシン類および重金属類共に基準値を越えていることが分った。
【0033】
この分析結果が示すところは次の通りである。焼却灰を処理・処分・再利用する場合に、粗粒灰から微粒灰までの全てが含まれている焼却灰をそのまま、ダイオキシン分解処理や重金属固定処理を行うことは極めて不効率、不経済である。つまり、焼却灰を各粒度に分級し、各粒度のもつ特性に合わせて処理した方がより効果的・経済的であり、この点が本発明の中心思想である。
【0034】
即ち、焼却灰の過半数を占める粗粒灰と中粒灰については、ダイオキシン類および重金属類が基準値以下に少ないので、加熱処理を施して無害化する必要もなく、粉砕処理も施さないで、そのまま例えば骨材として利用することができる。
【0035】
細粒灰については、ダイオキシン類は基準値以下である一方、重金属類、特にPbが基準値を超える。従って、ダイオキシン類を除去するための高価な加熱処理を施す必要はないが、重金属類の溶出を防止するための適切な重金属固定処理剤を加えることが必要となる。更に、これに固化剤、例えばセメント系固化剤を加えて固化材処理をすると、軟弱土壌や浚渫土壌等の土壌固化材として利用することができる。
【0036】
尚、細粒灰に重金属固定処理と固化材処理を施してこれを土壌固化材として利用する場合に、当該細粒灰に、前期粗粒灰と中粒灰の何れか一方又は両方に粉砕処理を施して細粒灰としたものを適宜量混合するようにしてもよい。
【0037】
また、前記重金属処理と固化材処理を施した細粒灰に、粗粒灰と中粒灰の何れか一方又は両方を粉砕して細粒灰としたものを混合する場合に、後者の粉砕処理により形成した細粒灰に、予かじめ重金属処理と固化材処理の何れか一方又は両方を施しておくようにしてもよい。土壌固化材としての安全性がより一層向上するからである。
【0038】
微粒灰については、ダイオキシン類が基準値を超え、且つ重金属類も基準値を超えるので、ダイオキシン類分解処理と重金属固定処理の両方を行う必要がある。ダイオキシン分解処理には溶融・焼成等の加熱処理や化学的分解法があり、重金属固定処理には重金属固定剤の投入処理等がある。
【0039】
特に、溶融処理はダイオキシン類を分解すると同時に重金属類を固定化する作用も有するので、極めて効果的である。生成された溶融物は、例えば骨材などに利用することができる。溶融処理は設備費・ランニングコスト共に高価ではあるが、微粒灰の焼却灰に占める割合は20%程度と低いので、焼却灰全部を溶融処理することに比し、設備費・ランニングコスト共に大幅に節約することができる。
【0040】
【実施例】
以下に、本発明に係る焼却残渣処理方法および焼却残渣再利用品の実施例を図面とともに説明する。
【0041】
[実施例1:焼却残渣処理方法]
図4は焼却灰を処理するフロー図である。このフロー図は大きく分けると、焼却灰排出I、前処理II、分級III およびダイオキシン分解IVの4工程からなり、その構成と動作を以下に説明する。
都市ごみ等を焼却炉21で焼却すると、焼却灰と燃焼ガスが生成する。燃焼ガスはバグフィルタ22および湿式有害ガス除去装置23を通して浄化される。
【0042】
一方、焼却灰はコンベア24を経て、50mmのスクリーン25aにかけられ、粒径が50mm以上の粗大物25bは埋立処分に回される。次に補助スクリーン25cと破砕装置25dにより細かくして、磁選機26により鉄26aを分離し、アルミ選別機27によりアルミ27aを分離する。
【0043】
鉄26aとアルミ27aを分離された焼却灰は、分級機28に入り、ここで粒径が20mm以上の粗粒灰、5〜20mmの中粒灰、2〜5mmの細粒灰、2mm以下の微粒灰に分級される。
【0044】
粗粒灰および中粒灰はそのまま骨材29に利用される。細粒灰は重金属固定処理30と固化材化処理30aにより固化材30bとして有効利用される。
【0045】
微粒灰は、局所集塵用バグフィルタ31の集塵灰とともに、ダイオキシン分解装置32に移送される。
ダイオキシン分解装置32には、高温をかけて熱分解させる溶融炉等が使用される。
【0046】
図5は総量100の焼却灰が処理される場合の物質収支の一例である。○の中に書かれた数値が物質量を表わす。この例では、焼却灰総量100は、粗大物25bに42、鉄26aに5、アルミ27aに5、骨材29に30、固化材30bに9、ダイオキシン分解装置32に9と流れる。粗大物25bは埋立てに、鉄26a・アルミ27aは売却もしくは埋立されるが、分級処理された残りはほとんど有効利用されることになる。この分級処理による有効利用は本発明により初めて可能となったものである。
【0047】
[実施例2:細粒灰の土壌固化材への利用]
実施例1で分級された細粒灰に重金属固定剤を添加して重金属固定処理30を行い、更にセメント系固化剤を添加して固化材化処理30aを行って土壌固化材を製造した。この土壌固化材を海底浚渫土および陸上軟弱土に各々加えて、ソイルミキサーを用いて3分間×2回混練し、φ5×10cmの供試体を成形した。詳細を表6に示す。
【0048】
【表6】
Figure 0003922676
【0049】
細粒灰と土の比率は1:10、1:3、1:1の3種類で、重金属固定剤の添加量は土の10重量%である。また、セメント系固化剤の添加量は土壌固化材1m3 当りに、52〜58kgである。
【0050】
次に、これらの供試体の固化強度を測定するために、一軸圧縮強度試験を行った。材齢7日と28日について試験を行ったが、28日の方が7日より高くなり焼却残渣:海底浚渫土=1:10の1条件以外は材齢28日の一軸圧宿強度は全て2kgf/cm2 以上であり、土壌固化材として十分再利用できることが実証された。
【0051】
更に、固化供試体に対し環告46号による重金属溶出試験を行った。材齢7日、28日の供試体について行ったがPb溶出量およびCd溶出量は全て0.01mg/l以下であった。従って、Pb、Cd共に表1の土壌環境基準を満足していることが証明された。
【0052】
本発明は上記実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更などをその技術的範囲内に包含するものである。
【0053】
【発明の効果】
本発明によって、従来、焼却灰に含まれるダイオキシン類や重金属類の処理のため、焼却灰全体に高価な溶融処理を施したり、或いは多量の重金属固定剤を添加したりしていたのに対し、スクリーンという簡素な設備を附加するだけで、焼却灰を粗粒灰、中粒灰、細粒灰、微粒灰に分級し、それぞれをその粒度のもつ特性に合わせて処理し、再利用品に加工することができる。
【0054】
また、本発明によって最終処分場への埋立量を低減することができ、高価でエネルギー消費の大きい溶融炉、焼成炉などの負荷を下げ、設備コストの低減、ランニングコストの低減を行うことができる。
従って、省エネルギーに役立ち、しかも焼却灰の再利用化を促進できる産業上有益な方法を実現した。
【図面の簡単な説明】
【図1】図1は本発明が適用される都市ごみ焼却炉の要部構成図である。
【図2】図2は本発明の分析フロー図である。
【図3】図3はサンプルの物理組成図である。
【図4】図4は実施例1の焼却灰処理フロー図である。
【図5】図5は実施例1における焼却灰の物質収支の一例である。
【符号の説明】
2はクレーン、4はホッパー、6は乾燥ストーカ、8は燃焼ストーカ、10は後燃焼ストーカ、12は灰出コンベア、14は灰出バンカ、21は焼却炉、22はバグフィルタ、23は湿式有害ガス除去装置、24はコンベア、25aはスクリーン、25bは粗大物、25cは補助スクリーン、25dは破砕装置、26は磁選機、26aは鉄、27はアルミ選別機、27aはアルミ、28は分級機、29は骨材、30は重金属固定処理、30aは固化材化処理、30bは固化剤、31は局所集塵用バグフィルタ、32はダイオキシン分解装置、Iは焼却灰排出、IIは前処理、III は分級、IVはダイオキシン分解である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating incineration residues discharged from an incinerator such as municipal waste and industrial waste. More specifically, the incineration residue is classified and processed for each particle size to increase the processing efficiency. In addition, the present invention relates to an incineration residue treatment method capable of effectively using a treated product, and an aggregate and a solidified material production method using the incineration residue.
[0002]
[Prior art]
Generally, municipal waste and industrial waste are reduced by incineration. Accordingly, a large amount of incineration residue (hereinafter also referred to as incineration ash) is discharged from the incinerator every day, and has been treated by landfill disposal methods for a long time.
However, the rapid increase in waste in recent years has led to a shortage of landfill sites, and the scattering of incinerated ash by wind has become a problem. In particular, the problem of environmental pollution such as extremely toxic dioxins contained in incineration ash and elution of heavy metals is extremely social, and various methods for replacing landfilling and effective methods have been studied.
[0003]
Among these methods, one that has attracted particular attention in recent years is a method for melting and solidifying incinerated ash, which has already been put into practical use. The volume of incinerated ash can be reduced to 1/2 to 1/3 by melting and solidifying. In addition, it is possible to prevent the elution of toxic substances such as heavy metals and to completely decompose dioxins. Since the molten slag can be reused as road material, concrete aggregate, etc., it has the effect of extending the life of the final landfill site.
However, in order to melt and solidify a large amount of incinerated ash, enormous heat energy is required, which not only increases equipment costs and running costs, but also has a problem from the viewpoint of energy saving.
[0004]
In addition, there is a method in which incinerated ash is put into a cement kiln as a part of cement raw material to make Portland cement. This method can be easily realized by commercial cement manufacturing technology, and the equipment cost is low.
However, the incineration plant and the cement factory have a locational restriction that they are considerably separated from each other, and the chlorine component present in the incineration ash has a disadvantage that it adversely affects cement quality. Therefore, it has been difficult to use incinerated ash for general-purpose Portland cement, and the use of cement has been limited.
[0005]
Further, as an inexpensive and effective method of using the incineration ash, there is a method in which the incineration ash is dried and pulverized, and an additive and cement are added thereto to form a solidifying agent. This solidifying agent can be used as a soil solidifying agent such as soft soil or sludge and can be sold at a relatively high price.
However, in this method, there is a risk that the contained heavy metals are eluted. For example, the solubility of lead has a pH dependency, and a considerable amount of lead is eluted when the pH condition is satisfied. In addition, dioxins remain without being thermally decomposed, and some dioxins are diffused into the atmosphere together with exhaust gas during dry pulverization.
[0006]
[Problems to be solved by the invention]
As described above, there are many problems in the conventional method for treating incineration residue or incineration ash. The landfill disposal method has a landfill problem, a heavy metal elution problem, and a dioxin problem, and the melt-solidification method has a large cost and energy consumption problem.
In addition, there is a problem of cement quality when used as a cement raw material, and lead elution and dioxin problems occur when used as a soil solidifying agent.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned drawbacks, and the incineration residue treatment method according to the invention of claim 1 includes a first step of removing large incombustibles and metals from incineration ash discharged from an incinerator. The second step of classifying the incinerated ash after removal into coarse ash having a particle size of 20 mm or more, medium ash of 5 to 20 mm, fine ash of 2 to 5 mm, and fine ash of 2 mm or less, and coarse ash, The medium ash is recovered as it is, the fine ash is recovered by a heavy metal fixing treatment, and the fine ash is composed of a third step of dioxin decomposition treatment.
[0008]
The incineration residue processing method according to the invention of claim 2 is characterized in that, in the third step of the invention of claim 1, the solidified material is subjected to solidification treatment in the fine ash.
[0009]
The method for producing a solidified material according to the invention of claim 3 is characterized in that the processed product of fine ash obtained in the third step of the invention of claim 1 or claim 2 is utilized as the solidified material. .
[0010]
According to a fourth aspect of the present invention, there is provided a method for producing a solidified material, comprising pulverizing either one or both of coarse ash and medium ash obtained in the second step of the first aspect of the invention into fine ash, It is characterized by being used by mixing with the solidifying material obtained in the invention of ( 3 ).
[0011]
According to a fifth aspect of the present invention, there is provided a method for producing a solidified material, comprising pulverizing one or both of coarse ash and medium ash obtained in the second step of the first aspect of the invention into fine ash. After either or both of heavy metal fixing treatment and solidification material treatment is applied to the granular ash, it is used by mixing with the solidification material obtained in the invention of claim 3 .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The disadvantage of the conventional method for treating incineration ash is that it has been determined that the properties of incineration ash are common to the entire incineration ash, and has been trying to process the entire incineration ash at once. Therefore, the present inventors have noticed that incinerated ash may have different properties depending on the particle size.
[0015]
Among the problems of conventional treatment methods, the elution of heavy metals and the release of dioxins are large, so we focused on the heavy metal content and dioxin content of incinerated ash, and decided to study the particle size dependence. .
That is, incineration ash is divided into coarse ash, medium ash, fine ash, and fine ash, and each heavy metal content and dioxin content is measured, and there is a significant difference for each particle size (also called particle size). If there is, it is to establish a processing method and effective use method suitable for the characteristic.
[0016]
Therefore, the standard heavy metal concentration and dioxin concentration must be determined. Since it is the mainstream to use the soil environment standard as the allowable value of the heavy metal concentration, this is shown in Table 1.
[0017]
[Table 1]
Figure 0003922676
[0018]
As the permissible value of dioxins, the permissible value of dioxins in soil set in the Netherlands and Germany can be used as a reference. Table 2 shows the case of the Netherlands and Table 3 shows the case of Germany. In the Netherlands, there are no legal standards for soil, but the values in Table 2 were proposed in 1987 as guideline values. In Germany, reference values for soil concentrations were proposed in 1991 as Table 3. This reference is not compulsory, but is practiced by many state governments. As a reference, there is a dioxin emission control measure study report (May 1997) published by the Environment Agency. Here, TEQ refers to a toxicity equivalent conversion value.
[0019]
[Table 2]
Figure 0003922676
[0020]
[Table 3]
Figure 0003922676
[0021]
Next, the present inventors decided to analyze the incineration ash of a large stoker-type municipal waste incinerator. FIG. 1 is a configuration diagram of a main part of a municipal waste incinerator. The municipal waste is dropped into the hopper 4 by the crane 2, and the municipal waste is sent to the drying stoker 6, the combustion stoker 8, the post-combustion stoker 10, the ashing conveyor 12, and the ashing bunker 14 in the order of arrows.
[0022]
In FIG. 1, incineration ash was collected from the outlet of the post-combustion stoker 10, and ridling ash was collected from a chute under the post-combustion stoker 10. Two types of samples A and B were collected for both incineration ash and ridling ash. Therefore, sample A consists of incineration ash A and ridling ash A, and sample B consists of incineration ash B and ridling ash B. The liquor ash was collected in order to estimate the ratio of the amount of liquor ash to the total amount of ash.
[0023]
Samples A and B were analyzed according to the analysis flow of FIG. That is, the incinerated ash sample was dried and subjected to physical composition analysis, and the contents of clinker, debris, stone, ash, glass, earthenware, and metals were measured. Further, dry ash was passed through a 50 mm square sieve to remove large incombustibles, metals, etc., and the remaining pretreated ash was subjected to analysis.
[0024]
Sieve pretreated ash and classify by particle size. That is, it is classified into four particle sizes of coarse ash of 20 mm or more, medium ash of 5 to 20 mm, fine ash of 2 to 5 mm, fine ash of 2 mm or less, and dioxin content, heavy metal content for each, The elution amount of heavy metals was analyzed. Regarding the elution amount of heavy metals, the Environmental Agency Notification No. 46 dissolution test (abbreviated as Circular 46) was conducted.
[0025]
The analysis items are listed in Table 4, and the tests performed are marked with a circle. Further, as will be described later, a solidification strength test or a heavy metal stabilization test was performed for the required particle size.
[0026]
[Table 4]
Figure 0003922676
[0027]
FIG. 3 shows the physical composition of the sample. For example, sample A is composed of 12.4% of ridling ash and 87.6% of incinerated ash, and this incinerated ash is divided into 42.5% of glass (50 mm square or more) and 45.1% of six physical compositions. That is, the physical composition of the sum of coarse ash, medium ash, fine ash, and fine ash is the above-described six physical compositions. Sample B may be considered similarly.
[0028]
Table 5 summarizes the analysis results of coarse ash, medium ash, fine ash and fine ash. Samples A and B were subjected to particle size distribution, dioxin analysis, Pb analysis, Cd analysis, and pH analysis.
[0029]
[Table 5]
Figure 0003922676
[0030]
As is clear from the results in Table 5, with respect to the particle size distribution, the sum of coarse ash and medium ash accounts for the majority. In addition, about 90% or more of dioxins are contained in fine ash, and for coarse ash, medium ash, and fine ash, it is 0.005 ng-TEQ / g or less according to the German standard in Table 3. It is a safe ash with no restrictions on land use. It should be noted that the German standard is 5 ng-TEQ / kg, and the above value is obtained by unit conversion.
[0031]
For heavy metals, fine ash tends to be higher in both content and elution. In Pb, the value of notice 46 of coarse ash and medium ash is not more than the soil environment standard value of Table 1 of 0.01 mg / l. Moreover, in Cd, the value of Circular 46 is less than the soil environmental standard value of 0.01 mg / l for all ashes. The pH tends to be higher for fine ash.
[0032]
To summarize the above results, coarse ash and medium ash are below the standard value for both dioxins and heavy metals. For fine ash, dioxins are below the standard value, but for heavy metals, the standard value is exceeded. It was found that fine ash exceeded the standard value for both dioxins and heavy metals.
[0033]
The results of this analysis are as follows. When treating, disposing, and reusing incineration ash, it is extremely inefficient and uneconomical to carry out dioxin decomposition treatment and heavy metal fixation treatment as it is, including all of coarse ash to fine ash. is there. That is, it is more effective and economical to classify the incinerated ash into each particle size and treat it according to the characteristics of each particle size, and this is the central idea of the present invention.
[0034]
That is, for coarse ash and medium ash that account for the majority of incinerated ash, since dioxins and heavy metals are less than the standard value, there is no need to detoxify by heat treatment, without pulverization treatment, It can be used as it is, for example, as an aggregate.
[0035]
For fine ash, dioxins are below the standard value, while heavy metals, especially Pb, exceed the standard value. Therefore, it is not necessary to perform an expensive heat treatment for removing dioxins, but it is necessary to add an appropriate heavy metal fixing treatment agent for preventing elution of heavy metals. Furthermore, when a solidifying agent, for example, a cement-type solidifying agent is added thereto and treated with a solidifying material, it can be used as a soil solidifying material such as soft soil or dredged soil.
[0036]
When fine ash is subjected to heavy metal fixation treatment and solidification material treatment and used as soil solidification material, the fine ash is pulverized into either or both of the previous coarse ash and medium ash. The amount of fine ash that has been applied may be mixed as appropriate.
[0037]
In addition, when the fine ash that has been subjected to the heavy metal treatment and the solidifying material treatment is mixed with fine ash obtained by pulverizing one or both of coarse ash and medium ash, the latter pulverization treatment The fine ash formed by the above may be subjected to either one or both of heavy metal treatment and solidifying material treatment in advance. This is because the safety as a soil solidifying material is further improved.
[0038]
For fine ash, since dioxins exceed the standard value and heavy metals also exceed the standard value, it is necessary to perform both dioxin decomposition treatment and heavy metal fixing treatment. Dioxin decomposition treatment includes heat treatment such as melting and firing and chemical decomposition methods, and heavy metal fixation treatment includes input treatment of a heavy metal fixing agent.
[0039]
In particular, the melting treatment is extremely effective because it has an action of decomposing dioxins and fixing heavy metals at the same time. The generated melt can be used, for example, for aggregates. Although both the equipment cost and running cost are high in the melting treatment, the proportion of fine ash in the incineration ash is as low as about 20%, so both the equipment cost and running cost are significantly higher than the melting treatment of the entire incineration ash. Can be saved.
[0040]
【Example】
Hereinafter, examples of the incineration residue treatment method and the incineration residue reuse product according to the present invention will be described with reference to the drawings.
[0041]
[Example 1: Incineration residue treatment method]
FIG. 4 is a flowchart for processing incineration ash. This flow chart is roughly divided into four steps of incineration ash discharge I, pretreatment II, classification III, and dioxin decomposition IV, and its configuration and operation will be described below.
When municipal waste or the like is incinerated in the incinerator 21, incineration ash and combustion gas are generated. The combustion gas is purified through the bag filter 22 and the wet harmful gas removal device 23.
[0042]
On the other hand, the incinerated ash is passed through a conveyor 24 and applied to a 50 mm screen 25a, and a coarse product 25b having a particle size of 50 mm or more is sent to landfill. Next, the iron 26a is separated by the magnetic separator 26 and the aluminum 27a is separated by the aluminum sorter 27.
[0043]
The incinerated ash from which the iron 26a and the aluminum 27a are separated enters the classifier 28, where the coarse ash having a particle size of 20 mm or more, the medium ash of 5 to 20 mm, the fine ash of 2 to 5 mm, and the ash of 2 mm or less. Classified into fine ash.
[0044]
Coarse ash and medium ash are used for the aggregate 29 as they are. The fine ash is effectively used as the solidifying material 30b by the heavy metal fixing process 30 and the solidifying process 30a.
[0045]
The fine ash is transferred to the dioxin decomposition device 32 together with the dust ash from the local dust collection bag filter 31.
For the dioxin decomposition apparatus 32, a melting furnace or the like that is thermally decomposed at a high temperature is used.
[0046]
FIG. 5 is an example of a material balance when a total amount of incinerated ash is processed. The numerical value written in ○ represents the amount of substance. In this example, the total amount of incinerated ash 100 flows as 42 for the coarse product 25b, 5 for the iron 26a, 5 for the aluminum 27a, 30 for the aggregate 29, 9 for the solidified material 30b, and 9 for the dioxin decomposition device 32. The coarse material 25b is sold for landfill and the iron 26a / aluminum 27a is sold or landfilled, but the remainder of the classification treatment is almost effectively utilized. Effective use by this classification process is made possible for the first time by the present invention.
[0047]
[Example 2: Use of fine-grained ash as a soil-solidifying material]
A heavy metal fixing agent was added to the fine ash classified in Example 1 to perform heavy metal fixing treatment 30, and a cement-based solidifying agent was further added to perform solidification treatment 30a to produce a soil solidification material. This soil-solidifying material was added to each of the submarine dredged soil and the land soft soil, and kneaded twice for 3 minutes using a soil mixer to form a specimen having a diameter of 5 × 10 cm. Details are shown in Table 6.
[0048]
[Table 6]
Figure 0003922676
[0049]
The ratio of fine ash and soil is three types of 1:10, 1: 3, and 1: 1, and the amount of heavy metal fixing agent added is 10% by weight of the soil. The amount of cement-based solidifying agent added is 52 to 58 kg per 1 m 3 of soil solidifying material.
[0050]
Next, in order to measure the solidification strength of these specimens, a uniaxial compressive strength test was performed. Tests were conducted for ages 7 and 28, but 28 days were higher than 7 days, and the incineration residue: submarine soil = 1: 10, except for one condition of uniaxial crushing strength of ages 28 days It was demonstrated that it is 2 kgf / cm 2 or more and can be sufficiently reused as a soil solidifying material.
[0051]
Furthermore, a heavy metal elution test according to Circular 46 was performed on the solidified specimen. The test was performed on specimens having a material age of 7 days and 28 days, but the Pb elution amount and the Cd elution amount were all 0.01 mg / l or less. Therefore, it was proved that both Pb and Cd satisfied the soil environmental standards shown in Table 1.
[0052]
The present invention is not limited to the above embodiments, and includes various modifications, design changes, and the like within the technical scope without departing from the technical idea of the present invention.
[0053]
【The invention's effect】
According to the present invention, for the treatment of dioxins and heavy metals contained in incineration ash, conventionally, the entire incineration ash was subjected to expensive melting treatment, or a large amount of heavy metal fixing agent was added, By simply adding a simple equipment called a screen, the incineration ash is classified into coarse ash, medium ash, fine ash, and fine ash, and each is processed according to the characteristics of the particle size and processed into reusable products. can do.
[0054]
Further, according to the present invention, the amount of landfill to the final disposal site can be reduced, and the load of a melting furnace and a baking furnace that is expensive and consumes a large amount of energy can be reduced, thereby reducing the equipment cost and the running cost. .
Therefore, an industrially useful method that can contribute to energy saving and promote the reuse of incinerated ash has been realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a main part of a municipal waste incinerator to which the present invention is applied.
FIG. 2 is an analysis flow diagram of the present invention.
FIG. 3 is a physical composition diagram of a sample.
FIG. 4 is a flowchart of incineration ash treatment according to the first embodiment.
FIG. 5 is an example of the mass balance of incinerated ash in Example 1.
[Explanation of symbols]
2 is a crane, 4 is a hopper, 6 is a dry stoker, 8 is a combustion stoker, 10 is a post-combustion stoker, 12 is an ash conveyor, 14 is an ash bunker, 21 is an incinerator, 22 is a bag filter, and 23 is wet harmful Degassing device, 24 conveyor, 25a screen, 25b coarse, 25c auxiliary screen, 25d crushing device, 26 magnetic separator, 26a iron, 27 aluminum sorter, 27a aluminum, 28 classifier 29 is an aggregate, 30 is a heavy metal fixing process, 30a is a solidification process, 30b is a solidifying agent, 31 is a local dust collecting bag filter, 32 is a dioxin decomposition device, I is incinerated ash discharge, II is a pretreatment, III is classification and IV is dioxin decomposition.

Claims (5)

焼却炉から排出される焼却灰から大型不燃物や金属を除去する第1工程と、除去後の焼却灰を粒径が20mm以上の粗粒灰と5〜20mmの中粒灰と2〜5mmの細粒灰と2mm以下の微粒灰に分級する第2工程と、粗粒灰と中粒灰はそのまま回収し、細粒灰は重金属固定処理をして回収し、微粒灰はダイオキシン分解処理をする第3工程からなることを特徴とする焼却残渣処理方法。The first step of removing large incombustibles and metals from the incineration ash discharged from the incinerator, and the incineration ash after the removal of coarse ash having a particle size of 20 mm or more, 5 to 20 mm medium ash and 2 to 5 mm The second step of classifying fine ash and fine ash of 2 mm or less , coarse ash and medium ash are recovered as they are, fine ash is recovered by heavy metal fixing treatment, and fine ash is subjected to dioxin decomposition treatment An incineration residue treatment method comprising the third step. 前記第3工程において細粒灰に固化材化処理を併せて行う請求項1に記載の焼却残渣処理方法。  The incineration residue treatment method according to claim 1, wherein the solidified material is treated together with the fine ash in the third step. 請求項又は請求項の第3工程で得られる細粒灰の処理物を固化材として活用することを特徴とする固化材の製造方法。A method for producing a solidified material, wherein the processed product of fine ash obtained in the third step of claim 1 or claim 2 is utilized as a solidified material. 請求項の第2工程で得られる粗粒灰と中粒灰の何れか一方又は両方を粉砕して細粒灰とし、請求項で得られる固化材と混合して活用することを特徴とする固化材の製造方法。Either or both of coarse ash and medium ash obtained in the second step of claim 1 are pulverized into fine ash, and mixed with the solidified material obtained in claim 3 and utilized. A method for producing a solidified material. 請求項の第2工程で得られる粗粒灰と中粒灰の何れか一方又は両方を粉砕して細粒灰とし、この細粒灰に重金属固定処理と固化材化処理の何れか一方又は両方を施したあと、請求項で得られる固化材と混合して活用することを特徴とする固化材の製造方法。Either one or both of the coarse ash and the medium ash obtained in the second step of claim 1 are pulverized into fine ash, and either one of the heavy metal fixing treatment and the solidification treatment is applied to the fine ash, or A method for producing a solidified material, characterized in that after both are applied, the solidified material obtained in claim 3 is mixed and utilized.
JP35496999A 1998-12-18 1999-12-14 Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue Expired - Lifetime JP3922676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35496999A JP3922676B2 (en) 1998-12-18 1999-12-14 Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36079198 1998-12-18
JP10-360791 1998-12-18
JP35496999A JP3922676B2 (en) 1998-12-18 1999-12-14 Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue

Publications (2)

Publication Number Publication Date
JP2000233174A JP2000233174A (en) 2000-08-29
JP3922676B2 true JP3922676B2 (en) 2007-05-30

Family

ID=26580186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35496999A Expired - Lifetime JP3922676B2 (en) 1998-12-18 1999-12-14 Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue

Country Status (1)

Country Link
JP (1) JP3922676B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672896B2 (en) * 2001-04-09 2011-04-20 花嶋 正孝 Regeneration method of incineration ash
IT201800004790A1 (en) * 2018-04-23 2019-10-23 MANUFACTURING PROCESS OF PORCELAIN STONEWARE AND PRODUCTS
JP7406407B2 (en) * 2020-03-06 2023-12-27 太平洋セメント株式会社 Manufacturing method of chromium-reduced cement raw material

Also Published As

Publication number Publication date
JP2000233174A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP4438329B2 (en) Method for treating waste containing organic matter
US5860908A (en) Water insoluble heavy metal stabilization process
US5143304A (en) Process and device for processing residues from refuse incinerators
Chang et al. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes
JPH03501768A (en) Method and apparatus for processing slag or other incineration residue from garbage incineration equipment
US5180421A (en) Method and apparatus for recovering useful products from waste streams
EP0582008A1 (en) Fixation and utilization of ash residue from the incineration of municipal solid waste
JP2000301128A (en) Method and apparatus for recycling incineration ash of fluidized bed incinerator and incombustible material residue at bottom of gasification furnace of gasifying/ melting furnace
JP4672896B2 (en) Regeneration method of incineration ash
JP2019019346A (en) Recovery method of noble metal from incineration ash
JP3922676B2 (en) Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue
JP2002177924A (en) Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process
JP2013138975A (en) Incineration ash treatment system
JP2003010634A (en) Method and installation for treating waste treatment exhaust gas and dust
JP5583360B2 (en) Purification equipment for contaminated soil
JP3337941B2 (en) Incineration residue treatment method
JP2001232341A (en) Method for recovering nonferrous metal resources contained in waste material
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
JP4443031B2 (en) Waste treatment method and apparatus
JP2004323255A (en) Method and system for converting soil to cement raw material
US20200038924A1 (en) Method for producing a binder for the conditioning of sludges, soils containing water and for the neutralization of acids
JP3917775B2 (en) Recycling method of incineration ash
JP3717774B2 (en) Treatment method of pollutants including dioxins
KR102562863B1 (en) Method for Manufacturing Waste Recycled Construction Material Containing Hazardous Heavy Metal And Hazardous Organic Compound
JP2002119820A (en) Waste incineration waste gas and treatment method for dust

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20000316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Ref document number: 3922676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term