JP4672309B2 - Alkaline zinc plating method on cast iron - Google Patents
Alkaline zinc plating method on cast iron Download PDFInfo
- Publication number
- JP4672309B2 JP4672309B2 JP2004242688A JP2004242688A JP4672309B2 JP 4672309 B2 JP4672309 B2 JP 4672309B2 JP 2004242688 A JP2004242688 A JP 2004242688A JP 2004242688 A JP2004242688 A JP 2004242688A JP 4672309 B2 JP4672309 B2 JP 4672309B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- zinc
- cast iron
- bath
- plated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007747 plating Methods 0.000 title claims description 192
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 74
- 239000011701 zinc Substances 0.000 title claims description 74
- 229910052725 zinc Inorganic materials 0.000 title claims description 74
- 229910001018 Cast iron Inorganic materials 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 31
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 28
- 239000000654 additive Substances 0.000 claims description 22
- 230000000996 additive effect Effects 0.000 claims description 19
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 7
- 238000004090 dissolution Methods 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910001410 inorganic ion Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 32
- 238000004070 electrodeposition Methods 0.000 description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 22
- 230000000694 effects Effects 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- 239000002659 electrodeposit Substances 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- HSSJULAPNNGXFW-UHFFFAOYSA-N [Co].[Zn] Chemical compound [Co].[Zn] HSSJULAPNNGXFW-UHFFFAOYSA-N 0.000 description 1
- PHCDZUPEIPGYOG-UHFFFAOYSA-N [Fe].[Co].[Zn] Chemical compound [Fe].[Co].[Zn] PHCDZUPEIPGYOG-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007744 chromate conversion coating Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Description
本発明は、アルカリ性亜鉛系めっき浴を用いて鋳鉄へ亜鉛系めっきを施すための方法に関する。 The present invention relates to a method for applying zinc-based plating to cast iron using an alkaline zinc-based plating bath.
鋳鉄への電気亜鉛系めっきは、自動車用ブレーキ部品、建材用配管ジョイント部品、などの分野で必要とされている技術であり、一般には酸性亜鉛系めっき浴(塩化アンモニウム浴、塩化カリウム浴、硫酸浴など)を用いて行われており、実用的なレベルでアルカリ性亜鉛系めっき浴からめっきを行っている例は殆どない。これは、従来アルカリ性亜鉛系めっき浴から、鋳鉄にめっきしようとすると、大部分の電流は水の電気分解に費やされ、亜鉛は高電流密度部にわずかに電着するだけで、殆ど電着しないためである。
しかしながら、酸性亜鉛系めっき浴は廃水処理性が悪く処理コストがかさむこと、酸性亜鉛系めっき浴からのめっきでは被めっき物の部位によりめっき膜厚が大きく異なること、被めっき物の不めっき部分(内面、凹部、孔、穴など)が錆びやすいことなどがあり、更に新たな問題として、環境対応として亜鉛めっき上に施す3価クロメート皮膜の耐食性がアルカリ浴からめっきを施したものより劣ることなどから、鋳鉄への亜鉛系めっきもアルカリ性めっき浴の要望が出てきた。
Electro-galvanizing plating on cast iron is a technology required in fields such as automotive brake parts and piping joint parts for building materials. Generally, acidic zinc-based plating baths (ammonium chloride bath, potassium chloride bath, sulfuric acid) There are few examples of plating from an alkaline zinc plating bath at a practical level. This is because, when an attempt is made to plate cast iron from a conventional alkaline zinc plating bath, most of the current is consumed for electrolysis of water, and zinc is electrodeposited only slightly on the high current density portion. It is because it does not.
However, acidic zinc plating baths have poor wastewater treatment performance and high processing costs. In plating from acidic zinc plating baths, the plating film thickness varies greatly depending on the portion of the object to be plated. The inner surface, recesses, holes, holes, etc.) are likely to rust, and new problems include the inferior corrosion resistance of trivalent chromate coatings on galvanized plating compared to those plated from an alkaline bath. Therefore, there has been a demand for an alkaline plating bath for zinc-based plating on cast iron.
アルカリ性亜鉛系めっき浴から鋳鉄にめっきを施そうとすると、通常のめっき電流密度(1〜3A/dm2程度)では殆ど又は全く亜鉛電着が起こらない。数倍の高電流密度負荷を与えると一部に亜鉛電着が得られる程度で、しかも、得られた電着亜鉛は粗めっきであり実用的な平滑性が得られない。
これまでの亜鉛めっきに関する特許文献やその他の技術文献などからは、アルカリ浴から鋳鉄への亜鉛めっきのこのような現象を解決しようとする試みは見出せない。
そこで本発明は、アルカリ浴から亜鉛を電着させ、その電着亜鉛を粗めっきではなく平滑なめっき皮膜にすることを課題とする。
When the cast iron is plated from the alkaline zinc plating bath, little or no zinc electrodeposition occurs at the normal plating current density (about 1 to 3 A / dm 2 ). When a several times higher current density load is applied, zinc electrodeposition can be obtained in part, and the obtained electrodeposited zinc is rough plating and practical smoothness cannot be obtained.
No attempt to solve such a phenomenon of galvanization from an alkaline bath to cast iron can be found from the patent literature and other technical literatures related to galvanization so far.
Then, this invention makes it a subject to electrodeposit zinc from an alkaline bath and to make the electrodeposition zinc into a smooth plating film instead of rough plating.
本発明者らはこの課題を解決するために鋭意研究の結果、アルカリ性亜鉛系めっき浴から鋳鉄にめっきしようとすると、めっき液と被めっき物の界面で水の電気分解による水素ガスの連続的多量発生があり、この水素ガスが被めっき物を覆い、該界面への亜鉛イオンの供給を遮断し、めっき電着が極度に阻害されていることが大きな要因であることを見い出した。
そこで、めっき液と被めっき物の界面(以下「電着面」という。)への亜鉛イオン供給を遮断している水素ガスを該界面から物理的手段で引き離し(以下「水素ガス除去」という。)、電着面への亜鉛イオン供給を促進することにより亜鉛の電着が容易になると考え、連続的又は断続的に、めっき液の流動若しくは振動及び/又は被めっき物の揺動、振動若しくは回転などを行ったところ、該界面に付着した水素ガスが除去されて被めっき物界面への亜鉛イオン供給が促進され、容易に亜鉛めっきの電着を行うことができた。
As a result of intensive studies to solve this problem, the present inventors have tried to plate cast iron from an alkaline zinc-based plating bath, and a continuous large amount of hydrogen gas due to electrolysis of water at the interface between the plating solution and the object to be plated. It has been found that this hydrogen gas covers the object to be plated, shuts off the supply of zinc ions to the interface, and the plating electrodeposition is extremely hindered.
Therefore, the hydrogen gas blocking the supply of zinc ions to the interface between the plating solution and the object to be plated (hereinafter referred to as “electrodeposition surface”) is separated from the interface by physical means (hereinafter referred to as “hydrogen gas removal”). ), It is considered that the electrodeposition of zinc is facilitated by promoting the supply of zinc ions to the electrodeposition surface, and the flow or vibration of the plating solution and / or the vibration, vibration or When rotation or the like was performed, the hydrogen gas adhering to the interface was removed, the supply of zinc ions to the interface of the object to be plated was promoted, and galvanization could be easily performed.
しかしながら、従来の可溶性亜鉛を陽極とするアルカリ性亜鉛系めっき浴ではめっき液の流動や処理物の揺動などにより水素ガス除去を行うと、亜鉛陽極表面に付着しているか又はめっき槽の下部に沈降している陽極スライムがめっき液に浮遊してめっき液を汚し、めっき皮膜に付着して不良めっきとなる。一般鉄鋼品へのアルカリ性亜鉛めっきでも陽極亜鉛にアノードバック(布製の袋)をつけているものが多いが、鋳鉄へのめっきの場合は一般鉄製品のめっきに比べて数倍〜数十倍も陽極電流密度が高くなるため、陽極スライムの発生が多く、布袋のはげしい目づまりを起こし通電性が悪くなり、めっき浴の管理が困難であり実用に耐えない。
本発明者らは、このような陽極スライムによるめっき液の汚れを避けるために陽極の一部又は全部に陽極スライムの発生しない不溶性陽極を採用し、亜鉛イオン供給を陽極以外から行うこととした。これにより陽極スライムによる弊害が低減又は除去され、めっき液の流動若しくは振動、又は被処理物の揺動、振動若しくは回転などの強弱、方向などを自由に変化させて被めっき物表面の水素ガス除去を行うことができるようになり、アルカリ浴亜鉛系めっきから鋳鉄に容易に電着させることが可能となった。
However, in the conventional alkaline zinc plating bath with soluble zinc as the anode, if hydrogen gas is removed by the flow of the plating solution or the rocking of the processed material, it adheres to the surface of the zinc anode or settles at the bottom of the plating tank. The anode slime that is floating floats in the plating solution, contaminates the plating solution, and adheres to the plating film, resulting in defective plating. Alkaline zinc plating on general steel products often has an anode back (cloth bag) on the anode zinc, but in the case of plating on cast iron several times to several tens of times compared to plating on general iron products Since the anode current density is high, a large amount of anode slime is generated, the cloth bag is severely clogged, the conductivity is deteriorated, the management of the plating bath is difficult, and it is not practical.
In order to avoid such contamination of the plating solution due to the anode slime, the present inventors adopted an insoluble anode in which no anode slime is generated in part or all of the anode, and the zinc ions are supplied from other than the anode. This reduces or eliminates the negative effects of anode slime, and removes hydrogen gas from the surface of the object by freely changing the flow or vibration of the plating solution, or the strength, direction, etc. of rocking, vibration or rotation of the object to be processed. It became possible to perform electrodeposition on cast iron from alkaline bath zinc-based plating.
また、めっき浴の亜鉛イオン濃度を高くすることやめっき浴温度を高くすることにより電着を促進することができるが、この促進効果は水素ガス除去を行うことで顕著となり、水素ガス除去を行わない場合には僅かである。 Electrodeposition can be promoted by increasing the zinc ion concentration in the plating bath or by increasing the plating bath temperature, but this acceleration effect becomes significant when hydrogen gas is removed. If not, it is a little.
このようにして、アルカリ性めっき浴から鋳鉄に電着させることが可能となったが、従来のアルカリ性亜鉛系めっき浴への添加剤(光沢剤)、例えばイミダゾール又はポリアルキレンポリアミンなどの脂肪族アミンとエピハロヒドリンの反応物などを主体にした添加剤を使用すると、粗めっき(樹皮状めっき、一般に「ヤケ」という)になりやすいことやめっき液温度30℃以上で添加剤が変質することなどの課題が生じた。
本発明者らはめっき浴への添加剤(光沢剤)として構造式:
mは0〜6の整数であり、
nは1以上の整数であり、
Xは有機又は無機イオンの残査であり、
Yは硫黄又は酸素原子である。)
をもつ化合物を用いることで、この課題が解決できることを見い出だした。
In this way, it became possible to electrodeposit cast iron from an alkaline plating bath. However, an additive (brightener) to a conventional alkaline zinc plating bath, for example, an aliphatic amine such as imidazole or polyalkylene polyamine, Use of additives mainly composed of reaction products of epihalohydrin causes problems such as rough plating (bark-like plating, generally referred to as “burning”) and deterioration of additives at plating solution temperatures of 30 ° C. or higher. occured.
We have the structural formula as an additive (brightener) to the plating bath:
m is an integer of 0-6,
n is an integer of 1 or more,
X is the residue of organic or inorganic ions,
Y is a sulfur or oxygen atom. )
It has been found that this problem can be solved by using a compound having.
これにより、アルカリ性亜鉛系めっき浴から鋳鉄へのめっき電着が可能になったが、更に新たな課題として、鋳鉄の「す」の中にめっき処理工程中に入ったアルカリ液が、めっき後の数時間〜数日間に表面ににじみ出て亜鉛めっき表面のクロメートなどの化成皮膜を変色させたり、腐食したりするなどの問題が生じた。この問題解決手段としてアルカリ性亜鉛系めっきを行った被めっき物(鋳鉄)をめっき後の洗浄工程で例えば湯洗と水洗などの温度差を繰り返し、被めっき物の膨張収縮を利用して「す」の中のアルカリ液を洗い出すことにより解決した。 As a result, it became possible to perform electrodeposition of plating from an alkaline zinc plating bath to cast iron. However, as a new issue, the alkaline solution that entered the plating process in the cast iron “s” was removed after plating. There were problems such as oozing out on the surface for several hours to several days, causing discoloration or corrosion of the conversion coating such as chromate on the surface of the galvanized surface. As a means for solving this problem, the object to be plated (cast iron) subjected to alkaline zinc plating is repeatedly subjected to a temperature difference such as hot water washing and water washing in the washing process after plating, and “swell” is made by utilizing the expansion and contraction of the object to be plated. The problem was solved by washing out the alkaline solution in the water.
このように、鋳鉄にアルカリ浴から亜鉛系めっきを施すことは、これまでに実用化の経験がないだけに被めっき物表面に亜鉛系めっきを単に電着させるだけでなく様々な課題が発生したが、本発明者らはこれら課題を次々と解決して実用性のあるアルカリ性亜鉛系めっき方法を確立し本発明に至った。 As described above, applying zinc-based plating from an alkaline bath to cast iron has caused various problems in addition to simply electrodepositing zinc-based plating on the surface of the object to be plated, since there is no experience in practical use so far. However, the present inventors solved these problems one after another, established a practical alkaline zinc plating method, and reached the present invention.
本発明を用いることにより、これまで困難とされてきた、アルカリ性めっき浴から鋳鉄への亜鉛の電着が可能となり、更にその電着亜鉛を粗めっきではなく平滑なめっき皮膜にすることが可能となる。 By using the present invention, it has become possible to perform electrodeposition of zinc from an alkaline plating bath to cast iron, which has been considered difficult until now, and further, the electrodeposited zinc can be made into a smooth plating film instead of rough plating. Become.
次に、本発明を詳しく説明する。
アルカリ性の亜鉛系めっき浴から鋳鉄にめっきを施すための手段として、電着面に発生する水素ガスを電着面から物理的にできるだけ早く連続的又は断続的に引き離す水素ガス除去を行うことが本発明の側面の一つである。
Next, the present invention will be described in detail.
As a means for plating cast iron from an alkaline zinc-based plating bath, it is possible to remove hydrogen gas by continuously or intermittently separating hydrogen gas generated on the electrodeposition surface from the electrodeposition surface as soon as possible. This is one aspect of the invention.
水素ガス除去手段として行うめっき液の流動は、めっき液のかくはん、噴流、槽内流などにより行うことができる。
めっき液の流動方法は特に限定するものではないが、具体例としては、スクリューかくはん、処理物下部からのエアーかくはん、めっき槽下部又は側面からのめっき液の液中吐出、めっき槽内のめっき液の一方向へ流れ(槽内流)、めっき槽下部又は側面からの超音波などがあり、これらの二種以上を組み合わせることで効果は増大する。
The flow of the plating solution performed as the hydrogen gas removing means can be performed by stirring the plating solution, a jet, a tank flow, or the like.
The flow method of the plating solution is not particularly limited. Specific examples include screw stirring, air stirring from the lower part of the processing object, discharge of plating solution from the lower part or side of the plating tank, plating solution in the plating tank. There is a flow in one direction (flow in the tank), ultrasonic waves from the lower part or side surface of the plating tank, and the effect is increased by combining two or more of these.
めっき液の振動には超音波振動、低周波振動などにより行うことができる。被めっき物を揺動する方向は特に制限されるものではないが、例えば上下方向、前後方向、左右方向などが可能であり、被めっき物をバイブレータなどにより振動させたり、被めっき物を回転させながらめっきすることも有効である。また、これらの手段を二種以上組み合わせることで効果は増大する。
なお、従来でもバレルめっき方式(回転めっき)のように被めっき物を回転させる方法が知られているが、バレルめっき方式では、回転速度が遅く(約5rpm)被めっき物界面の水素ガス除去がほとんどなされないことから、本発明とは本質的に異なる方法である。更にはバレルめっきは給電方法の制約から陰極電流密度が低く、仮に、陰極電流密度を高くしてもこれに耐える光沢剤が無く、本発明の課題を解決することは到底できない。
The plating solution can be vibrated by ultrasonic vibration, low frequency vibration or the like. The direction in which the workpiece is swung is not particularly limited. For example, the vertical direction, the front-rear direction, the left-right direction, and the like are possible. The workpiece can be vibrated by a vibrator or the like, or the workpiece can be rotated. Plating is also effective. Moreover, the effect increases by combining two or more of these means.
Conventionally, a method of rotating an object to be plated such as a barrel plating method (rotary plating) is known. However, in the barrel plating method, the rotation speed is slow (about 5 rpm), and hydrogen gas removal at the interface of the object to be plated is performed. Since it is rarely done, it is essentially a different method from the present invention. Furthermore, barrel plating has a low cathode current density due to restrictions on the power supply method. Even if the cathode current density is increased, there is no brightener that can withstand this, and the problem of the present invention cannot be solved.
処理物の形状や有効めっき面の品質要求が異なるため、好ましい流動方法、揺動方法を特に限定することは難しいが、めっき液の流動及び振動は方向性があり、処理物全面への均一な水素ガス除去効果は得られないため、例えば「槽内流」と「めっき液のめっき液断続吐出」を組み合わせ、さらに、「処理物を揺動または回転」するなど、二種以上を組み合わせて補完し合うことで出来るだけ均一に水素ガス除去を行うことが好ましい。 It is difficult to limit the preferred flow method and rocking method because the shape of the processed material and the quality requirements of the effective plating surface are different. However, the flow and vibration of the plating solution are directional and uniform over the entire processed material. Since the effect of removing hydrogen gas cannot be obtained, for example, “tank flow” and “intermittent discharge of plating solution” are combined, and further, two or more types are supplemented, such as “oscillating or rotating the workpiece” It is preferable to remove the hydrogen gas as uniformly as possible by combining the two.
電着面の水素ガス除去は、亜鉛陽極表面やめっき槽底部の陽極スライムなどの汚れを舞い上げてめっき浴に浮遊しめっき不良の原因となる。この陽極スライム浮遊の悪影響を避けるために本発明では陽極の一部又は全部を不溶性の陽極にするものであり、全部を不溶性陽極にするのが好ましい。
不溶性陽極を使用することによる亜鉛系めっき浴の亜鉛イオンの不足はめっき槽とは別に亜鉛溶解槽を設けて、めっき液をめっき槽と亜鉛溶解槽の間で循環させ供給するのが望ましい。
亜鉛溶解槽での亜鉛溶解方法には、めっき液中で金属亜鉛と亜鉛より貴な金属とを接触させて亜鉛を溶解させるもの、更に外部からの電圧を加え亜鉛溶解を促進するもの、金属亜鉛と異種金属を揺動、回転などで共ズレさせる方法などいくつかの提案がなされているが、本発明ではこの溶解方法について特に限定するものでない。一般的には溶解槽中の鉄かごに亜鉛板を入れ亜鉛イオンをめっき液に供給し、供給されためっき液を(好ましくは濾過機を通して)めっき槽に戻す方法がある。
亜鉛溶解槽の設置場所がない場合などには、めっき槽内で開いているスペースに亜鉛の入った鉄かごをめっき浴に浸漬するなどして異種金属の接触による亜鉛溶解で亜鉛イオンを溶解しめっき浴に供給することもできる。当該手段だと亜鉛イオン供給が十分でない場合には陽極の一部を可溶性の亜鉛陽極とし補うこともできる。しかしこの方法は鋳鉄へのめっきは高電流密度のめっきであるため陽極酸化がはげしく起こり電流が流れ難くなり、陰極の電流分布にも悪影響を起こすため、できるだけ避けた方がよい。めっき槽内で亜鉛を溶解させる場合には、溶解させる亜鉛と陰極(被めっき物)との間にアノードバック又はそれに準じた亜鉛イオン透過性の隔膜を装着するなどの方法により、陽極スライムをめっき浴に浮遊させないことが重要である。
Removal of hydrogen gas from the electrodeposited surface raises dirt such as the anode surface of the zinc anode and the anode slime at the bottom of the plating tank and floats in the plating bath, causing plating defects. In order to avoid the adverse effect of the anode slime floating, in the present invention, a part or all of the anode is made an insoluble anode, and the whole is preferably made an insoluble anode.
Insufficient zinc ions in the zinc-based plating bath due to the use of an insoluble anode is preferably provided by providing a zinc dissolution tank separately from the plating tank and circulating the plating solution between the plating tank and the zinc dissolution tank.
The zinc dissolution method in the zinc dissolution tank includes a method in which zinc is dissolved by bringing metal zinc and a metal noble from zinc into contact with each other in a plating solution, and further zinc is accelerated by applying an external voltage. Some proposals have been made, such as a method of causing the dissimilar metals to be displaced by swinging or rotating, but the melting method is not particularly limited in the present invention. In general, there is a method in which a zinc plate is placed in an iron cage in a dissolution tank, zinc ions are supplied to the plating solution, and the supplied plating solution is returned to the plating vessel (preferably through a filter).
If there is no place to install a zinc dissolution tank, zinc ions are dissolved by contact with dissimilar metals, such as by immersing an iron basket containing zinc in a plating bath in an open space in the plating tank. It can also be supplied to the plating bath. If the means is not sufficient to supply zinc ions, a part of the anode can be supplemented with a soluble zinc anode. However, in this method, since plating on cast iron is plating with a high current density, anodization occurs rapidly, current does not flow easily, and negative current distribution is also adversely affected. When zinc is dissolved in the plating tank, the anode slime is plated by a method such as mounting an anode back or a zinc ion permeable diaphragm equivalent between the zinc to be dissolved and the cathode (material to be plated). It is important not to float in the bath.
また、本発明である陰極の水素ガス除去と不溶性陽極の採用は、本来の目的であるめっき電着促進及び陽極スライムの悪影響回避ばかりでなく、鋳鉄のめっきに必要な高電流密度のめっき作業に伴う高い浴電圧を大幅に低下させる効果があり、省エネ対策にも有効である。特に、上記水素ガス除去手段は陰極の電着面の水素ガス除去だけでなく陽極面の酸素ガスを除去する効果もあり、めっき浴の電気抵抗が低下するため、めっき浴電圧を大幅に下げることができる。また不溶性陽極素材に加工しやすい金属、例えば鉄鋼板を使用して陽極に凹凸を設けて陽極面積を増加さることで電圧を更に低下させることが可能である。電圧が下がることにより発生する水素量も低減できると考えられる。 Moreover, the removal of hydrogen gas from the cathode and the use of an insoluble anode according to the present invention are not only for the purpose of promoting plating electrodeposition and avoiding the negative effects of anode slime, but also for the high current density plating work required for plating cast iron. It has the effect of greatly reducing the high bath voltage involved, and is also effective for energy saving measures. In particular, the above hydrogen gas removal means has the effect of removing not only the hydrogen gas on the electrodeposited surface of the cathode but also the oxygen gas on the anode surface, and the electric resistance of the plating bath is lowered, so the plating bath voltage is greatly reduced. Can do. Further, it is possible to further reduce the voltage by increasing the anode area by providing irregularities on the anode using a metal that is easy to process into an insoluble anode material, such as a steel plate. It is thought that the amount of hydrogen generated by the voltage drop can also be reduced.
本発明で使用できる不溶性陽極の材料は亜鉛系めっきに悪影響がなければ特に指定するものでないが、一般的には鉄、ニッケル、コバルト、チタン、カーボンなどアルカリ性めっき浴にて陽極電解で溶解しないものが使用でき、鉄上のニッケルめっき、コバルトめっきなどの不溶性導電物めっきあるいはチタン上の酸化イリジウムコーティングなどの不溶性導電物コーティング物なども使用できる。 The insoluble anode material that can be used in the present invention is not particularly specified as long as it does not adversely affect the zinc-based plating, but generally does not dissolve by anodic electrolysis in an alkaline plating bath such as iron, nickel, cobalt, titanium, and carbon. Insoluble conductive material plating such as nickel plating on iron and cobalt plating or iridium oxide coating on titanium can also be used.
前述の通り、アルカリ性浴を用いた鋳鉄へ亜鉛系めっきを施す際には水素ガス除去手段を設けることが電着を促進させるのに効果的であるが、さらに電着を容易にする要因として、めっき浴の亜鉛イオン濃度とめっき浴の温度があり、めっき浴中の亜鉛イオン濃度が高いほど、そしてめっき浴温度が高いほど電着面への亜鉛イオンの供給は多くなり、電着しやすくなる。そして、この電着促進効果は陰極の水素ガス除去と併用することで大幅に上昇する。しかし濃度、温度を高くすると、強いアルカリ性のめっき浴のため添加剤の変質を起こしやすくなるなどの弊害も生じる。
例えば、従来から一般的なアルカリ亜鉛めっき浴に使用されている添加剤、即ちイミダゾール又はポリアルキレンポリアミンなどの脂肪族アミンとエピハロヒドリンの反応物を主体とする添加剤を鋳鉄へのアルカリ性亜鉛系めっきに用いると、高電流密度めっき作業(4〜40A/dm2)であるために亜鉛イオン濃度15g/L程度でも被めっき物の高電流密度部が樹皮状の粗めっき(ヤケ)となり、亜鉛イオン濃度を高くすると更に悪化することが分かった。また、めっき浴の苛性ソーダ濃度140g/Lにおいてめっき浴温度を30℃以上にすると添加剤が変質を起こして光沢作用効果が失われるなどの欠点があることが分かった。このように従来の添加剤を用いることは実用上問題があることが分かった。
As mentioned above, when applying zinc-based plating to cast iron using an alkaline bath, providing a hydrogen gas removal means is effective in promoting electrodeposition, but as a factor that further facilitates electrodeposition, There is a zinc ion concentration in the plating bath and the temperature of the plating bath. The higher the zinc ion concentration in the plating bath and the higher the plating bath temperature, the more zinc ions are supplied to the electrodeposition surface, and the easier the electrodeposition is. . And this electrodeposition acceleration | stimulation effect raises significantly by using together with the hydrogen gas removal of a cathode. However, when the concentration and temperature are increased, there is a problem that the additive is liable to be altered due to the strong alkaline plating bath.
For example, an additive mainly used in a conventional alkaline zinc plating bath, that is, an additive mainly composed of a reaction product of an aliphatic amine such as imidazole or polyalkylene polyamine and epihalohydrin is used for alkaline zinc plating on cast iron. When it is used, since it is a high current density plating operation (4 to 40 A / dm 2 ), even if the zinc ion concentration is about 15 g / L, the high current density portion of the object to be plated becomes a bark-like rough plating (discoloration), and the zinc ion concentration It was found that the higher the value, the worse. Further, it has been found that when the plating bath temperature is set to 30 ° C. or higher at a caustic soda concentration of 140 g / L in the plating bath, the additive is altered and the glossy effect is lost. Thus, it has been found that the use of the conventional additive has a practical problem.
本発明者らは、高亜鉛イオン濃度でも樹皮状の粗めっき(ヤケ)とならないばかりか、高温度のめっき浴で変質の少ない新規添加剤を求めて検討したところ、めっき液の苛性ソーダ濃度90g/L〜160g/Lにおいて亜鉛イオン濃度10〜65g/L、めっき浴温度15〜70℃の広い範囲に対応できる添加剤として構造式:
mは0〜6の整数であり、
nは1以上の整数であり、
Xは有機又は無機イオンの残査であり、
Yは硫黄又は酸素原子である。)
をもつ化合物が有効であることを見い出した。
この化合物の構造式において、nは重合度を示し平均6程度が最適であり、小さいと高電流密度部が粗めっきとなりやすく、大きいと電流効率が低下し電着しにくい傾向にある。
Yは硫黄又は酸素であり、硫黄の場合は特に光沢性に優れ、酸素の場合は電着物の二次加工性に優れている。またa及びbは2〜4であるが、小さい方が低電流密度部の光沢が良く、電着速度も速い。また大きい方が均一電着性に優れ、高電流密度部が粗めっきになりにくいため、被めっき物の用途、要求度に応じて選択できる。または、パラメーターの異なるこれらの化合物を組み合わせることにより複数の効果を同時に発現することもできる。
The present inventors examined not only a bark-like rough plating (discoloration) even at a high zinc ion concentration but also a new additive with little alteration in a high-temperature plating bath, and found that the caustic soda concentration of the plating solution was 90 g / Structural formula as an additive capable of supporting a wide range of zinc ion concentration of 10 to 65 g / L and plating bath temperature of 15 to 70 ° C. at L to 160 g / L:
m is an integer of 0-6,
n is an integer of 1 or more,
X is the residue of organic or inorganic ions,
Y is a sulfur or oxygen atom. )
It has been found that a compound having a value is effective.
In the structural formula of this compound, n represents the degree of polymerization, and an average of about 6 is optimal. When it is small, the high current density portion tends to be rough plating, and when it is large, the current efficiency is lowered and electrodeposition tends to be difficult.
Y is sulfur or oxygen. In the case of sulfur, the gloss is particularly excellent, and in the case of oxygen, the secondary workability of the electrodeposit is excellent. Moreover, although a and b are 2-4, the one where it is small has good gloss of a low current density part, and the electrodeposition rate is also quick. Moreover, since the larger one is excellent in throwing power and the high current density part is less likely to be rough plating, it can be selected according to the use and requirement of the object to be plated. Alternatively, a plurality of effects can be expressed simultaneously by combining these compounds having different parameters.
めっき液中の添加剤濃度は0.5g/L〜20g/Lであるが、めっき安定性と経済性を考慮すると1g/L〜4g/Lが好ましい。
この添加剤により、従来の添加剤が分解してしまうめっき液条件である、苛性ソーダ濃度140g/L以上、温度30℃以上のめっき液でのめっき条件が可能になり、具体的には、添加剤2g/L、苛性ソーダ濃度150g/L、亜鉛イオン濃度55g/L、めっき浴温度50℃、陰極電流密度15A/dm2の条件によるめっきにより酸性亜鉛めっきに勝る速度での鋳鉄へのアルカリ性亜鉛めっきを実現した。
本発明のめっき浴濃度を詳しく説明すると、苛性ソーダ濃度はめっき液の電導性を保持すると共に亜鉛イオンの溶解性を高めるもので、亜鉛イオン濃度が高くなるほど苛性ソーダ濃度も高くする必要がある。本発明では90g/L〜160g/Lであるが、一般的には亜鉛イオン濃度10g/Lで苛性ソーダ濃度100g/L程度、亜鉛濃度25g/Lで苛性ソーダ濃度140g/L程度、亜鉛濃度50g/Lで150g/L程度であり、亜鉛濃度はめっき電着速度、均一電着性、高電流密度部の粗めっき(ヤケ)などに最も影響する要因であり、被めっき物の材質、形状、めっき要求度に応じて適切に選定され、維持させるものであり、本発明の亜鉛濃度は10g/L〜65g/Lであり、通常はめっき電着速度を重視するため亜鉛濃度は高い方(30g/L以上)を選択するのが一般的である。しかし、被めっき物の用途によってはめっき皮膜厚さの上限が限定されるなどからめっき速度を犠牲にして亜鉛濃度を低くすることも可能である。
The additive concentration in the plating solution is 0.5 g / L to 20 g / L, but 1 g / L to 4 g / L is preferable in consideration of plating stability and economy.
This additive enables plating conditions with a plating solution having a caustic soda concentration of 140 g / L or more and a temperature of 30 ° C. or more, which is a plating solution condition in which a conventional additive is decomposed. Alkaline zinc plating on cast iron at a speed superior to acidic zinc plating by plating under conditions of 2 g / L, caustic soda concentration 150 g / L, zinc ion concentration 55 g / L, plating bath temperature 50 ° C., cathode current density 15 A / dm 2 It was realized.
The plating bath concentration of the present invention will be described in detail. The caustic soda concentration maintains the conductivity of the plating solution and enhances the solubility of zinc ions. The higher the zinc ion concentration, the higher the caustic soda concentration must be. In the present invention, it is 90 g / L to 160 g / L, but in general, the zinc ion concentration is 10 g / L, the caustic soda concentration is about 100 g / L, the zinc concentration is 25 g / L, the caustic soda concentration is about 140 g / L, and the zinc concentration is 50 g / L. The zinc concentration is the most influential factor in the plating electrodeposition rate, uniform electrodeposition, and rough plating of the high current density part. The material, shape, and plating requirements of the object to be plated The zinc concentration of the present invention is 10 g / L to 65 g / L, and usually the higher the zinc concentration (30 g / L) because the plating electrodeposition speed is important. Generally, the above is selected. However, since the upper limit of the plating film thickness is limited depending on the use of the object to be plated, it is possible to reduce the zinc concentration at the expense of the plating speed.
めっき液温度は亜鉛濃度と類似した傾向を示し、温度が高いほどめっき速度が速くなり、均一電着性が低下し、高電流部の粗めっきも起こりやすい。従って、被めっき物の要求に応じためっきを行うためには、亜鉛濃度を急に変化させることは出来ないので、めっき液温度で調整することが可能となる。本発明のめっき温度は15℃〜70℃であり、一般的には40℃〜50℃程度が適当であるが、被めっき物の要求によっては20℃のめっきも可能である。
また、陰極電流密度は4A/dm2〜40A/dm2で使用でき、被めっき物の要求度に応じて、亜鉛濃度、めっき液温度と共に選定できるが、一般的には10A/dm2〜25A/dm2である。高速めっきを目的とする場合は、強いめっき液の流動、高亜鉛イオン濃度、高めっき液温度のもとで、30A/dm2以上の高電流密度も可能である。
The plating solution temperature shows a tendency similar to the zinc concentration, and the higher the temperature, the faster the plating speed, the lower the electrodeposition, and the higher current portion rough plating is likely to occur. Therefore, in order to perform plating according to the requirements of the object to be plated, the zinc concentration cannot be changed abruptly, and therefore it is possible to adjust the plating solution temperature. The plating temperature of the present invention is 15 ° C. to 70 ° C., and generally about 40 ° C. to 50 ° C. is appropriate.
Further, the cathode current density can be used at 4 A / dm 2 to 40 A / dm 2 , and can be selected together with the zinc concentration and the plating solution temperature according to the required degree of the object to be plated, but generally 10 A / dm 2 to 25 A. / Dm 2 . For the purpose of high-speed plating, a high current density of 30 A / dm 2 or more is possible under strong plating solution flow, high zinc ion concentration, and high plating solution temperature.
鋳鉄には「す」と呼ばれる液体の浸透可能な孔があり、亜鉛めっきのアルカリ性脱脂(界面活性剤含有)、酸性除錆、めっきなどの処理工程でこの「す」の中に入った処理薬品が数日かけてにじみ出し、亜鉛めっきの最終工程であるクロメート化成皮膜の耐食性低下と変色などを起こす。これを避けるためにめっき後の洗浄工程で温度差を与え、これによる鋳鉄の膨張と収縮を利用して「す」の中の薬品を除去することができる。温度差を与える手段としては例えば湯洗と水洗をシャワーや浸漬により行う方法が挙げられる。洗浄時間は長くする必要はなく、各温度ごとに一工程5〜10秒以上あればよい。低温(高温)洗浄から高温(低温)洗浄への温度変化を1回と数えて、温度変化は2回以上繰り返し行うことが好ましい。低温洗浄と高温洗浄の温度差は大きいほどよい。また、この洗浄工程に超音波を併用することも有効であるが、温度差を与えることで効果はさらに増大する。 Cast iron has a liquid-permeable hole called “su”, and the processing chemicals contained in this “su” during processing steps such as alkaline degreasing (containing surfactants), acidic derusting, and plating. Oozes out over several days, causing a decrease in corrosion resistance and discoloration of the chromate conversion coating, which is the final step of galvanization. In order to avoid this, a temperature difference is given in the washing process after plating, and the chemicals in the soot can be removed by utilizing the expansion and contraction of the cast iron. As a means for giving the temperature difference, for example, a method of performing hot water washing and water washing by shower or dipping can be mentioned. It is not necessary to lengthen the cleaning time, and it is sufficient that one process takes 5 to 10 seconds or more for each temperature. It is preferable that the temperature change from the low temperature (high temperature) cleaning to the high temperature (low temperature) cleaning is counted once and the temperature change is repeated twice or more. The larger the temperature difference between the low temperature cleaning and the high temperature cleaning, the better. It is also effective to use ultrasonic waves in combination with this cleaning process, but the effect is further increased by giving a temperature difference.
なお、本発明でいうアルカリ性亜鉛系めっきとは、アルカリ性ジンケート亜鉛めっき、アルカリ性亜鉛合金めっき(亜鉛−鉄、亜鉛−鉄−コバルト、亜鉛−コバルト、亜鉛−ニッケルなど)であり、亜鉛系合金めっきにおいては水素ガス除去、亜鉛イオン濃度変更、めっき液温度変更が合金比に影響するので、あらためてめっき条件を設定する必要がある。 The alkaline zinc plating in the present invention is alkaline zincate zinc plating or alkaline zinc alloy plating (zinc-iron, zinc-iron-cobalt, zinc-cobalt, zinc-nickel, etc.). Since hydrogen gas removal, zinc ion concentration change, and plating solution temperature change affect the alloy ratio, it is necessary to set plating conditions anew.
これまで鋳鉄への亜鉛系めっきは酸性浴により行われていたが、本発明によりアルカリ性浴からの亜鉛系めっきの実用的利用が可能になる。アルカリ性浴は酸性浴に比べて廃水処理が容易で環境に優しいめっき浴であり、更には酸性浴よりも高い耐食性を有することや均一電着性・皮膜物性などの利点を活かして、これまで以上に高い品質の鋳鉄の亜鉛系めっき品を提供することが可能になる。 So far, zinc-based plating on cast iron has been performed with an acidic bath, but the present invention enables practical use of zinc-based plating from an alkaline bath. The alkaline bath is an environmentally friendly plating bath that is easier to treat wastewater than the acidic bath, and has higher corrosion resistance than the acidic bath, and has advantages such as uniform electrodeposition and film properties. It is possible to provide a high-quality cast iron zinc-based plated product.
本発明を以下実施例にて説明するが、これらは本発明及びその利点をより良く理解するために提供するものであり、発明が限定されることを意図しない。 The present invention will now be described in the following examples, which are provided to better understand the present invention and its advantages and are not intended to limit the invention.
めっき試験
次記のめっき条件で実施例及び比較例について鋳鉄への亜鉛めっきを施した。結果は表1に示す。
被処理物 :球状黒鉛鋳鉄の平板(100mm×100mm×8mm)
めっきの前処理:アルカリ脱脂→水洗→塩酸酸洗→水洗→アルカリ中和→めっき
(めっきの前処理としては一般的なものとした。)
本発明の添加剤:
添加剤(1) 構造式a=2 b=3 Y=O 2g/L
添加剤(2) 構造式a=3 b=3 Y=S 2g/L
従来の添加剤 :
添加剤(3) JASCO H−1218(日本表面化学製)6ml/L (アルカリ性亜鉛系めっき用光沢剤としてイミダゾール、脂肪族アミン及びエピクロルヒドリンの反応物を主体とする水溶液)
めっき浴組成 :亜鉛イオン 20g/L、55g/L、
苛性ソーダ 150g/L、
めっき浴温度 :25℃,50℃
陽極 :鉄板
極間距離 :10〜15cm(陰極揺動により変動)
陰極揺動 :陽極方向へ振幅4〜5cm 60往復/分
めっき時間 :10分
めっき膜厚測定位置:
A:陽極側から見て右上角から対角方向へ15mm内側の被めっき物表面(陽極側)
B:被めっき物表面(陽極側)中央部
C:被めっき物裏面中央部
判定基準 ◎:実用的に十分満足できる
○:満足できる
△:被めっき物の要求度によっては実用できる
×:実用できない
Plating test Zinc plating was performed on cast iron for the examples and comparative examples under the following plating conditions. The results are shown in Table 1.
Workpiece: Spheroidal graphite cast iron flat plate (100mm x 100mm x 8mm)
Pretreatment of plating: alkaline degreasing → water washing → hydrochloric acid pickling → water washing → alkali neutralization → plating
(General plating pretreatment was used.)
Additive of the present invention:
Additive (1) Structural formula a = 2 b = 3 Y = O 2 g / L
Additive (2) Structural formula a = 3 b = 3 Y = S 2 g / L
Conventional additives:
Additive (3) JASCO H-1218 (manufactured by Nippon Surface Chemicals) 6 ml / L (Aqueous solution mainly composed of reactants of imidazole, aliphatic amine and epichlorohydrin as a brightener for alkaline zinc plating)
Plating bath composition: Zinc ions 20 g / L, 55 g / L,
Caustic soda 150g / L,
Plating bath temperature: 25 ° C, 50 ° C
Anode: Distance between iron plates: 10-15 cm (varies due to cathode swing)
Cathodic oscillation: Amplitude 4-5 cm in the direction of anode 60 reciprocations / minute Plating time: 10 minutes Plating film thickness measurement position:
A: Surface of the object to be plated 15 mm inside from the upper right corner to the diagonal direction when viewed from the anode side (anode side)
B: Plated object surface (anode side) center
C: Criteria for judging the center of the back side of the object to be plated ◎: Practically satisfactory
○: Satisfied
Δ: Practical depending on the requirement of the object to be plated
×: Not practical
Claims (7)
m :0〜6の整数
n :1以上の整数
X :有機又は無機イオンの残査
Y :硫黄又は酸素) The additive to the plating bath containing 1 or more types of the compound represented by the following structural formula used for the plating method as described in any one of Claims 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004242688A JP4672309B2 (en) | 2004-08-23 | 2004-08-23 | Alkaline zinc plating method on cast iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004242688A JP4672309B2 (en) | 2004-08-23 | 2004-08-23 | Alkaline zinc plating method on cast iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006057165A JP2006057165A (en) | 2006-03-02 |
JP4672309B2 true JP4672309B2 (en) | 2011-04-20 |
Family
ID=36104887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004242688A Expired - Lifetime JP4672309B2 (en) | 2004-08-23 | 2004-08-23 | Alkaline zinc plating method on cast iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4672309B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100767761B1 (en) | 2006-04-13 | 2007-10-18 | 남태희 | Electrogalvanizing process for cast iron |
JP4679660B1 (en) * | 2009-11-19 | 2011-04-27 | 株式会社スイレイ | Wastewater treatment equipment that divides the plating process into three systems and recycles the two treated water, RO permeated water or treated pure water generated by these three divided systems |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54145330A (en) * | 1978-05-02 | 1979-11-13 | Mitsubishi Electric Corp | Galvanization method |
JPH07278882A (en) * | 1994-03-31 | 1995-10-24 | Nippon Steel Corp | Electroplating method and device therefor |
JPH07316897A (en) * | 1994-05-31 | 1995-12-05 | Kawasaki Steel Corp | Method for supplying metallic ion to plating solution |
JP2003073882A (en) * | 2001-08-31 | 2003-03-12 | Nippon Hyomen Kagaku Kk | Alkaline galvannealing bath and galvannealing method |
-
2004
- 2004-08-23 JP JP2004242688A patent/JP4672309B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54145330A (en) * | 1978-05-02 | 1979-11-13 | Mitsubishi Electric Corp | Galvanization method |
JPH07278882A (en) * | 1994-03-31 | 1995-10-24 | Nippon Steel Corp | Electroplating method and device therefor |
JPH07316897A (en) * | 1994-05-31 | 1995-12-05 | Kawasaki Steel Corp | Method for supplying metallic ion to plating solution |
JP2003073882A (en) * | 2001-08-31 | 2003-03-12 | Nippon Hyomen Kagaku Kk | Alkaline galvannealing bath and galvannealing method |
Also Published As
Publication number | Publication date |
---|---|
JP2006057165A (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060118427A1 (en) | Electrolyte bath for trivalent chromium plating | |
CN111321436B (en) | Cyanide-free copper plating solution assistant and copper plating solution | |
CN101387000A (en) | Non-cyanogen strike copper plating technique | |
US4904354A (en) | Akaline cyanide-free Cu-Zu strike baths and electrodepositing processes for the use thereof | |
JP2007262430A (en) | Electroplating method | |
JP4672309B2 (en) | Alkaline zinc plating method on cast iron | |
JP4586020B2 (en) | Use of the above aqueous solutions in addition to acidic aqueous solutions and methods for electrolytically depositing copper coatings | |
US20090223827A1 (en) | Pulse Reverse Electrolysis of Acidic Copper Electroplating Solutions | |
JP2006316328A (en) | Method for manufacturing two-layer flexible copper-clad laminate | |
EP3877571A1 (en) | Satin copper bath and method of depositing a satin copper layer | |
JP4406235B2 (en) | Zincate bath galvanizing method | |
KR101173879B1 (en) | Multi-functional super-saturated slurry plating solution for nickel flash plating | |
JP3506411B2 (en) | Zinc plating method | |
JP5861176B2 (en) | Zinc-nickel alloy plating solution and plating method | |
US3689380A (en) | Process for acid copper plating of steel | |
US3645858A (en) | Silver plating baths | |
JPH11323565A (en) | Pretreatment of electroless nickel plating | |
US3442776A (en) | Electrolyte and process for the electrodeposition of cadmium | |
RU2503751C2 (en) | Method of iron coat electroplating in flowing electrolyte with coarse disperse particles | |
JP2022142176A (en) | Electric nickel plating solution and electric nickel plating method | |
JPH0853799A (en) | Reducing method of concentration of metal in electroplating solution | |
JPS62139900A (en) | Electrolytic plating device | |
US3647648A (en) | Plating high strength steel without hydrogen embrittlement | |
JPH06346272A (en) | Sulfuric acid bath for tinning at high current density and tinning method | |
JPH02197591A (en) | Method for electroforming copper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101006 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101006 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20101006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101006 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4672309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |